linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/acpi.h>
  23#include <linux/amba/bus.h>
  24#include <linux/platform_device.h>
  25#include <linux/pci-ats.h>
  26#include <linux/bitmap.h>
  27#include <linux/slab.h>
  28#include <linux/debugfs.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/iommu-helper.h>
  32#include <linux/iommu.h>
  33#include <linux/delay.h>
  34#include <linux/amd-iommu.h>
  35#include <linux/notifier.h>
  36#include <linux/export.h>
  37#include <linux/irq.h>
  38#include <linux/msi.h>
  39#include <linux/dma-contiguous.h>
  40#include <linux/irqdomain.h>
  41#include <linux/percpu.h>
  42#include <linux/iova.h>
  43#include <asm/irq_remapping.h>
  44#include <asm/io_apic.h>
  45#include <asm/apic.h>
  46#include <asm/hw_irq.h>
  47#include <asm/msidef.h>
  48#include <asm/proto.h>
  49#include <asm/iommu.h>
  50#include <asm/gart.h>
  51#include <asm/dma.h>
  52
  53#include "amd_iommu_proto.h"
  54#include "amd_iommu_types.h"
  55#include "irq_remapping.h"
  56
  57#define AMD_IOMMU_MAPPING_ERROR 0
  58
  59#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  60
  61#define LOOP_TIMEOUT    100000
  62
  63/* IO virtual address start page frame number */
  64#define IOVA_START_PFN          (1)
  65#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  66#define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
  67
  68/* Reserved IOVA ranges */
  69#define MSI_RANGE_START         (0xfee00000)
  70#define MSI_RANGE_END           (0xfeefffff)
  71#define HT_RANGE_START          (0xfd00000000ULL)
  72#define HT_RANGE_END            (0xffffffffffULL)
  73
  74/*
  75 * This bitmap is used to advertise the page sizes our hardware support
  76 * to the IOMMU core, which will then use this information to split
  77 * physically contiguous memory regions it is mapping into page sizes
  78 * that we support.
  79 *
  80 * 512GB Pages are not supported due to a hardware bug
  81 */
  82#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  83
  84static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  85
  86/* List of all available dev_data structures */
  87static LIST_HEAD(dev_data_list);
  88static DEFINE_SPINLOCK(dev_data_list_lock);
  89
  90LIST_HEAD(ioapic_map);
  91LIST_HEAD(hpet_map);
  92LIST_HEAD(acpihid_map);
  93
  94/*
  95 * Domain for untranslated devices - only allocated
  96 * if iommu=pt passed on kernel cmd line.
  97 */
  98const struct iommu_ops amd_iommu_ops;
  99
 100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
 101int amd_iommu_max_glx_val = -1;
 102
 103static const struct dma_map_ops amd_iommu_dma_ops;
 104
 105/*
 106 * general struct to manage commands send to an IOMMU
 107 */
 108struct iommu_cmd {
 109        u32 data[4];
 110};
 111
 112struct kmem_cache *amd_iommu_irq_cache;
 113
 114static void update_domain(struct protection_domain *domain);
 115static int protection_domain_init(struct protection_domain *domain);
 116static void detach_device(struct device *dev);
 117static void iova_domain_flush_tlb(struct iova_domain *iovad);
 118
 119/*
 120 * Data container for a dma_ops specific protection domain
 121 */
 122struct dma_ops_domain {
 123        /* generic protection domain information */
 124        struct protection_domain domain;
 125
 126        /* IOVA RB-Tree */
 127        struct iova_domain iovad;
 128};
 129
 130static struct iova_domain reserved_iova_ranges;
 131static struct lock_class_key reserved_rbtree_key;
 132
 133/****************************************************************************
 134 *
 135 * Helper functions
 136 *
 137 ****************************************************************************/
 138
 139static inline int match_hid_uid(struct device *dev,
 140                                struct acpihid_map_entry *entry)
 141{
 142        const char *hid, *uid;
 143
 144        hid = acpi_device_hid(ACPI_COMPANION(dev));
 145        uid = acpi_device_uid(ACPI_COMPANION(dev));
 146
 147        if (!hid || !(*hid))
 148                return -ENODEV;
 149
 150        if (!uid || !(*uid))
 151                return strcmp(hid, entry->hid);
 152
 153        if (!(*entry->uid))
 154                return strcmp(hid, entry->hid);
 155
 156        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 157}
 158
 159static inline u16 get_pci_device_id(struct device *dev)
 160{
 161        struct pci_dev *pdev = to_pci_dev(dev);
 162
 163        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 164}
 165
 166static inline int get_acpihid_device_id(struct device *dev,
 167                                        struct acpihid_map_entry **entry)
 168{
 169        struct acpihid_map_entry *p;
 170
 171        list_for_each_entry(p, &acpihid_map, list) {
 172                if (!match_hid_uid(dev, p)) {
 173                        if (entry)
 174                                *entry = p;
 175                        return p->devid;
 176                }
 177        }
 178        return -EINVAL;
 179}
 180
 181static inline int get_device_id(struct device *dev)
 182{
 183        int devid;
 184
 185        if (dev_is_pci(dev))
 186                devid = get_pci_device_id(dev);
 187        else
 188                devid = get_acpihid_device_id(dev, NULL);
 189
 190        return devid;
 191}
 192
 193static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 194{
 195        return container_of(dom, struct protection_domain, domain);
 196}
 197
 198static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 199{
 200        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 201        return container_of(domain, struct dma_ops_domain, domain);
 202}
 203
 204static struct iommu_dev_data *alloc_dev_data(u16 devid)
 205{
 206        struct iommu_dev_data *dev_data;
 207        unsigned long flags;
 208
 209        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 210        if (!dev_data)
 211                return NULL;
 212
 213        dev_data->devid = devid;
 214
 215        spin_lock_irqsave(&dev_data_list_lock, flags);
 216        list_add_tail(&dev_data->dev_data_list, &dev_data_list);
 217        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 218
 219        ratelimit_default_init(&dev_data->rs);
 220
 221        return dev_data;
 222}
 223
 224static struct iommu_dev_data *search_dev_data(u16 devid)
 225{
 226        struct iommu_dev_data *dev_data;
 227        unsigned long flags;
 228
 229        spin_lock_irqsave(&dev_data_list_lock, flags);
 230        list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 231                if (dev_data->devid == devid)
 232                        goto out_unlock;
 233        }
 234
 235        dev_data = NULL;
 236
 237out_unlock:
 238        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 239
 240        return dev_data;
 241}
 242
 243static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 244{
 245        *(u16 *)data = alias;
 246        return 0;
 247}
 248
 249static u16 get_alias(struct device *dev)
 250{
 251        struct pci_dev *pdev = to_pci_dev(dev);
 252        u16 devid, ivrs_alias, pci_alias;
 253
 254        /* The callers make sure that get_device_id() does not fail here */
 255        devid = get_device_id(dev);
 256        ivrs_alias = amd_iommu_alias_table[devid];
 257        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 258
 259        if (ivrs_alias == pci_alias)
 260                return ivrs_alias;
 261
 262        /*
 263         * DMA alias showdown
 264         *
 265         * The IVRS is fairly reliable in telling us about aliases, but it
 266         * can't know about every screwy device.  If we don't have an IVRS
 267         * reported alias, use the PCI reported alias.  In that case we may
 268         * still need to initialize the rlookup and dev_table entries if the
 269         * alias is to a non-existent device.
 270         */
 271        if (ivrs_alias == devid) {
 272                if (!amd_iommu_rlookup_table[pci_alias]) {
 273                        amd_iommu_rlookup_table[pci_alias] =
 274                                amd_iommu_rlookup_table[devid];
 275                        memcpy(amd_iommu_dev_table[pci_alias].data,
 276                               amd_iommu_dev_table[devid].data,
 277                               sizeof(amd_iommu_dev_table[pci_alias].data));
 278                }
 279
 280                return pci_alias;
 281        }
 282
 283        pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
 284                "for device %s[%04x:%04x], kernel reported alias "
 285                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 286                PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
 287                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 288                PCI_FUNC(pci_alias));
 289
 290        /*
 291         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 292         * bus, then the IVRS table may know about a quirk that we don't.
 293         */
 294        if (pci_alias == devid &&
 295            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 296                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 297                pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
 298                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
 299                        dev_name(dev));
 300        }
 301
 302        return ivrs_alias;
 303}
 304
 305static struct iommu_dev_data *find_dev_data(u16 devid)
 306{
 307        struct iommu_dev_data *dev_data;
 308        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 309
 310        dev_data = search_dev_data(devid);
 311
 312        if (dev_data == NULL) {
 313                dev_data = alloc_dev_data(devid);
 314
 315                if (translation_pre_enabled(iommu))
 316                        dev_data->defer_attach = true;
 317        }
 318
 319        return dev_data;
 320}
 321
 322struct iommu_dev_data *get_dev_data(struct device *dev)
 323{
 324        return dev->archdata.iommu;
 325}
 326EXPORT_SYMBOL(get_dev_data);
 327
 328/*
 329* Find or create an IOMMU group for a acpihid device.
 330*/
 331static struct iommu_group *acpihid_device_group(struct device *dev)
 332{
 333        struct acpihid_map_entry *p, *entry = NULL;
 334        int devid;
 335
 336        devid = get_acpihid_device_id(dev, &entry);
 337        if (devid < 0)
 338                return ERR_PTR(devid);
 339
 340        list_for_each_entry(p, &acpihid_map, list) {
 341                if ((devid == p->devid) && p->group)
 342                        entry->group = p->group;
 343        }
 344
 345        if (!entry->group)
 346                entry->group = generic_device_group(dev);
 347        else
 348                iommu_group_ref_get(entry->group);
 349
 350        return entry->group;
 351}
 352
 353static bool pci_iommuv2_capable(struct pci_dev *pdev)
 354{
 355        static const int caps[] = {
 356                PCI_EXT_CAP_ID_ATS,
 357                PCI_EXT_CAP_ID_PRI,
 358                PCI_EXT_CAP_ID_PASID,
 359        };
 360        int i, pos;
 361
 362        for (i = 0; i < 3; ++i) {
 363                pos = pci_find_ext_capability(pdev, caps[i]);
 364                if (pos == 0)
 365                        return false;
 366        }
 367
 368        return true;
 369}
 370
 371static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 372{
 373        struct iommu_dev_data *dev_data;
 374
 375        dev_data = get_dev_data(&pdev->dev);
 376
 377        return dev_data->errata & (1 << erratum) ? true : false;
 378}
 379
 380/*
 381 * This function checks if the driver got a valid device from the caller to
 382 * avoid dereferencing invalid pointers.
 383 */
 384static bool check_device(struct device *dev)
 385{
 386        int devid;
 387
 388        if (!dev || !dev->dma_mask)
 389                return false;
 390
 391        devid = get_device_id(dev);
 392        if (devid < 0)
 393                return false;
 394
 395        /* Out of our scope? */
 396        if (devid > amd_iommu_last_bdf)
 397                return false;
 398
 399        if (amd_iommu_rlookup_table[devid] == NULL)
 400                return false;
 401
 402        return true;
 403}
 404
 405static void init_iommu_group(struct device *dev)
 406{
 407        struct iommu_group *group;
 408
 409        group = iommu_group_get_for_dev(dev);
 410        if (IS_ERR(group))
 411                return;
 412
 413        iommu_group_put(group);
 414}
 415
 416static int iommu_init_device(struct device *dev)
 417{
 418        struct iommu_dev_data *dev_data;
 419        struct amd_iommu *iommu;
 420        int devid;
 421
 422        if (dev->archdata.iommu)
 423                return 0;
 424
 425        devid = get_device_id(dev);
 426        if (devid < 0)
 427                return devid;
 428
 429        iommu = amd_iommu_rlookup_table[devid];
 430
 431        dev_data = find_dev_data(devid);
 432        if (!dev_data)
 433                return -ENOMEM;
 434
 435        dev_data->alias = get_alias(dev);
 436
 437        if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 438                struct amd_iommu *iommu;
 439
 440                iommu = amd_iommu_rlookup_table[dev_data->devid];
 441                dev_data->iommu_v2 = iommu->is_iommu_v2;
 442        }
 443
 444        dev->archdata.iommu = dev_data;
 445
 446        iommu_device_link(&iommu->iommu, dev);
 447
 448        return 0;
 449}
 450
 451static void iommu_ignore_device(struct device *dev)
 452{
 453        u16 alias;
 454        int devid;
 455
 456        devid = get_device_id(dev);
 457        if (devid < 0)
 458                return;
 459
 460        alias = get_alias(dev);
 461
 462        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 463        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 464
 465        amd_iommu_rlookup_table[devid] = NULL;
 466        amd_iommu_rlookup_table[alias] = NULL;
 467}
 468
 469static void iommu_uninit_device(struct device *dev)
 470{
 471        struct iommu_dev_data *dev_data;
 472        struct amd_iommu *iommu;
 473        int devid;
 474
 475        devid = get_device_id(dev);
 476        if (devid < 0)
 477                return;
 478
 479        iommu = amd_iommu_rlookup_table[devid];
 480
 481        dev_data = search_dev_data(devid);
 482        if (!dev_data)
 483                return;
 484
 485        if (dev_data->domain)
 486                detach_device(dev);
 487
 488        iommu_device_unlink(&iommu->iommu, dev);
 489
 490        iommu_group_remove_device(dev);
 491
 492        /* Remove dma-ops */
 493        dev->dma_ops = NULL;
 494
 495        /*
 496         * We keep dev_data around for unplugged devices and reuse it when the
 497         * device is re-plugged - not doing so would introduce a ton of races.
