linux/drivers/mmc/host/mmci.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *            is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *                is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *                   register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *                    indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *                    getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 */
  86struct variant_data {
  87        unsigned int            clkreg;
  88        unsigned int            clkreg_enable;
  89        unsigned int            clkreg_8bit_bus_enable;
  90        unsigned int            clkreg_neg_edge_enable;
  91        unsigned int            datalength_bits;
  92        unsigned int            fifosize;
  93        unsigned int            fifohalfsize;
  94        unsigned int            data_cmd_enable;
  95        unsigned int            datactrl_mask_ddrmode;
  96        unsigned int            datactrl_mask_sdio;
  97        bool                    st_sdio;
  98        bool                    st_clkdiv;
  99        bool                    blksz_datactrl16;
 100        bool                    blksz_datactrl4;
 101        u32                     pwrreg_powerup;
 102        u32                     f_max;
 103        bool                    signal_direction;
 104        bool                    pwrreg_clkgate;
 105        bool                    busy_detect;
 106        u32                     busy_dpsm_flag;
 107        u32                     busy_detect_flag;
 108        u32                     busy_detect_mask;
 109        bool                    pwrreg_nopower;
 110        bool                    explicit_mclk_control;
 111        bool                    qcom_fifo;
 112        bool                    qcom_dml;
 113        bool                    reversed_irq_handling;
 114};
 115
 116static struct variant_data variant_arm = {
 117        .fifosize               = 16 * 4,
 118        .fifohalfsize           = 8 * 4,
 119        .datalength_bits        = 16,
 120        .pwrreg_powerup         = MCI_PWR_UP,
 121        .f_max                  = 100000000,
 122        .reversed_irq_handling  = true,
 123};
 124
 125static struct variant_data variant_arm_extended_fifo = {
 126        .fifosize               = 128 * 4,
 127        .fifohalfsize           = 64 * 4,
 128        .datalength_bits        = 16,
 129        .pwrreg_powerup         = MCI_PWR_UP,
 130        .f_max                  = 100000000,
 131};
 132
 133static struct variant_data variant_arm_extended_fifo_hwfc = {
 134        .fifosize               = 128 * 4,
 135        .fifohalfsize           = 64 * 4,
 136        .clkreg_enable          = MCI_ARM_HWFCEN,
 137        .datalength_bits        = 16,
 138        .pwrreg_powerup         = MCI_PWR_UP,
 139        .f_max                  = 100000000,
 140};
 141
 142static struct variant_data variant_u300 = {
 143        .fifosize               = 16 * 4,
 144        .fifohalfsize           = 8 * 4,
 145        .clkreg_enable          = MCI_ST_U300_HWFCEN,
 146        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 147        .datalength_bits        = 16,
 148        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 149        .st_sdio                        = true,
 150        .pwrreg_powerup         = MCI_PWR_ON,
 151        .f_max                  = 100000000,
 152        .signal_direction       = true,
 153        .pwrreg_clkgate         = true,
 154        .pwrreg_nopower         = true,
 155};
 156
 157static struct variant_data variant_nomadik = {
 158        .fifosize               = 16 * 4,
 159        .fifohalfsize           = 8 * 4,
 160        .clkreg                 = MCI_CLK_ENABLE,
 161        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 162        .datalength_bits        = 24,
 163        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 164        .st_sdio                = true,
 165        .st_clkdiv              = true,
 166        .pwrreg_powerup         = MCI_PWR_ON,
 167        .f_max                  = 100000000,
 168        .signal_direction       = true,
 169        .pwrreg_clkgate         = true,
 170        .pwrreg_nopower         = true,
 171};
 172
 173static struct variant_data variant_ux500 = {
 174        .fifosize               = 30 * 4,
 175        .fifohalfsize           = 8 * 4,
 176        .clkreg                 = MCI_CLK_ENABLE,
 177        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 178        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 179        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 180        .datalength_bits        = 24,
 181        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 182        .st_sdio                = true,
 183        .st_clkdiv              = true,
 184        .pwrreg_powerup         = MCI_PWR_ON,
 185        .f_max                  = 100000000,
 186        .signal_direction       = true,
 187        .pwrreg_clkgate         = true,
 188        .busy_detect            = true,
 189        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 190        .busy_detect_flag       = MCI_ST_CARDBUSY,
 191        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 192        .pwrreg_nopower         = true,
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196        .fifosize               = 30 * 4,
 197        .fifohalfsize           = 8 * 4,
 198        .clkreg                 = MCI_CLK_ENABLE,
 199        .clkreg_enable          = MCI_ST_UX500_HWFCEN,
 200        .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201        .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
 202        .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
 203        .datalength_bits        = 24,
 204        .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
 205        .st_sdio                = true,
 206        .st_clkdiv              = true,
 207        .blksz_datactrl16       = true,
 208        .pwrreg_powerup         = MCI_PWR_ON,
 209        .f_max                  = 100000000,
 210        .signal_direction       = true,
 211        .pwrreg_clkgate         = true,
 212        .busy_detect            = true,
 213        .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
 214        .busy_detect_flag       = MCI_ST_CARDBUSY,
 215        .busy_detect_mask       = MCI_ST_BUSYENDMASK,
 216        .pwrreg_nopower         = true,
 217};
 218
 219static struct variant_data variant_qcom = {
 220        .fifosize               = 16 * 4,
 221        .fifohalfsize           = 8 * 4,
 222        .clkreg                 = MCI_CLK_ENABLE,
 223        .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
 224                                  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 225        .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 226        .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 227        .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
 228        .blksz_datactrl4        = true,
 229        .datalength_bits        = 24,
 230        .pwrreg_powerup         = MCI_PWR_UP,
 231        .f_max                  = 208000000,
 232        .explicit_mclk_control  = true,
 233        .qcom_fifo              = true,
 234        .qcom_dml               = true,
 235};
 236
 237/* Busy detection for the ST Micro variant */
 238static int mmci_card_busy(struct mmc_host *mmc)
 239{
 240        struct mmci_host *host = mmc_priv(mmc);
 241        unsigned long flags;
 242        int busy = 0;
 243
 244        spin_lock_irqsave(&host->lock, flags);
 245        if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 246                busy = 1;
 247        spin_unlock_irqrestore(&host->lock, flags);
 248
 249        return busy;
 250}
 251
 252/*
 253 * Validate mmc prerequisites
 254 */
 255static int mmci_validate_data(struct mmci_host *host,
 256                              struct mmc_data *data)
 257{
 258        if (!data)
 259                return 0;
 260
 261        if (!is_power_of_2(data->blksz)) {
 262                dev_err(mmc_dev(host->mmc),
 263                        "unsupported block size (%d bytes)\n", data->blksz);
 264                return -EINVAL;
 265        }
 266
 267        return 0;
 268}
 269
 270static void mmci_reg_delay(struct mmci_host *host)
 271{
 272        /*
 273         * According to the spec, at least three feedback clock cycles
 274         * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 275         * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 276         * Worst delay time during card init is at 100 kHz => 30 us.
 277         * Worst delay time when up and running is at 25 MHz => 120 ns.
