linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203        PM_READ_ONLY,           /* metadata may not be changed */
 204        PM_FAIL,                /* all I/O fails */
 205};
 206
 207struct pool_features {
 208        enum pool_mode mode;
 209
 210        bool zero_new_blocks:1;
 211        bool discard_enabled:1;
 212        bool discard_passdown:1;
 213        bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224        struct list_head list;
 225        struct dm_target *ti;   /* Only set if a pool target is bound */
 226
 227        struct mapped_device *pool_md;
 228        struct block_device *md_dev;
 229        struct dm_pool_metadata *pmd;
 230
 231        dm_block_t low_water_blocks;
 232        uint32_t sectors_per_block;
 233        int sectors_per_block_shift;
 234
 235        struct pool_features pf;
 236        bool low_water_triggered:1;     /* A dm event has been sent */
 237        bool suspended:1;
 238        bool out_of_data_space:1;
 239
 240        struct dm_bio_prison *prison;
 241        struct dm_kcopyd_client *copier;
 242
 243        struct workqueue_struct *wq;
 244        struct throttle throttle;
 245        struct work_struct worker;
 246        struct delayed_work waker;
 247        struct delayed_work no_space_timeout;
 248
 249        unsigned long last_commit_jiffies;
 250        unsigned ref_count;
 251
 252        spinlock_t lock;
 253        struct bio_list deferred_flush_bios;
 254        struct list_head prepared_mappings;
 255        struct list_head prepared_discards;
 256        struct list_head prepared_discards_pt2;
 257        struct list_head active_thins;
 258
 259        struct dm_deferred_set *shared_read_ds;
 260        struct dm_deferred_set *all_io_ds;
 261
 262        struct dm_thin_new_mapping *next_mapping;
 263        mempool_t *mapping_pool;
 264
 265        process_bio_fn process_bio;
 266        process_bio_fn process_discard;
 267
 268        process_cell_fn process_cell;
 269        process_cell_fn process_discard_cell;
 270
 271        process_mapping_fn process_prepared_mapping;
 272        process_mapping_fn process_prepared_discard;
 273        process_mapping_fn process_prepared_discard_pt2;
 274
 275        struct dm_bio_prison_cell **cell_sort_array;
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285        struct dm_target *ti;
 286        struct pool *pool;
 287        struct dm_dev *data_dev;
 288        struct dm_dev *metadata_dev;
 289        struct dm_target_callbacks callbacks;
 290
 291        dm_block_t low_water_blocks;
 292        struct pool_features requested_pf; /* Features requested during table load */
 293        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300        struct list_head list;
 301        struct dm_dev *pool_dev;
 302        struct dm_dev *origin_dev;
 303        sector_t origin_size;
 304        dm_thin_id dev_id;
 305
 306        struct pool *pool;
 307        struct dm_thin_device *td;
 308        struct mapped_device *thin_md;
 309
 310        bool requeue_mode:1;
 311        spinlock_t lock;
 312        struct list_head deferred_cells;
 313        struct bio_list deferred_bio_list;
 314        struct bio_list retry_on_resume_list;
 315        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317        /*
 318         * Ensures the thin is not destroyed until the worker has finished
 319         * iterating the active_thins list.
 320         */
 321        atomic_t refcount;
 322        struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329        return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334        return block_size_is_power_of_two(pool) ?
 335                (b << pool->sectors_per_block_shift) :
 336                (b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342        struct thin_c *tc;
 343        struct blk_plug plug;
 344        struct bio *parent_bio;
 345        struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350        BUG_ON(!parent);
 351
 352        op->tc = tc;
 353        blk_start_plug(&op->plug);
 354        op->parent_bio = parent;
 355        op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360        struct thin_c *tc = op->tc;
 361        sector_t s = block_to_sectors(tc->pool, data_b);
 362        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365                                      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370        if (op->bio) {
 371                /*
 372                 * Even if one of the calls to issue_discard failed, we
 373                 * need to wait for the chain to complete.
 374                 */
 375                bio_chain(op->bio, op->parent_bio);
 376                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377                submit_bio(op->bio);
 378        }
 379
 380        blk_finish_plug(&op->plug);
 381
 382        /*
 383         * Even if r is set, there could be sub discards in flight that we
 384         * need to wait for.
 385         */
 386        if (r && !op->parent_bio->bi_status)
 387                op->parent_bio->bi_status = errno_to_blk_status(r);
 388        bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399        queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405                      struct dm_bio_prison_cell **cell_result)
 406{
 407        int r;
 408        struct dm_bio_prison_cell *cell_prealloc;
 409
 410        /*
 411         * Allocate a cell from the prison's mempool.
 412         * This might block but it can't fail.
 413         */
 414        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417        if (r)
 418                /*
 419                 * We reused an old cell; we can get rid of
 420                 * the new one.
 421                 */
 422                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424        return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428                         struct dm_bio_prison_cell *cell,
 429                         struct bio_list *bios)
 430{
 431        dm_cell_release(pool->prison, cell, bios);
 432        dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436                               void (*fn)(void *, struct dm_bio_prison_cell *),
 437                               void *context,
 438                               struct dm_bio_prison_cell *cell)
 439{
 440        dm_cell_visit_release(pool->prison, fn, context, cell);
 441        dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445                                   struct dm_bio_prison_cell *cell,
 446                                   struct bio_list *bios)
 447{
 448        dm_cell_release_no_holder(pool->prison, cell, bios);
 449        dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453                struct dm_bio_prison_cell *cell, blk_status_t error_code)
 454{
 455        dm_cell_error(pool->prison, cell, error_code);
 456        dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static blk_status_t get_pool_io_error_code(struct pool *pool)
 460{
 461        return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466        cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 467}
 468
 469static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 470{
 471        cell_error_with_code(pool, cell, 0);
 472}
 473
 474static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 475{
 476        cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 477}
 478
 479/*----------------------------------------------------------------*/
 480
 481/*
 482 * A global list of pools that uses a struct mapped_device as a key.
 483 */
 484static struct dm_thin_pool_table {
 485        struct mutex mutex;
 486        struct list_head pools;
 487} dm_thin_pool_table;
 488
 489static void pool_table_init(void)
 490{
 491        mutex_init(&dm_thin_pool_table.mutex);
 492        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 493}
 494
 495static void __pool_table_insert(struct pool *pool)
 496{
 497        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 498        list_add(&pool->list, &dm_thin_pool_table.pools);
 499}
 500
 501static void __pool_table_remove(struct pool *pool)
 502{
 503        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 504        list_del(&pool->list);
 505}
 506
 507static struct pool *__pool_table_lookup(struct mapped_device *md)
 508{
 509        struct pool *pool = NULL, *tmp;
 510
 511        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 512
 513        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 514                if (tmp->pool_md == md) {
 515                        pool = tmp;
 516                        break;
 517                }
 518        }
 519
 520        return pool;
 521}
 522
 523static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 524{
 525        struct pool *pool = NULL, *tmp;
 526
 527        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 528
 529        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 530                if (tmp->md_dev == md_dev) {
 531                        pool = tmp;
 532                        break;
 533                }
 534        }
 535
 536        return pool;
 537}
 538
 539/*----------------------------------------------------------------*/
 540
 541struct dm_thin_endio_hook {
 542        struct thin_c *tc;
 543        struct dm_deferred_entry *shared_read_entry;
 544        struct dm_deferred_entry *all_io_entry;
 545        struct dm_thin_new_mapping *overwrite_mapping;
 546        struct rb_node rb_node;
 547        struct dm_bio_prison_cell *cell;
 548};
 549
 550static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 551{
 552        bio_list_merge(bios, master);
 553        bio_list_init(master);
 554}
 555
 556static void error_bio_list(struct bio_list *bios, blk_status_t error)
 557{
 558        struct bio *bio;
 559
 560        while ((bio = bio_list_pop(bios))) {
 561                bio->bi_status = error;
 562                bio_endio(bio);
 563        }
 564}
 565
 566static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 567                blk_status_t error)
 568{
 569        struct bio_list bios;
 570        unsigned long flags;
 571
 572        bio_list_init(&bios);
 573
 574        spin_lock_irqsave(&tc->lock, flags);
 575        __merge_bio_list(&bios, master);
 576        spin_unlock_irqrestore(&tc->lock, flags);
 577
 578        error_bio_list(&bios, error);
 579}
 580
 581static void requeue_deferred_cells(struct thin_c *tc)
 582{
 583        struct pool *pool = tc->pool;
 584        unsigned long flags;
 585        struct list_head cells;
 586        struct dm_bio_prison_cell *cell, *tmp;
 587
 588        INIT_LIST_HEAD(&cells);
 589
 590        spin_lock_irqsave(&tc->lock, flags);
 591        list_splice_init(&tc->deferred_cells, &cells);
 592        spin_unlock_irqrestore(&tc->lock, flags);
 593
 594        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 595                cell_requeue(pool, cell);
 596}
 597
 598static void requeue_io(struct thin_c *tc)
 599{
 600        struct bio_list bios;
 601        unsigned long flags;
 602
 603        bio_list_init(&bios);
 604
 605        spin_lock_irqsave(&tc->lock, flags);
 606        __merge_bio_list(&bios, &tc->deferred_bio_list);
 607        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 608        spin_unlock_irqrestore(&tc->lock, flags);
 609
 610        error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 611        requeue_deferred_cells(tc);
 612}
 613
 614static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 615{
 616        struct thin_c *tc;
 617
 618        rcu_read_lock();
 619        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 620                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 621        rcu_read_unlock();
 622}
 623
 624static void error_retry_list(struct pool *pool)
 625{
 626        error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 627}
 628
 629/*
 630 * This section of code contains the logic for processing a thin device's IO.
 631 * Much of the code depends on pool object resources (lists, workqueues, etc)
 632 * but most is exclusively called from the thin target rather than the thin-pool
 633 * target.
 634 */
 635
 636static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 637{
 638        struct pool *pool = tc->pool;
 639        sector_t block_nr = bio->bi_iter.bi_sector;
 640
 641        if (block_size_is_power_of_two(pool))
 642                block_nr >>= pool->sectors_per_block_shift;
 643        else
 644                (void) sector_div(block_nr, pool->sectors_per_block);
 645
 646        return block_nr;
 647}
 648
 649/*
 650 * Returns the _complete_ blocks that this bio covers.
 651 */
 652static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 653                                dm_block_t *begin, dm_block_t *end)
 654{
 655        struct pool *pool = tc->pool;
 656        sector_t b = bio->bi_iter.bi_sector;
 657        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 658
 659        b += pool->sectors_per_block - 1ull; /* so we round up */
 660
 661        if (block_size_is_power_of_two(pool)) {
 662                b >>= pool->sectors_per_block_shift;
 663                e >>= pool->sectors_per_block_shift;
 664        } else {
 665                (void) sector_div(b, pool->sectors_per_block);
 666                (void) sector_div(e, pool->sectors_per_block);
 667        }
 668
 669        if (e < b)
 670                /* Can happen if the bio is within a single block. */
 671                e = b;
 672
 673        *begin = b;
 674        *end = e;
 675}
 676
 677static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 678{
 679        struct pool *pool = tc->pool;
 680        sector_t bi_sector = bio->bi_iter.bi_sector;
 681
 682        bio_set_dev(bio, tc->pool_dev->bdev);
 683        if (block_size_is_power_of_two(pool))
 684                bio->bi_iter.bi_sector =
 685                        (block << pool->sectors_per_block_shift) |
 686                        (bi_sector & (pool->sectors_per_block - 1));
 687        else
 688                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 689                                 sector_div(bi_sector, pool->sectors_per_block);
 690}
 691
 692static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 693{
 694        bio_set_dev(bio, tc->origin_dev->bdev);
 695}
 696
 697static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 698{
 699        return op_is_flush(bio->bi_opf) &&
 700                dm_thin_changed_this_transaction(tc->td);
 701}
 702
 703static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 704{
 705        struct dm_thin_endio_hook *h;
 706
 707        if (bio_op(bio) == REQ_OP_DISCARD)
 708                return;
 709
 710        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 711        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 712}
 713
 714static void issue(struct thin_c *tc, struct bio *bio)
 715{
 716        struct pool *pool = tc->pool;
 717        unsigned long flags;
 718
 719        if (!bio_triggers_commit(tc, bio)) {
 720                generic_make_request(bio);
 721                return;
 722        }
 723
 724        /*
 725         * Complete bio with an error if earlier I/O caused changes to
 726         * the metadata that can't be committed e.g, due to I/O errors
 727         * on the metadata device.
 728         */
 729        if (dm_thin_aborted_changes(tc->td)) {
 730                bio_io_error(bio);
 731                return;
 732        }
 733
 734        /*
 735         * Batch together any bios that trigger commits and then issue a
 736         * single commit for them in process_deferred_bios().
 737         */
 738        spin_lock_irqsave(&pool->lock, flags);
 739        bio_list_add(&pool->deferred_flush_bios, bio);
 740        spin_unlock_irqrestore(&pool->lock, flags);
 741}
 742
 743static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 744{
 745        remap_to_origin(tc, bio);
 746        issue(tc, bio);
 747}
 748
 749static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 750                            dm_block_t block)
 751{
 752        remap(tc, bio, block);
 753        issue(tc, bio);
 754}
 755
 756/*----------------------------------------------------------------*/
 757
 758/*
 759 * Bio endio functions.
 760 */
 761struct dm_thin_new_mapping {
 762        struct list_head list;
 763
 764        bool pass_discard:1;
 765        bool maybe_shared:1;
 766
 767        /*
 768         * Track quiescing, copying and zeroing preparation actions.  When this
 769         * counter hits zero the block is prepared and can be inserted into the
 770         * btree.
 771         */
 772        atomic_t prepare_actions;
 773
 774        blk_status_t status;
 775        struct thin_c *tc;
 776        dm_block_t virt_begin, virt_end;
 777        dm_block_t data_block;
 778        struct dm_bio_prison_cell *cell;
 779
 780        /*
 781         * If the bio covers the whole area of a block then we can avoid
 782         * zeroing or copying.  Instead this bio is hooked.  The bio will
 783         * still be in the cell, so care has to be taken to avoid issuing
 784         * the bio twice.