 498         */
 499}
 500
 501/****************************************************************************
 502 *
 503 * Interrupt handling functions
 504 *
 505 ****************************************************************************/
 506
 507static void dump_dte_entry(u16 devid)
 508{
 509        int i;
 510
 511        for (i = 0; i < 4; ++i)
 512                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 513                        amd_iommu_dev_table[devid].data[i]);
 514}
 515
 516static void dump_command(unsigned long phys_addr)
 517{
 518        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 519        int i;
 520
 521        for (i = 0; i < 4; ++i)
 522                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 523}
 524
 525static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 526                                        u64 address, int flags)
 527{
 528        struct iommu_dev_data *dev_data = NULL;
 529        struct pci_dev *pdev;
 530
 531        pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
 532        if (pdev)
 533                dev_data = get_dev_data(&pdev->dev);
 534
 535        if (dev_data && __ratelimit(&dev_data->rs)) {
 536                dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 537                        domain_id, address, flags);
 538        } else if (printk_ratelimit()) {
 539                pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 540                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 541                        domain_id, address, flags);
 542        }
 543
 544        if (pdev)
 545                pci_dev_put(pdev);
 546}
 547
 548static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 549{
 550        int type, devid, domid, flags;
 551        volatile u32 *event = __evt;
 552        int count = 0;
 553        u64 address;
 554
 555retry:
 556        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 557        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 558        domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 559        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 560        address = (u64)(((u64)event[3]) << 32) | event[2];
 561
 562        if (type == 0) {
 563                /* Did we hit the erratum? */
 564                if (++count == LOOP_TIMEOUT) {
 565                        pr_err("AMD-Vi: No event written to event log\n");
 566                        return;
 567                }
 568                udelay(1);
 569                goto retry;
 570        }
 571
 572        if (type == EVENT_TYPE_IO_FAULT) {
 573                amd_iommu_report_page_fault(devid, domid, address, flags);
 574                return;
 575        } else {
 576                printk(KERN_ERR "AMD-Vi: Event logged [");
 577        }
 578
 579        switch (type) {
 580        case EVENT_TYPE_ILL_DEV:
 581                printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 582                       "address=0x%016llx flags=0x%04x]\n",
 583                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 584                       address, flags);
 585                dump_dte_entry(devid);
 586                break;
 587        case EVENT_TYPE_DEV_TAB_ERR:
 588                printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 589                       "address=0x%016llx flags=0x%04x]\n",
 590                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 591                       address, flags);
 592                break;
 593        case EVENT_TYPE_PAGE_TAB_ERR:
 594                printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 595                       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 596                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 597                       domid, address, flags);
 598                break;
 599        case EVENT_TYPE_ILL_CMD:
 600                printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 601                dump_command(address);
 602                break;
 603        case EVENT_TYPE_CMD_HARD_ERR:
 604                printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 605                       "flags=0x%04x]\n", address, flags);
 606                break;
 607        case EVENT_TYPE_IOTLB_INV_TO:
 608                printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 609                       "address=0x%016llx]\n",
 610                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 611                       address);
 612                break;
 613        case EVENT_TYPE_INV_DEV_REQ:
 614                printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 615                       "address=0x%016llx flags=0x%04x]\n",
 616                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 617                       address, flags);
 618                break;
 619        default:
 620                printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 621        }
 622
 623        memset(__evt, 0, 4 * sizeof(u32));
 624}
 625
 626static void iommu_poll_events(struct amd_iommu *iommu)
 627{
 628        u32 head, tail;
 629
 630        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 631        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 632
 633        while (head != tail) {
 634                iommu_print_event(iommu, iommu->evt_buf + head);
 635                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 636        }
 637
 638        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 639}
 640
 641static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 642{
 643        struct amd_iommu_fault fault;
 644
 645        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 646                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 647                return;
 648        }
 649
 650        fault.address   = raw[1];
 651        fault.pasid     = PPR_PASID(raw[0]);
 652        fault.device_id = PPR_DEVID(raw[0]);
 653        fault.tag       = PPR_TAG(raw[0]);
 654        fault.flags     = PPR_FLAGS(raw[0]);
 655
 656        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 657}
 658
 659static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 660{
 661        u32 head, tail;
 662
 663        if (iommu->ppr_log == NULL)
 664                return;
 665
 666        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 667        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 668
 669        while (head != tail) {
 670                volatile u64 *raw;
 671                u64 entry[2];
 672                int i;
 673
 674                raw = (u64 *)(iommu->ppr_log + head);
 675
 676                /*
 677                 * Hardware bug: Interrupt may arrive before the entry is
 678                 * written to memory. If this happens we need to wait for the
 679                 * entry to arrive.
 680                 */
 681                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 682                        if (PPR_REQ_TYPE(raw[0]) != 0)
 683                                break;
 684                        udelay(1);
 685                }
 686
 687                /* Avoid memcpy function-call overhead */
 688                entry[0] = raw[0];
 689                entry[1] = raw[1];
 690
 691                /*
 692                 * To detect the hardware bug we need to clear the entry
 693                 * back to zero.
 694                 */
 695                raw[0] = raw[1] = 0UL;
 696
 697                /* Update head pointer of hardware ring-buffer */
 698                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 699                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 700
 701                /* Handle PPR entry */
 702                iommu_handle_ppr_entry(iommu, entry);
 703
 704                /* Refresh ring-buffer information */
 705                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 706                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 707        }
 708}
 709
 710#ifdef CONFIG_IRQ_REMAP
 711static int (*iommu_ga_log_notifier)(u32);
 712
 713int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 714{
 715        iommu_ga_log_notifier = notifier;
 716
 717        return 0;
 718}
 719EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 720
 721static void iommu_poll_ga_log(struct amd_iommu *iommu)
 722{
 723        u32 head, tail, cnt = 0;
 724
 725        if (iommu->ga_log == NULL)
 726                return;
 727
 728        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 729        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 730
 731        while (head != tail) {
 732                volatile u64 *raw;
 733                u64 log_entry;
 734
 735                raw = (u64 *)(iommu->ga_log + head);
 736                cnt++;
 737
 738                /* Avoid memcpy function-call overhead */
 739                log_entry = *raw;
 740
 741                /* Update head pointer of hardware ring-buffer */
 742                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 743                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 744
 745                /* Handle GA entry */
 746                switch (GA_REQ_TYPE(log_entry)) {
 747                case GA_GUEST_NR:
 748                        if (!iommu_ga_log_notifier)
 749                                break;
 750
 751                        pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
 752                                 __func__, GA_DEVID(log_entry),
 753                                 GA_TAG(log_entry));
 754
 755                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 756                                pr_err("AMD-Vi: GA log notifier failed.\n");
 757                        break;
 758                default:
 759                        break;
 760                }
 761        }
 762}
 763#endif /* CONFIG_IRQ_REMAP */
 764
 765#define AMD_IOMMU_INT_MASK      \
 766        (MMIO_STATUS_EVT_INT_MASK | \
 767         MMIO_STATUS_PPR_INT_MASK | \
 768         MMIO_STATUS_GALOG_INT_MASK)
 769
 770irqreturn_t amd_iommu_int_thread(int irq, void *data)
 771{
 772        struct amd_iommu *iommu = (struct amd_iommu *) data;
 773        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 774
 775        while (status & AMD_IOMMU_INT_MASK) {
 776                /* Enable EVT and PPR and GA interrupts again */
 777                writel(AMD_IOMMU_INT_MASK,
 778                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 779
 780                if (status & MMIO_STATUS_EVT_INT_MASK) {
 781                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 782                        iommu_poll_events(iommu);
 783                }
 784
 785                if (status & MMIO_STATUS_PPR_INT_MASK) {
 786                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 787                        iommu_poll_ppr_log(iommu);
 788                }
 789
 790#ifdef CONFIG_IRQ_REMAP
 791                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 792                        pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
 793                        iommu_poll_ga_log(iommu);
 794                }
 795#endif
 796
 797                /*
 798                 * Hardware bug: ERBT1312
 799                 * When re-enabling interrupt (by writing 1
 800                 * to clear the bit), the hardware might also try to set
 801                 * the interrupt bit in the event status register.
 802                 * In this scenario, the bit will be set, and disable
 803                 * subsequent interrupts.
 804                 *
 805                 * Workaround: The IOMMU driver should read back the
 806                 * status register and check if the interrupt bits are cleared.
 807                 * If not, driver will need to go through the interrupt handler
 808                 * again and re-clear the bits
 809                 */
 810                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 811        }
 812        return IRQ_HANDLED;
 813}
 814
 815irqreturn_t amd_iommu_int_handler(int irq, void *data)
 816{
 817        return IRQ_WAKE_THREAD;
 818}
 819
 820/****************************************************************************
 821 *
 822 * IOMMU command queuing functions
 823 *
 824 ****************************************************************************/
 825
 826static int wait_on_sem(volatile u64 *sem)
 827{
 828        int i = 0;
 829
 830        while (*sem == 0 && i < LOOP_TIMEOUT) {
 831                udelay(1);
 832                i += 1;
 833        }
 834
 835        if (i == LOOP_TIMEOUT) {
 836                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 837                return -EIO;
 838        }
 839
 840        return 0;
 841}
 842
 843static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 844                               struct iommu_cmd *cmd)
 845{
 846        u8 *target;
 847
 848        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 849
 850        iommu->cmd_buf_tail += sizeof(*cmd);
 851        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 852
 853        /* Copy command to buffer */
 854        memcpy(target, cmd, sizeof(*cmd));
 855
 856        /* Tell the IOMMU about it */
 857        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 858}
 859
 860static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 861{
 862        u64 paddr = iommu_virt_to_phys((void *)address);
 863
 864        WARN_ON(address & 0x7ULL);
 865
 866        memset(cmd, 0, sizeof(*cmd));
 867        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 868        cmd->data[1] = upper_32_bits(paddr);
 869        cmd->data[2] = 1;
 870        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 871}
 872
 873static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 874{
 875        memset(cmd, 0, sizeof(*cmd));
 876        cmd->data[0] = devid;
 877        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 878}
 879
 880static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 881                                  size_t size, u16 domid, int pde)
 882{
 883        u64 pages;
 884        bool s;
 885
 886        pages = iommu_num_pages(address, size, PAGE_SIZE);
 887        s     = false;
 888
 889        if (pages > 1) {
 890                /*
 891                 * If we have to flush more than one page, flush all
 892                 * TLB entries for this domain
 893                 */
 894                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 895                s = true;
 896        }
 897
 898        address &= PAGE_MASK;
 899
 900        memset(cmd, 0, sizeof(*cmd));
 901        cmd->data[1] |= domid;
 902        cmd->data[2]  = lower_32_bits(address);
 903        cmd->data[3]  = upper_32_bits(address);
 904        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 905        if (s) /* size bit - we flush more than one 4kb page */
 906                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 907        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 908                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 909}
 910
 911static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 912                                  u64 address, size_t size)
 913{
 914        u64 pages;
 915        bool s;
 916
 917        pages = iommu_num_pages(address, size, PAGE_SIZE);
 918        s     = false;
 919
 920        if (pages > 1) {
 921                /*
 922                 * If we have to flush more than one page, flush all
 923                 * TLB entries for this domain
 924                 */
 925                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 926                s = true;
 927        }
 928
 929        address &= PAGE_MASK;
 930
 931        memset(cmd, 0, sizeof(*cmd));
 932        cmd->data[0]  = devid;
 933        cmd->data[0] |= (qdep & 0xff) << 24;
 934        cmd->data[1]  = devid;
 935        cmd->data[2]  = lower_32_bits(address);
 936        cmd->data[3]  = upper_32_bits(address);
 937        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 938        if (s)
 939                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 940}
 941
 942static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 943                                  u64 address, bool size)
 944{
 945        memset(cmd, 0, sizeof(*cmd));
 946
 947        address &= ~(0xfffULL);
 948
 949        cmd->data[0]  = pasid;
 950        cmd->data[1]  = domid;
 951        cmd->data[2]  = lower_32_bits(address);
 952        cmd->data[3]  = upper_32_bits(address);
 953        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 954        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 955        if (size)
 956                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 957        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 958}
 959
 960static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 961                                  int qdep, u64 address, bool size)
 962{
 963        memset(cmd, 0, sizeof(*cmd));
 964
 965        address &= ~(0xfffULL);
 966
 967        cmd->data[0]  = devid;
 968        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 969        cmd->data[0] |= (qdep  & 0xff) << 24;
 970        cmd->data[1]  = devid;
 971        cmd->data[1] |= (pasid & 0xff) << 16;
 972        cmd->data[2]  = lower_32_bits(address);
 973        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 974        cmd->data[3]  = upper_32_bits(address);
 975        if (size)
 976                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 977        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 978}
 979
 980static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 981                               int status, int tag, bool gn)
 982{
 983        memset(cmd, 0, sizeof(*cmd));
 984
 985        cmd->data[0]  = devid;
 986        if (gn) {
 987                cmd->data[1]  = pasid;
 988                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 989        }
 990        cmd->data[3]  = tag & 0x1ff;
 991        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 992
 993        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 994}
 995
 996static void build_inv_all(struct iommu_cmd *cmd)
 997{
 998        memset(cmd, 0, sizeof(*cmd));
 999        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1000}
1001
1002static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1003{
1004        memset(cmd, 0, sizeof(*cmd));
1005        cmd->data[0] = devid;
1006        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1007}
1008
1009/*
1010 * Writes the command to the IOMMUs command buffer and informs the
1011 * hardware about the new command.
1012 */
1013static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1014                                      struct iommu_cmd *cmd,
1015                                      bool sync)
1016{
1017        unsigned int count = 0;
1018        u32 left, next_tail;
1019
1020        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1021again:
1022        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1023
1024        if (left <= 0x20) {
1025                /* Skip udelay() the first time around */
1026                if (count++) {
1027                        if (count == LOOP_TIMEOUT) {
1028                                pr_err("AMD-Vi: Command buffer timeout\n");
1029                                return -EIO;
1030                        }
1031
1032                        udelay(1);
1033                }
1034
1035                /* Update head and recheck remaining space */
1036                iommu->cmd_buf_head = readl(iommu->mmio_base +
1037                                            MMIO_CMD_HEAD_OFFSET);
1038
1039                goto again;
1040        }
1041
1042        copy_cmd_to_buffer(iommu, cmd);
1043
1044        /* Do we need to make sure all commands are processed? */
1045        iommu->need_sync = sync;
1046
1047        return 0;
1048}
1049
1050static int iommu_queue_command_sync(struct amd_iommu *iommu,
1051                                    struct iommu_cmd *cmd,
1052                                    bool sync)
1053{
1054        unsigned long flags;
1055        int ret;
1056
1057        spin_lock_irqsave(&iommu->lock, flags);
1058        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1059        spin_unlock_irqrestore(&iommu->lock, flags);
1060
1061        return ret;
1062}
1063
1064static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1065{
1066        return iommu_queue_command_sync(iommu, cmd, true);
1067}
1068
1069/*
1070 * This function queues a completion wait command into the command
1071 * buffer of an IOMMU
1072 */
1073static int iommu_completion_wait(struct amd_iommu *iommu)
1074{
1075        struct iommu_cmd cmd;
1076        unsigned long flags;
1077        int ret;
1078
1079        if (!iommu->need_sync)
1080                return 0;
1081
1082
1083        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1084
1085        spin_lock_irqsave(&iommu->lock, flags);
1086
1087        iommu->cmd_sem = 0;
1088
1089        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1090        if (ret)
1091                goto out_unlock;
1092
1093        ret = wait_on_sem(&iommu->cmd_sem);
1094
1095out_unlock:
1096        spin_unlock_irqrestore(&iommu->lock, flags);
1097
1098        return ret;
1099}
1100
1101static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1102{
1103        struct iommu_cmd cmd;
1104
1105        build_inv_dte(&cmd, devid);
1106
1107        return iommu_queue_command(iommu, &cmd);
1108}
1109
1110static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1111{
1112        u32 devid;
1113
1114        for (devid = 0; devid <= 0xffff; ++devid)
1115                iommu_flush_dte(iommu, devid);
1116
1117        iommu_completion_wait(iommu);
1118}
1119
1120/*
1121 * This function uses heavy locking and may disable irqs for some time. But
1122 * this is no issue because it is only called during resume.