 278         */
 279        if (host->cclk < 25000000)
 280                udelay(30);
 281        else
 282                ndelay(120);
 283}
 284
 285/*
 286 * This must be called with host->lock held
 287 */
 288static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 289{
 290        if (host->clk_reg != clk) {
 291                host->clk_reg = clk;
 292                writel(clk, host->base + MMCICLOCK);
 293        }
 294}
 295
 296/*
 297 * This must be called with host->lock held
 298 */
 299static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 300{
 301        if (host->pwr_reg != pwr) {
 302                host->pwr_reg = pwr;
 303                writel(pwr, host->base + MMCIPOWER);
 304        }
 305}
 306
 307/*
 308 * This must be called with host->lock held
 309 */
 310static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 311{
 312        /* Keep busy mode in DPSM if enabled */
 313        datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 314
 315        if (host->datactrl_reg != datactrl) {
 316                host->datactrl_reg = datactrl;
 317                writel(datactrl, host->base + MMCIDATACTRL);
 318        }
 319}
 320
 321/*
 322 * This must be called with host->lock held
 323 */
 324static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 325{
 326        struct variant_data *variant = host->variant;
 327        u32 clk = variant->clkreg;
 328
 329        /* Make sure cclk reflects the current calculated clock */
 330        host->cclk = 0;
 331
 332        if (desired) {
 333                if (variant->explicit_mclk_control) {
 334                        host->cclk = host->mclk;
 335                } else if (desired >= host->mclk) {
 336                        clk = MCI_CLK_BYPASS;
 337                        if (variant->st_clkdiv)
 338                                clk |= MCI_ST_UX500_NEG_EDGE;
 339                        host->cclk = host->mclk;
 340                } else if (variant->st_clkdiv) {
 341                        /*
 342                         * DB8500 TRM says f = mclk / (clkdiv + 2)
 343                         * => clkdiv = (mclk / f) - 2
 344                         * Round the divider up so we don't exceed the max
 345                         * frequency
 346                         */
 347                        clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 348                        if (clk >= 256)
 349                                clk = 255;
 350                        host->cclk = host->mclk / (clk + 2);
 351                } else {
 352                        /*
 353                         * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 354                         * => clkdiv = mclk / (2 * f) - 1
 355                         */
 356                        clk = host->mclk / (2 * desired) - 1;
 357                        if (clk >= 256)
 358                                clk = 255;
 359                        host->cclk = host->mclk / (2 * (clk + 1));
 360                }
 361
 362                clk |= variant->clkreg_enable;
 363                clk |= MCI_CLK_ENABLE;
 364                /* This hasn't proven to be worthwhile */
 365                /* clk |= MCI_CLK_PWRSAVE; */
 366        }
 367
 368        /* Set actual clock for debug */
 369        host->mmc->actual_clock = host->cclk;
 370
 371        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 372                clk |= MCI_4BIT_BUS;
 373        if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 374                clk |= variant->clkreg_8bit_bus_enable;
 375
 376        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 377            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 378                clk |= variant->clkreg_neg_edge_enable;
 379
 380        mmci_write_clkreg(host, clk);
 381}
 382
 383static void
 384mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 385{
 386        writel(0, host->base + MMCICOMMAND);
 387
 388        BUG_ON(host->data);
 389
 390        host->mrq = NULL;
 391        host->cmd = NULL;
 392
 393        mmc_request_done(host->mmc, mrq);
 394}
 395
 396static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 397{
 398        void __iomem *base = host->base;
 399
 400        if (host->singleirq) {
 401                unsigned int mask0 = readl(base + MMCIMASK0);
 402
 403                mask0 &= ~MCI_IRQ1MASK;
 404                mask0 |= mask;
 405
 406                writel(mask0, base + MMCIMASK0);
 407        }
 408
 409        writel(mask, base + MMCIMASK1);
 410}
 411
 412static void mmci_stop_data(struct mmci_host *host)
 413{
 414        mmci_write_datactrlreg(host, 0);
 415        mmci_set_mask1(host, 0);
 416        host->data = NULL;
 417}
 418
 419static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 420{
 421        unsigned int flags = SG_MITER_ATOMIC;
 422
 423        if (data->flags & MMC_DATA_READ)
 424                flags |= SG_MITER_TO_SG;
 425        else
 426                flags |= SG_MITER_FROM_SG;
 427
 428        sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 429}
 430
 431/*
 432 * All the DMA operation mode stuff goes inside this ifdef.
 433 * This assumes that you have a generic DMA device interface,
 434 * no custom DMA interfaces are supported.
 435 */
 436#ifdef CONFIG_DMA_ENGINE
 437static void mmci_dma_setup(struct mmci_host *host)
 438{
 439        const char *rxname, *txname;
 440        struct variant_data *variant = host->variant;
 441
 442        host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 443        host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 444
 445        /* initialize pre request cookie */
 446        host->next_data.cookie = 1;
 447
 448        /*
 449         * If only an RX channel is specified, the driver will
 450         * attempt to use it bidirectionally, however if it is
 451         * is specified but cannot be located, DMA will be disabled.
 452         */
 453        if (host->dma_rx_channel && !host->dma_tx_channel)
 454                host->dma_tx_channel = host->dma_rx_channel;
 455
 456        if (host->dma_rx_channel)
 457                rxname = dma_chan_name(host->dma_rx_channel);
 458        else
 459                rxname = "none";
 460
 461        if (host->dma_tx_channel)
 462                txname = dma_chan_name(host->dma_tx_channel);
 463        else
 464                txname = "none";
 465
 466        dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 467                 rxname, txname);
 468
 469        /*
 470         * Limit the maximum segment size in any SG entry according to
 471         * the parameters of the DMA engine device.
 472         */
 473        if (host->dma_tx_channel) {
 474                struct device *dev = host->dma_tx_channel->device->dev;
 475                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 476
 477                if (max_seg_size < host->mmc->max_seg_size)
 478                        host->mmc->max_seg_size = max_seg_size;
 479        }
 480        if (host->dma_rx_channel) {
 481                struct device *dev = host->dma_rx_channel->device->dev;
 482                unsigned int max_seg_size = dma_get_max_seg_size(dev);
 483
 484                if (max_seg_size < host->mmc->max_seg_size)
 485                        host->mmc->max_seg_size = max_seg_size;
 486        }
 487
 488        if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 489                if (dml_hw_init(host, host->mmc->parent->of_node))
 490                        variant->qcom_dml = false;
 491}
 492
 493/*
 494 * This is used in or so inline it
 495 * so it can be discarded.