 785         */
 786        struct bio *bio;
 787        bio_end_io_t *saved_bi_end_io;
 788};
 789
 790static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 791{
 792        struct pool *pool = m->tc->pool;
 793
 794        if (atomic_dec_and_test(&m->prepare_actions)) {
 795                list_add_tail(&m->list, &pool->prepared_mappings);
 796                wake_worker(pool);
 797        }
 798}
 799
 800static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 801{
 802        unsigned long flags;
 803        struct pool *pool = m->tc->pool;
 804
 805        spin_lock_irqsave(&pool->lock, flags);
 806        __complete_mapping_preparation(m);
 807        spin_unlock_irqrestore(&pool->lock, flags);
 808}
 809
 810static void copy_complete(int read_err, unsigned long write_err, void *context)
 811{
 812        struct dm_thin_new_mapping *m = context;
 813
 814        m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 815        complete_mapping_preparation(m);
 816}
 817
 818static void overwrite_endio(struct bio *bio)
 819{
 820        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 821        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 822
 823        bio->bi_end_io = m->saved_bi_end_io;
 824
 825        m->status = bio->bi_status;
 826        complete_mapping_preparation(m);
 827}
 828
 829/*----------------------------------------------------------------*/
 830
 831/*
 832 * Workqueue.
 833 */
 834
 835/*
 836 * Prepared mapping jobs.
 837 */
 838
 839/*
 840 * This sends the bios in the cell, except the original holder, back
 841 * to the deferred_bios list.
 842 */
 843static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 844{
 845        struct pool *pool = tc->pool;
 846        unsigned long flags;
 847
 848        spin_lock_irqsave(&tc->lock, flags);
 849        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 850        spin_unlock_irqrestore(&tc->lock, flags);
 851
 852        wake_worker(pool);
 853}
 854
 855static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 856
 857struct remap_info {
 858        struct thin_c *tc;
 859        struct bio_list defer_bios;
 860        struct bio_list issue_bios;
 861};
 862
 863static void __inc_remap_and_issue_cell(void *context,
 864                                       struct dm_bio_prison_cell *cell)
 865{
 866        struct remap_info *info = context;
 867        struct bio *bio;
 868
 869        while ((bio = bio_list_pop(&cell->bios))) {
 870                if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 871                        bio_list_add(&info->defer_bios, bio);
 872                else {
 873                        inc_all_io_entry(info->tc->pool, bio);
 874
 875                        /*
 876                         * We can't issue the bios with the bio prison lock
 877                         * held, so we add them to a list to issue on
 878                         * return from this function.
 879                         */
 880                        bio_list_add(&info->issue_bios, bio);
 881                }
 882        }
 883}
 884
 885static void inc_remap_and_issue_cell(struct thin_c *tc,
 886                                     struct dm_bio_prison_cell *cell,
 887                                     dm_block_t block)
 888{
 889        struct bio *bio;
 890        struct remap_info info;
 891
 892        info.tc = tc;
 893        bio_list_init(&info.defer_bios);
 894        bio_list_init(&info.issue_bios);
 895
 896        /*
 897         * We have to be careful to inc any bios we're about to issue
 898         * before the cell is released, and avoid a race with new bios
 899         * being added to the cell.
 900         */
 901        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 902                           &info, cell);
 903
 904        while ((bio = bio_list_pop(&info.defer_bios)))
 905                thin_defer_bio(tc, bio);
 906
 907        while ((bio = bio_list_pop(&info.issue_bios)))
 908                remap_and_issue(info.tc, bio, block);
 909}
 910
 911static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 912{
 913        cell_error(m->tc->pool, m->cell);
 914        list_del(&m->list);
 915        mempool_free(m, m->tc->pool->mapping_pool);
 916}
 917
 918static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 919{
 920        struct thin_c *tc = m->tc;
 921        struct pool *pool = tc->pool;
 922        struct bio *bio = m->bio;
 923        int r;
 924
 925        if (m->status) {
 926                cell_error(pool, m->cell);
 927                goto out;
 928        }
 929
 930        /*
 931         * Commit the prepared block into the mapping btree.
 932         * Any I/O for this block arriving after this point will get
 933         * remapped to it directly.
 934         */
 935        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 936        if (r) {
 937                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 938                cell_error(pool, m->cell);
 939                goto out;
 940        }
 941
 942        /*
 943         * Release any bios held while the block was being provisioned.
 944         * If we are processing a write bio that completely covers the block,
 945         * we already processed it so can ignore it now when processing
 946         * the bios in the cell.
 947         */
 948        if (bio) {
 949                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 950                bio_endio(bio);
 951        } else {
 952                inc_all_io_entry(tc->pool, m->cell->holder);
 953                remap_and_issue(tc, m->cell->holder, m->data_block);
 954                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 955        }
 956
 957out:
 958        list_del(&m->list);
 959        mempool_free(m, pool->mapping_pool);
 960}
 961
 962/*----------------------------------------------------------------*/
 963
 964static void free_discard_mapping(struct dm_thin_new_mapping *m)
 965{
 966        struct thin_c *tc = m->tc;
 967        if (m->cell)
 968                cell_defer_no_holder(tc, m->cell);
 969        mempool_free(m, tc->pool->mapping_pool);
 970}
 971
 972static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 973{
 974        bio_io_error(m->bio);
 975        free_discard_mapping(m);
 976}
 977
 978static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 979{
 980        bio_endio(m->bio);
 981        free_discard_mapping(m);
 982}
 983
 984static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 985{
 986        int r;
 987        struct thin_c *tc = m->tc;
 988
 989        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 990        if (r) {
 991                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 992                bio_io_error(m->bio);
 993        } else
 994                bio_endio(m->bio);
 995
 996        cell_defer_no_holder(tc, m->cell);
 997        mempool_free(m, tc->pool->mapping_pool);
 998}
 999
1000/*----------------------------------------------------------------*/
1001
1002static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1003                                                   struct bio *discard_parent)
1004{
1005        /*
1006         * We've already unmapped this range of blocks, but before we
1007         * passdown we have to check that these blocks are now unused.
1008         */
1009        int r = 0;
1010        bool used = true;
1011        struct thin_c *tc = m->tc;
1012        struct pool *pool = tc->pool;
1013        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1014        struct discard_op op;
1015
1016        begin_discard(&op, tc, discard_parent);
1017        while (b != end) {
1018                /* find start of unmapped run */
1019                for (; b < end; b++) {
1020                        r = dm_pool_block_is_used(pool->pmd, b, &used);
1021                        if (r)
1022                                goto out;
1023
1024                        if (!used)
1025                                break;
1026                }
1027
1028                if (b == end)
1029                        break;
1030
1031                /* find end of run */
1032                for (e = b + 1; e != end; e++) {
1033                        r = dm_pool_block_is_used(pool->pmd, e, &used);
1034                        if (r)
1035                                goto out;
1036
1037                        if (used)
1038                                break;
1039                }
1040
1041                r = issue_discard(&op, b, e);
1042                if (r)
1043                        goto out;
1044
1045                b = e;
1046        }
1047out:
1048        end_discard(&op, r);
1049}
1050
1051static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1052{
1053        unsigned long flags;
1054        struct pool *pool = m->tc->pool;
1055
1056        spin_lock_irqsave(&pool->lock, flags);
1057        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1058        spin_unlock_irqrestore(&pool->lock, flags);
1059        wake_worker(pool);
1060}
1061
1062static void passdown_endio(struct bio *bio)
1063{
1064        /*
1065         * It doesn't matter if the passdown discard failed, we still want
1066         * to unmap (we ignore err).
1067         */
1068        queue_passdown_pt2(bio->bi_private);
1069        bio_put(bio);
1070}
1071
1072static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1073{
1074        int r;
1075        struct thin_c *tc = m->tc;
1076        struct pool *pool = tc->pool;
1077        struct bio *discard_parent;
1078        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1079
1080        /*
1081         * Only this thread allocates blocks, so we can be sure that the
1082         * newly unmapped blocks will not be allocated before the end of
1083         * the function.
1084         */
1085        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1086        if (r) {
1087                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1088                bio_io_error(m->bio);
1089                cell_defer_no_holder(tc, m->cell);
1090                mempool_free(m, pool->mapping_pool);
1091                return;
1092        }
1093
1094        /*
1095         * Increment the unmapped blocks.  This prevents a race between the
1096         * passdown io and reallocation of freed blocks.
1097         */
1098        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1099        if (r) {
1100                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1101                bio_io_error(m->bio);
1102                cell_defer_no_holder(tc, m->cell);
1103                mempool_free(m, pool->mapping_pool);
1104                return;
1105        }
1106
1107        discard_parent = bio_alloc(GFP_NOIO, 1);
1108        if (!discard_parent) {
1109                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1110                       dm_device_name(tc->pool->pool_md));
1111                queue_passdown_pt2(m);
1112
1113        } else {
1114                discard_parent->bi_end_io = passdown_endio;
1115                discard_parent->bi_private = m;
1116
1117                if (m->maybe_shared)
1118                        passdown_double_checking_shared_status(m, discard_parent);
1119                else {
1120                        struct discard_op op;
1121
1122                        begin_discard(&op, tc, discard_parent);
1123                        r = issue_discard(&op, m->data_block, data_end);
1124                        end_discard(&op, r);
1125                }
1126        }
1127}
1128
1129static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1130{
1131        int r;
1132        struct thin_c *tc = m->tc;
1133        struct pool *pool = tc->pool;
1134
1135        /*
1136         * The passdown has completed, so now we can decrement all those
1137         * unmapped blocks.
1138         */
1139        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1140                                   m->data_block + (m->virt_end - m->virt_begin));
1141        if (r) {
1142                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1143                bio_io_error(m->bio);
1144        } else
1145                bio_endio(m->bio);
1146
1147        cell_defer_no_holder(tc, m->cell);
1148        mempool_free(m, pool->mapping_pool);
1149}
1150
1151static void process_prepared(struct pool *pool, struct list_head *head,
1152                             process_mapping_fn *fn)
1153{
1154        unsigned long flags;
1155        struct list_head maps;
1156        struct dm_thin_new_mapping *m, *tmp;
1157
1158        INIT_LIST_HEAD(&maps);
1159        spin_lock_irqsave(&pool->lock, flags);
1160        list_splice_init(head, &maps);
1161        spin_unlock_irqrestore(&pool->lock, flags);
1162
1163        list_for_each_entry_safe(m, tmp, &maps, list)
1164                (*fn)(m);
1165}
1166
1167/*
1168 * Deferred bio jobs.
1169 */
1170static int io_overlaps_block(struct pool *pool, struct bio *bio)
1171{
1172        return bio->bi_iter.bi_size ==
1173                (pool->sectors_per_block << SECTOR_SHIFT);
1174}
1175
1176static int io_overwrites_block(struct pool *pool, struct bio *bio)
1177{
1178        return (bio_data_dir(bio) == WRITE) &&
1179                io_overlaps_block(pool, bio);
1180}
1181
1182static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1183                               bio_end_io_t *fn)
1184{
1185        *save = bio->bi_end_io;
1186        bio->bi_end_io = fn;
1187}
1188
1189static int ensure_next_mapping(struct pool *pool)
1190{
1191        if (pool->next_mapping)
1192                return 0;
1193
1194        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1195
1196        return pool->next_mapping ? 0 : -ENOMEM;
1197}
1198
1199static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1200{
1201        struct dm_thin_new_mapping *m = pool->next_mapping;
1202
1203        BUG_ON(!pool->next_mapping);
1204
1205        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1206        INIT_LIST_HEAD(&m->list);
1207        m->bio = NULL;
1208
1209        pool->next_mapping = NULL;
1210
1211        return m;
1212}
1213
1214static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1215                    sector_t begin, sector_t end)
1216{
1217        int r;
1218        struct dm_io_region to;
1219
1220        to.bdev = tc->pool_dev->bdev;
1221        to.sector = begin;
1222        to.count = end - begin;
1223
1224        r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1225        if (r < 0) {
1226                DMERR_LIMIT("dm_kcopyd_zero() failed");
1227                copy_complete(1, 1, m);
1228        }
1229}
1230
1231static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1232                                      dm_block_t data_begin,
1233                                      struct dm_thin_new_mapping *m)
1234{
1235        struct pool *pool = tc->pool;
1236        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237
1238        h->overwrite_mapping = m;
1239        m->bio = bio;
1240        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1241        inc_all_io_entry(pool, bio);
1242        remap_and_issue(tc, bio, data_begin);
1243}
1244
1245/*
1246 * A partial copy also needs to zero the uncopied region.
1247 */
1248static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1249                          struct dm_dev *origin, dm_block_t data_origin,
1250                          dm_block_t data_dest,
1251                          struct dm_bio_prison_cell *cell, struct bio *bio,
1252                          sector_t len)
1253{
1254        int r;
1255        struct pool *pool = tc->pool;
1256        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1257
1258        m->tc = tc;
1259        m->virt_begin = virt_block;
1260        m->virt_end = virt_block + 1u;
1261        m->data_block = data_dest;
1262        m->cell = cell;
1263
1264        /*
1265         * quiesce action + copy action + an extra reference held for the
1266         * duration of this function (we may need to inc later for a
1267         * partial zero).
1268         */
1269        atomic_set(&m->prepare_actions, 3);
1270
1271        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272                complete_mapping_preparation(m); /* already quiesced */
1273
1274        /*
1275         * IO to pool_dev remaps to the pool target's data_dev.
1276         *
1277         * If the whole block of data is being overwritten, we can issue the
1278         * bio immediately. Otherwise we use kcopyd to clone the data first.
1279         */
1280        if (io_overwrites_block(pool, bio))
1281                remap_and_issue_overwrite(tc, bio, data_dest, m);
1282        else {
1283                struct dm_io_region from, to;
1284
1285                from.bdev = origin->bdev;
1286                from.sector = data_origin * pool->sectors_per_block;
1287                from.count = len;
1288
1289                to.bdev = tc->pool_dev->bdev;
1290                to.sector = data_dest * pool->sectors_per_block;
1291                to.count = len;
1292
1293                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294                                   0, copy_complete, m);
1295                if (r < 0) {
1296                        DMERR_LIMIT("dm_kcopyd_copy() failed");
1297                        copy_complete(1, 1, m);
1298
1299                        /*
1300                         * We allow the zero to be issued, to simplify the
1301                         * error path.  Otherwise we'd need to start
1302                         * worrying about decrementing the prepare_actions
1303                         * counter.
1304                         */
1305                }
1306
1307                /*
1308                 * Do we need to zero a tail region?
1309                 */
1310                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1311                        atomic_inc(&m->prepare_actions);
1312                        ll_zero(tc, m,
1313                                data_dest * pool->sectors_per_block + len,
1314                                (data_dest + 1) * pool->sectors_per_block);
1315                }
1316        }
1317
1318        complete_mapping_preparation(m); /* drop our ref */
1319}
1320
1321static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1322                                   dm_block_t data_origin, dm_block_t data_dest,
1323                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1324{
1325        schedule_copy(tc, virt_block, tc->pool_dev,
1326                      data_origin, data_dest, cell, bio,
1327                      tc->pool->sectors_per_block);
1328}
1329
1330static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1331                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1332                          struct bio *bio)
1333{
1334        struct pool *pool = tc->pool;
1335        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1336
1337        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1338        m->tc = tc;
1339        m->virt_begin = virt_block;
1340        m->virt_end = virt_block + 1u;
1341        m->data_block = data_block;
1342        m->cell = cell;
1343
1344        /*
1345         * If the whole block of data is being overwritten or we are not
1346         * zeroing pre-existing data, we can issue the bio immediately.