1123 */
1124static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1125{
1126        u32 dom_id;
1127
1128        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1129                struct iommu_cmd cmd;
1130                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1131                                      dom_id, 1);
1132                iommu_queue_command(iommu, &cmd);
1133        }
1134
1135        iommu_completion_wait(iommu);
1136}
1137
1138static void amd_iommu_flush_all(struct amd_iommu *iommu)
1139{
1140        struct iommu_cmd cmd;
1141
1142        build_inv_all(&cmd);
1143
1144        iommu_queue_command(iommu, &cmd);
1145        iommu_completion_wait(iommu);
1146}
1147
1148static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1149{
1150        struct iommu_cmd cmd;
1151
1152        build_inv_irt(&cmd, devid);
1153
1154        iommu_queue_command(iommu, &cmd);
1155}
1156
1157static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1158{
1159        u32 devid;
1160
1161        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1162                iommu_flush_irt(iommu, devid);
1163
1164        iommu_completion_wait(iommu);
1165}
1166
1167void iommu_flush_all_caches(struct amd_iommu *iommu)
1168{
1169        if (iommu_feature(iommu, FEATURE_IA)) {
1170                amd_iommu_flush_all(iommu);
1171        } else {
1172                amd_iommu_flush_dte_all(iommu);
1173                amd_iommu_flush_irt_all(iommu);
1174                amd_iommu_flush_tlb_all(iommu);
1175        }
1176}
1177
1178/*
1179 * Command send function for flushing on-device TLB
1180 */
1181static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1182                              u64 address, size_t size)
1183{
1184        struct amd_iommu *iommu;
1185        struct iommu_cmd cmd;
1186        int qdep;
1187
1188        qdep     = dev_data->ats.qdep;
1189        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1190
1191        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1192
1193        return iommu_queue_command(iommu, &cmd);
1194}
1195
1196/*
1197 * Command send function for invalidating a device table entry
1198 */
1199static int device_flush_dte(struct iommu_dev_data *dev_data)
1200{
1201        struct amd_iommu *iommu;
1202        u16 alias;
1203        int ret;
1204
1205        iommu = amd_iommu_rlookup_table[dev_data->devid];
1206        alias = dev_data->alias;
1207
1208        ret = iommu_flush_dte(iommu, dev_data->devid);
1209        if (!ret && alias != dev_data->devid)
1210                ret = iommu_flush_dte(iommu, alias);
1211        if (ret)
1212                return ret;
1213
1214        if (dev_data->ats.enabled)
1215                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1216
1217        return ret;
1218}
1219
1220/*
1221 * TLB invalidation function which is called from the mapping functions.
1222 * It invalidates a single PTE if the range to flush is within a single
1223 * page. Otherwise it flushes the whole TLB of the IOMMU.
1224 */
1225static void __domain_flush_pages(struct protection_domain *domain,
1226                                 u64 address, size_t size, int pde)
1227{
1228        struct iommu_dev_data *dev_data;
1229        struct iommu_cmd cmd;
1230        int ret = 0, i;
1231
1232        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1233
1234        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1235                if (!domain->dev_iommu[i])
1236                        continue;
1237
1238                /*
1239                 * Devices of this domain are behind this IOMMU
1240                 * We need a TLB flush
1241                 */
1242                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1243        }
1244
1245        list_for_each_entry(dev_data, &domain->dev_list, list) {
1246
1247                if (!dev_data->ats.enabled)
1248                        continue;
1249
1250                ret |= device_flush_iotlb(dev_data, address, size);
1251        }
1252
1253        WARN_ON(ret);
1254}
1255
1256static void domain_flush_pages(struct protection_domain *domain,
1257                               u64 address, size_t size)
1258{
1259        __domain_flush_pages(domain, address, size, 0);
1260}
1261
1262/* Flush the whole IO/TLB for a given protection domain */
1263static void domain_flush_tlb(struct protection_domain *domain)
1264{
1265        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1266}
1267
1268/* Flush the whole IO/TLB for a given protection domain - including PDE */
1269static void domain_flush_tlb_pde(struct protection_domain *domain)
1270{
1271        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1272}
1273
1274static void domain_flush_complete(struct protection_domain *domain)
1275{
1276        int i;
1277
1278        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1279                if (domain && !domain->dev_iommu[i])
1280                        continue;
1281
1282                /*
1283                 * Devices of this domain are behind this IOMMU
1284                 * We need to wait for completion of all commands.
1285                 */
1286                iommu_completion_wait(amd_iommus[i]);
1287        }
1288}
1289
1290
1291/*
1292 * This function flushes the DTEs for all devices in domain
1293 */
1294static void domain_flush_devices(struct protection_domain *domain)
1295{
1296        struct iommu_dev_data *dev_data;
1297
1298        list_for_each_entry(dev_data, &domain->dev_list, list)
1299                device_flush_dte(dev_data);
1300}
1301
1302/****************************************************************************
1303 *
1304 * The functions below are used the create the page table mappings for
1305 * unity mapped regions.
1306 *
1307 ****************************************************************************/
1308
1309/*
1310 * This function is used to add another level to an IO page table. Adding
1311 * another level increases the size of the address space by 9 bits to a size up
1312 * to 64 bits.
1313 */
1314static bool increase_address_space(struct protection_domain *domain,
1315                                   gfp_t gfp)
1316{
1317        u64 *pte;
1318
1319        if (domain->mode == PAGE_MODE_6_LEVEL)
1320                /* address space already 64 bit large */
1321                return false;
1322
1323        pte = (void *)get_zeroed_page(gfp);
1324        if (!pte)
1325                return false;
1326
1327        *pte             = PM_LEVEL_PDE(domain->mode,
1328                                        iommu_virt_to_phys(domain->pt_root));
1329        domain->pt_root  = pte;
1330        domain->mode    += 1;
1331        domain->updated  = true;
1332
1333        return true;
1334}
1335
1336static u64 *alloc_pte(struct protection_domain *domain,
1337                      unsigned long address,
1338                      unsigned long page_size,
1339                      u64 **pte_page,
1340                      gfp_t gfp)
1341{
1342        int level, end_lvl;
1343        u64 *pte, *page;
1344
1345        BUG_ON(!is_power_of_2(page_size));
1346
1347        while (address > PM_LEVEL_SIZE(domain->mode))
1348                increase_address_space(domain, gfp);
1349
1350        level   = domain->mode - 1;
1351        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1352        address = PAGE_SIZE_ALIGN(address, page_size);
1353        end_lvl = PAGE_SIZE_LEVEL(page_size);
1354
1355        while (level > end_lvl) {
1356                u64 __pte, __npte;
1357
1358                __pte = *pte;
1359
1360                if (!IOMMU_PTE_PRESENT(__pte)) {
1361                        page = (u64 *)get_zeroed_page(gfp);
1362                        if (!page)
1363                                return NULL;
1364
1365                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1366
1367                        /* pte could have been changed somewhere. */
1368                        if (cmpxchg64(pte, __pte, __npte) != __pte) {
1369                                free_page((unsigned long)page);
1370                                continue;
1371                        }
1372                }
1373
1374                /* No level skipping support yet */
1375                if (PM_PTE_LEVEL(*pte) != level)
1376                        return NULL;
1377
1378                level -= 1;
1379
1380                pte = IOMMU_PTE_PAGE(*pte);
1381
1382                if (pte_page && level == end_lvl)
1383                        *pte_page = pte;
1384
1385                pte = &pte[PM_LEVEL_INDEX(level, address)];
1386        }
1387
1388        return pte;
1389}
1390
1391/*
1392 * This function checks if there is a PTE for a given dma address. If
1393 * there is one, it returns the pointer to it.
1394 */
1395static u64 *fetch_pte(struct protection_domain *domain,
1396                      unsigned long address,
1397                      unsigned long *page_size)
1398{
1399        int level;
1400        u64 *pte;
1401
1402        if (address > PM_LEVEL_SIZE(domain->mode))
1403                return NULL;
1404
1405        level      =  domain->mode - 1;
1406        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1407        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1408
1409        while (level > 0) {
1410
1411                /* Not Present */
1412                if (!IOMMU_PTE_PRESENT(*pte))
1413                        return NULL;
1414
1415                /* Large PTE */
1416                if (PM_PTE_LEVEL(*pte) == 7 ||
1417                    PM_PTE_LEVEL(*pte) == 0)
1418                        break;
1419
1420                /* No level skipping support yet */
1421                if (PM_PTE_LEVEL(*pte) != level)
1422                        return NULL;
1423
1424                level -= 1;
1425
1426                /* Walk to the next level */
1427                pte        = IOMMU_PTE_PAGE(*pte);
1428                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1429                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1430        }
1431
1432        if (PM_PTE_LEVEL(*pte) == 0x07) {
1433                unsigned long pte_mask;
1434
1435                /*
1436                 * If we have a series of large PTEs, make
1437                 * sure to return a pointer to the first one.
1438                 */
1439                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1440                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1441                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1442        }
1443
1444        return pte;
1445}
1446
1447/*
1448 * Generic mapping functions. It maps a physical address into a DMA
1449 * address space. It allocates the page table pages if necessary.
1450 * In the future it can be extended to a generic mapping function
1451 * supporting all features of AMD IOMMU page tables like level skipping
1452 * and full 64 bit address spaces.
1453 */
1454static int iommu_map_page(struct protection_domain *dom,
1455                          unsigned long bus_addr,
1456                          unsigned long phys_addr,
1457                          unsigned long page_size,
1458                          int prot,
1459                          gfp_t gfp)
1460{
1461        u64 __pte, *pte;
1462        int i, count;
1463
1464        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1465        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1466
1467        if (!(prot & IOMMU_PROT_MASK))
1468                return -EINVAL;
1469
1470        count = PAGE_SIZE_PTE_COUNT(page_size);
1471        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1472
1473        if (!pte)
1474                return -ENOMEM;
1475
1476        for (i = 0; i < count; ++i)
1477                if (IOMMU_PTE_PRESENT(pte[i]))
1478                        return -EBUSY;
1479
1480        if (count > 1) {
1481                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1482                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1483        } else
1484                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1485
1486        if (prot & IOMMU_PROT_IR)
1487                __pte |= IOMMU_PTE_IR;
1488        if (prot & IOMMU_PROT_IW)
1489                __pte |= IOMMU_PTE_IW;
1490
1491        for (i = 0; i < count; ++i)
1492                pte[i] = __pte;
1493
1494        update_domain(dom);
1495
1496        return 0;
1497}
1498
1499static unsigned long iommu_unmap_page(struct protection_domain *dom,
1500                                      unsigned long bus_addr,
1501                                      unsigned long page_size)
1502{
1503        unsigned long long unmapped;
1504        unsigned long unmap_size;
1505        u64 *pte;
1506
1507        BUG_ON(!is_power_of_2(page_size));
1508
1509        unmapped = 0;
1510
1511        while (unmapped < page_size) {
1512
1513                pte = fetch_pte(dom, bus_addr, &unmap_size);
1514
1515                if (pte) {
1516                        int i, count;
1517
1518                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1519                        for (i = 0; i < count; i++)
1520                                pte[i] = 0ULL;
1521                }
1522
1523                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1524                unmapped += unmap_size;
1525        }
1526
1527        BUG_ON(unmapped && !is_power_of_2(unmapped));
1528
1529        return unmapped;
1530}
1531
1532/****************************************************************************
1533 *
1534 * The next functions belong to the address allocator for the dma_ops
1535 * interface functions.
1536 *
1537 ****************************************************************************/
1538
1539
1540static unsigned long dma_ops_alloc_iova(struct device *dev,
1541                                        struct dma_ops_domain *dma_dom,
1542                                        unsigned int pages, u64 dma_mask)
1543{
1544        unsigned long pfn = 0;
1545
1546        pages = __roundup_pow_of_two(pages);
1547
1548        if (dma_mask > DMA_BIT_MASK(32))
1549                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1550                                      IOVA_PFN(DMA_BIT_MASK(32)));
1551
1552        if (!pfn)
1553                pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1554
1555        return (pfn << PAGE_SHIFT);
1556}
1557
1558static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1559                              unsigned long address,
1560                              unsigned int pages)
1561{
1562        pages = __roundup_pow_of_two(pages);
1563        address >>= PAGE_SHIFT;
1564
1565        free_iova_fast(&dma_dom->iovad, address, pages);
1566}
1567
1568/****************************************************************************
1569 *
1570 * The next functions belong to the domain allocation. A domain is
1571 * allocated for every IOMMU as the default domain. If device isolation
1572 * is enabled, every device get its own domain. The most important thing
1573 * about domains is the page table mapping the DMA address space they
1574 * contain.
1575 *
1576 ****************************************************************************/
1577
1578/*
1579 * This function adds a protection domain to the global protection domain list
1580 */
1581static void add_domain_to_list(struct protection_domain *domain)
1582{
1583        unsigned long flags;
1584
1585        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1586        list_add(&domain->list, &amd_iommu_pd_list);
1587        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1588}
1589
1590/*
1591 * This function removes a protection domain to the global
1592 * protection domain list
1593 */
1594static void del_domain_from_list(struct protection_domain *domain)
1595{
1596        unsigned long flags;
1597
1598        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1599        list_del(&domain->list);
1600        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1601}
1602
1603static u16 domain_id_alloc(void)
1604{
1605        unsigned long flags;
1606        int id;
1607
1608        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1609        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1610        BUG_ON(id == 0);
1611        if (id > 0 && id < MAX_DOMAIN_ID)
1612                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1613        else
1614                id = 0;
1615        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1616
1617        return id;
1618}
1619
1620static void domain_id_free(int id)
1621{
1622        unsigned long flags;
1623
1624        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1625        if (id > 0 && id < MAX_DOMAIN_ID)
1626                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1627        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1628}
1629
1630#define DEFINE_FREE_PT_FN(LVL, FN)                              \
1631static void free_pt_##LVL (unsigned long __pt)                  \
1632{                                                               \
1633        unsigned long p;                                        \
1634        u64 *pt;                                                \
1635        int i;                                                  \
1636                                                                \
1637        pt = (u64 *)__pt;                                       \
1638                                                                \
1639        for (i = 0; i < 512; ++i) {                             \
1640                /* PTE present? */                              \
1641                if (!IOMMU_PTE_PRESENT(pt[i]))                  \
1642                        continue;                               \
1643                                                                \
1644                /* Large PTE? */                                \
1645                if (PM_PTE_LEVEL(pt[i]) == 0 ||                 \
1646                    PM_PTE_LEVEL(pt[i]) == 7)                   \
1647                        continue;                               \
1648                                                                \
1649                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);       \
1650                FN(p);                                          \
1651        }                                                       \
1652        free_page((unsigned long)pt);                           \
1653}
1654
1655DEFINE_FREE_PT_FN(l2, free_page)
1656DEFINE_FREE_PT_FN(l3, free_pt_l2)
1657DEFINE_FREE_PT_FN(l4, free_pt_l3)
1658DEFINE_FREE_PT_FN(l5, free_pt_l4)
1659DEFINE_FREE_PT_FN(l6, free_pt_l5)
1660
1661static void free_pagetable(struct protection_domain *domain)
1662{
1663        unsigned long root = (unsigned long)domain->pt_root;
1664
1665        switch (domain->mode) {
1666        case PAGE_MODE_NONE:
1667                break;
1668        case PAGE_MODE_1_LEVEL:
1669                free_page(root);
1670                break;
1671        case PAGE_MODE_2_LEVEL:
1672                free_pt_l2(root);
1673                break;
1674        case PAGE_MODE_3_LEVEL:
1675                free_pt_l3(root);
1676                break;
1677        case PAGE_MODE_4_LEVEL:
1678                free_pt_l4(root);
1679                break;
1680        case PAGE_MODE_5_LEVEL:
1681                free_pt_l5(root);
1682                break;
1683        case PAGE_MODE_6_LEVEL:
1684                free_pt_l6(root);
1685                break;
1686        default:
1687                BUG();
1688        }
1689}
1690
1691static void free_gcr3_tbl_level1(u64 *tbl)
1692{
1693        u64 *ptr;
1694        int i;
1695
1696        for (i = 0; i < 512; ++i) {
1697                if (!(tbl[i] & GCR3_VALID))
1698                        continue;
1699
1700                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1701
1702                free_page((unsigned long)ptr);
1703        }
1704}
1705
1706static void free_gcr3_tbl_level2(u64 *tbl)
1707{
1708        u64 *ptr;
1709        int i;
1710
1711        for (i = 0; i < 512; ++i) {
1712                if (!(tbl[i] & GCR3_VALID))
1713                        continue;
1714
1715                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1716
1717                free_gcr3_tbl_level1(ptr);
1718        }
1719}
1720
1721static void free_gcr3_table(struct protection_domain *domain)
1722{
1723        if (domain->glx == 2)
1724                free_gcr3_tbl_level2(domain->gcr3_tbl);
1725        else if (domain->glx == 1)
1726                free_gcr3_tbl_level1(domain->gcr3_tbl);
1727        else
1728                BUG_ON(domain->glx != 0);
1729
1730        free_page((unsigned long)domain->gcr3_tbl);
1731}
1732
1733static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1734{
1735        domain_flush_tlb(&dom->domain);
1736        domain_flush_complete(&dom->domain);
1737}
1738
1739static void iova_domain_flush_tlb(struct iova_domain *iovad)
1740{
1741        struct dma_ops_domain *dom;
1742
1743        dom = container_of(iovad, struct dma_ops_domain, iovad);
1744
1745        dma_ops_domain_flush_tlb(dom);
1746}
1747
1748/*
1749 * Free a domain, only used if something went wrong in the
1750 * allocation path and we need to free an already allocated page table
1751 */
1752static void dma_ops_domain_free(struct dma_ops_domain *dom)
1753{
1754        if (!dom)
1755                return;
1756
1757        del_domain_from_list(&dom->domain);
1758
1759        put_iova_domain(&dom->iovad);
1760
1761        free_pagetable(&dom->domain);
1762
1763        if (dom->domain.id)
1764                domain_id_free(dom->domain.id);
1765
1766        kfree(dom);
1767}
1768
1769/*
1770 * Allocates a new protection domain usable for the dma_ops functions.