 496 */
 497static inline void mmci_dma_release(struct mmci_host *host)
 498{
 499        if (host->dma_rx_channel)
 500                dma_release_channel(host->dma_rx_channel);
 501        if (host->dma_tx_channel)
 502                dma_release_channel(host->dma_tx_channel);
 503        host->dma_rx_channel = host->dma_tx_channel = NULL;
 504}
 505
 506static void mmci_dma_data_error(struct mmci_host *host)
 507{
 508        dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 509        dmaengine_terminate_all(host->dma_current);
 510        host->dma_in_progress = false;
 511        host->dma_current = NULL;
 512        host->dma_desc_current = NULL;
 513        host->data->host_cookie = 0;
 514}
 515
 516static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 517{
 518        struct dma_chan *chan;
 519
 520        if (data->flags & MMC_DATA_READ)
 521                chan = host->dma_rx_channel;
 522        else
 523                chan = host->dma_tx_channel;
 524
 525        dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 526                     mmc_get_dma_dir(data));
 527}
 528
 529static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 530{
 531        u32 status;
 532        int i;
 533
 534        /* Wait up to 1ms for the DMA to complete */
 535        for (i = 0; ; i++) {
 536                status = readl(host->base + MMCISTATUS);
 537                if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 538                        break;
 539                udelay(10);
 540        }
 541
 542        /*
 543         * Check to see whether we still have some data left in the FIFO -
 544         * this catches DMA controllers which are unable to monitor the
 545         * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 546         * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 547         */
 548        if (status & MCI_RXDATAAVLBLMASK) {
 549                mmci_dma_data_error(host);
 550                if (!data->error)
 551                        data->error = -EIO;
 552        }
 553
 554        if (!data->host_cookie)
 555                mmci_dma_unmap(host, data);
 556
 557        /*
 558         * Use of DMA with scatter-gather is impossible.
 559         * Give up with DMA and switch back to PIO mode.
 560         */
 561        if (status & MCI_RXDATAAVLBLMASK) {
 562                dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 563                mmci_dma_release(host);
 564        }
 565
 566        host->dma_in_progress = false;
 567        host->dma_current = NULL;
 568        host->dma_desc_current = NULL;
 569}
 570
 571/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 572static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 573                                struct dma_chan **dma_chan,
 574                                struct dma_async_tx_descriptor **dma_desc)
 575{
 576        struct variant_data *variant = host->variant;
 577        struct dma_slave_config conf = {
 578                .src_addr = host->phybase + MMCIFIFO,
 579                .dst_addr = host->phybase + MMCIFIFO,
 580                .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 581                .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 582                .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 583                .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 584                .device_fc = false,
 585        };
 586        struct dma_chan *chan;
 587        struct dma_device *device;
 588        struct dma_async_tx_descriptor *desc;
 589        int nr_sg;
 590        unsigned long flags = DMA_CTRL_ACK;
 591
 592        if (data->flags & MMC_DATA_READ) {
 593                conf.direction = DMA_DEV_TO_MEM;
 594                chan = host->dma_rx_channel;
 595        } else {
 596                conf.direction = DMA_MEM_TO_DEV;
 597                chan = host->dma_tx_channel;
 598        }
 599
 600        /* If there's no DMA channel, fall back to PIO */
 601        if (!chan)
 602                return -EINVAL;
 603
 604        /* If less than or equal to the fifo size, don't bother with DMA */
 605        if (data->blksz * data->blocks <= variant->fifosize)
 606                return -EINVAL;
 607
 608        device = chan->device;
 609        nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 610                           mmc_get_dma_dir(data));
 611        if (nr_sg == 0)
 612                return -EINVAL;
 613
 614        if (host->variant->qcom_dml)
 615                flags |= DMA_PREP_INTERRUPT;
 616
 617        dmaengine_slave_config(chan, &conf);
 618        desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 619                                            conf.direction, flags);
 620        if (!desc)
 621                goto unmap_exit;
 622
 623        *dma_chan = chan;
 624        *dma_desc = desc;
 625
 626        return 0;
 627
 628 unmap_exit:
 629        dma_unmap_sg(device->dev, data->sg, data->sg_len,
 630                     mmc_get_dma_dir(data));
 631        return -ENOMEM;
 632}
 633
 634static inline int mmci_dma_prep_data(struct mmci_host *host,
 635                                     struct mmc_data *data)
 636{
 637        /* Check if next job is already prepared. */
 638        if (host->dma_current && host->dma_desc_current)
 639                return 0;
 640
 641        /* No job were prepared thus do it now. */
 642        return __mmci_dma_prep_data(host, data, &host->dma_current,
 643                                    &host->dma_desc_current);
 644}
 645
 646static inline int mmci_dma_prep_next(struct mmci_host *host,
 647                                     struct mmc_data *data)
 648{
 649        struct mmci_host_next *nd = &host->next_data;
 650        return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 651}
 652
 653static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 654{
 655        int ret;
 656        struct mmc_data *data = host->data;
 657
 658        ret = mmci_dma_prep_data(host, host->data);
 659        if (ret)
 660                return ret;
 661
 662        /* Okay, go for it. */
 663        dev_vdbg(mmc_dev(host->mmc),
 664                 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 665                 data->sg_len, data->blksz, data->blocks, data->flags);
 666        host->dma_in_progress = true;
 667        dmaengine_submit(host->dma_desc_current);
 668        dma_async_issue_pending(host->dma_current);
 669
 670        if (host->variant->qcom_dml)
 671                dml_start_xfer(host, data);
 672
 673        datactrl |= MCI_DPSM_DMAENABLE;
 674
 675        /* Trigger the DMA transfer */
 676        mmci_write_datactrlreg(host, datactrl);
 677
 678        /*
 679         * Let the MMCI say when the data is ended and it's time
 680         * to fire next DMA request. When that happens, MMCI will
 681         * call mmci_data_end()
 682         */
 683        writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 684               host->base + MMCIMASK0);
 685        return 0;
 686}
 687
 688static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 689{
 690        struct mmci_host_next *next = &host->next_data;
 691
 692        WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 693        WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 694
 695        host->dma_desc_current = next->dma_desc;
 696        host->dma_current = next->dma_chan;
 697        next->dma_desc = NULL;
 698        next->dma_chan = NULL;
 699}
 700
 701static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 702{
 703        struct mmci_host *host = mmc_priv(mmc);
 704        struct mmc_data *data = mrq->data;
 705        struct mmci_host_next *nd = &host->next_data;
 706
 707        if (!data)
 708                return;
 709
 710        BUG_ON(data->host_cookie);
 711
 712        if (mmci_validate_data(host, data))
 713                return;
 714
 715        if (!mmci_dma_prep_next(host, data))
 716                data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 717}
 718
 719static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 720                              int err)
 721{
 722        struct mmci_host *host = mmc_priv(mmc);
 723        struct mmc_data *data = mrq->data;
 724
 725        if (!data || !data->host_cookie)
 726                return;
 727
 728        mmci_dma_unmap(host, data);
 729
 730        if (err) {
 731                struct mmci_host_next *next = &host->next_data;
 732                struct dma_chan *chan;
 733                if (data->flags & MMC_DATA_READ)
 734                        chan = host->dma_rx_channel;
 735                else
 736                        chan = host->dma_tx_channel;
 737                dmaengine_terminate_all(chan);
 738
 739                if (host->dma_desc_current == next->dma_desc)
 740                        host->dma_desc_current = NULL;
 741
 742                if (host->dma_current == next->dma_chan) {
 743                        host->dma_in_progress = false;
 744                        host->dma_current = NULL;
 745                }
 746
 747                next->dma_desc = NULL;
 748                next->dma_chan = NULL;
 749                data->host_cookie = 0;
 750        }