1347         * Otherwise we use kcopyd to zero the data first.
1348         */
1349        if (pool->pf.zero_new_blocks) {
1350                if (io_overwrites_block(pool, bio))
1351                        remap_and_issue_overwrite(tc, bio, data_block, m);
1352                else
1353                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1354                                (data_block + 1) * pool->sectors_per_block);
1355        } else
1356                process_prepared_mapping(m);
1357}
1358
1359static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1360                                   dm_block_t data_dest,
1361                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1362{
1363        struct pool *pool = tc->pool;
1364        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1365        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1366
1367        if (virt_block_end <= tc->origin_size)
1368                schedule_copy(tc, virt_block, tc->origin_dev,
1369                              virt_block, data_dest, cell, bio,
1370                              pool->sectors_per_block);
1371
1372        else if (virt_block_begin < tc->origin_size)
1373                schedule_copy(tc, virt_block, tc->origin_dev,
1374                              virt_block, data_dest, cell, bio,
1375                              tc->origin_size - virt_block_begin);
1376
1377        else
1378                schedule_zero(tc, virt_block, data_dest, cell, bio);
1379}
1380
1381static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1382
1383static void check_for_space(struct pool *pool)
1384{
1385        int r;
1386        dm_block_t nr_free;
1387
1388        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1389                return;
1390
1391        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1392        if (r)
1393                return;
1394
1395        if (nr_free)
1396                set_pool_mode(pool, PM_WRITE);
1397}
1398
1399/*
1400 * A non-zero return indicates read_only or fail_io mode.
1401 * Many callers don't care about the return value.
1402 */
1403static int commit(struct pool *pool)
1404{
1405        int r;
1406
1407        if (get_pool_mode(pool) >= PM_READ_ONLY)
1408                return -EINVAL;
1409
1410        r = dm_pool_commit_metadata(pool->pmd);
1411        if (r)
1412                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1413        else
1414                check_for_space(pool);
1415
1416        return r;
1417}
1418
1419static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1420{
1421        unsigned long flags;
1422
1423        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1424                DMWARN("%s: reached low water mark for data device: sending event.",
1425                       dm_device_name(pool->pool_md));
1426                spin_lock_irqsave(&pool->lock, flags);
1427                pool->low_water_triggered = true;
1428                spin_unlock_irqrestore(&pool->lock, flags);
1429                dm_table_event(pool->ti->table);
1430        }
1431}
1432
1433static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1434{
1435        int r;
1436        dm_block_t free_blocks;
1437        struct pool *pool = tc->pool;
1438
1439        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1440                return -EINVAL;
1441
1442        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1443        if (r) {
1444                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1445                return r;
1446        }
1447
1448        check_low_water_mark(pool, free_blocks);
1449
1450        if (!free_blocks) {
1451                /*
1452                 * Try to commit to see if that will free up some
1453                 * more space.
1454                 */
1455                r = commit(pool);
1456                if (r)
1457                        return r;
1458
1459                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1460                if (r) {
1461                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1462                        return r;
1463                }
1464
1465                if (!free_blocks) {
1466                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1467                        return -ENOSPC;
1468                }
1469        }
1470
1471        r = dm_pool_alloc_data_block(pool->pmd, result);
1472        if (r) {
1473                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1474                return r;
1475        }
1476
1477        return 0;
1478}
1479
1480/*
1481 * If we have run out of space, queue bios until the device is
1482 * resumed, presumably after having been reloaded with more space.
1483 */
1484static void retry_on_resume(struct bio *bio)
1485{
1486        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1487        struct thin_c *tc = h->tc;
1488        unsigned long flags;
1489
1490        spin_lock_irqsave(&tc->lock, flags);
1491        bio_list_add(&tc->retry_on_resume_list, bio);
1492        spin_unlock_irqrestore(&tc->lock, flags);
1493}
1494
1495static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1496{
1497        enum pool_mode m = get_pool_mode(pool);
1498
1499        switch (m) {
1500        case PM_WRITE:
1501                /* Shouldn't get here */
1502                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1503                return BLK_STS_IOERR;
1504
1505        case PM_OUT_OF_DATA_SPACE:
1506                return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1507
1508        case PM_READ_ONLY:
1509        case PM_FAIL:
1510                return BLK_STS_IOERR;
1511        default:
1512                /* Shouldn't get here */
1513                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1514                return BLK_STS_IOERR;
1515        }
1516}
1517
1518static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1519{
1520        blk_status_t error = should_error_unserviceable_bio(pool);
1521
1522        if (error) {
1523                bio->bi_status = error;
1524                bio_endio(bio);
1525        } else
1526                retry_on_resume(bio);
1527}
1528
1529static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1530{
1531        struct bio *bio;
1532        struct bio_list bios;
1533        blk_status_t error;
1534
1535        error = should_error_unserviceable_bio(pool);
1536        if (error) {
1537                cell_error_with_code(pool, cell, error);
1538                return;
1539        }
1540
1541        bio_list_init(&bios);
1542        cell_release(pool, cell, &bios);
1543
1544        while ((bio = bio_list_pop(&bios)))
1545                retry_on_resume(bio);
1546}
1547
1548static void process_discard_cell_no_passdown(struct thin_c *tc,
1549                                             struct dm_bio_prison_cell *virt_cell)
1550{
1551        struct pool *pool = tc->pool;
1552        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1553
1554        /*
1555         * We don't need to lock the data blocks, since there's no
1556         * passdown.  We only lock data blocks for allocation and breaking sharing.
1557         */
1558        m->tc = tc;
1559        m->virt_begin = virt_cell->key.block_begin;
1560        m->virt_end = virt_cell->key.block_end;
1561        m->cell = virt_cell;
1562        m->bio = virt_cell->holder;
1563
1564        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565                pool->process_prepared_discard(m);
1566}
1567
1568static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1569                                 struct bio *bio)
1570{
1571        struct pool *pool = tc->pool;
1572
1573        int r;
1574        bool maybe_shared;
1575        struct dm_cell_key data_key;
1576        struct dm_bio_prison_cell *data_cell;
1577        struct dm_thin_new_mapping *m;
1578        dm_block_t virt_begin, virt_end, data_begin;
1579
1580        while (begin != end) {
1581                r = ensure_next_mapping(pool);
1582                if (r)
1583                        /* we did our best */
1584                        return;
1585
1586                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1587                                              &data_begin, &maybe_shared);
1588                if (r)
1589                        /*
1590                         * Silently fail, letting any mappings we've
1591                         * created complete.
1592                         */
1593                        break;
1594
1595                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1596                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1597                        /* contention, we'll give up with this range */
1598                        begin = virt_end;
1599                        continue;
1600                }
1601
1602                /*
1603                 * IO may still be going to the destination block.  We must
1604                 * quiesce before we can do the removal.
1605                 */
1606                m = get_next_mapping(pool);
1607                m->tc = tc;
1608                m->maybe_shared = maybe_shared;
1609                m->virt_begin = virt_begin;
1610                m->virt_end = virt_end;
1611                m->data_block = data_begin;
1612                m->cell = data_cell;
1613                m->bio = bio;
1614
1615                /*
1616                 * The parent bio must not complete before sub discard bios are
1617                 * chained to it (see end_discard's bio_chain)!
1618                 *
1619                 * This per-mapping bi_remaining increment is paired with
1620                 * the implicit decrement that occurs via bio_endio() in
1621                 * end_discard().
1622                 */
1623                bio_inc_remaining(bio);
1624                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1625                        pool->process_prepared_discard(m);
1626
1627                begin = virt_end;
1628        }
1629}
1630
1631static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1632{
1633        struct bio *bio = virt_cell->holder;
1634        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1635
1636        /*
1637         * The virt_cell will only get freed once the origin bio completes.
1638         * This means it will remain locked while all the individual
1639         * passdown bios are in flight.
1640         */
1641        h->cell = virt_cell;
1642        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1643
1644        /*
1645         * We complete the bio now, knowing that the bi_remaining field
1646         * will prevent completion until the sub range discards have
1647         * completed.
1648         */
1649        bio_endio(bio);
1650}
1651
1652static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1653{
1654        dm_block_t begin, end;
1655        struct dm_cell_key virt_key;
1656        struct dm_bio_prison_cell *virt_cell;
1657
1658        get_bio_block_range(tc, bio, &begin, &end);
1659        if (begin == end) {
1660                /*
1661                 * The discard covers less than a block.
1662                 */
1663                bio_endio(bio);
1664                return;
1665        }
1666
1667        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1668        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1669                /*
1670                 * Potential starvation issue: We're relying on the
1671                 * fs/application being well behaved, and not trying to
1672                 * send IO to a region at the same time as discarding it.
1673                 * If they do this persistently then it's possible this
1674                 * cell will never be granted.
1675                 */
1676                return;
1677
1678        tc->pool->process_discard_cell(tc, virt_cell);
1679}
1680
1681static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1682                          struct dm_cell_key *key,
1683                          struct dm_thin_lookup_result *lookup_result,
1684                          struct dm_bio_prison_cell *cell)
1685{
1686        int r;
1687        dm_block_t data_block;
1688        struct pool *pool = tc->pool;
1689
1690        r = alloc_data_block(tc, &data_block);
1691        switch (r) {
1692        case 0:
1693                schedule_internal_copy(tc, block, lookup_result->block,
1694                                       data_block, cell, bio);
1695                break;
1696
1697        case -ENOSPC:
1698                retry_bios_on_resume(pool, cell);
1699                break;
1700
1701        default:
1702                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1703                            __func__, r);
1704                cell_error(pool, cell);
1705                break;
1706        }
1707}
1708
1709static void __remap_and_issue_shared_cell(void *context,
1710                                          struct dm_bio_prison_cell *cell)
1711{
1712        struct remap_info *info = context;
1713        struct bio *bio;
1714
1715        while ((bio = bio_list_pop(&cell->bios))) {
1716                if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1717                    bio_op(bio) == REQ_OP_DISCARD)
1718                        bio_list_add(&info->defer_bios, bio);
1719                else {
1720                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1721
1722                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1723                        inc_all_io_entry(info->tc->pool, bio);
1724                        bio_list_add(&info->issue_bios, bio);
1725                }
1726        }
1727}
1728
1729static void remap_and_issue_shared_cell(struct thin_c *tc,
1730                                        struct dm_bio_prison_cell *cell,
1731                                        dm_block_t block)
1732{
1733        struct bio *bio;
1734        struct remap_info info;
1735
1736        info.tc = tc;
1737        bio_list_init(&info.defer_bios);
1738        bio_list_init(&info.issue_bios);
1739
1740        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1741                           &info, cell);
1742
1743        while ((bio = bio_list_pop(&info.defer_bios)))
1744                thin_defer_bio(tc, bio);
1745
1746        while ((bio = bio_list_pop(&info.issue_bios)))
1747                remap_and_issue(tc, bio, block);
1748}
1749
1750static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1751                               dm_block_t block,
1752                               struct dm_thin_lookup_result *lookup_result,
1753                               struct dm_bio_prison_cell *virt_cell)
1754{
1755        struct dm_bio_prison_cell *data_cell;
1756        struct pool *pool = tc->pool;
1757        struct dm_cell_key key;
1758
1759        /*
1760         * If cell is already occupied, then sharing is already in the process
1761         * of being broken so we have nothing further to do here.
1762         */
1763        build_data_key(tc->td, lookup_result->block, &key);
1764        if (bio_detain(pool, &key, bio, &data_cell)) {
1765                cell_defer_no_holder(tc, virt_cell);
1766                return;
1767        }
1768
1769        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1770                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1771                cell_defer_no_holder(tc, virt_cell);
1772        } else {
1773                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1774
1775                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1776                inc_all_io_entry(pool, bio);
1777                remap_and_issue(tc, bio, lookup_result->block);
1778
1779                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1780                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1781        }
1782}
1783
1784static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1785                            struct dm_bio_prison_cell *cell)
1786{
1787        int r;
1788        dm_block_t data_block;
1789        struct pool *pool = tc->pool;
1790
1791        /*
1792         * Remap empty bios (flushes) immediately, without provisioning.
1793         */
1794        if (!bio->bi_iter.bi_size) {
1795                inc_all_io_entry(pool, bio);
1796                cell_defer_no_holder(tc, cell);
1797
1798                remap_and_issue(tc, bio, 0);
1799                return;
1800        }
1801
1802        /*
1803         * Fill read bios with zeroes and complete them immediately.
1804         */
1805        if (bio_data_dir(bio) == READ) {
1806                zero_fill_bio(bio);
1807                cell_defer_no_holder(tc, cell);
1808                bio_endio(bio);
1809                return;
1810        }
1811
1812        r = alloc_data_block(tc, &data_block);
1813        switch (r) {
1814        case 0:
1815                if (tc->origin_dev)
1816                        schedule_external_copy(tc, block, data_block, cell, bio);
1817                else
1818                        schedule_zero(tc, block, data_block, cell, bio);
1819                break;
1820
1821        case -ENOSPC:
1822                retry_bios_on_resume(pool, cell);
1823                break;
1824
1825        default:
1826                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1827                            __func__, r);
1828                cell_error(pool, cell);
1829                break;
1830        }
1831}
1832
1833static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1834{
1835        int r;
1836        struct pool *pool = tc->pool;
1837        struct bio *bio = cell->holder;
1838        dm_block_t block = get_bio_block(tc, bio);
1839        struct dm_thin_lookup_result lookup_result;
1840
1841        if (tc->requeue_mode) {
1842                cell_requeue(pool, cell);
1843                return;
1844        }
1845
1846        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1847        switch (r) {
1848        case 0:
1849                if (lookup_result.shared)
1850                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1851                else {
1852                        inc_all_io_entry(pool, bio);
1853                        remap_and_issue(tc, bio, lookup_result.block);
1854                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1855                }
1856                break;
1857
1858        case -ENODATA:
1859                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1860                        inc_all_io_entry(pool, bio);
1861                        cell_defer_no_holder(tc, cell);
1862
1863                        if (bio_end_sector(bio) <= tc->origin_size)
1864                                remap_to_origin_and_issue(tc, bio);
1865
1866                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1867                                zero_fill_bio(bio);
1868                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1869                                remap_to_origin_and_issue(tc, bio);
1870
1871                        } else {
1872                                zero_fill_bio(bio);
1873                                bio_endio(bio);
1874                        }
1875                } else
1876                        provision_block(tc, bio, block, cell);
1877                break;
1878
1879        default:
1880                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1881                            __func__, r);
1882                cell_defer_no_holder(tc, cell);
1883                bio_io_error(bio);
1884                break;
1885        }
1886}
1887
1888static void process_bio(struct thin_c *tc, struct bio *bio)
1889{
1890        struct pool *pool = tc->pool;
1891        dm_block_t block = get_bio_block(tc, bio);
1892        struct dm_bio_prison_cell *cell;
1893        struct dm_cell_key key;
1894
1895        /*
1896         * If cell is already occupied, then the block is already
1897         * being provisioned so we have nothing further to do here.