1771 * It also initializes the page table and the address allocator data
1772 * structures required for the dma_ops interface
1773 */
1774static struct dma_ops_domain *dma_ops_domain_alloc(void)
1775{
1776        struct dma_ops_domain *dma_dom;
1777
1778        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1779        if (!dma_dom)
1780                return NULL;
1781
1782        if (protection_domain_init(&dma_dom->domain))
1783                goto free_dma_dom;
1784
1785        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1786        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1787        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1788        if (!dma_dom->domain.pt_root)
1789                goto free_dma_dom;
1790
1791        init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
1792                         IOVA_START_PFN, DMA_32BIT_PFN);
1793
1794        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1795                goto free_dma_dom;
1796
1797        /* Initialize reserved ranges */
1798        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1799
1800        add_domain_to_list(&dma_dom->domain);
1801
1802        return dma_dom;
1803
1804free_dma_dom:
1805        dma_ops_domain_free(dma_dom);
1806
1807        return NULL;
1808}
1809
1810/*
1811 * little helper function to check whether a given protection domain is a
1812 * dma_ops domain
1813 */
1814static bool dma_ops_domain(struct protection_domain *domain)
1815{
1816        return domain->flags & PD_DMA_OPS_MASK;
1817}
1818
1819static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1820{
1821        u64 pte_root = 0;
1822        u64 flags = 0;
1823
1824        if (domain->mode != PAGE_MODE_NONE)
1825                pte_root = iommu_virt_to_phys(domain->pt_root);
1826
1827        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1828                    << DEV_ENTRY_MODE_SHIFT;
1829        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1830
1831        flags = amd_iommu_dev_table[devid].data[1];
1832
1833        if (ats)
1834                flags |= DTE_FLAG_IOTLB;
1835
1836        if (domain->flags & PD_IOMMUV2_MASK) {
1837                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1838                u64 glx  = domain->glx;
1839                u64 tmp;
1840
1841                pte_root |= DTE_FLAG_GV;
1842                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1843
1844                /* First mask out possible old values for GCR3 table */
1845                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1846                flags    &= ~tmp;
1847
1848                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1849                flags    &= ~tmp;
1850
1851                /* Encode GCR3 table into DTE */
1852                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1853                pte_root |= tmp;
1854
1855                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1856                flags    |= tmp;
1857
1858                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1859                flags    |= tmp;
1860        }
1861
1862        flags &= ~DEV_DOMID_MASK;
1863        flags |= domain->id;
1864
1865        amd_iommu_dev_table[devid].data[1]  = flags;
1866        amd_iommu_dev_table[devid].data[0]  = pte_root;
1867}
1868
1869static void clear_dte_entry(u16 devid)
1870{
1871        /* remove entry from the device table seen by the hardware */
1872        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1873        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1874
1875        amd_iommu_apply_erratum_63(devid);
1876}
1877
1878static void do_attach(struct iommu_dev_data *dev_data,
1879                      struct protection_domain *domain)
1880{
1881        struct amd_iommu *iommu;
1882        u16 alias;
1883        bool ats;
1884
1885        iommu = amd_iommu_rlookup_table[dev_data->devid];
1886        alias = dev_data->alias;
1887        ats   = dev_data->ats.enabled;
1888
1889        /* Update data structures */
1890        dev_data->domain = domain;
1891        list_add(&dev_data->list, &domain->dev_list);
1892
1893        /* Do reference counting */
1894        domain->dev_iommu[iommu->index] += 1;
1895        domain->dev_cnt                 += 1;
1896
1897        /* Update device table */
1898        set_dte_entry(dev_data->devid, domain, ats);
1899        if (alias != dev_data->devid)
1900                set_dte_entry(alias, domain, ats);
1901
1902        device_flush_dte(dev_data);
1903}
1904
1905static void do_detach(struct iommu_dev_data *dev_data)
1906{
1907        struct amd_iommu *iommu;
1908        u16 alias;
1909
1910        /*
1911         * First check if the device is still attached. It might already
1912         * be detached from its domain because the generic
1913         * iommu_detach_group code detached it and we try again here in
1914         * our alias handling.
1915         */
1916        if (!dev_data->domain)
1917                return;
1918
1919        iommu = amd_iommu_rlookup_table[dev_data->devid];
1920        alias = dev_data->alias;
1921
1922        /* decrease reference counters */
1923        dev_data->domain->dev_iommu[iommu->index] -= 1;
1924        dev_data->domain->dev_cnt                 -= 1;
1925
1926        /* Update data structures */
1927        dev_data->domain = NULL;
1928        list_del(&dev_data->list);
1929        clear_dte_entry(dev_data->devid);
1930        if (alias != dev_data->devid)
1931                clear_dte_entry(alias);
1932
1933        /* Flush the DTE entry */
1934        device_flush_dte(dev_data);
1935}
1936
1937/*
1938 * If a device is not yet associated with a domain, this function does
1939 * assigns it visible for the hardware
1940 */
1941static int __attach_device(struct iommu_dev_data *dev_data,
1942                           struct protection_domain *domain)
1943{
1944        int ret;
1945
1946        /*
1947         * Must be called with IRQs disabled. Warn here to detect early
1948         * when its not.
1949         */
1950        WARN_ON(!irqs_disabled());
1951
1952        /* lock domain */
1953        spin_lock(&domain->lock);
1954
1955        ret = -EBUSY;
1956        if (dev_data->domain != NULL)
1957                goto out_unlock;
1958
1959        /* Attach alias group root */
1960        do_attach(dev_data, domain);
1961
1962        ret = 0;
1963
1964out_unlock:
1965
1966        /* ready */
1967        spin_unlock(&domain->lock);
1968
1969        return ret;
1970}
1971
1972
1973static void pdev_iommuv2_disable(struct pci_dev *pdev)
1974{
1975        pci_disable_ats(pdev);
1976        pci_disable_pri(pdev);
1977        pci_disable_pasid(pdev);
1978}
1979
1980/* FIXME: Change generic reset-function to do the same */
1981static int pri_reset_while_enabled(struct pci_dev *pdev)
1982{
1983        u16 control;
1984        int pos;
1985
1986        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1987        if (!pos)
1988                return -EINVAL;
1989
1990        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1991        control |= PCI_PRI_CTRL_RESET;
1992        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1993
1994        return 0;
1995}
1996
1997static int pdev_iommuv2_enable(struct pci_dev *pdev)
1998{
1999        bool reset_enable;
2000        int reqs, ret;
2001
2002        /* FIXME: Hardcode number of outstanding requests for now */
2003        reqs = 32;
2004        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2005                reqs = 1;
2006        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2007
2008        /* Only allow access to user-accessible pages */
2009        ret = pci_enable_pasid(pdev, 0);
2010        if (ret)
2011                goto out_err;
2012
2013        /* First reset the PRI state of the device */
2014        ret = pci_reset_pri(pdev);
2015        if (ret)
2016                goto out_err;
2017
2018        /* Enable PRI */
2019        ret = pci_enable_pri(pdev, reqs);
2020        if (ret)
2021                goto out_err;
2022
2023        if (reset_enable) {
2024                ret = pri_reset_while_enabled(pdev);
2025                if (ret)
2026                        goto out_err;
2027        }
2028
2029        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2030        if (ret)
2031                goto out_err;
2032
2033        return 0;
2034
2035out_err:
2036        pci_disable_pri(pdev);
2037        pci_disable_pasid(pdev);
2038
2039        return ret;
2040}
2041
2042/* FIXME: Move this to PCI code */
2043#define PCI_PRI_TLP_OFF         (1 << 15)
2044
2045static bool pci_pri_tlp_required(struct pci_dev *pdev)
2046{
2047        u16 status;
2048        int pos;
2049
2050        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2051        if (!pos)
2052                return false;
2053
2054        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2055
2056        return (status & PCI_PRI_TLP_OFF) ? true : false;
2057}
2058
2059/*
2060 * If a device is not yet associated with a domain, this function
2061 * assigns it visible for the hardware
2062 */
2063static int attach_device(struct device *dev,
2064                         struct protection_domain *domain)
2065{
2066        struct pci_dev *pdev;
2067        struct iommu_dev_data *dev_data;
2068        unsigned long flags;
2069        int ret;
2070
2071        dev_data = get_dev_data(dev);
2072
2073        if (!dev_is_pci(dev))
2074                goto skip_ats_check;
2075
2076        pdev = to_pci_dev(dev);
2077        if (domain->flags & PD_IOMMUV2_MASK) {
2078                if (!dev_data->passthrough)
2079                        return -EINVAL;
2080
2081                if (dev_data->iommu_v2) {
2082                        if (pdev_iommuv2_enable(pdev) != 0)
2083                                return -EINVAL;
2084
2085                        dev_data->ats.enabled = true;
2086                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2087                        dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2088                }
2089        } else if (amd_iommu_iotlb_sup &&
2090                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2091                dev_data->ats.enabled = true;
2092                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2093        }
2094
2095skip_ats_check:
2096        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2097        ret = __attach_device(dev_data, domain);
2098        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2099
2100        /*
2101         * We might boot into a crash-kernel here. The crashed kernel
2102         * left the caches in the IOMMU dirty. So we have to flush
2103         * here to evict all dirty stuff.
2104         */
2105        domain_flush_tlb_pde(domain);
2106
2107        return ret;
2108}
2109
2110/*
2111 * Removes a device from a protection domain (unlocked)
2112 */
2113static void __detach_device(struct iommu_dev_data *dev_data)
2114{
2115        struct protection_domain *domain;
2116
2117        /*
2118         * Must be called with IRQs disabled. Warn here to detect early
2119         * when its not.
2120         */
2121        WARN_ON(!irqs_disabled());
2122
2123        if (WARN_ON(!dev_data->domain))
2124                return;
2125
2126        domain = dev_data->domain;
2127
2128        spin_lock(&domain->lock);
2129
2130        do_detach(dev_data);
2131
2132        spin_unlock(&domain->lock);
2133}
2134
2135/*
2136 * Removes a device from a protection domain (with devtable_lock held)
2137 */
2138static void detach_device(struct device *dev)
2139{
2140        struct protection_domain *domain;
2141        struct iommu_dev_data *dev_data;
2142        unsigned long flags;
2143
2144        dev_data = get_dev_data(dev);
2145        domain   = dev_data->domain;
2146
2147        /* lock device table */
2148        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2149        __detach_device(dev_data);
2150        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2151
2152        if (!dev_is_pci(dev))
2153                return;
2154
2155        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2156                pdev_iommuv2_disable(to_pci_dev(dev));
2157        else if (dev_data->ats.enabled)
2158                pci_disable_ats(to_pci_dev(dev));
2159
2160        dev_data->ats.enabled = false;
2161}
2162
2163static int amd_iommu_add_device(struct device *dev)
2164{
2165        struct iommu_dev_data *dev_data;
2166        struct iommu_domain *domain;
2167        struct amd_iommu *iommu;
2168        int ret, devid;
2169
2170        if (!check_device(dev) || get_dev_data(dev))
2171                return 0;
2172
2173        devid = get_device_id(dev);
2174        if (devid < 0)
2175                return devid;
2176
2177        iommu = amd_iommu_rlookup_table[devid];
2178
2179        ret = iommu_init_device(dev);
2180        if (ret) {
2181                if (ret != -ENOTSUPP)
2182                        pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2183                                dev_name(dev));
2184
2185                iommu_ignore_device(dev);
2186                dev->dma_ops = &nommu_dma_ops;
2187                goto out;
2188        }
2189        init_iommu_group(dev);
2190
2191        dev_data = get_dev_data(dev);
2192
2193        BUG_ON(!dev_data);
2194
2195        if (iommu_pass_through || dev_data->iommu_v2)
2196                iommu_request_dm_for_dev(dev);
2197
2198        /* Domains are initialized for this device - have a look what we ended up with */
2199        domain = iommu_get_domain_for_dev(dev);
2200        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2201                dev_data->passthrough = true;
2202        else
2203                dev->dma_ops = &amd_iommu_dma_ops;
2204
2205out:
2206        iommu_completion_wait(iommu);
2207
2208        return 0;
2209}
2210
2211static void amd_iommu_remove_device(struct device *dev)
2212{
2213        struct amd_iommu *iommu;
2214        int devid;
2215
2216        if (!check_device(dev))
2217                return;
2218
2219        devid = get_device_id(dev);
2220        if (devid < 0)
2221                return;
2222
2223        iommu = amd_iommu_rlookup_table[devid];
2224
2225        iommu_uninit_device(dev);
2226        iommu_completion_wait(iommu);
2227}
2228
2229static struct iommu_group *amd_iommu_device_group(struct device *dev)
2230{
2231        if (dev_is_pci(dev))
2232                return pci_device_group(dev);
2233
2234        return acpihid_device_group(dev);
2235}
2236
2237/*****************************************************************************
2238 *
2239 * The next functions belong to the dma_ops mapping/unmapping code.
2240 *
2241 *****************************************************************************/
2242
2243/*
2244 * In the dma_ops path we only have the struct device. This function
2245 * finds the corresponding IOMMU, the protection domain and the
2246 * requestor id for a given device.
2247 * If the device is not yet associated with a domain this is also done
2248 * in this function.