 751}
 752
 753#else
 754/* Blank functions if the DMA engine is not available */
 755static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 756{
 757}
 758static inline void mmci_dma_setup(struct mmci_host *host)
 759{
 760}
 761
 762static inline void mmci_dma_release(struct mmci_host *host)
 763{
 764}
 765
 766static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 767{
 768}
 769
 770static inline void mmci_dma_finalize(struct mmci_host *host,
 771                                     struct mmc_data *data)
 772{
 773}
 774
 775static inline void mmci_dma_data_error(struct mmci_host *host)
 776{
 777}
 778
 779static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 780{
 781        return -ENOSYS;
 782}
 783
 784#define mmci_pre_request NULL
 785#define mmci_post_request NULL
 786
 787#endif
 788
 789static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 790{
 791        struct variant_data *variant = host->variant;
 792        unsigned int datactrl, timeout, irqmask;
 793        unsigned long long clks;
 794        void __iomem *base;
 795        int blksz_bits;
 796
 797        dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 798                data->blksz, data->blocks, data->flags);
 799
 800        host->data = data;
 801        host->size = data->blksz * data->blocks;
 802        data->bytes_xfered = 0;
 803
 804        clks = (unsigned long long)data->timeout_ns * host->cclk;
 805        do_div(clks, NSEC_PER_SEC);
 806
 807        timeout = data->timeout_clks + (unsigned int)clks;
 808
 809        base = host->base;
 810        writel(timeout, base + MMCIDATATIMER);
 811        writel(host->size, base + MMCIDATALENGTH);
 812
 813        blksz_bits = ffs(data->blksz) - 1;
 814        BUG_ON(1 << blksz_bits != data->blksz);
 815
 816        if (variant->blksz_datactrl16)
 817                datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 818        else if (variant->blksz_datactrl4)
 819                datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 820        else
 821                datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 822
 823        if (data->flags & MMC_DATA_READ)
 824                datactrl |= MCI_DPSM_DIRECTION;
 825
 826        if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 827                u32 clk;
 828
 829                datactrl |= variant->datactrl_mask_sdio;
 830
 831                /*
 832                 * The ST Micro variant for SDIO small write transfers
 833                 * needs to have clock H/W flow control disabled,
 834                 * otherwise the transfer will not start. The threshold
 835                 * depends on the rate of MCLK.
 836                 */
 837                if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 838                    (host->size < 8 ||
 839                     (host->size <= 8 && host->mclk > 50000000)))
 840                        clk = host->clk_reg & ~variant->clkreg_enable;
 841                else
 842                        clk = host->clk_reg | variant->clkreg_enable;
 843
 844                mmci_write_clkreg(host, clk);
 845        }
 846
 847        if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 848            host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 849                datactrl |= variant->datactrl_mask_ddrmode;
 850
 851        /*
 852         * Attempt to use DMA operation mode, if this
 853         * should fail, fall back to PIO mode
 854         */
 855        if (!mmci_dma_start_data(host, datactrl))
 856                return;
 857
 858        /* IRQ mode, map the SG list for CPU reading/writing */
 859        mmci_init_sg(host, data);
 860
 861        if (data->flags & MMC_DATA_READ) {
 862                irqmask = MCI_RXFIFOHALFFULLMASK;
 863
 864                /*
 865                 * If we have less than the fifo 'half-full' threshold to
 866                 * transfer, trigger a PIO interrupt as soon as any data
 867                 * is available.
 868                 */
 869                if (host->size < variant->fifohalfsize)
 870                        irqmask |= MCI_RXDATAAVLBLMASK;
 871        } else {
 872                /*
 873                 * We don't actually need to include "FIFO empty" here
 874                 * since its implicit in "FIFO half empty".
 875                 */
 876                irqmask = MCI_TXFIFOHALFEMPTYMASK;
 877        }
 878
 879        mmci_write_datactrlreg(host, datactrl);
 880        writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 881        mmci_set_mask1(host, irqmask);
 882}
 883
 884static void
 885mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 886{
 887        void __iomem *base = host->base;
 888
 889        dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 890            cmd->opcode, cmd->arg, cmd->flags);
 891
 892        if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 893                writel(0, base + MMCICOMMAND);
 894                mmci_reg_delay(host);
 895        }
 896
 897        c |= cmd->opcode | MCI_CPSM_ENABLE;
 898        if (cmd->flags & MMC_RSP_PRESENT) {
 899                if (cmd->flags & MMC_RSP_136)
 900                        c |= MCI_CPSM_LONGRSP;
 901                c |= MCI_CPSM_RESPONSE;
 902        }
 903        if (/*interrupt*/0)
 904                c |= MCI_CPSM_INTERRUPT;
 905
 906        if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 907                c |= host->variant->data_cmd_enable;
 908
 909        host->cmd = cmd;
 910
 911        writel(cmd->arg, base + MMCIARGUMENT);
 912        writel(c, base + MMCICOMMAND);
 913}
 914
 915static void
 916mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 917              unsigned int status)
 918{
 919        /* Make sure we have data to handle */
 920        if (!data)
 921                return;
 922
 923        /* First check for errors */
 924        if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 925                      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 926                u32 remain, success;
 927
 928                /* Terminate the DMA transfer */
 929                if (dma_inprogress(host)) {
 930                        mmci_dma_data_error(host);
 931                        mmci_dma_unmap(host, data);
 932                }
 933
 934                /*
 935                 * Calculate how far we are into the transfer.  Note that
 936                 * the data counter gives the number of bytes transferred
 937                 * on the MMC bus, not on the host side.  On reads, this
 938                 * can be as much as a FIFO-worth of data ahead.  This
 939                 * matters for FIFO overruns only.
 940                 */
 941                remain = readl(host->base + MMCIDATACNT);
 942                success = data->blksz * data->blocks - remain;
 943
 944                dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 945                        status, success);
 946                if (status & MCI_DATACRCFAIL) {
 947                        /* Last block was not successful */
 948                        success -= 1;
 949                        data->error = -EILSEQ;
 950                } else if (status & MCI_DATATIMEOUT) {
 951                        data->error = -ETIMEDOUT;
 952                } else if (status & MCI_STARTBITERR) {
 953                        data->error = -ECOMM;
 954                } else if (status & MCI_TXUNDERRUN) {
 955                        data->error = -EIO;
 956                } else if (status & MCI_RXOVERRUN) {
 957                        if (success > host->variant->fifosize)
 958                                success -= host->variant->fifosize;
 959                        else
 960                                success = 0;
 961                        data->error = -EIO;
 962                }
 963                data->bytes_xfered = round_down(success, data->blksz);
 964        }
 965
 966        if (status & MCI_DATABLOCKEND)
 967                dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 968
 969        if (status & MCI_DATAEND || data->error) {
 970                if (dma_inprogress(host))
 971                        mmci_dma_finalize(host, data);
 972                mmci_stop_data(host);
 973
 974                if (!data->error)
 975                        /* The error clause is handled above, success! */
 976                        data->bytes_xfered = data->blksz * data->blocks;
 977
 978                if (!data->stop || host->mrq->sbc) {
 979                        mmci_request_end(host, data->mrq);
 980                } else {
 981                        mmci_start_command(host, data->stop, 0);
 982                }
 983        }
 984}
 985
 986static void
 987mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 988             unsigned int status)
 989{
 990        void __iomem *base = host->base;
 991        bool sbc;
 992
 993        if (!cmd)
 994                return;
 995
 996        sbc = (cmd == host->mrq->sbc);
 997
 998        /*
 999         * We need to be one of these interrupts to be considered worth
1000         * handling. Note that we tag on any latent IRQs postponed
1001         * due to waiting for busy status.