1898         */
1899        build_virtual_key(tc->td, block, &key);
1900        if (bio_detain(pool, &key, bio, &cell))
1901                return;
1902
1903        process_cell(tc, cell);
1904}
1905
1906static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1907                                    struct dm_bio_prison_cell *cell)
1908{
1909        int r;
1910        int rw = bio_data_dir(bio);
1911        dm_block_t block = get_bio_block(tc, bio);
1912        struct dm_thin_lookup_result lookup_result;
1913
1914        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1915        switch (r) {
1916        case 0:
1917                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1918                        handle_unserviceable_bio(tc->pool, bio);
1919                        if (cell)
1920                                cell_defer_no_holder(tc, cell);
1921                } else {
1922                        inc_all_io_entry(tc->pool, bio);
1923                        remap_and_issue(tc, bio, lookup_result.block);
1924                        if (cell)
1925                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1926                }
1927                break;
1928
1929        case -ENODATA:
1930                if (cell)
1931                        cell_defer_no_holder(tc, cell);
1932                if (rw != READ) {
1933                        handle_unserviceable_bio(tc->pool, bio);
1934                        break;
1935                }
1936
1937                if (tc->origin_dev) {
1938                        inc_all_io_entry(tc->pool, bio);
1939                        remap_to_origin_and_issue(tc, bio);
1940                        break;
1941                }
1942
1943                zero_fill_bio(bio);
1944                bio_endio(bio);
1945                break;
1946
1947        default:
1948                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1949                            __func__, r);
1950                if (cell)
1951                        cell_defer_no_holder(tc, cell);
1952                bio_io_error(bio);
1953                break;
1954        }
1955}
1956
1957static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1958{
1959        __process_bio_read_only(tc, bio, NULL);
1960}
1961
1962static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963{
1964        __process_bio_read_only(tc, cell->holder, cell);
1965}
1966
1967static void process_bio_success(struct thin_c *tc, struct bio *bio)
1968{
1969        bio_endio(bio);
1970}
1971
1972static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1973{
1974        bio_io_error(bio);
1975}
1976
1977static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1978{
1979        cell_success(tc->pool, cell);
1980}
1981
1982static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983{
1984        cell_error(tc->pool, cell);
1985}
1986
1987/*
1988 * FIXME: should we also commit due to size of transaction, measured in
1989 * metadata blocks?
1990 */
1991static int need_commit_due_to_time(struct pool *pool)
1992{
1993        return !time_in_range(jiffies, pool->last_commit_jiffies,
1994                              pool->last_commit_jiffies + COMMIT_PERIOD);
1995}
1996
1997#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1998#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1999
2000static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2001{
2002        struct rb_node **rbp, *parent;
2003        struct dm_thin_endio_hook *pbd;
2004        sector_t bi_sector = bio->bi_iter.bi_sector;
2005
2006        rbp = &tc->sort_bio_list.rb_node;
2007        parent = NULL;
2008        while (*rbp) {
2009                parent = *rbp;
2010                pbd = thin_pbd(parent);
2011
2012                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2013                        rbp = &(*rbp)->rb_left;
2014                else
2015                        rbp = &(*rbp)->rb_right;
2016        }
2017
2018        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2019        rb_link_node(&pbd->rb_node, parent, rbp);
2020        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2021}
2022
2023static void __extract_sorted_bios(struct thin_c *tc)
2024{
2025        struct rb_node *node;
2026        struct dm_thin_endio_hook *pbd;
2027        struct bio *bio;
2028
2029        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2030                pbd = thin_pbd(node);
2031                bio = thin_bio(pbd);
2032
2033                bio_list_add(&tc->deferred_bio_list, bio);
2034                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2035        }
2036
2037        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2038}
2039
2040static void __sort_thin_deferred_bios(struct thin_c *tc)
2041{
2042        struct bio *bio;
2043        struct bio_list bios;
2044
2045        bio_list_init(&bios);
2046        bio_list_merge(&bios, &tc->deferred_bio_list);
2047        bio_list_init(&tc->deferred_bio_list);
2048
2049        /* Sort deferred_bio_list using rb-tree */
2050        while ((bio = bio_list_pop(&bios)))
2051                __thin_bio_rb_add(tc, bio);
2052
2053        /*
2054         * Transfer the sorted bios in sort_bio_list back to
2055         * deferred_bio_list to allow lockless submission of
2056         * all bios.
2057         */
2058        __extract_sorted_bios(tc);
2059}
2060
2061static void process_thin_deferred_bios(struct thin_c *tc)
2062{
2063        struct pool *pool = tc->pool;
2064        unsigned long flags;
2065        struct bio *bio;
2066        struct bio_list bios;
2067        struct blk_plug plug;
2068        unsigned count = 0;
2069
2070        if (tc->requeue_mode) {
2071                error_thin_bio_list(tc, &tc->deferred_bio_list,
2072                                BLK_STS_DM_REQUEUE);
2073                return;
2074        }
2075
2076        bio_list_init(&bios);
2077
2078        spin_lock_irqsave(&tc->lock, flags);
2079
2080        if (bio_list_empty(&tc->deferred_bio_list)) {
2081                spin_unlock_irqrestore(&tc->lock, flags);
2082                return;
2083        }
2084
2085        __sort_thin_deferred_bios(tc);
2086
2087        bio_list_merge(&bios, &tc->deferred_bio_list);
2088        bio_list_init(&tc->deferred_bio_list);
2089
2090        spin_unlock_irqrestore(&tc->lock, flags);
2091
2092        blk_start_plug(&plug);
2093        while ((bio = bio_list_pop(&bios))) {
2094                /*
2095                 * If we've got no free new_mapping structs, and processing
2096                 * this bio might require one, we pause until there are some
2097                 * prepared mappings to process.
2098                 */
2099                if (ensure_next_mapping(pool)) {
2100                        spin_lock_irqsave(&tc->lock, flags);
2101                        bio_list_add(&tc->deferred_bio_list, bio);
2102                        bio_list_merge(&tc->deferred_bio_list, &bios);
2103                        spin_unlock_irqrestore(&tc->lock, flags);
2104                        break;
2105                }
2106
2107                if (bio_op(bio) == REQ_OP_DISCARD)
2108                        pool->process_discard(tc, bio);
2109                else
2110                        pool->process_bio(tc, bio);
2111
2112                if ((count++ & 127) == 0) {
2113                        throttle_work_update(&pool->throttle);
2114                        dm_pool_issue_prefetches(pool->pmd);
2115                }
2116        }
2117        blk_finish_plug(&plug);
2118}
2119
2120static int cmp_cells(const void *lhs, const void *rhs)
2121{
2122        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2123        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2124
2125        BUG_ON(!lhs_cell->holder);
2126        BUG_ON(!rhs_cell->holder);
2127
2128        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2129                return -1;
2130
2131        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2132                return 1;
2133
2134        return 0;
2135}
2136
2137static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2138{
2139        unsigned count = 0;
2140        struct dm_bio_prison_cell *cell, *tmp;
2141
2142        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2143                if (count >= CELL_SORT_ARRAY_SIZE)
2144                        break;
2145
2146                pool->cell_sort_array[count++] = cell;
2147                list_del(&cell->user_list);
2148        }
2149
2150        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2151
2152        return count;
2153}
2154
2155static void process_thin_deferred_cells(struct thin_c *tc)
2156{
2157        struct pool *pool = tc->pool;
2158        unsigned long flags;
2159        struct list_head cells;
2160        struct dm_bio_prison_cell *cell;
2161        unsigned i, j, count;
2162
2163        INIT_LIST_HEAD(&cells);
2164
2165        spin_lock_irqsave(&tc->lock, flags);
2166        list_splice_init(&tc->deferred_cells, &cells);
2167        spin_unlock_irqrestore(&tc->lock, flags);
2168
2169        if (list_empty(&cells))
2170                return;
2171
2172        do {
2173                count = sort_cells(tc->pool, &cells);
2174
2175                for (i = 0; i < count; i++) {
2176                        cell = pool->cell_sort_array[i];
2177                        BUG_ON(!cell->holder);
2178
2179                        /*
2180                         * If we've got no free new_mapping structs, and processing
2181                         * this bio might require one, we pause until there are some
2182                         * prepared mappings to process.
2183                         */
2184                        if (ensure_next_mapping(pool)) {
2185                                for (j = i; j < count; j++)
2186                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2187
2188                                spin_lock_irqsave(&tc->lock, flags);
2189                                list_splice(&cells, &tc->deferred_cells);
2190                                spin_unlock_irqrestore(&tc->lock, flags);
2191                                return;
2192                        }
2193
2194                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2195                                pool->process_discard_cell(tc, cell);
2196                        else
2197                                pool->process_cell(tc, cell);
2198                }
2199        } while (!list_empty(&cells));
2200}
2201
2202static void thin_get(struct thin_c *tc);
2203static void thin_put(struct thin_c *tc);
2204
2205/*
2206 * We can't hold rcu_read_lock() around code that can block.  So we
2207 * find a thin with the rcu lock held; bump a refcount; then drop
2208 * the lock.
2209 */
2210static struct thin_c *get_first_thin(struct pool *pool)
2211{
2212        struct thin_c *tc = NULL;
2213
2214        rcu_read_lock();
2215        if (!list_empty(&pool->active_thins)) {
2216                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2217                thin_get(tc);
2218        }
2219        rcu_read_unlock();
2220
2221        return tc;
2222}
2223
2224static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2225{
2226        struct thin_c *old_tc = tc;
2227
2228        rcu_read_lock();
2229        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2230                thin_get(tc);
2231                thin_put(old_tc);
2232                rcu_read_unlock();
2233                return tc;
2234        }
2235        thin_put(old_tc);
2236        rcu_read_unlock();
2237
2238        return NULL;
2239}
2240
2241static void process_deferred_bios(struct pool *pool)
2242{
2243        unsigned long flags;
2244        struct bio *bio;
2245        struct bio_list bios;
2246        struct thin_c *tc;
2247
2248        tc = get_first_thin(pool);
2249        while (tc) {
2250                process_thin_deferred_cells(tc);
2251                process_thin_deferred_bios(tc);
2252                tc = get_next_thin(pool, tc);
2253        }
2254
2255        /*
2256         * If there are any deferred flush bios, we must commit
2257         * the metadata before issuing them.
2258         */
2259        bio_list_init(&bios);
2260        spin_lock_irqsave(&pool->lock, flags);
2261        bio_list_merge(&bios, &pool->deferred_flush_bios);
2262        bio_list_init(&pool->deferred_flush_bios);
2263        spin_unlock_irqrestore(&pool->lock, flags);
2264
2265        if (bio_list_empty(&bios) &&
2266            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2267                return;
2268
2269        if (commit(pool)) {
2270                while ((bio = bio_list_pop(&bios)))
2271                        bio_io_error(bio);
2272                return;
2273        }
2274        pool->last_commit_jiffies = jiffies;
2275
2276        while ((bio = bio_list_pop(&bios)))
2277                generic_make_request(bio);
2278}
2279
2280static void do_worker(struct work_struct *ws)
2281{
2282        struct pool *pool = container_of(ws, struct pool, worker);
2283
2284        throttle_work_start(&pool->throttle);
2285        dm_pool_issue_prefetches(pool->pmd);
2286        throttle_work_update(&pool->throttle);
2287        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2288        throttle_work_update(&pool->throttle);
2289        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2290        throttle_work_update(&pool->throttle);
2291        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2292        throttle_work_update(&pool->throttle);
2293        process_deferred_bios(pool);
2294        throttle_work_complete(&pool->throttle);
2295}
2296
2297/*
2298 * We want to commit periodically so that not too much
2299 * unwritten data builds up.
2300 */
2301static void do_waker(struct work_struct *ws)
2302{
2303        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2304        wake_worker(pool);
2305        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2306}
2307
2308static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2309
2310/*
2311 * We're holding onto IO to allow userland time to react.  After the
2312 * timeout either the pool will have been resized (and thus back in
2313 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2314 */
2315static void do_no_space_timeout(struct work_struct *ws)
2316{
2317        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2318                                         no_space_timeout);
2319
2320        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2321                pool->pf.error_if_no_space = true;
2322                notify_of_pool_mode_change_to_oods(pool);
2323                error_retry_list_with_code(pool, BLK_STS_NOSPC);
2324        }
2325}
2326
2327/*----------------------------------------------------------------*/
2328
2329struct pool_work {
2330        struct work_struct worker;
2331        struct completion complete;
2332};
2333
2334static struct pool_work *to_pool_work(struct work_struct *ws)
2335{
2336        return container_of(ws, struct pool_work, worker);
2337}
2338
2339static void pool_work_complete(struct pool_work *pw)
2340{
2341        complete(&pw->complete);
2342}
2343
2344static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2345                           void (*fn)(struct work_struct *))
2346{
2347        INIT_WORK_ONSTACK(&pw->worker, fn);
2348        init_completion(&pw->complete);
2349        queue_work(pool->wq, &pw->worker);
2350        wait_for_completion(&pw->complete);
2351}
2352
2353/*----------------------------------------------------------------*/
2354
2355struct noflush_work {
2356        struct pool_work pw;
2357        struct thin_c *tc;
2358};
2359
2360static struct noflush_work *to_noflush(struct work_struct *ws)
2361{
2362        return container_of(to_pool_work(ws), struct noflush_work, pw);
2363}
2364
2365static void do_noflush_start(struct work_struct *ws)
2366{
2367        struct noflush_work *w = to_noflush(ws);
2368        w->tc->requeue_mode = true;
2369        requeue_io(w->tc);
2370        pool_work_complete(&w->pw);
2371}
2372
2373static void do_noflush_stop(struct work_struct *ws)
2374{
2375        struct noflush_work *w = to_noflush(ws);
2376        w->tc->requeue_mode = false;
2377        pool_work_complete(&w->pw);
2378}
2379
2380static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2381{
2382        struct noflush_work w;
2383
2384        w.tc = tc;
2385        pool_work_wait(&w.pw, tc->pool, fn);
2386}
2387
2388/*----------------------------------------------------------------*/
2389
2390static enum pool_mode get_pool_mode(struct pool *pool)
2391{
2392        return pool->pf.mode;
2393}
2394
2395static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2396{
2397        dm_table_event(pool->ti->table);
2398        DMINFO("%s: switching pool to %s mode",
2399               dm_device_name(pool->pool_md), new_mode);
2400}
2401
2402static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2403{
2404        if (!pool->pf.error_if_no_space)
2405                notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2406        else
2407                notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2408}
2409
2410static bool passdown_enabled(struct pool_c *pt)
2411{
2412        return pt->adjusted_pf.discard_passdown;
2413}
2414
2415static void set_discard_callbacks(struct pool *pool)
2416{
2417        struct pool_c *pt = pool->ti->private;
2418
2419        if (passdown_enabled(pt)) {
2420                pool->process_discard_cell = process_discard_cell_passdown;
2421                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2422                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2423        } else {
2424                pool->process_discard_cell = process_discard_cell_no_passdown;
2425                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2426        }
2427}
2428
2429static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2430{
2431        struct pool_c *pt = pool->ti->private;
2432        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2433        enum pool_mode old_mode = get_pool_mode(pool);
2434        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2435
2436        /*
2437         * Never allow the pool to transition to PM_WRITE mode if user
2438         * intervention is required to verify metadata and data consistency.