2249 */
2250static struct protection_domain *get_domain(struct device *dev)
2251{
2252        struct protection_domain *domain;
2253        struct iommu_domain *io_domain;
2254
2255        if (!check_device(dev))
2256                return ERR_PTR(-EINVAL);
2257
2258        domain = get_dev_data(dev)->domain;
2259        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2260                get_dev_data(dev)->defer_attach = false;
2261                io_domain = iommu_get_domain_for_dev(dev);
2262                domain = to_pdomain(io_domain);
2263                attach_device(dev, domain);
2264        }
2265        if (domain == NULL)
2266                return ERR_PTR(-EBUSY);
2267
2268        if (!dma_ops_domain(domain))
2269                return ERR_PTR(-EBUSY);
2270
2271        return domain;
2272}
2273
2274static void update_device_table(struct protection_domain *domain)
2275{
2276        struct iommu_dev_data *dev_data;
2277
2278        list_for_each_entry(dev_data, &domain->dev_list, list) {
2279                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2280
2281                if (dev_data->devid == dev_data->alias)
2282                        continue;
2283
2284                /* There is an alias, update device table entry for it */
2285                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
2286        }
2287}
2288
2289static void update_domain(struct protection_domain *domain)
2290{
2291        if (!domain->updated)
2292                return;
2293
2294        update_device_table(domain);
2295
2296        domain_flush_devices(domain);
2297        domain_flush_tlb_pde(domain);
2298
2299        domain->updated = false;
2300}
2301
2302static int dir2prot(enum dma_data_direction direction)
2303{
2304        if (direction == DMA_TO_DEVICE)
2305                return IOMMU_PROT_IR;
2306        else if (direction == DMA_FROM_DEVICE)
2307                return IOMMU_PROT_IW;
2308        else if (direction == DMA_BIDIRECTIONAL)
2309                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2310        else
2311                return 0;
2312}
2313
2314/*
2315 * This function contains common code for mapping of a physically
2316 * contiguous memory region into DMA address space. It is used by all
2317 * mapping functions provided with this IOMMU driver.
2318 * Must be called with the domain lock held.
2319 */
2320static dma_addr_t __map_single(struct device *dev,
2321                               struct dma_ops_domain *dma_dom,
2322                               phys_addr_t paddr,
2323                               size_t size,
2324                               enum dma_data_direction direction,
2325                               u64 dma_mask)
2326{
2327        dma_addr_t offset = paddr & ~PAGE_MASK;
2328        dma_addr_t address, start, ret;
2329        unsigned int pages;
2330        int prot = 0;
2331        int i;
2332
2333        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2334        paddr &= PAGE_MASK;
2335
2336        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2337        if (address == AMD_IOMMU_MAPPING_ERROR)
2338                goto out;
2339
2340        prot = dir2prot(direction);
2341
2342        start = address;
2343        for (i = 0; i < pages; ++i) {
2344                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2345                                     PAGE_SIZE, prot, GFP_ATOMIC);
2346                if (ret)
2347                        goto out_unmap;
2348
2349                paddr += PAGE_SIZE;
2350                start += PAGE_SIZE;
2351        }
2352        address += offset;
2353
2354        if (unlikely(amd_iommu_np_cache)) {
2355                domain_flush_pages(&dma_dom->domain, address, size);
2356                domain_flush_complete(&dma_dom->domain);
2357        }
2358
2359out:
2360        return address;
2361
2362out_unmap:
2363
2364        for (--i; i >= 0; --i) {
2365                start -= PAGE_SIZE;
2366                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2367        }
2368
2369        domain_flush_tlb(&dma_dom->domain);
2370        domain_flush_complete(&dma_dom->domain);
2371
2372        dma_ops_free_iova(dma_dom, address, pages);
2373
2374        return AMD_IOMMU_MAPPING_ERROR;
2375}
2376
2377/*
2378 * Does the reverse of the __map_single function. Must be called with
2379 * the domain lock held too
2380 */
2381static void __unmap_single(struct dma_ops_domain *dma_dom,
2382                           dma_addr_t dma_addr,
2383                           size_t size,
2384                           int dir)
2385{
2386        dma_addr_t flush_addr;
2387        dma_addr_t i, start;
2388        unsigned int pages;
2389
2390        flush_addr = dma_addr;
2391        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2392        dma_addr &= PAGE_MASK;
2393        start = dma_addr;
2394
2395        for (i = 0; i < pages; ++i) {
2396                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2397                start += PAGE_SIZE;
2398        }
2399
2400        if (amd_iommu_unmap_flush) {
2401                dma_ops_free_iova(dma_dom, dma_addr, pages);
2402                domain_flush_tlb(&dma_dom->domain);
2403                domain_flush_complete(&dma_dom->domain);
2404        } else {
2405                pages = __roundup_pow_of_two(pages);
2406                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2407        }
2408}
2409
2410/*
2411 * The exported map_single function for dma_ops.
2412 */
2413static dma_addr_t map_page(struct device *dev, struct page *page,
2414                           unsigned long offset, size_t size,
2415                           enum dma_data_direction dir,
2416                           unsigned long attrs)
2417{
2418        phys_addr_t paddr = page_to_phys(page) + offset;
2419        struct protection_domain *domain;
2420        struct dma_ops_domain *dma_dom;
2421        u64 dma_mask;
2422
2423        domain = get_domain(dev);
2424        if (PTR_ERR(domain) == -EINVAL)
2425                return (dma_addr_t)paddr;
2426        else if (IS_ERR(domain))
2427                return AMD_IOMMU_MAPPING_ERROR;
2428
2429        dma_mask = *dev->dma_mask;
2430        dma_dom = to_dma_ops_domain(domain);
2431
2432        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2433}
2434
2435/*
2436 * The exported unmap_single function for dma_ops.
2437 */
2438static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2439                       enum dma_data_direction dir, unsigned long attrs)
2440{
2441        struct protection_domain *domain;
2442        struct dma_ops_domain *dma_dom;
2443
2444        domain = get_domain(dev);
2445        if (IS_ERR(domain))
2446                return;
2447
2448        dma_dom = to_dma_ops_domain(domain);
2449
2450        __unmap_single(dma_dom, dma_addr, size, dir);
2451}
2452
2453static int sg_num_pages(struct device *dev,
2454                        struct scatterlist *sglist,
2455                        int nelems)
2456{
2457        unsigned long mask, boundary_size;
2458        struct scatterlist *s;
2459        int i, npages = 0;
2460
2461        mask          = dma_get_seg_boundary(dev);
2462        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2463                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2464
2465        for_each_sg(sglist, s, nelems, i) {
2466                int p, n;
2467
2468                s->dma_address = npages << PAGE_SHIFT;
2469                p = npages % boundary_size;
2470                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2471                if (p + n > boundary_size)
2472                        npages += boundary_size - p;
2473                npages += n;
2474        }
2475
2476        return npages;
2477}
2478
2479/*
2480 * The exported map_sg function for dma_ops (handles scatter-gather
2481 * lists).
2482 */
2483static int map_sg(struct device *dev, struct scatterlist *sglist,
2484                  int nelems, enum dma_data_direction direction,
2485                  unsigned long attrs)
2486{
2487        int mapped_pages = 0, npages = 0, prot = 0, i;
2488        struct protection_domain *domain;
2489        struct dma_ops_domain *dma_dom;
2490        struct scatterlist *s;
2491        unsigned long address;
2492        u64 dma_mask;
2493
2494        domain = get_domain(dev);
2495        if (IS_ERR(domain))
2496                return 0;
2497
2498        dma_dom  = to_dma_ops_domain(domain);
2499        dma_mask = *dev->dma_mask;
2500
2501        npages = sg_num_pages(dev, sglist, nelems);
2502
2503        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2504        if (address == AMD_IOMMU_MAPPING_ERROR)
2505                goto out_err;
2506
2507        prot = dir2prot(direction);
2508
2509        /* Map all sg entries */
2510        for_each_sg(sglist, s, nelems, i) {
2511                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2512
2513                for (j = 0; j < pages; ++j) {
2514                        unsigned long bus_addr, phys_addr;
2515                        int ret;
2516
2517                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2518                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2519                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2520                        if (ret)
2521                                goto out_unmap;
2522
2523                        mapped_pages += 1;
2524                }
2525        }
2526
2527        /* Everything is mapped - write the right values into s->dma_address */
2528        for_each_sg(sglist, s, nelems, i) {
2529                s->dma_address += address + s->offset;
2530                s->dma_length   = s->length;
2531        }
2532
2533        return nelems;
2534
2535out_unmap:
2536        pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2537               dev_name(dev), npages);
2538
2539        for_each_sg(sglist, s, nelems, i) {
2540                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2541
2542                for (j = 0; j < pages; ++j) {
2543                        unsigned long bus_addr;
2544
2545                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2546                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2547
2548                        if (--mapped_pages)
2549                                goto out_free_iova;
2550                }
2551        }
2552
2553out_free_iova:
2554        free_iova_fast(&dma_dom->iovad, address, npages);
2555
2556out_err:
2557        return 0;
2558}
2559
2560/*
2561 * The exported map_sg function for dma_ops (handles scatter-gather
2562 * lists).
2563 */
2564static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2565                     int nelems, enum dma_data_direction dir,
2566                     unsigned long attrs)
2567{
2568        struct protection_domain *domain;
2569        struct dma_ops_domain *dma_dom;
2570        unsigned long startaddr;
2571        int npages = 2;
2572
2573        domain = get_domain(dev);
2574        if (IS_ERR(domain))
2575                return;
2576
2577        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2578        dma_dom   = to_dma_ops_domain(domain);
2579        npages    = sg_num_pages(dev, sglist, nelems);
2580
2581        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2582}
2583
2584/*
2585 * The exported alloc_coherent function for dma_ops.
2586 */
2587static void *alloc_coherent(struct device *dev, size_t size,
2588                            dma_addr_t *dma_addr, gfp_t flag,
2589                            unsigned long attrs)
2590{
2591        u64 dma_mask = dev->coherent_dma_mask;
2592        struct protection_domain *domain;
2593        struct dma_ops_domain *dma_dom;
2594        struct page *page;
2595
2596        domain = get_domain(dev);
2597        if (PTR_ERR(domain) == -EINVAL) {
2598                page = alloc_pages(flag, get_order(size));
2599                *dma_addr = page_to_phys(page);
2600                return page_address(page);
2601        } else if (IS_ERR(domain))
2602                return NULL;
2603
2604        dma_dom   = to_dma_ops_domain(domain);
2605        size      = PAGE_ALIGN(size);
2606        dma_mask  = dev->coherent_dma_mask;
2607        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2608        flag     |= __GFP_ZERO;
2609
2610        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2611        if (!page) {
2612                if (!gfpflags_allow_blocking(flag))
2613                        return NULL;
2614
2615                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2616                                                 get_order(size), flag);
2617                if (!page)
2618                        return NULL;
2619        }
2620
2621        if (!dma_mask)
2622                dma_mask = *dev->dma_mask;
2623
2624        *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2625                                 size, DMA_BIDIRECTIONAL, dma_mask);
2626
2627        if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2628                goto out_free;
2629
2630        return page_address(page);
2631
2632out_free:
2633
2634        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2635                __free_pages(page, get_order(size));
2636
2637        return NULL;
2638}
2639
2640/*
2641 * The exported free_coherent function for dma_ops.
2642 */
2643static void free_coherent(struct device *dev, size_t size,
2644                          void *virt_addr, dma_addr_t dma_addr,
2645                          unsigned long attrs)
2646{
2647        struct protection_domain *domain;
2648        struct dma_ops_domain *dma_dom;
2649        struct page *page;
2650
2651        page = virt_to_page(virt_addr);
2652        size = PAGE_ALIGN(size);
2653
2654        domain = get_domain(dev);
2655        if (IS_ERR(domain))
2656                goto free_mem;
2657
2658        dma_dom = to_dma_ops_domain(domain);
2659
2660        __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2661
2662free_mem:
2663        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2664                __free_pages(page, get_order(size));
2665}
2666
2667/*
2668 * This function is called by the DMA layer to find out if we can handle a
2669 * particular device. It is part of the dma_ops.
2670 */
2671static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2672{
2673        if (!x86_dma_supported(dev, mask))
2674                return 0;
2675        return check_device(dev);
2676}
2677
2678static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2679{
2680        return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2681}
2682
2683static const struct dma_map_ops amd_iommu_dma_ops = {
2684        .alloc          = alloc_coherent,
2685        .free           = free_coherent,
2686        .map_page       = map_page,
2687        .unmap_page     = unmap_page,
2688        .map_sg         = map_sg,
2689        .unmap_sg       = unmap_sg,
2690        .dma_supported  = amd_iommu_dma_supported,
2691        .mapping_error  = amd_iommu_mapping_error,
2692};
2693
2694static int init_reserved_iova_ranges(void)
2695{
2696        struct pci_dev *pdev = NULL;
2697        struct iova *val;
2698
2699        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
2700                         IOVA_START_PFN, DMA_32BIT_PFN);
2701
2702        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2703                          &reserved_rbtree_key);
2704
2705        /* MSI memory range */
2706        val = reserve_iova(&reserved_iova_ranges,
2707                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2708        if (!val) {
2709                pr_err("Reserving MSI range failed\n");
2710                return -ENOMEM;
2711        }
2712
2713        /* HT memory range */
2714        val = reserve_iova(&reserved_iova_ranges,
2715                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2716        if (!val) {
2717                pr_err("Reserving HT range failed\n");
2718                return -ENOMEM;
2719        }
2720
2721        /*
2722         * Memory used for PCI resources
2723         * FIXME: Check whether we can reserve the PCI-hole completly
2724         */
2725        for_each_pci_dev(pdev) {
2726                int i;
2727
2728                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2729                        struct resource *r = &pdev->resource[i];
2730
2731                        if (!(r->flags & IORESOURCE_MEM))
2732                                continue;
2733
2734                        val = reserve_iova(&reserved_iova_ranges,
2735                                           IOVA_PFN(r->start),
2736                                           IOVA_PFN(r->end));
2737                        if (!val) {
2738                                pr_err("Reserve pci-resource range failed\n");
2739                                return -ENOMEM;
2740                        }
2741                }
2742        }
2743
2744        return 0;
2745}
2746
2747int __init amd_iommu_init_api(void)
2748{
2749        int ret, err = 0;
2750
2751        ret = iova_cache_get();
2752        if (ret)
2753                return ret;
2754
2755        ret = init_reserved_iova_ranges();
2756        if (ret)
2757                return ret;
2758
2759        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2760        if (err)
2761                return err;
2762#ifdef CONFIG_ARM_AMBA
2763        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2764        if (err)
2765                return err;
2766#endif
2767        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2768        if (err)
2769                return err;
2770
2771        return 0;
2772}
2773
2774int __init amd_iommu_init_dma_ops(void)
2775{
2776        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2777        iommu_detected = 1;
2778
2779        /*
2780         * In case we don't initialize SWIOTLB (actually the common case
2781         * when AMD IOMMU is enabled and SME is not active), make sure there
2782         * are global dma_ops set as a fall-back for devices not handled by
2783         * this driver (for example non-PCI devices). When SME is active,
2784         * make sure that swiotlb variable remains set so the global dma_ops
2785         * continue to be SWIOTLB.