1002         */
1003        if (!((status|host->busy_status) &
1004              (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1005                return;
1006
1007        /*
1008         * ST Micro variant: handle busy detection.
1009         */
1010        if (host->variant->busy_detect) {
1011                bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1012
1013                /* We are busy with a command, return */
1014                if (host->busy_status &&
1015                    (status & host->variant->busy_detect_flag))
1016                        return;
1017
1018                /*
1019                 * We were not busy, but we now got a busy response on
1020                 * something that was not an error, and we double-check
1021                 * that the special busy status bit is still set before
1022                 * proceeding.
1023                 */
1024                if (!host->busy_status && busy_resp &&
1025                    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1026                    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1027
1028                        /* Clear the busy start IRQ */
1029                        writel(host->variant->busy_detect_mask,
1030                               host->base + MMCICLEAR);
1031
1032                        /* Unmask the busy end IRQ */
1033                        writel(readl(base + MMCIMASK0) |
1034                               host->variant->busy_detect_mask,
1035                               base + MMCIMASK0);
1036                        /*
1037                         * Now cache the last response status code (until
1038                         * the busy bit goes low), and return.
1039                         */
1040                        host->busy_status =
1041                                status & (MCI_CMDSENT|MCI_CMDRESPEND);
1042                        return;
1043                }
1044
1045                /*
1046                 * At this point we are not busy with a command, we have
1047                 * not received a new busy request, clear and mask the busy
1048                 * end IRQ and fall through to process the IRQ.
1049                 */
1050                if (host->busy_status) {
1051
1052                        writel(host->variant->busy_detect_mask,
1053                               host->base + MMCICLEAR);
1054
1055                        writel(readl(base + MMCIMASK0) &
1056                               ~host->variant->busy_detect_mask,
1057                               base + MMCIMASK0);
1058                        host->busy_status = 0;
1059                }
1060        }
1061
1062        host->cmd = NULL;
1063
1064        if (status & MCI_CMDTIMEOUT) {
1065                cmd->error = -ETIMEDOUT;
1066        } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1067                cmd->error = -EILSEQ;
1068        } else {
1069                cmd->resp[0] = readl(base + MMCIRESPONSE0);
1070                cmd->resp[1] = readl(base + MMCIRESPONSE1);
1071                cmd->resp[2] = readl(base + MMCIRESPONSE2);
1072                cmd->resp[3] = readl(base + MMCIRESPONSE3);
1073        }
1074
1075        if ((!sbc && !cmd->data) || cmd->error) {
1076                if (host->data) {
1077                        /* Terminate the DMA transfer */
1078                        if (dma_inprogress(host)) {
1079                                mmci_dma_data_error(host);
1080                                mmci_dma_unmap(host, host->data);
1081                        }
1082                        mmci_stop_data(host);
1083                }
1084                mmci_request_end(host, host->mrq);
1085        } else if (sbc) {
1086                mmci_start_command(host, host->mrq->cmd, 0);
1087        } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1088                mmci_start_data(host, cmd->data);
1089        }
1090}
1091
1092static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1093{
1094        return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1095}
1096
1097static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1098{
1099        /*
1100         * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1101         * from the fifo range should be used
1102         */
1103        if (status & MCI_RXFIFOHALFFULL)
1104                return host->variant->fifohalfsize;
1105        else if (status & MCI_RXDATAAVLBL)
1106                return 4;
1107
1108        return 0;
1109}
1110
1111static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1112{
1113        void __iomem *base = host->base;
1114        char *ptr = buffer;
1115        u32 status = readl(host->base + MMCISTATUS);
1116        int host_remain = host->size;
1117
1118        do {
1119                int count = host->get_rx_fifocnt(host, status, host_remain);
1120
1121                if (count > remain)
1122                        count = remain;
1123
1124                if (count <= 0)
1125                        break;
1126
1127                /*
1128                 * SDIO especially may want to send something that is
1129                 * not divisible by 4 (as opposed to card sectors
1130                 * etc). Therefore make sure to always read the last bytes
1131                 * while only doing full 32-bit reads towards the FIFO.
1132                 */
1133                if (unlikely(count & 0x3)) {
1134                        if (count < 4) {
1135                                unsigned char buf[4];
1136                                ioread32_rep(base + MMCIFIFO, buf, 1);
1137                                memcpy(ptr, buf, count);
1138                        } else {
1139                                ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1140                                count &= ~0x3;
1141                        }
1142                } else {
1143                        ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1144                }
1145
1146                ptr += count;
1147                remain -= count;
1148                host_remain -= count;
1149
1150                if (remain == 0)
1151                        break;
1152
1153                status = readl(base + MMCISTATUS);
1154        } while (status & MCI_RXDATAAVLBL);
1155
1156        return ptr - buffer;
1157}
1158
1159static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1160{
1161        struct variant_data *variant = host->variant;
1162        void __iomem *base = host->base;
1163        char *ptr = buffer;
1164
1165        do {
1166                unsigned int count, maxcnt;
1167
1168                maxcnt = status & MCI_TXFIFOEMPTY ?
1169                         variant->fifosize : variant->fifohalfsize;
1170                count = min(remain, maxcnt);
1171
1172                /*
1173                 * SDIO especially may want to send something that is
1174                 * not divisible by 4 (as opposed to card sectors
1175                 * etc), and the FIFO only accept full 32-bit writes.
1176                 * So compensate by adding +3 on the count, a single
1177                 * byte become a 32bit write, 7 bytes will be two
1178                 * 32bit writes etc.
1179                 */
1180                iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1181
1182                ptr += count;
1183                remain -= count;
1184
1185                if (remain == 0)
1186                        break;
1187
1188                status = readl(base + MMCISTATUS);
1189        } while (status & MCI_TXFIFOHALFEMPTY);
1190
1191        return ptr - buffer;
1192}
1193
1194/*
1195 * PIO data transfer IRQ handler.
1196 */
1197static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1198{
1199        struct mmci_host *host = dev_id;
1200        struct sg_mapping_iter *sg_miter = &host->sg_miter;
1201        struct variant_data *variant = host->variant;
1202        void __iomem *base = host->base;
1203        unsigned long flags;
1204        u32 status;
1205
1206        status = readl(base + MMCISTATUS);
1207
1208        dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1209
1210        local_irq_save(flags);
1211
1212        do {
1213                unsigned int remain, len;
1214                char *buffer;
1215
1216                /*
1217                 * For write, we only need to test the half-empty flag
1218                 * here - if the FIFO is completely empty, then by
1219                 * definition it is more than half empty.
1220                 *
1221                 * For read, check for data available.