2439         */
2440        if (new_mode == PM_WRITE && needs_check) {
2441                DMERR("%s: unable to switch pool to write mode until repaired.",
2442                      dm_device_name(pool->pool_md));
2443                if (old_mode != new_mode)
2444                        new_mode = old_mode;
2445                else
2446                        new_mode = PM_READ_ONLY;
2447        }
2448        /*
2449         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2450         * not going to recover without a thin_repair.  So we never let the
2451         * pool move out of the old mode.
2452         */
2453        if (old_mode == PM_FAIL)
2454                new_mode = old_mode;
2455
2456        switch (new_mode) {
2457        case PM_FAIL:
2458                if (old_mode != new_mode)
2459                        notify_of_pool_mode_change(pool, "failure");
2460                dm_pool_metadata_read_only(pool->pmd);
2461                pool->process_bio = process_bio_fail;
2462                pool->process_discard = process_bio_fail;
2463                pool->process_cell = process_cell_fail;
2464                pool->process_discard_cell = process_cell_fail;
2465                pool->process_prepared_mapping = process_prepared_mapping_fail;
2466                pool->process_prepared_discard = process_prepared_discard_fail;
2467
2468                error_retry_list(pool);
2469                break;
2470
2471        case PM_READ_ONLY:
2472                if (old_mode != new_mode)
2473                        notify_of_pool_mode_change(pool, "read-only");
2474                dm_pool_metadata_read_only(pool->pmd);
2475                pool->process_bio = process_bio_read_only;
2476                pool->process_discard = process_bio_success;
2477                pool->process_cell = process_cell_read_only;
2478                pool->process_discard_cell = process_cell_success;
2479                pool->process_prepared_mapping = process_prepared_mapping_fail;
2480                pool->process_prepared_discard = process_prepared_discard_success;
2481
2482                error_retry_list(pool);
2483                break;
2484
2485        case PM_OUT_OF_DATA_SPACE:
2486                /*
2487                 * Ideally we'd never hit this state; the low water mark
2488                 * would trigger userland to extend the pool before we
2489                 * completely run out of data space.  However, many small
2490                 * IOs to unprovisioned space can consume data space at an
2491                 * alarming rate.  Adjust your low water mark if you're
2492                 * frequently seeing this mode.
2493                 */
2494                if (old_mode != new_mode)
2495                        notify_of_pool_mode_change_to_oods(pool);
2496                pool->out_of_data_space = true;
2497                pool->process_bio = process_bio_read_only;
2498                pool->process_discard = process_discard_bio;
2499                pool->process_cell = process_cell_read_only;
2500                pool->process_prepared_mapping = process_prepared_mapping;
2501                set_discard_callbacks(pool);
2502
2503                if (!pool->pf.error_if_no_space && no_space_timeout)
2504                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2505                break;
2506
2507        case PM_WRITE:
2508                if (old_mode != new_mode)
2509                        notify_of_pool_mode_change(pool, "write");
2510                pool->out_of_data_space = false;
2511                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2512                dm_pool_metadata_read_write(pool->pmd);
2513                pool->process_bio = process_bio;
2514                pool->process_discard = process_discard_bio;
2515                pool->process_cell = process_cell;
2516                pool->process_prepared_mapping = process_prepared_mapping;
2517                set_discard_callbacks(pool);
2518                break;
2519        }
2520
2521        pool->pf.mode = new_mode;
2522        /*
2523         * The pool mode may have changed, sync it so bind_control_target()
2524         * doesn't cause an unexpected mode transition on resume.
2525         */
2526        pt->adjusted_pf.mode = new_mode;
2527}
2528
2529static void abort_transaction(struct pool *pool)
2530{
2531        const char *dev_name = dm_device_name(pool->pool_md);
2532
2533        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2534        if (dm_pool_abort_metadata(pool->pmd)) {
2535                DMERR("%s: failed to abort metadata transaction", dev_name);
2536                set_pool_mode(pool, PM_FAIL);
2537        }
2538
2539        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2540                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2541                set_pool_mode(pool, PM_FAIL);
2542        }
2543}
2544
2545static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2546{
2547        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2548                    dm_device_name(pool->pool_md), op, r);
2549
2550        abort_transaction(pool);
2551        set_pool_mode(pool, PM_READ_ONLY);
2552}
2553
2554/*----------------------------------------------------------------*/
2555
2556/*
2557 * Mapping functions.
2558 */
2559
2560/*
2561 * Called only while mapping a thin bio to hand it over to the workqueue.
2562 */
2563static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2564{
2565        unsigned long flags;
2566        struct pool *pool = tc->pool;
2567
2568        spin_lock_irqsave(&tc->lock, flags);
2569        bio_list_add(&tc->deferred_bio_list, bio);
2570        spin_unlock_irqrestore(&tc->lock, flags);
2571
2572        wake_worker(pool);
2573}
2574
2575static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2576{
2577        struct pool *pool = tc->pool;
2578
2579        throttle_lock(&pool->throttle);
2580        thin_defer_bio(tc, bio);
2581        throttle_unlock(&pool->throttle);
2582}
2583
2584static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2585{
2586        unsigned long flags;
2587        struct pool *pool = tc->pool;
2588
2589        throttle_lock(&pool->throttle);
2590        spin_lock_irqsave(&tc->lock, flags);
2591        list_add_tail(&cell->user_list, &tc->deferred_cells);
2592        spin_unlock_irqrestore(&tc->lock, flags);
2593        throttle_unlock(&pool->throttle);
2594
2595        wake_worker(pool);
2596}
2597
2598static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2599{
2600        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2601
2602        h->tc = tc;
2603        h->shared_read_entry = NULL;
2604        h->all_io_entry = NULL;
2605        h->overwrite_mapping = NULL;
2606        h->cell = NULL;
2607}
2608
2609/*
2610 * Non-blocking function called from the thin target's map function.
2611 */
2612static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2613{
2614        int r;
2615        struct thin_c *tc = ti->private;
2616        dm_block_t block = get_bio_block(tc, bio);
2617        struct dm_thin_device *td = tc->td;
2618        struct dm_thin_lookup_result result;
2619        struct dm_bio_prison_cell *virt_cell, *data_cell;
2620        struct dm_cell_key key;
2621
2622        thin_hook_bio(tc, bio);
2623
2624        if (tc->requeue_mode) {
2625                bio->bi_status = BLK_STS_DM_REQUEUE;
2626                bio_endio(bio);
2627                return DM_MAPIO_SUBMITTED;
2628        }
2629
2630        if (get_pool_mode(tc->pool) == PM_FAIL) {
2631                bio_io_error(bio);
2632                return DM_MAPIO_SUBMITTED;
2633        }
2634
2635        if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2636                thin_defer_bio_with_throttle(tc, bio);
2637                return DM_MAPIO_SUBMITTED;
2638        }
2639
2640        /*
2641         * We must hold the virtual cell before doing the lookup, otherwise
2642         * there's a race with discard.
2643         */
2644        build_virtual_key(tc->td, block, &key);
2645        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2646                return DM_MAPIO_SUBMITTED;
2647
2648        r = dm_thin_find_block(td, block, 0, &result);
2649
2650        /*
2651         * Note that we defer readahead too.
2652         */
2653        switch (r) {
2654        case 0:
2655                if (unlikely(result.shared)) {
2656                        /*
2657                         * We have a race condition here between the
2658                         * result.shared value returned by the lookup and
2659                         * snapshot creation, which may cause new
2660                         * sharing.
2661                         *
2662                         * To avoid this always quiesce the origin before
2663                         * taking the snap.  You want to do this anyway to
2664                         * ensure a consistent application view
2665                         * (i.e. lockfs).
2666                         *
2667                         * More distant ancestors are irrelevant. The
2668                         * shared flag will be set in their case.
2669                         */
2670                        thin_defer_cell(tc, virt_cell);
2671                        return DM_MAPIO_SUBMITTED;
2672                }
2673
2674                build_data_key(tc->td, result.block, &key);
2675                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2676                        cell_defer_no_holder(tc, virt_cell);
2677                        return DM_MAPIO_SUBMITTED;
2678                }
2679
2680                inc_all_io_entry(tc->pool, bio);
2681                cell_defer_no_holder(tc, data_cell);
2682                cell_defer_no_holder(tc, virt_cell);
2683
2684                remap(tc, bio, result.block);
2685                return DM_MAPIO_REMAPPED;
2686
2687        case -ENODATA:
2688        case -EWOULDBLOCK:
2689                thin_defer_cell(tc, virt_cell);
2690                return DM_MAPIO_SUBMITTED;
2691
2692        default:
2693                /*
2694                 * Must always call bio_io_error on failure.
2695                 * dm_thin_find_block can fail with -EINVAL if the
2696                 * pool is switched to fail-io mode.
2697                 */
2698                bio_io_error(bio);
2699                cell_defer_no_holder(tc, virt_cell);
2700                return DM_MAPIO_SUBMITTED;
2701        }
2702}
2703
2704static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2705{
2706        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2707        struct request_queue *q;
2708
2709        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2710                return 1;
2711
2712        q = bdev_get_queue(pt->data_dev->bdev);
2713        return bdi_congested(q->backing_dev_info, bdi_bits);
2714}
2715
2716static void requeue_bios(struct pool *pool)
2717{
2718        unsigned long flags;
2719        struct thin_c *tc;
2720
2721        rcu_read_lock();
2722        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2723                spin_lock_irqsave(&tc->lock, flags);
2724                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2725                bio_list_init(&tc->retry_on_resume_list);
2726                spin_unlock_irqrestore(&tc->lock, flags);
2727        }
2728        rcu_read_unlock();
2729}
2730
2731/*----------------------------------------------------------------
2732 * Binding of control targets to a pool object
2733 *--------------------------------------------------------------*/
2734static bool data_dev_supports_discard(struct pool_c *pt)
2735{
2736        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2737
2738        return q && blk_queue_discard(q);
2739}
2740
2741static bool is_factor(sector_t block_size, uint32_t n)
2742{
2743        return !sector_div(block_size, n);
2744}
2745
2746/*
2747 * If discard_passdown was enabled verify that the data device
2748 * supports discards.  Disable discard_passdown if not.
2749 */
2750static void disable_passdown_if_not_supported(struct pool_c *pt)
2751{
2752        struct pool *pool = pt->pool;
2753        struct block_device *data_bdev = pt->data_dev->bdev;
2754        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2755        const char *reason = NULL;
2756        char buf[BDEVNAME_SIZE];
2757
2758        if (!pt->adjusted_pf.discard_passdown)
2759                return;
2760
2761        if (!data_dev_supports_discard(pt))
2762                reason = "discard unsupported";
2763
2764        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2765                reason = "max discard sectors smaller than a block";
2766
2767        if (reason) {
2768                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2769                pt->adjusted_pf.discard_passdown = false;
2770        }
2771}
2772
2773static int bind_control_target(struct pool *pool, struct dm_target *ti)
2774{
2775        struct pool_c *pt = ti->private;
2776
2777        /*
2778         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2779         */
2780        enum pool_mode old_mode = get_pool_mode(pool);
2781        enum pool_mode new_mode = pt->adjusted_pf.mode;
2782
2783        /*
2784         * Don't change the pool's mode until set_pool_mode() below.
2785         * Otherwise the pool's process_* function pointers may
2786         * not match the desired pool mode.
2787         */
2788        pt->adjusted_pf.mode = old_mode;
2789
2790        pool->ti = ti;
2791        pool->pf = pt->adjusted_pf;
2792        pool->low_water_blocks = pt->low_water_blocks;
2793
2794        set_pool_mode(pool, new_mode);
2795
2796        return 0;
2797}
2798
2799static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2800{
2801        if (pool->ti == ti)
2802                pool->ti = NULL;
2803}
2804
2805/*----------------------------------------------------------------
2806 * Pool creation
2807 *--------------------------------------------------------------*/
2808/* Initialize pool features. */
2809static void pool_features_init(struct pool_features *pf)
2810{
2811        pf->mode = PM_WRITE;
2812        pf->zero_new_blocks = true;
2813        pf->discard_enabled = true;
2814        pf->discard_passdown = true;
2815        pf->error_if_no_space = false;
2816}
2817
2818static void __pool_destroy(struct pool *pool)
2819{
2820        __pool_table_remove(pool);
2821
2822        vfree(pool->cell_sort_array);
2823        if (dm_pool_metadata_close(pool->pmd) < 0)
2824                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2825
2826        dm_bio_prison_destroy(pool->prison);
2827        dm_kcopyd_client_destroy(pool->copier);
2828
2829        if (pool->wq)
2830                destroy_workqueue(pool->wq);
2831
2832        if (pool->next_mapping)
2833                mempool_free(pool->next_mapping, pool->mapping_pool);
2834        mempool_destroy(pool->mapping_pool);
2835        dm_deferred_set_destroy(pool->shared_read_ds);
2836        dm_deferred_set_destroy(pool->all_io_ds);
2837        kfree(pool);
2838}
2839
2840static struct kmem_cache *_new_mapping_cache;
2841
2842static struct pool *pool_create(struct mapped_device *pool_md,
2843                                struct block_device *metadata_dev,
2844                                unsigned long block_size,
2845                                int read_only, char **error)
2846{
2847        int r;
2848        void *err_p;
2849        struct pool *pool;
2850        struct dm_pool_metadata *pmd;
2851        bool format_device = read_only ? false : true;
2852
2853        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2854        if (IS_ERR(pmd)) {
2855                *error = "Error creating metadata object";
2856                return (struct pool *)pmd;
2857        }
2858
2859        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2860        if (!pool) {
2861                *error = "Error allocating memory for pool";
2862                err_p = ERR_PTR(-ENOMEM);
2863                goto bad_pool;
2864        }
2865
2866        pool->pmd = pmd;
2867        pool->sectors_per_block = block_size;
2868        if (block_size & (block_size - 1))
2869                pool->sectors_per_block_shift = -1;
2870        else
2871                pool->sectors_per_block_shift = __ffs(block_size);
2872        pool->low_water_blocks = 0;
2873        pool_features_init(&pool->pf);
2874        pool->prison = dm_bio_prison_create();
2875        if (!pool->prison) {
2876                *error = "Error creating pool's bio prison";
2877                err_p = ERR_PTR(-ENOMEM);
2878                goto bad_prison;
2879        }
2880
2881        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2882        if (IS_ERR(pool->copier)) {
2883                r = PTR_ERR(pool->copier);
2884                *error = "Error creating pool's kcopyd client";
2885                err_p = ERR_PTR(r);
2886                goto bad_kcopyd_client;
2887        }
2888
2889        /*
2890         * Create singlethreaded workqueue that will service all devices
2891         * that use this metadata.