2786         */
2787        if (!swiotlb)
2788                dma_ops = &nommu_dma_ops;
2789
2790        if (amd_iommu_unmap_flush)
2791                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2792        else
2793                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2794
2795        return 0;
2796
2797}
2798
2799/*****************************************************************************
2800 *
2801 * The following functions belong to the exported interface of AMD IOMMU
2802 *
2803 * This interface allows access to lower level functions of the IOMMU
2804 * like protection domain handling and assignement of devices to domains
2805 * which is not possible with the dma_ops interface.
2806 *
2807 *****************************************************************************/
2808
2809static void cleanup_domain(struct protection_domain *domain)
2810{
2811        struct iommu_dev_data *entry;
2812        unsigned long flags;
2813
2814        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2815
2816        while (!list_empty(&domain->dev_list)) {
2817                entry = list_first_entry(&domain->dev_list,
2818                                         struct iommu_dev_data, list);
2819                __detach_device(entry);
2820        }
2821
2822        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2823}
2824
2825static void protection_domain_free(struct protection_domain *domain)
2826{
2827        if (!domain)
2828                return;
2829
2830        del_domain_from_list(domain);
2831
2832        if (domain->id)
2833                domain_id_free(domain->id);
2834
2835        kfree(domain);
2836}
2837
2838static int protection_domain_init(struct protection_domain *domain)
2839{
2840        spin_lock_init(&domain->lock);
2841        mutex_init(&domain->api_lock);
2842        domain->id = domain_id_alloc();
2843        if (!domain->id)
2844                return -ENOMEM;
2845        INIT_LIST_HEAD(&domain->dev_list);
2846
2847        return 0;
2848}
2849
2850static struct protection_domain *protection_domain_alloc(void)
2851{
2852        struct protection_domain *domain;
2853
2854        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2855        if (!domain)
2856                return NULL;
2857
2858        if (protection_domain_init(domain))
2859                goto out_err;
2860
2861        add_domain_to_list(domain);
2862
2863        return domain;
2864
2865out_err:
2866        kfree(domain);
2867
2868        return NULL;
2869}
2870
2871static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2872{
2873        struct protection_domain *pdomain;
2874        struct dma_ops_domain *dma_domain;
2875
2876        switch (type) {
2877        case IOMMU_DOMAIN_UNMANAGED:
2878                pdomain = protection_domain_alloc();
2879                if (!pdomain)
2880                        return NULL;
2881
2882                pdomain->mode    = PAGE_MODE_3_LEVEL;
2883                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2884                if (!pdomain->pt_root) {
2885                        protection_domain_free(pdomain);
2886                        return NULL;
2887                }
2888
2889                pdomain->domain.geometry.aperture_start = 0;
2890                pdomain->domain.geometry.aperture_end   = ~0ULL;
2891                pdomain->domain.geometry.force_aperture = true;
2892
2893                break;
2894        case IOMMU_DOMAIN_DMA:
2895                dma_domain = dma_ops_domain_alloc();
2896                if (!dma_domain) {
2897                        pr_err("AMD-Vi: Failed to allocate\n");
2898                        return NULL;
2899                }
2900                pdomain = &dma_domain->domain;
2901                break;
2902        case IOMMU_DOMAIN_IDENTITY:
2903                pdomain = protection_domain_alloc();
2904                if (!pdomain)
2905                        return NULL;
2906
2907                pdomain->mode = PAGE_MODE_NONE;
2908                break;
2909        default:
2910                return NULL;
2911        }
2912
2913        return &pdomain->domain;
2914}
2915
2916static void amd_iommu_domain_free(struct iommu_domain *dom)
2917{
2918        struct protection_domain *domain;
2919        struct dma_ops_domain *dma_dom;
2920
2921        domain = to_pdomain(dom);
2922
2923        if (domain->dev_cnt > 0)
2924                cleanup_domain(domain);
2925
2926        BUG_ON(domain->dev_cnt != 0);
2927
2928        if (!dom)
2929                return;
2930
2931        switch (dom->type) {
2932        case IOMMU_DOMAIN_DMA:
2933                /* Now release the domain */
2934                dma_dom = to_dma_ops_domain(domain);
2935                dma_ops_domain_free(dma_dom);
2936                break;
2937        default:
2938                if (domain->mode != PAGE_MODE_NONE)
2939                        free_pagetable(domain);
2940
2941                if (domain->flags & PD_IOMMUV2_MASK)
2942                        free_gcr3_table(domain);
2943
2944                protection_domain_free(domain);
2945                break;
2946        }
2947}
2948
2949static void amd_iommu_detach_device(struct iommu_domain *dom,
2950                                    struct device *dev)
2951{
2952        struct iommu_dev_data *dev_data = dev->archdata.iommu;
2953        struct amd_iommu *iommu;
2954        int devid;
2955
2956        if (!check_device(dev))
2957                return;
2958
2959        devid = get_device_id(dev);
2960        if (devid < 0)
2961                return;
2962
2963        if (dev_data->domain != NULL)
2964                detach_device(dev);
2965
2966        iommu = amd_iommu_rlookup_table[devid];
2967        if (!iommu)
2968                return;
2969
2970#ifdef CONFIG_IRQ_REMAP
2971        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2972            (dom->type == IOMMU_DOMAIN_UNMANAGED))
2973                dev_data->use_vapic = 0;
2974#endif
2975
2976        iommu_completion_wait(iommu);
2977}
2978
2979static int amd_iommu_attach_device(struct iommu_domain *dom,
2980                                   struct device *dev)
2981{
2982        struct protection_domain *domain = to_pdomain(dom);
2983        struct iommu_dev_data *dev_data;
2984        struct amd_iommu *iommu;
2985        int ret;
2986
2987        if (!check_device(dev))
2988                return -EINVAL;
2989
2990        dev_data = dev->archdata.iommu;
2991
2992        iommu = amd_iommu_rlookup_table[dev_data->devid];
2993        if (!iommu)
2994                return -EINVAL;
2995
2996        if (dev_data->domain)
2997                detach_device(dev);
2998
2999        ret = attach_device(dev, domain);
3000
3001#ifdef CONFIG_IRQ_REMAP
3002        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3003                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3004                        dev_data->use_vapic = 1;
3005                else
3006                        dev_data->use_vapic = 0;
3007        }
3008#endif
3009
3010        iommu_completion_wait(iommu);
3011
3012        return ret;
3013}
3014
3015static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3016                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3017{
3018        struct protection_domain *domain = to_pdomain(dom);
3019        int prot = 0;
3020        int ret;
3021
3022        if (domain->mode == PAGE_MODE_NONE)
3023                return -EINVAL;
3024
3025        if (iommu_prot & IOMMU_READ)
3026                prot |= IOMMU_PROT_IR;
3027        if (iommu_prot & IOMMU_WRITE)
3028                prot |= IOMMU_PROT_IW;
3029
3030        mutex_lock(&domain->api_lock);
3031        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3032        mutex_unlock(&domain->api_lock);
3033
3034        return ret;
3035}
3036
3037static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3038                           size_t page_size)
3039{
3040        struct protection_domain *domain = to_pdomain(dom);
3041        size_t unmap_size;
3042
3043        if (domain->mode == PAGE_MODE_NONE)
3044                return -EINVAL;
3045
3046        mutex_lock(&domain->api_lock);
3047        unmap_size = iommu_unmap_page(domain, iova, page_size);
3048        mutex_unlock(&domain->api_lock);
3049
3050        domain_flush_tlb_pde(domain);
3051        domain_flush_complete(domain);
3052
3053        return unmap_size;
3054}
3055
3056static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3057                                          dma_addr_t iova)
3058{
3059        struct protection_domain *domain = to_pdomain(dom);
3060        unsigned long offset_mask, pte_pgsize;
3061        u64 *pte, __pte;
3062
3063        if (domain->mode == PAGE_MODE_NONE)
3064                return iova;
3065
3066        pte = fetch_pte(domain, iova, &pte_pgsize);
3067
3068        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3069                return 0;
3070
3071        offset_mask = pte_pgsize - 1;
3072        __pte       = *pte & PM_ADDR_MASK;
3073
3074        return (__pte & ~offset_mask) | (iova & offset_mask);
3075}
3076
3077static bool amd_iommu_capable(enum iommu_cap cap)
3078{
3079        switch (cap) {
3080        case IOMMU_CAP_CACHE_COHERENCY:
3081                return true;
3082        case IOMMU_CAP_INTR_REMAP:
3083                return (irq_remapping_enabled == 1);
3084        case IOMMU_CAP_NOEXEC:
3085                return false;
3086        }
3087
3088        return false;
3089}
3090
3091static void amd_iommu_get_resv_regions(struct device *dev,
3092                                       struct list_head *head)
3093{
3094        struct iommu_resv_region *region;
3095        struct unity_map_entry *entry;
3096        int devid;
3097
3098        devid = get_device_id(dev);
3099        if (devid < 0)
3100                return;
3101
3102        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3103                size_t length;
3104                int prot = 0;
3105
3106                if (devid < entry->devid_start || devid > entry->devid_end)
3107                        continue;
3108
3109                length = entry->address_end - entry->address_start;
3110                if (entry->prot & IOMMU_PROT_IR)
3111                        prot |= IOMMU_READ;
3112                if (entry->prot & IOMMU_PROT_IW)
3113                        prot |= IOMMU_WRITE;
3114
3115                region = iommu_alloc_resv_region(entry->address_start,
3116                                                 length, prot,
3117                                                 IOMMU_RESV_DIRECT);
3118                if (!region) {
3119                        pr_err("Out of memory allocating dm-regions for %s\n",
3120                                dev_name(dev));
3121                        return;
3122                }
3123                list_add_tail(&region->list, head);
3124        }
3125
3126        region = iommu_alloc_resv_region(MSI_RANGE_START,
3127                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3128                                         0, IOMMU_RESV_MSI);
3129        if (!region)
3130                return;
3131        list_add_tail(&region->list, head);
3132
3133        region = iommu_alloc_resv_region(HT_RANGE_START,
3134                                         HT_RANGE_END - HT_RANGE_START + 1,
3135                                         0, IOMMU_RESV_RESERVED);
3136        if (!region)
3137                return;
3138        list_add_tail(&region->list, head);
3139}
3140
3141static void amd_iommu_put_resv_regions(struct device *dev,
3142                                     struct list_head *head)
3143{
3144        struct iommu_resv_region *entry, *next;
3145
3146        list_for_each_entry_safe(entry, next, head, list)
3147                kfree(entry);
3148}
3149
3150static void amd_iommu_apply_resv_region(struct device *dev,
3151                                      struct iommu_domain *domain,
3152                                      struct iommu_resv_region *region)
3153{
3154        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3155        unsigned long start, end;
3156
3157        start = IOVA_PFN(region->start);
3158        end   = IOVA_PFN(region->start + region->length);
3159
3160        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3161}
3162
3163static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3164                                         struct device *dev)
3165{
3166        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3167        return dev_data->defer_attach;
3168}
3169
3170const struct iommu_ops amd_iommu_ops = {
3171        .capable = amd_iommu_capable,
3172        .domain_alloc = amd_iommu_domain_alloc,
3173        .domain_free  = amd_iommu_domain_free,
3174        .attach_dev = amd_iommu_attach_device,
3175        .detach_dev = amd_iommu_detach_device,
3176        .map = amd_iommu_map,
3177        .unmap = amd_iommu_unmap,
3178        .map_sg = default_iommu_map_sg,
3179        .iova_to_phys = amd_iommu_iova_to_phys,
3180        .add_device = amd_iommu_add_device,
3181        .remove_device = amd_iommu_remove_device,
3182        .device_group = amd_iommu_device_group,
3183        .get_resv_regions = amd_iommu_get_resv_regions,
3184        .put_resv_regions = amd_iommu_put_resv_regions,
3185        .apply_resv_region = amd_iommu_apply_resv_region,
3186        .is_attach_deferred = amd_iommu_is_attach_deferred,
3187        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3188};
3189
3190/*****************************************************************************
3191 *
3192 * The next functions do a basic initialization of IOMMU for pass through
3193 * mode
3194 *
3195 * In passthrough mode the IOMMU is initialized and enabled but not used for
3196 * DMA-API translation.
3197 *
3198 *****************************************************************************/
3199
3200/* IOMMUv2 specific functions */
3201int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3202{
3203        return atomic_notifier_chain_register(&ppr_notifier, nb);
3204}
3205EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3206
3207int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3208{
3209        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3210}
3211EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3212
3213void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3214{
3215        struct protection_domain *domain = to_pdomain(dom);
3216        unsigned long flags;
3217
3218        spin_lock_irqsave(&domain->lock, flags);
3219
3220        /* Update data structure */
3221        domain->mode    = PAGE_MODE_NONE;
3222        domain->updated = true;
3223
3224        /* Make changes visible to IOMMUs */
3225        update_domain(domain);
3226
3227        /* Page-table is not visible to IOMMU anymore, so free it */
3228        free_pagetable(domain);
3229
3230        spin_unlock_irqrestore(&domain->lock, flags);
3231}
3232EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3233
3234int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3235{
3236        struct protection_domain *domain = to_pdomain(dom);
3237        unsigned long flags;
3238        int levels, ret;
3239
3240        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3241                return -EINVAL;
3242
3243        /* Number of GCR3 table levels required */
3244        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3245                levels += 1;
3246
3247        if (levels > amd_iommu_max_glx_val)
3248                return -EINVAL;
3249
3250        spin_lock_irqsave(&domain->lock, flags);
3251
3252        /*
3253         * Save us all sanity checks whether devices already in the
3254         * domain support IOMMUv2. Just force that the domain has no
3255         * devices attached when it is switched into IOMMUv2 mode.
3256         */
3257        ret = -EBUSY;
3258        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3259                goto out;
3260
3261        ret = -ENOMEM;
3262        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3263        if (domain->gcr3_tbl == NULL)
3264                goto out;
3265
3266        domain->glx      = levels;
3267        domain->flags   |= PD_IOMMUV2_MASK;
3268        domain->updated  = true;
3269
3270        update_domain(domain);
3271
3272        ret = 0;
3273
3274out:
3275        spin_unlock_irqrestore(&domain->lock, flags);
3276
3277        return ret;
3278}
3279EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3280
3281static int __flush_pasid(struct protection_domain *domain, int pasid,
3282                         u64 address, bool size)
3283{
3284        struct iommu_dev_data *dev_data;
3285        struct iommu_cmd cmd;
3286        int i, ret;
3287
3288        if (!(domain->flags & PD_IOMMUV2_MASK))
3289                return -EINVAL;
3290
3291        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3292
3293        /*
3294         * IOMMU TLB needs to be flushed before Device TLB to
3295         * prevent device TLB refill from IOMMU TLB
3296         */
3297        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3298                if (domain->dev_iommu[i] == 0)
3299                        continue;
3300
3301                ret = iommu_queue_command(amd_iommus[i], &cmd);
3302                if (ret != 0)
3303                        goto out;
3304        }
3305
3306        /* Wait until IOMMU TLB flushes are complete */
3307        domain_flush_complete(domain);
3308
3309        /* Now flush device TLBs */
3310        list_for_each_entry(dev_data, &domain->dev_list, list) {
3311                struct amd_iommu *iommu;
3312                int qdep;
3313
3314                /*
3315                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3316                 * domain.
