linux/drivers/firmware/efi/libstub/fdt.c
<<
>>
Prefs
   1/*
   2 * FDT related Helper functions used by the EFI stub on multiple
   3 * architectures. This should be #included by the EFI stub
   4 * implementation files.
   5 *
   6 * Copyright 2013 Linaro Limited; author Roy Franz
   7 *
   8 * This file is part of the Linux kernel, and is made available
   9 * under the terms of the GNU General Public License version 2.
  10 *
  11 */
  12
  13#include <linux/efi.h>
  14#include <linux/libfdt.h>
  15#include <asm/efi.h>
  16
  17#include "efistub.h"
  18
  19#define EFI_DT_ADDR_CELLS_DEFAULT 2
  20#define EFI_DT_SIZE_CELLS_DEFAULT 2
  21
  22static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
  23{
  24        int offset;
  25
  26        offset = fdt_path_offset(fdt, "/");
  27        /* Set the #address-cells and #size-cells values for an empty tree */
  28
  29        fdt_setprop_u32(fdt, offset, "#address-cells",
  30                        EFI_DT_ADDR_CELLS_DEFAULT);
  31
  32        fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
  33}
  34
  35static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
  36                               unsigned long orig_fdt_size,
  37                               void *fdt, int new_fdt_size, char *cmdline_ptr,
  38                               u64 initrd_addr, u64 initrd_size)
  39{
  40        int node, num_rsv;
  41        int status;
  42        u32 fdt_val32;
  43        u64 fdt_val64;
  44
  45        /* Do some checks on provided FDT, if it exists*/
  46        if (orig_fdt) {
  47                if (fdt_check_header(orig_fdt)) {
  48                        pr_efi_err(sys_table, "Device Tree header not valid!\n");
  49                        return EFI_LOAD_ERROR;
  50                }
  51                /*
  52                 * We don't get the size of the FDT if we get if from a
  53                 * configuration table.
  54                 */
  55                if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
  56                        pr_efi_err(sys_table, "Truncated device tree! foo!\n");
  57                        return EFI_LOAD_ERROR;
  58                }
  59        }
  60
  61        if (orig_fdt) {
  62                status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
  63        } else {
  64                status = fdt_create_empty_tree(fdt, new_fdt_size);
  65                if (status == 0) {
  66                        /*
  67                         * Any failure from the following function is non
  68                         * critical
  69                         */
  70                        fdt_update_cell_size(sys_table, fdt);
  71                }
  72        }
  73
  74        if (status != 0)
  75                goto fdt_set_fail;
  76
  77        /*
  78         * Delete all memory reserve map entries. When booting via UEFI,
  79         * kernel will use the UEFI memory map to find reserved regions.
  80         */
  81        num_rsv = fdt_num_mem_rsv(fdt);
  82        while (num_rsv-- > 0)
  83                fdt_del_mem_rsv(fdt, num_rsv);
  84
  85        node = fdt_subnode_offset(fdt, 0, "chosen");
  86        if (node < 0) {
  87                node = fdt_add_subnode(fdt, 0, "chosen");
  88                if (node < 0) {
  89                        status = node; /* node is error code when negative */
  90                        goto fdt_set_fail;
  91                }
  92        }
  93
  94        if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
  95                status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
  96                                     strlen(cmdline_ptr) + 1);
  97                if (status)
  98                        goto fdt_set_fail;
  99        }
 100
 101        /* Set initrd address/end in device tree, if present */
 102        if (initrd_size != 0) {
 103                u64 initrd_image_end;
 104                u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
 105
 106                status = fdt_setprop(fdt, node, "linux,initrd-start",
 107                                     &initrd_image_start, sizeof(u64));
 108                if (status)
 109                        goto fdt_set_fail;
 110                initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
 111                status = fdt_setprop(fdt, node, "linux,initrd-end",
 112                                     &initrd_image_end, sizeof(u64));
 113                if (status)
 114                        goto fdt_set_fail;
 115        }
 116
 117        /* Add FDT entries for EFI runtime services in chosen node. */
 118        node = fdt_subnode_offset(fdt, 0, "chosen");
 119        fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
 120        status = fdt_setprop(fdt, node, "linux,uefi-system-table",
 121                             &fdt_val64, sizeof(fdt_val64));
 122        if (status)