2892         */
2893        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2894        if (!pool->wq) {
2895                *error = "Error creating pool's workqueue";
2896                err_p = ERR_PTR(-ENOMEM);
2897                goto bad_wq;
2898        }
2899
2900        throttle_init(&pool->throttle);
2901        INIT_WORK(&pool->worker, do_worker);
2902        INIT_DELAYED_WORK(&pool->waker, do_waker);
2903        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2904        spin_lock_init(&pool->lock);
2905        bio_list_init(&pool->deferred_flush_bios);
2906        INIT_LIST_HEAD(&pool->prepared_mappings);
2907        INIT_LIST_HEAD(&pool->prepared_discards);
2908        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2909        INIT_LIST_HEAD(&pool->active_thins);
2910        pool->low_water_triggered = false;
2911        pool->suspended = true;
2912        pool->out_of_data_space = false;
2913
2914        pool->shared_read_ds = dm_deferred_set_create();
2915        if (!pool->shared_read_ds) {
2916                *error = "Error creating pool's shared read deferred set";
2917                err_p = ERR_PTR(-ENOMEM);
2918                goto bad_shared_read_ds;
2919        }
2920
2921        pool->all_io_ds = dm_deferred_set_create();
2922        if (!pool->all_io_ds) {
2923                *error = "Error creating pool's all io deferred set";
2924                err_p = ERR_PTR(-ENOMEM);
2925                goto bad_all_io_ds;
2926        }
2927
2928        pool->next_mapping = NULL;
2929        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2930                                                      _new_mapping_cache);
2931        if (!pool->mapping_pool) {
2932                *error = "Error creating pool's mapping mempool";
2933                err_p = ERR_PTR(-ENOMEM);
2934                goto bad_mapping_pool;
2935        }
2936
2937        pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2938        if (!pool->cell_sort_array) {
2939                *error = "Error allocating cell sort array";
2940                err_p = ERR_PTR(-ENOMEM);
2941                goto bad_sort_array;
2942        }
2943
2944        pool->ref_count = 1;
2945        pool->last_commit_jiffies = jiffies;
2946        pool->pool_md = pool_md;
2947        pool->md_dev = metadata_dev;
2948        __pool_table_insert(pool);
2949
2950        return pool;
2951
2952bad_sort_array:
2953        mempool_destroy(pool->mapping_pool);
2954bad_mapping_pool:
2955        dm_deferred_set_destroy(pool->all_io_ds);
2956bad_all_io_ds:
2957        dm_deferred_set_destroy(pool->shared_read_ds);
2958bad_shared_read_ds:
2959        destroy_workqueue(pool->wq);
2960bad_wq:
2961        dm_kcopyd_client_destroy(pool->copier);
2962bad_kcopyd_client:
2963        dm_bio_prison_destroy(pool->prison);
2964bad_prison:
2965        kfree(pool);
2966bad_pool:
2967        if (dm_pool_metadata_close(pmd))
2968                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2969
2970        return err_p;
2971}
2972
2973static void __pool_inc(struct pool *pool)
2974{
2975        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2976        pool->ref_count++;
2977}
2978
2979static void __pool_dec(struct pool *pool)
2980{
2981        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2982        BUG_ON(!pool->ref_count);
2983        if (!--pool->ref_count)
2984                __pool_destroy(pool);
2985}
2986
2987static struct pool *__pool_find(struct mapped_device *pool_md,
2988                                struct block_device *metadata_dev,
2989                                unsigned long block_size, int read_only,
2990                                char **error, int *created)
2991{
2992        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2993
2994        if (pool) {
2995                if (pool->pool_md != pool_md) {
2996                        *error = "metadata device already in use by a pool";
2997                        return ERR_PTR(-EBUSY);
2998                }
2999                __pool_inc(pool);
3000
3001        } else {
3002                pool = __pool_table_lookup(pool_md);
3003                if (pool) {
3004                        if (pool->md_dev != metadata_dev) {
3005                                *error = "different pool cannot replace a pool";
3006                                return ERR_PTR(-EINVAL);
3007                        }
3008                        __pool_inc(pool);
3009
3010                } else {
3011                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3012                        *created = 1;
3013                }
3014        }
3015
3016        return pool;
3017}
3018
3019/*----------------------------------------------------------------
3020 * Pool target methods
3021 *--------------------------------------------------------------*/
3022static void pool_dtr(struct dm_target *ti)
3023{
3024        struct pool_c *pt = ti->private;
3025
3026        mutex_lock(&dm_thin_pool_table.mutex);
3027
3028        unbind_control_target(pt->pool, ti);
3029        __pool_dec(pt->pool);
3030        dm_put_device(ti, pt->metadata_dev);
3031        dm_put_device(ti, pt->data_dev);
3032        kfree(pt);
3033
3034        mutex_unlock(&dm_thin_pool_table.mutex);
3035}
3036
3037static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3038                               struct dm_target *ti)
3039{
3040        int r;
3041        unsigned argc;
3042        const char *arg_name;
3043
3044        static const struct dm_arg _args[] = {
3045                {0, 4, "Invalid number of pool feature arguments"},
3046        };
3047
3048        /*
3049         * No feature arguments supplied.
3050         */
3051        if (!as->argc)
3052                return 0;
3053
3054        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3055        if (r)
3056                return -EINVAL;
3057
3058        while (argc && !r) {
3059                arg_name = dm_shift_arg(as);
3060                argc--;
3061
3062                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3063                        pf->zero_new_blocks = false;
3064
3065                else if (!strcasecmp(arg_name, "ignore_discard"))
3066                        pf->discard_enabled = false;
3067
3068                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3069                        pf->discard_passdown = false;
3070
3071                else if (!strcasecmp(arg_name, "read_only"))
3072                        pf->mode = PM_READ_ONLY;
3073
3074                else if (!strcasecmp(arg_name, "error_if_no_space"))
3075                        pf->error_if_no_space = true;
3076
3077                else {
3078                        ti->error = "Unrecognised pool feature requested";
3079                        r = -EINVAL;
3080                        break;
3081                }
3082        }
3083
3084        return r;
3085}
3086
3087static void metadata_low_callback(void *context)
3088{
3089        struct pool *pool = context;
3090
3091        DMWARN("%s: reached low water mark for metadata device: sending event.",
3092               dm_device_name(pool->pool_md));
3093
3094        dm_table_event(pool->ti->table);
3095}
3096
3097static sector_t get_dev_size(struct block_device *bdev)
3098{
3099        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3100}
3101
3102static void warn_if_metadata_device_too_big(struct block_device *bdev)
3103{
3104        sector_t metadata_dev_size = get_dev_size(bdev);
3105        char buffer[BDEVNAME_SIZE];
3106
3107        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3108                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3109                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3110}
3111
3112static sector_t get_metadata_dev_size(struct block_device *bdev)
3113{
3114        sector_t metadata_dev_size = get_dev_size(bdev);
3115
3116        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3117                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3118
3119        return metadata_dev_size;
3120}
3121
3122static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3123{
3124        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3125
3126        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3127
3128        return metadata_dev_size;
3129}
3130
3131/*
3132 * When a metadata threshold is crossed a dm event is triggered, and
3133 * userland should respond by growing the metadata device.  We could let
3134 * userland set the threshold, like we do with the data threshold, but I'm
3135 * not sure they know enough to do this well.
3136 */
3137static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3138{
3139        /*
3140         * 4M is ample for all ops with the possible exception of thin
3141         * device deletion which is harmless if it fails (just retry the
3142         * delete after you've grown the device).
3143         */
3144        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3145        return min((dm_block_t)1024ULL /* 4M */, quarter);
3146}
3147
3148/*
3149 * thin-pool <metadata dev> <data dev>
3150 *           <data block size (sectors)>
3151 *           <low water mark (blocks)>
3152 *           [<#feature args> [<arg>]*]
3153 *
3154 * Optional feature arguments are:
3155 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3156 *           ignore_discard: disable discard
3157 *           no_discard_passdown: don't pass discards down to the data device
3158 *           read_only: Don't allow any changes to be made to the pool metadata.
3159 *           error_if_no_space: error IOs, instead of queueing, if no space.
3160 */
3161static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3162{
3163        int r, pool_created = 0;
3164        struct pool_c *pt;
3165        struct pool *pool;
3166        struct pool_features pf;
3167        struct dm_arg_set as;
3168        struct dm_dev *data_dev;
3169        unsigned long block_size;
3170        dm_block_t low_water_blocks;
3171        struct dm_dev *metadata_dev;
3172        fmode_t metadata_mode;
3173
3174        /*
3175         * FIXME Remove validation from scope of lock.
3176         */
3177        mutex_lock(&dm_thin_pool_table.mutex);
3178
3179        if (argc < 4) {
3180                ti->error = "Invalid argument count";
3181                r = -EINVAL;
3182                goto out_unlock;
3183        }
3184
3185        as.argc = argc;
3186        as.argv = argv;
3187
3188        /*
3189         * Set default pool features.
3190         */
3191        pool_features_init(&pf);
3192
3193        dm_consume_args(&as, 4);
3194        r = parse_pool_features(&as, &pf, ti);
3195        if (r)
3196                goto out_unlock;
3197
3198        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3199        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3200        if (r) {
3201                ti->error = "Error opening metadata block device";
3202                goto out_unlock;
3203        }
3204        warn_if_metadata_device_too_big(metadata_dev->bdev);
3205
3206        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3207        if (r) {
3208                ti->error = "Error getting data device";
3209                goto out_metadata;
3210        }
3211
3212        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3213            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3214            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3215            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3216                ti->error = "Invalid block size";
3217                r = -EINVAL;
3218                goto out;
3219        }
3220
3221        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3222                ti->error = "Invalid low water mark";
3223                r = -EINVAL;
3224                goto out;
3225        }
3226
3227        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3228        if (!pt) {
3229                r = -ENOMEM;
3230                goto out;
3231        }
3232
3233        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3234                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3235        if (IS_ERR(pool)) {
3236                r = PTR_ERR(pool);
3237                goto out_free_pt;
3238        }
3239
3240        /*
3241         * 'pool_created' reflects whether this is the first table load.
3242         * Top level discard support is not allowed to be changed after
3243         * initial load.  This would require a pool reload to trigger thin
3244         * device changes.
3245         */
3246        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3247                ti->error = "Discard support cannot be disabled once enabled";
3248                r = -EINVAL;
3249                goto out_flags_changed;
3250        }
3251
3252        pt->pool = pool;
3253        pt->ti = ti;
3254        pt->metadata_dev = metadata_dev;
3255        pt->data_dev = data_dev;
3256        pt->low_water_blocks = low_water_blocks;
3257        pt->adjusted_pf = pt->requested_pf = pf;
3258        ti->num_flush_bios = 1;
3259
3260        /*
3261         * Only need to enable discards if the pool should pass
3262         * them down to the data device.  The thin device's discard
3263         * processing will cause mappings to be removed from the btree.
3264         */
3265        if (pf.discard_enabled && pf.discard_passdown) {
3266                ti->num_discard_bios = 1;
3267
3268                /*
3269                 * Setting 'discards_supported' circumvents the normal
3270                 * stacking of discard limits (this keeps the pool and
3271                 * thin devices' discard limits consistent).
3272                 */
3273                ti->discards_supported = true;
3274        }
3275        ti->private = pt;
3276
3277        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3278                                                calc_metadata_threshold(pt),
3279                                                metadata_low_callback,
3280                                                pool);
3281        if (r)
3282                goto out_flags_changed;
3283
3284        pt->callbacks.congested_fn = pool_is_congested;
3285        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3286
3287        mutex_unlock(&dm_thin_pool_table.mutex);
3288
3289        return 0;
3290
3291out_flags_changed:
3292        __pool_dec(pool);
3293out_free_pt:
3294        kfree(pt);
3295out:
3296        dm_put_device(ti, data_dev);
3297out_metadata:
3298        dm_put_device(ti, metadata_dev);
3299out_unlock:
3300        mutex_unlock(&dm_thin_pool_table.mutex);
3301
3302        return r;
3303}
3304
3305static int pool_map(struct dm_target *ti, struct bio *bio)
3306{
3307        int r;
3308        struct pool_c *pt = ti->private;
3309        struct pool *pool = pt->pool;
3310        unsigned long flags;
3311
3312        /*
3313         * As this is a singleton target, ti->begin is always zero.
3314         */
3315        spin_lock_irqsave(&pool->lock, flags);
3316        bio_set_dev(bio, pt->data_dev->bdev);
3317        r = DM_MAPIO_REMAPPED;
3318        spin_unlock_irqrestore(&pool->lock, flags);
3319
3320        return r;
3321}
3322
3323static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3324{
3325        int r;
3326        struct pool_c *pt = ti->private;
3327        struct pool *pool = pt->pool;
3328        sector_t data_size = ti->len;
3329        dm_block_t sb_data_size;
3330
3331        *need_commit = false;
3332
3333        (void) sector_div(data_size, pool->sectors_per_block);
3334
3335        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3336        if (r) {
3337                DMERR("%s: failed to retrieve data device size",
3338                      dm_device_name(pool->pool_md));
3339                return r;
3340        }
3341
3342        if (data_size < sb_data_size) {
3343                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3344                      dm_device_name(pool->pool_md),
3345                      (unsigned long long)data_size, sb_data_size);
3346                return -EINVAL;
3347
3348        } else if (data_size > sb_data_size) {
3349                if (dm_pool_metadata_needs_check(pool->pmd)) {
3350                        DMERR("%s: unable to grow the data device until repaired.",
3351                              dm_device_name(pool->pool_md));
3352                        return 0;
3353                }
3354
3355                if (sb_data_size)
3356                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3357                               dm_device_name(pool->pool_md),
3358                               sb_data_size, (unsigned long long)data_size);
3359                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3360                if (r) {
3361                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3362                        return r;
3363                }
3364
3365                *need_commit = true;
3366        }
3367
3368        return 0;
3369}
3370
3371static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3372{
3373        int r;
3374        struct pool_c *pt = ti->private;
3375        struct pool *pool = pt->pool;
3376        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3377
3378        *need_commit = false;
3379
3380        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3381
3382        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3383        if (r) {
3384                DMERR("%s: failed to retrieve metadata device size",
3385                      dm_device_name(pool->pool_md));
3386                return r;
3387        }
3388
3389        if (metadata_dev_size < sb_metadata_dev_size) {
3390                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3391                      dm_device_name(pool->pool_md),
3392                      metadata_dev_size, sb_metadata_dev_size);
3393                return -EINVAL;
3394
3395        } else if (metadata_dev_size > sb_metadata_dev_size) {
3396                if (dm_pool_metadata_needs_check(pool->pmd)) {
3397                        DMERR("%s: unable to grow the metadata device until repaired.",
3398                              dm_device_name(pool->pool_md));
3399                        return 0;
3400                }
3401
3402                warn_if_metadata_device_too_big(pool->md_dev);
3403                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3404                       dm_device_name(pool->pool_md),
3405                       sb_metadata_dev_size, metadata_dev_size);
3406                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3407                if (r) {
3408                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3409                        return r;
3410                }
3411
3412                *need_commit = true;
3413        }
3414
3415        return 0;
3416}
3417
3418/*
3419 * Retrieves the number of blocks of the data device from
3420 * the superblock and compares it to the actual device size,
3421 * thus resizing the data device in case it has grown.