1222                 */
1223                if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1224                        break;
1225
1226                if (!sg_miter_next(sg_miter))
1227                        break;
1228
1229                buffer = sg_miter->addr;
1230                remain = sg_miter->length;
1231
1232                len = 0;
1233                if (status & MCI_RXACTIVE)
1234                        len = mmci_pio_read(host, buffer, remain);
1235                if (status & MCI_TXACTIVE)
1236                        len = mmci_pio_write(host, buffer, remain, status);
1237
1238                sg_miter->consumed = len;
1239
1240                host->size -= len;
1241                remain -= len;
1242
1243                if (remain)
1244                        break;
1245
1246                status = readl(base + MMCISTATUS);
1247        } while (1);
1248
1249        sg_miter_stop(sg_miter);
1250
1251        local_irq_restore(flags);
1252
1253        /*
1254         * If we have less than the fifo 'half-full' threshold to transfer,
1255         * trigger a PIO interrupt as soon as any data is available.
1256         */
1257        if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1258                mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1259
1260        /*
1261         * If we run out of data, disable the data IRQs; this
1262         * prevents a race where the FIFO becomes empty before
1263         * the chip itself has disabled the data path, and
1264         * stops us racing with our data end IRQ.
1265         */
1266        if (host->size == 0) {
1267                mmci_set_mask1(host, 0);
1268                writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1269        }
1270
1271        return IRQ_HANDLED;
1272}
1273
1274/*
1275 * Handle completion of command and data transfers.
1276 */
1277static irqreturn_t mmci_irq(int irq, void *dev_id)
1278{
1279        struct mmci_host *host = dev_id;
1280        u32 status;
1281        int ret = 0;
1282
1283        spin_lock(&host->lock);
1284
1285        do {
1286                status = readl(host->base + MMCISTATUS);
1287
1288                if (host->singleirq) {
1289                        if (status & readl(host->base + MMCIMASK1))
1290                                mmci_pio_irq(irq, dev_id);
1291
1292                        status &= ~MCI_IRQ1MASK;
1293                }
1294
1295                /*
1296                 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1297                 * enabled) in mmci_cmd_irq() function where ST Micro busy
1298                 * detection variant is handled. Considering the HW seems to be
1299                 * triggering the IRQ on both edges while monitoring DAT0 for
1300                 * busy completion and that same status bit is used to monitor
1301                 * start and end of busy detection, special care must be taken
1302                 * to make sure that both start and end interrupts are always
1303                 * cleared one after the other.
1304                 */
1305                status &= readl(host->base + MMCIMASK0);
1306                if (host->variant->busy_detect)
1307                        writel(status & ~host->variant->busy_detect_mask,
1308                               host->base + MMCICLEAR);
1309                else
1310                        writel(status, host->base + MMCICLEAR);
1311
1312                dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1313
1314                if (host->variant->reversed_irq_handling) {
1315                        mmci_data_irq(host, host->data, status);
1316                        mmci_cmd_irq(host, host->cmd, status);
1317                } else {
1318                        mmci_cmd_irq(host, host->cmd, status);
1319                        mmci_data_irq(host, host->data, status);
1320                }
1321
1322                /*
1323                 * Don't poll for busy completion in irq context.
1324                 */
1325                if (host->variant->busy_detect && host->busy_status)
1326                        status &= ~host->variant->busy_detect_flag;
1327
1328                ret = 1;
1329        } while (status);
1330
1331        spin_unlock(&host->lock);
1332
1333        return IRQ_RETVAL(ret);
1334}
1335
1336static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1337{
1338        struct mmci_host *host = mmc_priv(mmc);
1339        unsigned long flags;
1340
1341        WARN_ON(host->mrq != NULL);
1342
1343        mrq->cmd->error = mmci_validate_data(host, mrq->data);
1344        if (mrq->cmd->error) {
1345                mmc_request_done(mmc, mrq);
1346                return;
1347        }
1348
1349        spin_lock_irqsave(&host->lock, flags);
1350
1351        host->mrq = mrq;
1352
1353        if (mrq->data)
1354                mmci_get_next_data(host, mrq->data);
1355
1356        if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1357                mmci_start_data(host, mrq->data);
1358
1359        if (mrq->sbc)
1360                mmci_start_command(host, mrq->sbc, 0);
1361        else
1362                mmci_start_command(host, mrq->cmd, 0);
1363
1364        spin_unlock_irqrestore(&host->lock, flags);
1365}
1366
1367static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1368{
1369        struct mmci_host *host = mmc_priv(mmc);
1370        struct variant_data *variant = host->variant;
1371        u32 pwr = 0;
1372        unsigned long flags;
1373        int ret;
1374
1375        if (host->plat->ios_handler &&
1376                host->plat->ios_handler(mmc_dev(mmc), ios))
1377                        dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1378
1379        switch (ios->power_mode) {
1380        case MMC_POWER_OFF:
1381                if (!IS_ERR(mmc->supply.vmmc))
1382                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1383
1384                if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1385                        regulator_disable(mmc->supply.vqmmc);
1386                        host->vqmmc_enabled = false;
1387                }
1388
1389                break;
1390        case MMC_POWER_UP:
1391                if (!IS_ERR(mmc->supply.vmmc))
1392                        mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1393
1394                /*
1395                 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1396                 * and instead uses MCI_PWR_ON so apply whatever value is
1397                 * configured in the variant data.
1398                 */
1399                pwr |= variant->pwrreg_powerup;
1400
1401                break;
1402        case MMC_POWER_ON:
1403                if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1404                        ret = regulator_enable(mmc->supply.vqmmc);
1405                        if (ret < 0)
1406                                dev_err(mmc_dev(mmc),
1407                                        "failed to enable vqmmc regulator\n");
1408                        else
1409                                host->vqmmc_enabled = true;
1410                }
1411
1412                pwr |= MCI_PWR_ON;
1413                break;
1414        }
1415
1416        if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1417                /*
1418                 * The ST Micro variant has some additional bits
1419                 * indicating signal direction for the signals in
1420                 * the SD/MMC bus and feedback-clock usage.
1421                 */
1422                pwr |= host->pwr_reg_add;
1423
1424                if (ios->bus_width == MMC_BUS_WIDTH_4)
1425                        pwr &= ~MCI_ST_DATA74DIREN;
1426                else if (ios->bus_width == MMC_BUS_WIDTH_1)
1427                        pwr &= (~MCI_ST_DATA74DIREN &
1428                                ~MCI_ST_DATA31DIREN &
1429                                ~MCI_ST_DATA2DIREN);
1430        }
1431
1432        if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1433                if (host->hw_designer != AMBA_VENDOR_ST)
1434                        pwr |= MCI_ROD;
1435                else {
1436                        /*
1437                         * The ST Micro variant use the ROD bit for something
1438                         * else and only has OD (Open Drain).
1439                         */
1440                        pwr |= MCI_OD;
1441                }
1442        }
1443
1444        /*
1445         * If clock = 0 and the variant requires the MMCIPOWER to be used for
1446         * gating the clock, the MCI_PWR_ON bit is cleared.