 123                goto fdt_set_fail;
 124
 125        fdt_val64 = U64_MAX; /* placeholder */
 126        status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
 127                             &fdt_val64,  sizeof(fdt_val64));
 128        if (status)
 129                goto fdt_set_fail;
 130
 131        fdt_val32 = U32_MAX; /* placeholder */
 132        status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
 133                             &fdt_val32,  sizeof(fdt_val32));
 134        if (status)
 135                goto fdt_set_fail;
 136
 137        status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
 138                             &fdt_val32, sizeof(fdt_val32));
 139        if (status)
 140                goto fdt_set_fail;
 141
 142        status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
 143                             &fdt_val32, sizeof(fdt_val32));
 144        if (status)
 145                goto fdt_set_fail;
 146
 147        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
 148                efi_status_t efi_status;
 149
 150                efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
 151                                                  (u8 *)&fdt_val64);
 152                if (efi_status == EFI_SUCCESS) {
 153                        status = fdt_setprop(fdt, node, "kaslr-seed",
 154                                             &fdt_val64, sizeof(fdt_val64));
 155                        if (status)
 156                                goto fdt_set_fail;
 157                } else if (efi_status != EFI_NOT_FOUND) {
 158                        return efi_status;
 159                }
 160        }
 161        return EFI_SUCCESS;
 162
 163fdt_set_fail:
 164        if (status == -FDT_ERR_NOSPACE)
 165                return EFI_BUFFER_TOO_SMALL;
 166
 167        return EFI_LOAD_ERROR;
 168}
 169
 170static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
 171{
 172        int node = fdt_path_offset(fdt, "/chosen");
 173        u64 fdt_val64;
 174        u32 fdt_val32;
 175        int err;
 176
 177        if (node < 0)
 178                return EFI_LOAD_ERROR;
 179
 180        fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
 181        err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
 182                                  &fdt_val64, sizeof(fdt_val64));
 183        if (err)
 184                return EFI_LOAD_ERROR;
 185
 186        fdt_val32 = cpu_to_fdt32(*map->map_size);
 187        err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
 188                                  &fdt_val32, sizeof(fdt_val32));
 189        if (err)
 190                return EFI_LOAD_ERROR;
 191
 192        fdt_val32 = cpu_to_fdt32(*map->desc_size);
 193        err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
 194                                  &fdt_val32, sizeof(fdt_val32));
 195        if (err)
 196                return EFI_LOAD_ERROR;
 197
 198        fdt_val32 = cpu_to_fdt32(*map->desc_ver);
 199        err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
 200                                  &fdt_val32, sizeof(fdt_val32));
 201        if (err)
 202                return EFI_LOAD_ERROR;
 203
 204        return EFI_SUCCESS;
 205}
 206
 207#ifndef EFI_FDT_ALIGN
 208#define EFI_FDT_ALIGN EFI_PAGE_SIZE
 209#endif
 210
 211struct exit_boot_struct {
 212        efi_memory_desc_t *runtime_map;
 213        int *runtime_entry_count;
 214        void *new_fdt_addr;
 215};
 216
 217static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
 218                                   struct efi_boot_memmap *map,
 219                                   void *priv)
 220{
 221        struct exit_boot_struct *p = priv;
 222        /*
 223         * Update the memory map with virtual addresses. The function will also
 224         * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
 225         * entries so that we can pass it straight to SetVirtualAddressMap()
 226         */
 227        efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
 228                        p->runtime_map, p->runtime_entry_count);
 229
 230        return update_fdt_memmap(p->new_fdt_addr, map);
 231}
 232
 233#ifndef MAX_FDT_SIZE
 234#define MAX_FDT_SIZE    SZ_2M
 235#endif
 236
 237/*
 238 * Allocate memory for a new FDT, then add EFI, commandline, and
 239 * initrd related fields to the FDT.  This routine increases the
 240 * FDT allocation size until the allocated memory is large
 241 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
 242 * which are fixed at 4K bytes, so in most cases the first
 243 * allocation should succeed.
 244 * EFI boot services are exited at the end of this function.
 245 * There must be no allocations between the get_memory_map()
 246 * call and the exit_boot_services() call, so the exiting of
 247 * boot services is very tightly tied to the creation of the FDT
 248 * with the final memory map in it.