3422 *
3423 * This both copes with opening preallocated data devices in the ctr
3424 * being followed by a resume
3425 * -and-
3426 * calling the resume method individually after userspace has
3427 * grown the data device in reaction to a table event.
3428 */
3429static int pool_preresume(struct dm_target *ti)
3430{
3431        int r;
3432        bool need_commit1, need_commit2;
3433        struct pool_c *pt = ti->private;
3434        struct pool *pool = pt->pool;
3435
3436        /*
3437         * Take control of the pool object.
3438         */
3439        r = bind_control_target(pool, ti);
3440        if (r)
3441                return r;
3442
3443        r = maybe_resize_data_dev(ti, &need_commit1);
3444        if (r)
3445                return r;
3446
3447        r = maybe_resize_metadata_dev(ti, &need_commit2);
3448        if (r)
3449                return r;
3450
3451        if (need_commit1 || need_commit2)
3452                (void) commit(pool);
3453
3454        return 0;
3455}
3456
3457static void pool_suspend_active_thins(struct pool *pool)
3458{
3459        struct thin_c *tc;
3460
3461        /* Suspend all active thin devices */
3462        tc = get_first_thin(pool);
3463        while (tc) {
3464                dm_internal_suspend_noflush(tc->thin_md);
3465                tc = get_next_thin(pool, tc);
3466        }
3467}
3468
3469static void pool_resume_active_thins(struct pool *pool)
3470{
3471        struct thin_c *tc;
3472
3473        /* Resume all active thin devices */
3474        tc = get_first_thin(pool);
3475        while (tc) {
3476                dm_internal_resume(tc->thin_md);
3477                tc = get_next_thin(pool, tc);
3478        }
3479}
3480
3481static void pool_resume(struct dm_target *ti)
3482{
3483        struct pool_c *pt = ti->private;
3484        struct pool *pool = pt->pool;
3485        unsigned long flags;
3486
3487        /*
3488         * Must requeue active_thins' bios and then resume
3489         * active_thins _before_ clearing 'suspend' flag.
3490         */
3491        requeue_bios(pool);
3492        pool_resume_active_thins(pool);
3493
3494        spin_lock_irqsave(&pool->lock, flags);
3495        pool->low_water_triggered = false;
3496        pool->suspended = false;
3497        spin_unlock_irqrestore(&pool->lock, flags);
3498
3499        do_waker(&pool->waker.work);
3500}
3501
3502static void pool_presuspend(struct dm_target *ti)
3503{
3504        struct pool_c *pt = ti->private;
3505        struct pool *pool = pt->pool;
3506        unsigned long flags;
3507
3508        spin_lock_irqsave(&pool->lock, flags);
3509        pool->suspended = true;
3510        spin_unlock_irqrestore(&pool->lock, flags);
3511
3512        pool_suspend_active_thins(pool);
3513}
3514
3515static void pool_presuspend_undo(struct dm_target *ti)
3516{
3517        struct pool_c *pt = ti->private;
3518        struct pool *pool = pt->pool;
3519        unsigned long flags;
3520
3521        pool_resume_active_thins(pool);
3522
3523        spin_lock_irqsave(&pool->lock, flags);
3524        pool->suspended = false;
3525        spin_unlock_irqrestore(&pool->lock, flags);
3526}
3527
3528static void pool_postsuspend(struct dm_target *ti)
3529{
3530        struct pool_c *pt = ti->private;
3531        struct pool *pool = pt->pool;
3532
3533        cancel_delayed_work_sync(&pool->waker);
3534        cancel_delayed_work_sync(&pool->no_space_timeout);
3535        flush_workqueue(pool->wq);
3536        (void) commit(pool);
3537}
3538
3539static int check_arg_count(unsigned argc, unsigned args_required)
3540{
3541        if (argc != args_required) {
3542                DMWARN("Message received with %u arguments instead of %u.",
3543                       argc, args_required);
3544                return -EINVAL;
3545        }
3546
3547        return 0;
3548}
3549
3550static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3551{
3552        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3553            *dev_id <= MAX_DEV_ID)
3554                return 0;
3555
3556        if (warning)
3557                DMWARN("Message received with invalid device id: %s", arg);
3558
3559        return -EINVAL;
3560}
3561
3562static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3563{
3564        dm_thin_id dev_id;
3565        int r;
3566
3567        r = check_arg_count(argc, 2);
3568        if (r)
3569                return r;
3570
3571        r = read_dev_id(argv[1], &dev_id, 1);
3572        if (r)
3573                return r;
3574
3575        r = dm_pool_create_thin(pool->pmd, dev_id);
3576        if (r) {
3577                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3578                       argv[1]);
3579                return r;
3580        }
3581
3582        return 0;
3583}
3584
3585static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586{
3587        dm_thin_id dev_id;
3588        dm_thin_id origin_dev_id;
3589        int r;
3590
3591        r = check_arg_count(argc, 3);
3592        if (r)
3593                return r;
3594
3595        r = read_dev_id(argv[1], &dev_id, 1);
3596        if (r)
3597                return r;
3598
3599        r = read_dev_id(argv[2], &origin_dev_id, 1);
3600        if (r)
3601                return r;
3602
3603        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3604        if (r) {
3605                DMWARN("Creation of new snapshot %s of device %s failed.",
3606                       argv[1], argv[2]);
3607                return r;
3608        }
3609
3610        return 0;
3611}
3612
3613static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3614{
3615        dm_thin_id dev_id;
3616        int r;
3617
3618        r = check_arg_count(argc, 2);
3619        if (r)
3620                return r;
3621
3622        r = read_dev_id(argv[1], &dev_id, 1);
3623        if (r)
3624                return r;
3625
3626        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3627        if (r)
3628                DMWARN("Deletion of thin device %s failed.", argv[1]);
3629
3630        return r;
3631}
3632
3633static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3634{
3635        dm_thin_id old_id, new_id;
3636        int r;
3637
3638        r = check_arg_count(argc, 3);
3639        if (r)
3640                return r;
3641
3642        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3643                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3644                return -EINVAL;
3645        }
3646
3647        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3648                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3649                return -EINVAL;
3650        }
3651
3652        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3653        if (r) {
3654                DMWARN("Failed to change transaction id from %s to %s.",
3655                       argv[1], argv[2]);
3656                return r;
3657        }
3658
3659        return 0;
3660}
3661
3662static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3663{
3664        int r;
3665
3666        r = check_arg_count(argc, 1);
3667        if (r)
3668                return r;
3669
3670        (void) commit(pool);
3671
3672        r = dm_pool_reserve_metadata_snap(pool->pmd);
3673        if (r)
3674                DMWARN("reserve_metadata_snap message failed.");
3675
3676        return r;
3677}
3678
3679static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3680{
3681        int r;
3682
3683        r = check_arg_count(argc, 1);
3684        if (r)
3685                return r;
3686
3687        r = dm_pool_release_metadata_snap(pool->pmd);
3688        if (r)
3689                DMWARN("release_metadata_snap message failed.");
3690
3691        return r;
3692}
3693
3694/*
3695 * Messages supported:
3696 *   create_thin        <dev_id>
3697 *   create_snap        <dev_id> <origin_id>
3698 *   delete             <dev_id>
3699 *   set_transaction_id <current_trans_id> <new_trans_id>
3700 *   reserve_metadata_snap
3701 *   release_metadata_snap
3702 */
3703static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3704{
3705        int r = -EINVAL;
3706        struct pool_c *pt = ti->private;
3707        struct pool *pool = pt->pool;
3708
3709        if (get_pool_mode(pool) >= PM_READ_ONLY) {
3710                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3711                      dm_device_name(pool->pool_md));
3712                return -EOPNOTSUPP;
3713        }
3714
3715        if (!strcasecmp(argv[0], "create_thin"))
3716                r = process_create_thin_mesg(argc, argv, pool);
3717
3718        else if (!strcasecmp(argv[0], "create_snap"))
3719                r = process_create_snap_mesg(argc, argv, pool);
3720
3721        else if (!strcasecmp(argv[0], "delete"))
3722                r = process_delete_mesg(argc, argv, pool);
3723
3724        else if (!strcasecmp(argv[0], "set_transaction_id"))
3725                r = process_set_transaction_id_mesg(argc, argv, pool);
3726
3727        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3728                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3729
3730        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3731                r = process_release_metadata_snap_mesg(argc, argv, pool);
3732
3733        else
3734                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3735
3736        if (!r)
3737                (void) commit(pool);
3738
3739        return r;
3740}
3741
3742static void emit_flags(struct pool_features *pf, char *result,
3743                       unsigned sz, unsigned maxlen)
3744{
3745        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3746                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3747                pf->error_if_no_space;
3748        DMEMIT("%u ", count);
3749
3750        if (!pf->zero_new_blocks)
3751                DMEMIT("skip_block_zeroing ");
3752
3753        if (!pf->discard_enabled)
3754                DMEMIT("ignore_discard ");
3755
3756        if (!pf->discard_passdown)
3757                DMEMIT("no_discard_passdown ");
3758
3759        if (pf->mode == PM_READ_ONLY)
3760                DMEMIT("read_only ");
3761
3762        if (pf->error_if_no_space)
3763                DMEMIT("error_if_no_space ");
3764}
3765
3766/*
3767 * Status line is:
3768 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3769 *    <used data sectors>/<total data sectors> <held metadata root>
3770 *    <pool mode> <discard config> <no space config> <needs_check>
3771 */
3772static void pool_status(struct dm_target *ti, status_type_t type,
3773                        unsigned status_flags, char *result, unsigned maxlen)
3774{
3775        int r;
3776        unsigned sz = 0;
3777        uint64_t transaction_id;
3778        dm_block_t nr_free_blocks_data;
3779        dm_block_t nr_free_blocks_metadata;
3780        dm_block_t nr_blocks_data;
3781        dm_block_t nr_blocks_metadata;
3782        dm_block_t held_root;
3783        char buf[BDEVNAME_SIZE];
3784        char buf2[BDEVNAME_SIZE];
3785        struct pool_c *pt = ti->private;
3786        struct pool *pool = pt->pool;
3787
3788        switch (type) {
3789        case STATUSTYPE_INFO:
3790                if (get_pool_mode(pool) == PM_FAIL) {
3791                        DMEMIT("Fail");
3792                        break;
3793                }
3794
3795                /* Commit to ensure statistics aren't out-of-date */
3796                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3797                        (void) commit(pool);
3798
3799                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3800                if (r) {
3801                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3802                              dm_device_name(pool->pool_md), r);
3803                        goto err;
3804                }
3805
3806                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3807                if (r) {
3808                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3809                              dm_device_name(pool->pool_md), r);
3810                        goto err;
3811                }
3812
3813                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3814                if (r) {
3815                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3816                              dm_device_name(pool->pool_md), r);
3817                        goto err;
3818                }
3819
3820                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3821                if (r) {
3822                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3823                              dm_device_name(pool->pool_md), r);
3824                        goto err;
3825                }
3826
3827                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3828                if (r) {
3829                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3830                              dm_device_name(pool->pool_md), r);
3831                        goto err;
3832                }
3833
3834                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3835                if (r) {
3836                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3837                              dm_device_name(pool->pool_md), r);
3838                        goto err;
3839                }
3840
3841                DMEMIT("%llu %llu/%llu %llu/%llu ",
3842                       (unsigned long long)transaction_id,
3843                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3844                       (unsigned long long)nr_blocks_metadata,
3845                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3846                       (unsigned long long)nr_blocks_data);
3847
3848                if (held_root)
3849                        DMEMIT("%llu ", held_root);
3850                else
3851                        DMEMIT("- ");
3852
3853                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3854                        DMEMIT("out_of_data_space ");
3855                else if (pool->pf.mode == PM_READ_ONLY)
3856                        DMEMIT("ro ");
3857                else
3858                        DMEMIT("rw ");
3859
3860                if (!pool->pf.discard_enabled)
3861                        DMEMIT("ignore_discard ");
3862                else if (pool->pf.discard_passdown)
3863                        DMEMIT("discard_passdown ");
3864                else
3865                        DMEMIT("no_discard_passdown ");
3866
3867                if (pool->pf.error_if_no_space)
3868                        DMEMIT("error_if_no_space ");
3869                else
3870                        DMEMIT("queue_if_no_space ");
3871
3872                if (dm_pool_metadata_needs_check(pool->pmd))
3873                        DMEMIT("needs_check ");
3874                else
3875                        DMEMIT("- ");
3876
3877                break;
3878
3879        case STATUSTYPE_TABLE:
3880                DMEMIT("%s %s %lu %llu ",
3881                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3882                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3883                       (unsigned long)pool->sectors_per_block,
3884                       (unsigned long long)pt->low_water_blocks);
3885                emit_flags(&pt->requested_pf, result, sz, maxlen);
3886                break;
3887        }
3888        return;
3889
3890err:
3891        DMEMIT("Error");
3892}
3893
3894static int pool_iterate_devices(struct dm_target *ti,
3895                                iterate_devices_callout_fn fn, void *data)
3896{
3897        struct pool_c *pt = ti->private;
3898
3899        return fn(ti, pt->data_dev, 0, ti->len, data);
3900}
3901
3902static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3903{
3904        struct pool_c *pt = ti->private;
3905        struct pool *pool = pt->pool;
3906        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3907
3908        /*
3909         * If max_sectors is smaller than pool->sectors_per_block adjust it
3910         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3911         * This is especially beneficial when the pool's data device is a RAID
3912         * device that has a full stripe width that matches pool->sectors_per_block
3913         * -- because even though partial RAID stripe-sized IOs will be issued to a
3914         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3915         *    boundary.. which avoids additional partial RAID stripe writes cascading
3916         */
3917        if (limits->max_sectors < pool->sectors_per_block) {
3918                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3919                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3920                                limits->max_sectors--;
3921                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3922                }
3923        }
3924
3925        /*
3926         * If the system-determined stacked limits are compatible with the
3927         * pool's blocksize (io_opt is a factor) do not override them.