1447         */
1448        if (!ios->clock && variant->pwrreg_clkgate)
1449                pwr &= ~MCI_PWR_ON;
1450
1451        if (host->variant->explicit_mclk_control &&
1452            ios->clock != host->clock_cache) {
1453                ret = clk_set_rate(host->clk, ios->clock);
1454                if (ret < 0)
1455                        dev_err(mmc_dev(host->mmc),
1456                                "Error setting clock rate (%d)\n", ret);
1457                else
1458                        host->mclk = clk_get_rate(host->clk);
1459        }
1460        host->clock_cache = ios->clock;
1461
1462        spin_lock_irqsave(&host->lock, flags);
1463
1464        mmci_set_clkreg(host, ios->clock);
1465        mmci_write_pwrreg(host, pwr);
1466        mmci_reg_delay(host);
1467
1468        spin_unlock_irqrestore(&host->lock, flags);
1469}
1470
1471static int mmci_get_cd(struct mmc_host *mmc)
1472{
1473        struct mmci_host *host = mmc_priv(mmc);
1474        struct mmci_platform_data *plat = host->plat;
1475        unsigned int status = mmc_gpio_get_cd(mmc);
1476
1477        if (status == -ENOSYS) {
1478                if (!plat->status)
1479                        return 1; /* Assume always present */
1480
1481                status = plat->status(mmc_dev(host->mmc));
1482        }
1483        return status;
1484}
1485
1486static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1487{
1488        int ret = 0;
1489
1490        if (!IS_ERR(mmc->supply.vqmmc)) {
1491
1492                switch (ios->signal_voltage) {
1493                case MMC_SIGNAL_VOLTAGE_330:
1494                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1495                                                2700000, 3600000);
1496                        break;
1497                case MMC_SIGNAL_VOLTAGE_180:
1498                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1499                                                1700000, 1950000);
1500                        break;
1501                case MMC_SIGNAL_VOLTAGE_120:
1502                        ret = regulator_set_voltage(mmc->supply.vqmmc,
1503                                                1100000, 1300000);
1504                        break;
1505                }
1506
1507                if (ret)
1508                        dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1509        }
1510
1511        return ret;
1512}
1513
1514static struct mmc_host_ops mmci_ops = {
1515        .request        = mmci_request,
1516        .pre_req        = mmci_pre_request,
1517        .post_req       = mmci_post_request,
1518        .set_ios        = mmci_set_ios,
1519        .get_ro         = mmc_gpio_get_ro,
1520        .get_cd         = mmci_get_cd,
1521        .start_signal_voltage_switch = mmci_sig_volt_switch,
1522};
1523
1524static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1525{
1526        struct mmci_host *host = mmc_priv(mmc);
1527        int ret = mmc_of_parse(mmc);
1528
1529        if (ret)
1530                return ret;
1531
1532        if (of_get_property(np, "st,sig-dir-dat0", NULL))
1533                host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1534        if (of_get_property(np, "st,sig-dir-dat2", NULL))
1535                host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1536        if (of_get_property(np, "st,sig-dir-dat31", NULL))
1537                host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1538        if (of_get_property(np, "st,sig-dir-dat74", NULL))
1539                host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1540        if (of_get_property(np, "st,sig-dir-cmd", NULL))
1541                host->pwr_reg_add |= MCI_ST_CMDDIREN;
1542        if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1543                host->pwr_reg_add |= MCI_ST_FBCLKEN;
1544
1545        if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1546                mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1547        if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1548                mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1549
1550        return 0;
1551}
1552
1553static int mmci_probe(struct amba_device *dev,
1554        const struct amba_id *id)
1555{
1556        struct mmci_platform_data *plat = dev->dev.platform_data;
1557        struct device_node *np = dev->dev.of_node;
1558        struct variant_data *variant = id->data;
1559        struct mmci_host *host;
1560        struct mmc_host *mmc;
1561        int ret;
1562
1563        /* Must have platform data or Device Tree. */
1564        if (!plat && !np) {
1565                dev_err(&dev->dev, "No plat data or DT found\n");
1566                return -EINVAL;
1567        }
1568
1569        if (!plat) {
1570                plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1571                if (!plat)
1572                        return -ENOMEM;
1573        }
1574
1575        mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1576        if (!mmc)
1577                return -ENOMEM;
1578
1579        ret = mmci_of_parse(np, mmc);
1580        if (ret)
1581                goto host_free;
1582
1583        host = mmc_priv(mmc);
1584        host->mmc = mmc;
1585
1586        host->hw_designer = amba_manf(dev);
1587        host->hw_revision = amba_rev(dev);
1588        dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1589        dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1590
1591        host->clk = devm_clk_get(&dev->dev, NULL);
1592        if (IS_ERR(host->clk)) {
1593                ret = PTR_ERR(host->clk);
1594                goto host_free;
1595        }
1596
1597        ret = clk_prepare_enable(host->clk);
1598        if (ret)
1599                goto host_free;
1600
1601        if (variant->qcom_fifo)
1602                host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1603        else
1604                host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1605
1606        host->plat = plat;
1607        host->variant = variant;
1608        host->mclk = clk_get_rate(host->clk);
1609        /*
1610         * According to the spec, mclk is max 100 MHz,
1611         * so we try to adjust the clock down to this,
1612         * (if possible).
1613         */
1614        if (host->mclk > variant->f_max) {
1615                ret = clk_set_rate(host->clk, variant->f_max);
1616                if (ret < 0)
1617                        goto clk_disable;
1618                host->mclk = clk_get_rate(host->clk);
1619                dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1620                        host->mclk);
1621        }
1622
1623        host->phybase = dev->res.start;
1624        host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1625        if (IS_ERR(host->base)) {
1626                ret = PTR_ERR(host->base);
1627                goto clk_disable;
1628        }
1629
1630        /*
1631         * The ARM and ST versions of the block have slightly different
1632         * clock divider equations which means that the minimum divider
1633         * differs too.
1634         * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1635         */
1636        if (variant->st_clkdiv)
1637                mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1638        else if (variant->explicit_mclk_control)
1639                mmc->f_min = clk_round_rate(host->clk, 100000);
1640        else
1641                mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1642        /*
1643         * If no maximum operating frequency is supplied, fall back to use
1644         * the module parameter, which has a (low) default value in case it
1645         * is not specified. Either value must not exceed the clock rate into
1646         * the block, of course.
1647         */
1648        if (mmc->f_max)
1649                mmc->f_max = variant->explicit_mclk_control ?
1650                                min(variant->f_max, mmc->f_max) :
1651                                min(host->mclk, mmc->f_max);
1652        else
1653                mmc->f_max = variant->explicit_mclk_control ?
1654                                fmax : min(host->mclk, fmax);
1655
1656
1657        dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1658
1659        /* Get regulators and the supported OCR mask */
1660        ret = mmc_regulator_get_supply(mmc);
1661        if (ret == -EPROBE_DEFER)
1662                goto clk_disable;
1663
1664        if (!mmc->ocr_avail)
1665                mmc->ocr_avail = plat->ocr_mask;
1666        else if (plat->ocr_mask)
1667                dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1668
1669        /* DT takes precedence over platform data. */
1670        if (!np) {
1671                if (!plat->cd_invert)
1672                        mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1673                mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1674        }
1675
1676        /* We support these capabilities. */
1677        mmc->caps |= MMC_CAP_CMD23;
1678
1679        /*
1680         * Enable busy detection.