 249 */
 250
 251efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
 252                                            void *handle,
 253                                            unsigned long *new_fdt_addr,
 254                                            unsigned long max_addr,
 255                                            u64 initrd_addr, u64 initrd_size,
 256                                            char *cmdline_ptr,
 257                                            unsigned long fdt_addr,
 258                                            unsigned long fdt_size)
 259{
 260        unsigned long map_size, desc_size, buff_size;
 261        u32 desc_ver;
 262        unsigned long mmap_key;
 263        efi_memory_desc_t *memory_map, *runtime_map;
 264        efi_status_t status;
 265        int runtime_entry_count = 0;
 266        struct efi_boot_memmap map;
 267        struct exit_boot_struct priv;
 268
 269        map.map =       &runtime_map;
 270        map.map_size =  &map_size;
 271        map.desc_size = &desc_size;
 272        map.desc_ver =  &desc_ver;
 273        map.key_ptr =   &mmap_key;
 274        map.buff_size = &buff_size;
 275
 276        /*
 277         * Get a copy of the current memory map that we will use to prepare
 278         * the input for SetVirtualAddressMap(). We don't have to worry about
 279         * subsequent allocations adding entries, since they could not affect
 280         * the number of EFI_MEMORY_RUNTIME regions.
 281         */
 282        status = efi_get_memory_map(sys_table, &map);
 283        if (status != EFI_SUCCESS) {
 284                pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
 285                return status;
 286        }
 287
 288        pr_efi(sys_table,
 289               "Exiting boot services and installing virtual address map...\n");
 290
 291        map.map = &memory_map;
 292        status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
 293                                new_fdt_addr, max_addr);
 294        if (status != EFI_SUCCESS) {
 295                pr_efi_err(sys_table,
 296                           "Unable to allocate memory for new device tree.\n");
 297                goto fail;
 298        }
 299
 300        /*
 301         * Now that we have done our final memory allocation (and free)
 302         * we can get the memory map key needed for exit_boot_services().
 303         */
 304        status = efi_get_memory_map(sys_table, &map);
 305        if (status != EFI_SUCCESS)
 306                goto fail_free_new_fdt;
 307
 308        status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
 309                            (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
 310                            initrd_addr, initrd_size);
 311
 312        if (status != EFI_SUCCESS) {
 313                pr_efi_err(sys_table, "Unable to construct new device tree.\n");
 314                goto fail_free_new_fdt;
 315        }
 316
 317        priv.runtime_map = runtime_map;
 318        priv.runtime_entry_count = &runtime_entry_count;
 319        priv.new_fdt_addr = (void *)*new_fdt_addr;
 320        status = efi_exit_boot_services(sys_table, handle, &map, &priv,
 321                                        exit_boot_func);
 322
 323        if (status == EFI_SUCCESS) {
 324                efi_set_virtual_address_map_t *svam;
 325
 326                /* Install the new virtual address map */
 327                svam = sys_table->runtime->set_virtual_address_map;
 328                status = svam(runtime_entry_count * desc_size, desc_size,
 329                              desc_ver, runtime_map);
 330
 331                /*
 332                 * We are beyond the point of no return here, so if the call to
 333                 * SetVirtualAddressMap() failed, we need to signal that to the
 334                 * incoming kernel but proceed normally otherwise.
 335                 */
 336                if (status != EFI_SUCCESS) {
 337                        int l;
 338
 339                        /*
 340                         * Set the virtual address field of all
 341                         * EFI_MEMORY_RUNTIME entries to 0. This will signal
 342                         * the incoming kernel that no virtual translation has
 343                         * been installed.
 344                         */
 345                        for (l = 0; l < map_size; l += desc_size) {
 346                                efi_memory_desc_t *p = (void *)memory_map + l;
 347
 348                                if (p->attribute & EFI_MEMORY_RUNTIME)
 349                                        p->virt_addr = 0;
 350                        }
 351                }
 352                return EFI_SUCCESS;
 353        }
 354
 355        pr_efi_err(sys_table, "Exit boot services failed.\n");
 356
 357fail_free_new_fdt:
 358        efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
 359
 360fail:
 361        sys_table->boottime->free_pool(runtime_map);
 362        return EFI_LOAD_ERROR;
 363}
 364
 365void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
 366{
 367        efi_guid_t fdt_guid = DEVICE_TREE_GUID;
 368        efi_config_table_t *tables;
 369        void *fdt;
 370        int i;
 371
 372        tables = (efi_config_table_t *) sys_table->tables;
 373        fdt = NULL;
 374
 375        for (i = 0; i < sys_table->nr_tables; i++)
 376                if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
 377                        fdt = (void *) tables[i].table;
 378                        if (fdt_check_header(fdt) != 0) {
 379                                pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
 380                                return NULL;
 381                        }
 382                        *fdt_size = fdt_totalsize(fdt);
 383                        break;
 384         }
 385
 386        return fdt;
 387}
 388