3928         */
3929        if (io_opt_sectors < pool->sectors_per_block ||
3930            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3931                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3932                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3933                else
3934                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3935                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3936        }
3937
3938        /*
3939         * pt->adjusted_pf is a staging area for the actual features to use.
3940         * They get transferred to the live pool in bind_control_target()
3941         * called from pool_preresume().
3942         */
3943        if (!pt->adjusted_pf.discard_enabled) {
3944                /*
3945                 * Must explicitly disallow stacking discard limits otherwise the
3946                 * block layer will stack them if pool's data device has support.
3947                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3948                 * user to see that, so make sure to set all discard limits to 0.
3949                 */
3950                limits->discard_granularity = 0;
3951                return;
3952        }
3953
3954        disable_passdown_if_not_supported(pt);
3955
3956        /*
3957         * The pool uses the same discard limits as the underlying data
3958         * device.  DM core has already set this up.
3959         */
3960}
3961
3962static struct target_type pool_target = {
3963        .name = "thin-pool",
3964        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3965                    DM_TARGET_IMMUTABLE,
3966        .version = {1, 19, 0},
3967        .module = THIS_MODULE,
3968        .ctr = pool_ctr,
3969        .dtr = pool_dtr,
3970        .map = pool_map,
3971        .presuspend = pool_presuspend,
3972        .presuspend_undo = pool_presuspend_undo,
3973        .postsuspend = pool_postsuspend,
3974        .preresume = pool_preresume,
3975        .resume = pool_resume,
3976        .message = pool_message,
3977        .status = pool_status,
3978        .iterate_devices = pool_iterate_devices,
3979        .io_hints = pool_io_hints,
3980};
3981
3982/*----------------------------------------------------------------
3983 * Thin target methods
3984 *--------------------------------------------------------------*/
3985static void thin_get(struct thin_c *tc)
3986{
3987        atomic_inc(&tc->refcount);
3988}
3989
3990static void thin_put(struct thin_c *tc)
3991{
3992        if (atomic_dec_and_test(&tc->refcount))
3993                complete(&tc->can_destroy);
3994}
3995
3996static void thin_dtr(struct dm_target *ti)
3997{
3998        struct thin_c *tc = ti->private;
3999        unsigned long flags;
4000
4001        spin_lock_irqsave(&tc->pool->lock, flags);
4002        list_del_rcu(&tc->list);
4003        spin_unlock_irqrestore(&tc->pool->lock, flags);
4004        synchronize_rcu();
4005
4006        thin_put(tc);
4007        wait_for_completion(&tc->can_destroy);
4008
4009        mutex_lock(&dm_thin_pool_table.mutex);
4010
4011        __pool_dec(tc->pool);
4012        dm_pool_close_thin_device(tc->td);
4013        dm_put_device(ti, tc->pool_dev);
4014        if (tc->origin_dev)
4015                dm_put_device(ti, tc->origin_dev);
4016        kfree(tc);
4017
4018        mutex_unlock(&dm_thin_pool_table.mutex);
4019}
4020
4021/*
4022 * Thin target parameters:
4023 *
4024 * <pool_dev> <dev_id> [origin_dev]
4025 *
4026 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4027 * dev_id: the internal device identifier
4028 * origin_dev: a device external to the pool that should act as the origin
4029 *
4030 * If the pool device has discards disabled, they get disabled for the thin
4031 * device as well.
4032 */
4033static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4034{
4035        int r;
4036        struct thin_c *tc;
4037        struct dm_dev *pool_dev, *origin_dev;
4038        struct mapped_device *pool_md;
4039        unsigned long flags;
4040
4041        mutex_lock(&dm_thin_pool_table.mutex);
4042
4043        if (argc != 2 && argc != 3) {
4044                ti->error = "Invalid argument count";
4045                r = -EINVAL;
4046                goto out_unlock;
4047        }
4048
4049        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4050        if (!tc) {
4051                ti->error = "Out of memory";
4052                r = -ENOMEM;
4053                goto out_unlock;
4054        }
4055        tc->thin_md = dm_table_get_md(ti->table);
4056        spin_lock_init(&tc->lock);
4057        INIT_LIST_HEAD(&tc->deferred_cells);
4058        bio_list_init(&tc->deferred_bio_list);
4059        bio_list_init(&tc->retry_on_resume_list);
4060        tc->sort_bio_list = RB_ROOT;
4061
4062        if (argc == 3) {
4063                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4064                if (r) {
4065                        ti->error = "Error opening origin device";
4066                        goto bad_origin_dev;
4067                }
4068                tc->origin_dev = origin_dev;
4069        }
4070
4071        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4072        if (r) {
4073                ti->error = "Error opening pool device";
4074                goto bad_pool_dev;
4075        }
4076        tc->pool_dev = pool_dev;
4077
4078        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4079                ti->error = "Invalid device id";
4080                r = -EINVAL;
4081                goto bad_common;
4082        }
4083
4084        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4085        if (!pool_md) {
4086                ti->error = "Couldn't get pool mapped device";
4087                r = -EINVAL;
4088                goto bad_common;
4089        }
4090
4091        tc->pool = __pool_table_lookup(pool_md);
4092        if (!tc->pool) {
4093                ti->error = "Couldn't find pool object";
4094                r = -EINVAL;
4095                goto bad_pool_lookup;
4096        }
4097        __pool_inc(tc->pool);
4098
4099        if (get_pool_mode(tc->pool) == PM_FAIL) {
4100                ti->error = "Couldn't open thin device, Pool is in fail mode";
4101                r = -EINVAL;
4102                goto bad_pool;
4103        }
4104
4105        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4106        if (r) {
4107                ti->error = "Couldn't open thin internal device";
4108                goto bad_pool;
4109        }
4110
4111        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4112        if (r)
4113                goto bad;
4114
4115        ti->num_flush_bios = 1;
4116        ti->flush_supported = true;
4117        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4118
4119        /* In case the pool supports discards, pass them on. */
4120        if (tc->pool->pf.discard_enabled) {
4121                ti->discards_supported = true;
4122                ti->num_discard_bios = 1;
4123                ti->split_discard_bios = false;
4124        }
4125
4126        mutex_unlock(&dm_thin_pool_table.mutex);
4127
4128        spin_lock_irqsave(&tc->pool->lock, flags);
4129        if (tc->pool->suspended) {
4130                spin_unlock_irqrestore(&tc->pool->lock, flags);
4131                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4132                ti->error = "Unable to activate thin device while pool is suspended";
4133                r = -EINVAL;
4134                goto bad;
4135        }
4136        atomic_set(&tc->refcount, 1);
4137        init_completion(&tc->can_destroy);
4138        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4139        spin_unlock_irqrestore(&tc->pool->lock, flags);
4140        /*
4141         * This synchronize_rcu() call is needed here otherwise we risk a
4142         * wake_worker() call finding no bios to process (because the newly
4143         * added tc isn't yet visible).  So this reduces latency since we
4144         * aren't then dependent on the periodic commit to wake_worker().
4145         */
4146        synchronize_rcu();
4147
4148        dm_put(pool_md);
4149
4150        return 0;
4151
4152bad:
4153        dm_pool_close_thin_device(tc->td);
4154bad_pool:
4155        __pool_dec(tc->pool);
4156bad_pool_lookup:
4157        dm_put(pool_md);
4158bad_common:
4159        dm_put_device(ti, tc->pool_dev);
4160bad_pool_dev:
4161        if (tc->origin_dev)
4162                dm_put_device(ti, tc->origin_dev);
4163bad_origin_dev:
4164        kfree(tc);
4165out_unlock:
4166        mutex_unlock(&dm_thin_pool_table.mutex);
4167
4168        return r;
4169}
4170
4171static int thin_map(struct dm_target *ti, struct bio *bio)
4172{
4173        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4174
4175        return thin_bio_map(ti, bio);
4176}
4177
4178static int thin_endio(struct dm_target *ti, struct bio *bio,
4179                blk_status_t *err)
4180{
4181        unsigned long flags;
4182        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4183        struct list_head work;
4184        struct dm_thin_new_mapping *m, *tmp;
4185        struct pool *pool = h->tc->pool;
4186
4187        if (h->shared_read_entry) {
4188                INIT_LIST_HEAD(&work);
4189                dm_deferred_entry_dec(h->shared_read_entry, &work);
4190
4191                spin_lock_irqsave(&pool->lock, flags);
4192                list_for_each_entry_safe(m, tmp, &work, list) {
4193                        list_del(&m->list);
4194                        __complete_mapping_preparation(m);
4195                }
4196                spin_unlock_irqrestore(&pool->lock, flags);
4197        }
4198
4199        if (h->all_io_entry) {
4200                INIT_LIST_HEAD(&work);
4201                dm_deferred_entry_dec(h->all_io_entry, &work);
4202                if (!list_empty(&work)) {
4203                        spin_lock_irqsave(&pool->lock, flags);
4204                        list_for_each_entry_safe(m, tmp, &work, list)
4205                                list_add_tail(&m->list, &pool->prepared_discards);
4206                        spin_unlock_irqrestore(&pool->lock, flags);
4207                        wake_worker(pool);
4208                }
4209        }
4210
4211        if (h->cell)
4212                cell_defer_no_holder(h->tc, h->cell);
4213
4214        return DM_ENDIO_DONE;
4215}
4216
4217static void thin_presuspend(struct dm_target *ti)
4218{
4219        struct thin_c *tc = ti->private;
4220
4221        if (dm_noflush_suspending(ti))
4222                noflush_work(tc, do_noflush_start);
4223}
4224
4225static void thin_postsuspend(struct dm_target *ti)
4226{
4227        struct thin_c *tc = ti->private;
4228
4229        /*
4230         * The dm_noflush_suspending flag has been cleared by now, so
4231         * unfortunately we must always run this.
4232         */
4233        noflush_work(tc, do_noflush_stop);
4234}
4235
4236static int thin_preresume(struct dm_target *ti)
4237{
4238        struct thin_c *tc = ti->private;
4239
4240        if (tc->origin_dev)
4241                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4242
4243        return 0;
4244}
4245
4246/*
4247 * <nr mapped sectors> <highest mapped sector>
4248 */
4249static void thin_status(struct dm_target *ti, status_type_t type,
4250                        unsigned status_flags, char *result, unsigned maxlen)
4251{
4252        int r;
4253        ssize_t sz = 0;
4254        dm_block_t mapped, highest;
4255        char buf[BDEVNAME_SIZE];
4256        struct thin_c *tc = ti->private;
4257
4258        if (get_pool_mode(tc->pool) == PM_FAIL) {
4259                DMEMIT("Fail");
4260                return;
4261        }
4262
4263        if (!tc->td)
4264                DMEMIT("-");
4265        else {
4266                switch (type) {
4267                case STATUSTYPE_INFO:
4268                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4269                        if (r) {
4270                                DMERR("dm_thin_get_mapped_count returned %d", r);
4271                                goto err;
4272                        }
4273
4274                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4275                        if (r < 0) {
4276                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4277                                goto err;
4278                        }
4279
4280                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4281                        if (r)
4282                                DMEMIT("%llu", ((highest + 1) *
4283                                                tc->pool->sectors_per_block) - 1);
4284                        else
4285                                DMEMIT("-");
4286                        break;
4287
4288                case STATUSTYPE_TABLE:
4289                        DMEMIT("%s %lu",
4290                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4291                               (unsigned long) tc->dev_id);
4292                        if (tc->origin_dev)
4293                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4294                        break;
4295                }
4296        }
4297
4298        return;
4299
4300err:
4301        DMEMIT("Error");
4302}
4303
4304static int thin_iterate_devices(struct dm_target *ti,
4305                                iterate_devices_callout_fn fn, void *data)
4306{
4307        sector_t blocks;
4308        struct thin_c *tc = ti->private;
4309        struct pool *pool = tc->pool;
4310
4311        /*
4312         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4313         * we follow a more convoluted path through to the pool's target.
4314         */
4315        if (!pool->ti)
4316                return 0;       /* nothing is bound */
4317
4318        blocks = pool->ti->len;
4319        (void) sector_div(blocks, pool->sectors_per_block);
4320        if (blocks)
4321                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4322
4323        return 0;
4324}
4325
4326static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4327{
4328        struct thin_c *tc = ti->private;
4329        struct pool *pool = tc->pool;
4330
4331        if (!pool->pf.discard_enabled)
4332                return;
4333
4334        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4335        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4336}
4337
4338static struct target_type thin_target = {
4339        .name = "thin",
4340        .version = {1, 19, 0},
4341        .module = THIS_MODULE,
4342        .ctr = thin_ctr,
4343        .dtr = thin_dtr,
4344        .map = thin_map,
4345        .end_io = thin_endio,
4346        .preresume = thin_preresume,
4347        .presuspend = thin_presuspend,
4348        .postsuspend = thin_postsuspend,
4349        .status = thin_status,
4350        .iterate_devices = thin_iterate_devices,
4351        .io_hints = thin_io_hints,
4352};
4353
4354/*----------------------------------------------------------------*/
4355
4356static int __init dm_thin_init(void)
4357{
4358        int r;
4359
4360        pool_table_init();
4361
4362        r = dm_register_target(&thin_target);
4363        if (r)
4364                return r;
4365
4366        r = dm_register_target(&pool_target);
4367        if (r)
4368                goto bad_pool_target;
4369
4370        r = -ENOMEM;
4371
4372        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4373        if (!_new_mapping_cache)
4374                goto bad_new_mapping_cache;
4375
4376        return 0;
4377
4378bad_new_mapping_cache:
4379        dm_unregister_target(&pool_target);
4380bad_pool_target:
4381        dm_unregister_target(&thin_target);
4382
4383        return r;
4384}
4385
4386static void dm_thin_exit(void)
4387{
4388        dm_unregister_target(&thin_target);
4389        dm_unregister_target(&pool_target);
4390
4391        kmem_cache_destroy(_new_mapping_cache);
4392}
4393
4394module_init(dm_thin_init);
4395module_exit(dm_thin_exit);
4396
4397module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4398MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4399
4400MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4401MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4402MODULE_LICENSE("GPL");
4403