3317                 */
3318                if (!dev_data->ats.enabled)
3319                        continue;
3320
3321                qdep  = dev_data->ats.qdep;
3322                iommu = amd_iommu_rlookup_table[dev_data->devid];
3323
3324                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3325                                      qdep, address, size);
3326
3327                ret = iommu_queue_command(iommu, &cmd);
3328                if (ret != 0)
3329                        goto out;
3330        }
3331
3332        /* Wait until all device TLBs are flushed */
3333        domain_flush_complete(domain);
3334
3335        ret = 0;
3336
3337out:
3338
3339        return ret;
3340}
3341
3342static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3343                                  u64 address)
3344{
3345        return __flush_pasid(domain, pasid, address, false);
3346}
3347
3348int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3349                         u64 address)
3350{
3351        struct protection_domain *domain = to_pdomain(dom);
3352        unsigned long flags;
3353        int ret;
3354
3355        spin_lock_irqsave(&domain->lock, flags);
3356        ret = __amd_iommu_flush_page(domain, pasid, address);
3357        spin_unlock_irqrestore(&domain->lock, flags);
3358
3359        return ret;
3360}
3361EXPORT_SYMBOL(amd_iommu_flush_page);
3362
3363static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3364{
3365        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3366                             true);
3367}
3368
3369int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3370{
3371        struct protection_domain *domain = to_pdomain(dom);
3372        unsigned long flags;
3373        int ret;
3374
3375        spin_lock_irqsave(&domain->lock, flags);
3376        ret = __amd_iommu_flush_tlb(domain, pasid);
3377        spin_unlock_irqrestore(&domain->lock, flags);
3378
3379        return ret;
3380}
3381EXPORT_SYMBOL(amd_iommu_flush_tlb);
3382
3383static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3384{
3385        int index;
3386        u64 *pte;
3387
3388        while (true) {
3389
3390                index = (pasid >> (9 * level)) & 0x1ff;
3391                pte   = &root[index];
3392
3393                if (level == 0)
3394                        break;
3395
3396                if (!(*pte & GCR3_VALID)) {
3397                        if (!alloc)
3398                                return NULL;
3399
3400                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3401                        if (root == NULL)
3402                                return NULL;
3403
3404                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3405                }
3406
3407                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3408
3409                level -= 1;
3410        }
3411
3412        return pte;
3413}
3414
3415static int __set_gcr3(struct protection_domain *domain, int pasid,
3416                      unsigned long cr3)
3417{
3418        u64 *pte;
3419
3420        if (domain->mode != PAGE_MODE_NONE)
3421                return -EINVAL;
3422
3423        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3424        if (pte == NULL)
3425                return -ENOMEM;
3426
3427        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3428
3429        return __amd_iommu_flush_tlb(domain, pasid);
3430}
3431
3432static int __clear_gcr3(struct protection_domain *domain, int pasid)
3433{
3434        u64 *pte;
3435
3436        if (domain->mode != PAGE_MODE_NONE)
3437                return -EINVAL;
3438
3439        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3440        if (pte == NULL)
3441                return 0;
3442
3443        *pte = 0;
3444
3445        return __amd_iommu_flush_tlb(domain, pasid);
3446}
3447
3448int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3449                              unsigned long cr3)
3450{
3451        struct protection_domain *domain = to_pdomain(dom);
3452        unsigned long flags;
3453        int ret;
3454
3455        spin_lock_irqsave(&domain->lock, flags);
3456        ret = __set_gcr3(domain, pasid, cr3);
3457        spin_unlock_irqrestore(&domain->lock, flags);
3458
3459        return ret;
3460}
3461EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3462
3463int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3464{
3465        struct protection_domain *domain = to_pdomain(dom);
3466        unsigned long flags;
3467        int ret;
3468
3469        spin_lock_irqsave(&domain->lock, flags);
3470        ret = __clear_gcr3(domain, pasid);
3471        spin_unlock_irqrestore(&domain->lock, flags);
3472
3473        return ret;
3474}
3475EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3476
3477int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3478                           int status, int tag)
3479{
3480        struct iommu_dev_data *dev_data;
3481        struct amd_iommu *iommu;
3482        struct iommu_cmd cmd;
3483
3484        dev_data = get_dev_data(&pdev->dev);
3485        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3486
3487        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3488                           tag, dev_data->pri_tlp);
3489
3490        return iommu_queue_command(iommu, &cmd);
3491}
3492EXPORT_SYMBOL(amd_iommu_complete_ppr);
3493
3494struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3495{
3496        struct protection_domain *pdomain;
3497
3498        pdomain = get_domain(&pdev->dev);
3499        if (IS_ERR(pdomain))
3500                return NULL;
3501
3502        /* Only return IOMMUv2 domains */
3503        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3504                return NULL;
3505
3506        return &pdomain->domain;
3507}
3508EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3509
3510void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3511{
3512        struct iommu_dev_data *dev_data;
3513
3514        if (!amd_iommu_v2_supported())
3515                return;
3516
3517        dev_data = get_dev_data(&pdev->dev);
3518        dev_data->errata |= (1 << erratum);
3519}
3520EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3521
3522int amd_iommu_device_info(struct pci_dev *pdev,
3523                          struct amd_iommu_device_info *info)
3524{
3525        int max_pasids;
3526        int pos;
3527
3528        if (pdev == NULL || info == NULL)
3529                return -EINVAL;
3530
3531        if (!amd_iommu_v2_supported())
3532                return -EINVAL;
3533
3534        memset(info, 0, sizeof(*info));
3535
3536        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3537        if (pos)
3538                info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3539
3540        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3541        if (pos)
3542                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3543
3544        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3545        if (pos) {
3546                int features;
3547
3548                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3549                max_pasids = min(max_pasids, (1 << 20));
3550
3551                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3552                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3553
3554                features = pci_pasid_features(pdev);
3555                if (features & PCI_PASID_CAP_EXEC)
3556                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3557                if (features & PCI_PASID_CAP_PRIV)
3558                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3559        }
3560
3561        return 0;
3562}
3563EXPORT_SYMBOL(amd_iommu_device_info);
3564
3565#ifdef CONFIG_IRQ_REMAP
3566
3567/*****************************************************************************
3568 *
3569 * Interrupt Remapping Implementation
3570 *
3571 *****************************************************************************/
3572
3573static struct irq_chip amd_ir_chip;
3574
3575static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3576{
3577        u64 dte;
3578
3579        dte     = amd_iommu_dev_table[devid].data[2];
3580        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3581        dte     |= iommu_virt_to_phys(table->table);
3582        dte     |= DTE_IRQ_REMAP_INTCTL;
3583        dte     |= DTE_IRQ_TABLE_LEN;
3584        dte     |= DTE_IRQ_REMAP_ENABLE;
3585
3586        amd_iommu_dev_table[devid].data[2] = dte;
3587}
3588
3589static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3590{
3591        struct irq_remap_table *table = NULL;
3592        struct amd_iommu *iommu;
3593        unsigned long flags;
3594        u16 alias;
3595
3596        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3597
3598        iommu = amd_iommu_rlookup_table[devid];
3599        if (!iommu)
3600                goto out_unlock;
3601
3602        table = irq_lookup_table[devid];
3603        if (table)
3604                goto out_unlock;
3605
3606        alias = amd_iommu_alias_table[devid];
3607        table = irq_lookup_table[alias];
3608        if (table) {
3609                irq_lookup_table[devid] = table;
3610                set_dte_irq_entry(devid, table);
3611                iommu_flush_dte(iommu, devid);
3612                goto out;
3613        }
3614
3615        /* Nothing there yet, allocate new irq remapping table */
3616        table = kzalloc(sizeof(*table), GFP_ATOMIC);
3617        if (!table)
3618                goto out_unlock;
3619
3620        /* Initialize table spin-lock */
3621        spin_lock_init(&table->lock);
3622
3623        if (ioapic)
3624                /* Keep the first 32 indexes free for IOAPIC interrupts */
3625                table->min_index = 32;
3626
3627        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3628        if (!table->table) {
3629                kfree(table);
3630                table = NULL;
3631                goto out_unlock;
3632        }
3633
3634        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3635                memset(table->table, 0,
3636                       MAX_IRQS_PER_TABLE * sizeof(u32));
3637        else
3638                memset(table->table, 0,
3639                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3640
3641        if (ioapic) {
3642                int i;
3643
3644                for (i = 0; i < 32; ++i)
3645                        iommu->irte_ops->set_allocated(table, i);
3646        }
3647
3648        irq_lookup_table[devid] = table;
3649        set_dte_irq_entry(devid, table);
3650        iommu_flush_dte(iommu, devid);
3651        if (devid != alias) {
3652                irq_lookup_table[alias] = table;
3653                set_dte_irq_entry(alias, table);
3654                iommu_flush_dte(iommu, alias);
3655        }
3656
3657out:
3658        iommu_completion_wait(iommu);
3659
3660out_unlock:
3661        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3662
3663        return table;
3664}
3665
3666static int alloc_irq_index(u16 devid, int count)
3667{
3668        struct irq_remap_table *table;
3669        unsigned long flags;
3670        int index, c;
3671        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3672
3673        if (!iommu)
3674                return -ENODEV;
3675
3676        table = get_irq_table(devid, false);
3677        if (!table)
3678                return -ENODEV;
3679
3680        spin_lock_irqsave(&table->lock, flags);
3681
3682        /* Scan table for free entries */
3683        for (c = 0, index = table->min_index;
3684             index < MAX_IRQS_PER_TABLE;
3685             ++index) {
3686                if (!iommu->irte_ops->is_allocated(table, index))
3687                        c += 1;
3688                else
3689                        c = 0;
3690
3691                if (c == count) {
3692                        for (; c != 0; --c)
3693                                iommu->irte_ops->set_allocated(table, index - c + 1);
3694
3695                        index -= count - 1;
3696                        goto out;
3697                }
3698        }
3699
3700        index = -ENOSPC;
3701
3702out:
3703        spin_unlock_irqrestore(&table->lock, flags);
3704
3705        return index;
3706}
3707
3708static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3709                          struct amd_ir_data *data)
3710{
3711        struct irq_remap_table *table;
3712        struct amd_iommu *iommu;
3713        unsigned long flags;
3714        struct irte_ga *entry;
3715
3716        iommu = amd_iommu_rlookup_table[devid];
3717        if (iommu == NULL)
3718                return -EINVAL;
3719
3720        table = get_irq_table(devid, false);
3721        if (!table)
3722                return -ENOMEM;
3723
3724        spin_lock_irqsave(&table->lock, flags);
3725
3726        entry = (struct irte_ga *)table->table;
3727        entry = &entry[index];
3728        entry->lo.fields_remap.valid = 0;
3729        entry->hi.val = irte->hi.val;
3730        entry->lo.val = irte->lo.val;
3731        entry->lo.fields_remap.valid = 1;
3732        if (data)
3733                data->ref = entry;
3734
3735        spin_unlock_irqrestore(&table->lock, flags);
3736
3737        iommu_flush_irt(iommu, devid);
3738        iommu_completion_wait(iommu);
3739
3740        return 0;
3741}
3742
3743static int modify_irte(u16 devid, int index, union irte *irte)
3744{
3745        struct irq_remap_table *table;
3746        struct amd_iommu *iommu;
3747        unsigned long flags;
3748
3749        iommu = amd_iommu_rlookup_table[devid];
3750        if (iommu == NULL)
3751                return -EINVAL;
3752
3753        table = get_irq_table(devid, false);
3754        if (!table)
3755                return -ENOMEM;
3756
3757        spin_lock_irqsave(&table->lock, flags);
3758        table->table[index] = irte->val;
3759        spin_unlock_irqrestore(&table->lock, flags);
3760
3761        iommu_flush_irt(iommu, devid);
3762        iommu_completion_wait(iommu);
3763
3764        return 0;
3765}
3766
3767static void free_irte(u16 devid, int index)
3768{
3769        struct irq_remap_table *table;
3770        struct amd_iommu *iommu;
3771        unsigned long flags;
3772
3773        iommu = amd_iommu_rlookup_table[devid];
3774        if (iommu == NULL)
3775                return;
3776
3777        table = get_irq_table(devid, false);
3778        if (!table)
3779                return;
3780
3781        spin_lock_irqsave(&table->lock, flags);
3782        iommu->irte_ops->clear_allocated(table, index);
3783        spin_unlock_irqrestore(&table->lock, flags);
3784
3785        iommu_flush_irt(iommu, devid);
3786        iommu_completion_wait(iommu);
3787}
3788
3789static void irte_prepare(void *entry,
3790                         u32 delivery_mode, u32 dest_mode,
3791                         u8 vector, u32 dest_apicid, int devid)
3792{
3793        union irte *irte = (union irte *) entry;
3794
3795        irte->val                = 0;
3796        irte->fields.vector      = vector;
3797        irte->fields.int_type    = delivery_mode;
3798        irte->fields.destination = dest_apicid;
3799        irte->fields.dm          = dest_mode;
3800        irte->fields.valid       = 1;
3801}
3802
3803static void irte_ga_prepare(void *entry,
3804                            u32 delivery_mode, u32 dest_mode,
3805                            u8 vector, u32 dest_apicid, int devid)
3806{
3807        struct irte_ga *irte = (struct irte_ga *) entry;
3808
3809        irte->lo.val                      = 0;
3810        irte->hi.val                      = 0;
3811        irte->lo.fields_remap.int_type    = delivery_mode;
3812        irte->lo.fields_remap.dm          = dest_mode;
3813        irte->hi.fields.vector            = vector;
3814        irte->lo.fields_remap.destination = dest_apicid;
3815        irte->lo.fields_remap.valid       = 1;
3816}
3817
3818static void irte_activate(void *entry, u16 devid, u16 index)
3819{
3820        union irte *irte = (union irte *) entry;
3821
3822        irte->fields.valid = 1;
3823        modify_irte(devid, index, irte);
3824}
3825
3826static void irte_ga_activate(void *entry, u16 devid, u16 index)
3827{
3828        struct irte_ga *irte = (struct irte_ga *) entry;
3829
3830        irte->lo.fields_remap.valid = 1;
3831        modify_irte_ga(devid, index, irte, NULL);
3832}
3833
3834static void irte_deactivate(void *entry, u16 devid, u16 index)
3835{
3836        union irte *irte = (union irte *) entry;
3837
3838        irte->fields.valid = 0;
3839        modify_irte(devid, index, irte);
3840}
3841
3842static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3843{
3844        struct irte_ga *irte = (struct irte_ga *) entry;
3845
3846        irte->lo.fields_remap.valid = 0;
3847        modify_irte_ga(devid, index, irte, NULL);
3848}
3849
3850static void irte_set_affinity(void *entry, u16 devid, u16 index,
3851                              u8 vector, u32 dest_apicid)
3852{
3853        union irte *irte = (union irte *) entry;
3854
3855        irte->fields.vector = vector;
3856        irte->fields.destination = dest_apicid;
3857        modify_irte(devid, index, irte);
3858}
3859
3860static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3861                                 u8 vector, u32 dest_apicid)
3862{
3863        struct irte_ga *irte = (struct irte_ga *) entry;
3864        struct iommu_dev_data *dev_data = search_dev_data(devid);
3865
3866        if (!dev_data || !dev_data->use_vapic ||
3867            !irte->lo.fields_remap.guest_mode) {
3868                irte->hi.fields.vector = vector;
3869                irte->lo.fields_remap.destination = dest_apicid;
3870                modify_irte_ga(devid, index, irte, NULL);
3871        }
3872}
3873
3874#define IRTE_ALLOCATED (~1U)
3875static void irte_set_allocated(struct irq_remap_table *table, int index)
3876{
3877        table->table[index] = IRTE_ALLOCATED;
3878}
3879
3880static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3881{
3882        struct irte_ga *ptr = (struct irte_ga *)table->table;
3883        struct irte_ga *irte = &ptr[index];
3884
3885        memset(&irte->lo.val, 0, sizeof(u64));
3886        memset(&irte->hi.val, 0, sizeof(u64));
3887        irte->hi.fields.vector = 0xff;
3888}
3889
3890static bool irte_is_allocated(struct irq_remap_table *table, int index)
3891{
3892        union irte *ptr = (union irte *)table->table;
3893        union irte *irte = &ptr[index];
3894
3895        return irte->val != 0;
3896}
3897
3898static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3899{
3900        struct irte_ga *ptr = (struct irte_ga *)table->table;
3901        struct irte_ga *irte = &ptr[index];
3902
3903        return irte->hi.fields.vector != 0;
3904}
3905
3906static void irte_clear_allocated(struct irq_remap_table *table, int index)
3907{
3908        table->table[index] = 0;
3909}
3910
3911static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3912{
3913        struct irte_ga *ptr = (struct irte_ga *)table->table;
3914        struct irte_ga *irte = &ptr[index];
3915
3916        memset(&irte->lo.val, 0, sizeof(u64));
3917        memset(&irte->hi.val, 0, sizeof(u64));
3918}
3919
3920static int get_devid(struct irq_alloc_info *info)
3921{
3922        int devid = -1;
3923
3924        switch (info->type) {
3925        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3926                devid     = get_ioapic_devid(info->ioapic_id);
3927                break;
3928        case X86_IRQ_ALLOC_TYPE_HPET:
3929                devid     = get_hpet_devid(info->hpet_id);
3930                break;
3931        case X86_IRQ_ALLOC_TYPE_MSI:
3932        case X86_IRQ_ALLOC_TYPE_MSIX:
3933                devid = get_device_id(&info->msi_dev->dev);
3934                break;
3935        default:
3936                BUG_ON(1);
3937                break;
3938        }
3939
3940        return devid;
3941}
3942
3943static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3944{
3945        struct amd_iommu *iommu;
3946        int devid;
3947
3948        if (!info)
3949                return NULL;
3950
3951        devid = get_devid(info);
3952        if (devid >= 0) {
3953                iommu = amd_iommu_rlookup_table[devid];
3954                if (iommu)
3955                        return iommu->ir_domain;
3956        }
3957
3958        return NULL;
3959}
3960
3961static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3962{
3963        struct amd_iommu *iommu;
3964        int devid;
3965
3966        if (!info)
3967                return NULL;
3968
3969        switch (info->type) {
3970        case X86_IRQ_ALLOC_TYPE_MSI:
3971        case X86_IRQ_ALLOC_TYPE_MSIX:
3972                devid = get_device_id(&info->msi_dev->dev);
3973                if (devid < 0)
3974                        return NULL;
3975
3976                iommu = amd_iommu_rlookup_table[devid];
3977                if (iommu)
3978                        return iommu->msi_domain;
3979                break;
3980        default:
3981                break;
3982        }
3983
3984        return NULL;
3985}
3986
3987struct irq_remap_ops amd_iommu_irq_ops = {
3988        .prepare                = amd_iommu_prepare,
3989        .enable                 = amd_iommu_enable,
3990        .disable                = amd_iommu_disable,
3991        .reenable               = amd_iommu_reenable,
3992        .enable_faulting        = amd_iommu_enable_faulting,
3993        .get_ir_irq_domain      = get_ir_irq_domain,
3994        .get_irq_domain         = get_irq_domain,
3995};
3996
3997static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3998                                       struct irq_cfg *irq_cfg,
3999                                       struct irq_alloc_info *info,
4000                                       int devid, int index, int sub_handle)
4001{
4002        struct irq_2_irte *irte_info = &data->irq_2_irte;
4003        struct msi_msg *msg = &data->msi_entry;
4004        struct IO_APIC_route_entry *entry;
4005        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4006
4007        if (!iommu)
4008                return;
4009
4010        data->irq_2_irte.devid = devid;
4011        data->irq_2_irte.index = index + sub_handle;
4012        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4013                                 apic->irq_dest_mode, irq_cfg->vector,
4014                                 irq_cfg->dest_apicid, devid);
4015
4016        switch (info->type) {
4017        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4018                /* Setup IOAPIC entry */
4019                entry = info->ioapic_entry;
4020                info->ioapic_entry = NULL;
4021                memset(entry, 0, sizeof(*entry));
4022                entry->vector        = index;
4023                entry->mask          = 0;
4024                entry->trigger       = info->ioapic_trigger;
4025                entry->polarity      = info->ioapic_polarity;
4026                /* Mask level triggered irqs. */
4027                if (info->ioapic_trigger)
4028                        entry->mask = 1;
4029                break;
4030
4031        case X86_IRQ_ALLOC_TYPE_HPET:
4032        case X86_IRQ_ALLOC_TYPE_MSI:
4033        case X86_IRQ_ALLOC_TYPE_MSIX:
4034                msg->address_hi = MSI_ADDR_BASE_HI;
4035                msg->address_lo = MSI_ADDR_BASE_LO;
4036                msg->data = irte_info->index;
4037                break;
4038
4039        default:
4040                BUG_ON(1);
4041                break;
4042        }
4043}
4044
4045struct amd_irte_ops irte_32_ops = {
4046        .prepare = irte_prepare,
4047        .activate = irte_activate,
4048        .deactivate = irte_deactivate,
4049        .set_affinity = irte_set_affinity,
4050        .set_allocated = irte_set_allocated,
4051        .is_allocated = irte_is_allocated,
4052        .clear_allocated = irte_clear_allocated,
4053};
4054
4055struct amd_irte_ops irte_128_ops = {
4056        .prepare = irte_ga_prepare,
4057        .activate = irte_ga_activate,
4058        .deactivate = irte_ga_deactivate,
4059        .set_affinity = irte_ga_set_affinity,
4060        .set_allocated = irte_ga_set_allocated,
4061        .is_allocated = irte_ga_is_allocated,
4062        .clear_allocated = irte_ga_clear_allocated,
4063};
4064
4065static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4066                               unsigned int nr_irqs, void *arg)
4067{
4068        struct irq_alloc_info *info = arg;
4069        struct irq_data *irq_data;
4070        struct amd_ir_data *data = NULL;
4071        struct irq_cfg *cfg;
4072        int i, ret, devid;
4073        int index = -1;
4074
4075        if (!info)
4076                return -EINVAL;
4077        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4078            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4079                return -EINVAL;
4080
4081        /*
4082         * With IRQ remapping enabled, don't need contiguous CPU vectors
4083         * to support multiple MSI interrupts.
4084         */
4085        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4086                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4087
4088        devid = get_devid(info);
4089        if (devid < 0)
4090                return -EINVAL;
4091
4092        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4093        if (ret < 0)
4094                return ret;
4095
4096        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4097                if (get_irq_table(devid, true))
4098                        index = info->ioapic_pin;
4099                else
4100                        ret = -ENOMEM;
4101        } else {
4102                index = alloc_irq_index(devid, nr_irqs);
4103        }
4104        if (index < 0) {
4105                pr_warn("Failed to allocate IRTE\n");
4106                ret = index;
4107                goto out_free_parent;
4108        }
4109
4110        for (i = 0; i < nr_irqs; i++) {
4111                irq_data = irq_domain_get_irq_data(domain, virq + i);
4112                cfg = irqd_cfg(irq_data);
4113                if (!irq_data || !cfg) {
4114                        ret = -EINVAL;
4115                        goto out_free_data;
4116                }
4117
4118                ret = -ENOMEM;
4119                data = kzalloc(sizeof(*data), GFP_KERNEL);
4120                if (!data)
4121                        goto out_free_data;
4122
4123                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4124                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4125                else
4126                        data->entry = kzalloc(sizeof(struct irte_ga),
4127                                                     GFP_KERNEL);
4128                if (!data->entry) {
4129                        kfree(data);
4130                        goto out_free_data;
4131                }
4132
4133                irq_data->hwirq = (devid << 16) + i;
4134                irq_data->chip_data = data;
4135                irq_data->chip = &amd_ir_chip;
4136                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4137                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4138        }
4139
4140        return 0;
4141
4142out_free_data:
4143        for (i--; i >= 0; i--) {
4144                irq_data = irq_domain_get_irq_data(domain, virq + i);
4145                if (irq_data)
4146                        kfree(irq_data->chip_data);
4147        }
4148        for (i = 0; i < nr_irqs; i++)
4149                free_irte(devid, index + i);
4150out_free_parent:
4151        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4152        return ret;
4153}
4154
4155static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4156                               unsigned int nr_irqs)
4157{
4158        struct irq_2_irte *irte_info;
4159        struct irq_data *irq_data;
4160        struct amd_ir_data *data;
4161        int i;
4162
4163        for (i = 0; i < nr_irqs; i++) {
4164                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4165                if (irq_data && irq_data->chip_data) {
4166                        data = irq_data->chip_data;
4167                        irte_info = &data->irq_2_irte;
4168                        free_irte(irte_info->devid, irte_info->index);
4169                        kfree(data->entry);
4170                        kfree(data);
4171                }
4172        }
4173        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4174}
4175
4176static void irq_remapping_activate(struct irq_domain *domain,
4177                                   struct irq_data *irq_data)
4178{
4179        struct amd_ir_data *data = irq_data->chip_data;
4180        struct irq_2_irte *irte_info = &data->irq_2_irte;
4181        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4182
4183        if (iommu)
4184                iommu->irte_ops->activate(data->entry, irte_info->devid,
4185                                          irte_info->index);
4186}
4187
4188static void irq_remapping_deactivate(struct irq_domain *domain,
4189                                     struct irq_data *irq_data)
4190{
4191        struct amd_ir_data *data = irq_data->chip_data;
4192        struct irq_2_irte *irte_info = &data->irq_2_irte;
4193        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4194
4195        if (iommu)
4196                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4197                                            irte_info->index);
4198}
4199
4200static const struct irq_domain_ops amd_ir_domain_ops = {
4201        .alloc = irq_remapping_alloc,
4202        .free = irq_remapping_free,
4203        .activate = irq_remapping_activate,
4204        .deactivate = irq_remapping_deactivate,
4205};
4206
4207static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4208{
4209        struct amd_iommu *iommu;
4210        struct amd_iommu_pi_data *pi_data = vcpu_info;
4211        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4212        struct amd_ir_data *ir_data = data->chip_data;
4213        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4214        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4215        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4216
4217        /* Note:
4218         * This device has never been set up for guest mode.
4219         * we should not modify the IRTE
4220         */
4221        if (!dev_data || !dev_data->use_vapic)
4222                return 0;
4223
4224        pi_data->ir_data = ir_data;
4225
4226        /* Note:
4227         * SVM tries to set up for VAPIC mode, but we are in
4228         * legacy mode. So, we force legacy mode instead.
4229         */
4230        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4231                pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4232                         __func__);
4233                pi_data->is_guest_mode = false;
4234        }
4235
4236        iommu = amd_iommu_rlookup_table[irte_info->devid];
4237        if (iommu == NULL)
4238                return -EINVAL;
4239
4240        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4241        if (pi_data->is_guest_mode) {
4242                /* Setting */
4243                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4244                irte->hi.fields.vector = vcpu_pi_info->vector;
4245                irte->lo.fields_vapic.ga_log_intr = 1;
4246                irte->lo.fields_vapic.guest_mode = 1;
4247                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4248
4249                ir_data->cached_ga_tag = pi_data->ga_tag;
4250        } else {
4251                /* Un-Setting */
4252                struct irq_cfg *cfg = irqd_cfg(data);
4253
4254                irte->hi.val = 0;
4255                irte->lo.val = 0;
4256                irte->hi.fields.vector = cfg->vector;
4257                irte->lo.fields_remap.guest_mode = 0;
4258                irte->lo.fields_remap.destination = cfg->dest_apicid;
4259                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4260                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4261
4262                /*
4263                 * This communicates the ga_tag back to the caller
4264                 * so that it can do all the necessary clean up.
4265                 */
4266                ir_data->cached_ga_tag = 0;
4267        }
4268
4269        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4270}
4271
4272static int amd_ir_set_affinity(struct irq_data *data,
4273                               const struct cpumask *mask, bool force)
4274{
4275        struct amd_ir_data *ir_data = data->chip_data;
4276        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4277        struct irq_cfg *cfg = irqd_cfg(data);
4278        struct irq_data *parent = data->parent_data;
4279        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4280        int ret;
4281
4282        if (!iommu)
4283                return -ENODEV;
4284
4285        ret = parent->chip->irq_set_affinity(parent, mask, force);
4286        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4287                return ret;
4288
4289        /*
4290         * Atomically updates the IRTE with the new destination, vector
4291         * and flushes the interrupt entry cache.
4292         */
4293        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4294                            irte_info->index, cfg->vector, cfg->dest_apicid);
4295
4296        /*
4297         * After this point, all the interrupts will start arriving
4298         * at the new destination. So, time to cleanup the previous
4299         * vector allocation.
4300         */
4301        send_cleanup_vector(cfg);
4302
4303        return IRQ_SET_MASK_OK_DONE;
4304}
4305
4306static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4307{
4308        struct amd_ir_data *ir_data = irq_data->chip_data;
4309
4310        *msg = ir_data->msi_entry;
4311}
4312
4313static struct irq_chip amd_ir_chip = {
4314        .name                   = "AMD-IR",
4315        .irq_ack                = ir_ack_apic_edge,
4316        .irq_set_affinity       = amd_ir_set_affinity,
4317        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4318        .irq_compose_msi_msg    = ir_compose_msi_msg,
4319};
4320
4321int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4322{
4323        struct fwnode_handle *fn;
4324
4325        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4326        if (!fn)
4327                return -ENOMEM;
4328        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4329        irq_domain_free_fwnode(fn);
4330        if (!iommu->ir_domain)
4331                return -ENOMEM;
4332
4333        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4334        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4335                                                             "AMD-IR-MSI",
4336                                                             iommu->index);
4337        return 0;
4338}
4339
4340int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4341{
4342        unsigned long flags;
4343        struct amd_iommu *iommu;
4344        struct irq_remap_table *irt;
4345        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4346        int devid = ir_data->irq_2_irte.devid;
4347        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4348        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4349
4350        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4351            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4352                return 0;
4353
4354        iommu = amd_iommu_rlookup_table[devid];
4355        if (!iommu)
4356                return -ENODEV;
4357
4358        irt = get_irq_table(devid, false);
4359        if (!irt)
4360                return -ENODEV;
4361
4362        spin_lock_irqsave(&irt->lock, flags);
4363
4364        if (ref->lo.fields_vapic.guest_mode) {
4365                if (cpu >= 0)
4366                        ref->lo.fields_vapic.destination = cpu;
4367                ref->lo.fields_vapic.is_run = is_run;
4368                barrier();
4369        }
4370
4371        spin_unlock_irqrestore(&irt->lock, flags);
4372
4373        iommu_flush_irt(iommu, devid);
4374        iommu_completion_wait(iommu);
4375        return 0;
4376}
4377EXPORT_SYMBOL(amd_iommu_update_ga);
4378#endif
4379