1681         */
1682        if (variant->busy_detect) {
1683                mmci_ops.card_busy = mmci_card_busy;
1684                /*
1685                 * Not all variants have a flag to enable busy detection
1686                 * in the DPSM, but if they do, set it here.
1687                 */
1688                if (variant->busy_dpsm_flag)
1689                        mmci_write_datactrlreg(host,
1690                                               host->variant->busy_dpsm_flag);
1691                mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1692                mmc->max_busy_timeout = 0;
1693        }
1694
1695        mmc->ops = &mmci_ops;
1696
1697        /* We support these PM capabilities. */
1698        mmc->pm_caps |= MMC_PM_KEEP_POWER;
1699
1700        /*
1701         * We can do SGIO
1702         */
1703        mmc->max_segs = NR_SG;
1704
1705        /*
1706         * Since only a certain number of bits are valid in the data length
1707         * register, we must ensure that we don't exceed 2^num-1 bytes in a
1708         * single request.
1709         */
1710        mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1711
1712        /*
1713         * Set the maximum segment size.  Since we aren't doing DMA
1714         * (yet) we are only limited by the data length register.
1715         */
1716        mmc->max_seg_size = mmc->max_req_size;
1717
1718        /*
1719         * Block size can be up to 2048 bytes, but must be a power of two.
1720         */
1721        mmc->max_blk_size = 1 << 11;
1722
1723        /*
1724         * Limit the number of blocks transferred so that we don't overflow
1725         * the maximum request size.
1726         */
1727        mmc->max_blk_count = mmc->max_req_size >> 11;
1728
1729        spin_lock_init(&host->lock);
1730
1731        writel(0, host->base + MMCIMASK0);
1732        writel(0, host->base + MMCIMASK1);
1733        writel(0xfff, host->base + MMCICLEAR);
1734
1735        /*
1736         * If:
1737         * - not using DT but using a descriptor table, or
1738         * - using a table of descriptors ALONGSIDE DT, or
1739         * look up these descriptors named "cd" and "wp" right here, fail
1740         * silently of these do not exist and proceed to try platform data
1741         */
1742        if (!np) {
1743                ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1744                if (ret < 0) {
1745                        if (ret == -EPROBE_DEFER)
1746                                goto clk_disable;
1747                        else if (gpio_is_valid(plat->gpio_cd)) {
1748                                ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1749                                if (ret)
1750                                        goto clk_disable;
1751                        }
1752                }
1753
1754                ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1755                if (ret < 0) {
1756                        if (ret == -EPROBE_DEFER)
1757                                goto clk_disable;
1758                        else if (gpio_is_valid(plat->gpio_wp)) {
1759                                ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1760                                if (ret)
1761                                        goto clk_disable;
1762                        }
1763                }
1764        }
1765
1766        ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1767                        DRIVER_NAME " (cmd)", host);
1768        if (ret)
1769                goto clk_disable;
1770
1771        if (!dev->irq[1])
1772                host->singleirq = true;
1773        else {
1774                ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1775                                IRQF_SHARED, DRIVER_NAME " (pio)", host);
1776                if (ret)
1777                        goto clk_disable;
1778        }
1779
1780        writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1781
1782        amba_set_drvdata(dev, mmc);
1783
1784        dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1785                 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1786                 amba_rev(dev), (unsigned long long)dev->res.start,
1787                 dev->irq[0], dev->irq[1]);
1788
1789        mmci_dma_setup(host);
1790
1791        pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1792        pm_runtime_use_autosuspend(&dev->dev);
1793
1794        mmc_add_host(mmc);
1795
1796        pm_runtime_put(&dev->dev);
1797        return 0;
1798
1799 clk_disable:
1800        clk_disable_unprepare(host->clk);
1801 host_free:
1802        mmc_free_host(mmc);
1803        return ret;
1804}
1805
1806static int mmci_remove(struct amba_device *dev)
1807{
1808        struct mmc_host *mmc = amba_get_drvdata(dev);
1809
1810        if (mmc) {
1811                struct mmci_host *host = mmc_priv(mmc);
1812
1813                /*
1814                 * Undo pm_runtime_put() in probe.  We use the _sync
1815                 * version here so that we can access the primecell.
1816                 */
1817                pm_runtime_get_sync(&dev->dev);
1818
1819                mmc_remove_host(mmc);
1820
1821                writel(0, host->base + MMCIMASK0);
1822                writel(0, host->base + MMCIMASK1);
1823
1824                writel(0, host->base + MMCICOMMAND);
1825                writel(0, host->base + MMCIDATACTRL);
1826
1827                mmci_dma_release(host);
1828                clk_disable_unprepare(host->clk);
1829                mmc_free_host(mmc);
1830        }
1831
1832        return 0;
1833}
1834
1835#ifdef CONFIG_PM
1836static void mmci_save(struct mmci_host *host)
1837{
1838        unsigned long flags;
1839
1840        spin_lock_irqsave(&host->lock, flags);
1841
1842        writel(0, host->base + MMCIMASK0);
1843        if (host->variant->pwrreg_nopower) {
1844                writel(0, host->base + MMCIDATACTRL);
1845                writel(0, host->base + MMCIPOWER);
1846                writel(0, host->base + MMCICLOCK);
1847        }
1848        mmci_reg_delay(host);
1849
1850        spin_unlock_irqrestore(&host->lock, flags);
1851}
1852
1853static void mmci_restore(struct mmci_host *host)
1854{
1855        unsigned long flags;
1856
1857        spin_lock_irqsave(&host->lock, flags);
1858
1859        if (host->variant->pwrreg_nopower) {
1860                writel(host->clk_reg, host->base + MMCICLOCK);
1861                writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1862                writel(host->pwr_reg, host->base + MMCIPOWER);
1863        }
1864        writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1865        mmci_reg_delay(host);
1866
1867        spin_unlock_irqrestore(&host->lock, flags);
1868}
1869
1870static int mmci_runtime_suspend(struct device *dev)
1871{
1872        struct amba_device *adev = to_amba_device(dev);
1873        struct mmc_host *mmc = amba_get_drvdata(adev);
1874
1875        if (mmc) {
1876                struct mmci_host *host = mmc_priv(mmc);
1877                pinctrl_pm_select_sleep_state(dev);
1878                mmci_save(host);
1879                clk_disable_unprepare(host->clk);
1880        }
1881
1882        return 0;
1883}
1884
1885static int mmci_runtime_resume(struct device *dev)
1886{
1887        struct amba_device *adev = to_amba_device(dev);
1888        struct mmc_host *mmc = amba_get_drvdata(adev);
1889
1890        if (mmc) {
1891                struct mmci_host *host = mmc_priv(mmc);
1892                clk_prepare_enable(host->clk);
1893                mmci_restore(host);
1894                pinctrl_pm_select_default_state(dev);
1895        }
1896
1897        return 0;
1898}
1899#endif
1900
1901static const struct dev_pm_ops mmci_dev_pm_ops = {
1902        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1903                                pm_runtime_force_resume)
1904        SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1905};
1906
1907static const struct amba_id mmci_ids[] = {
1908        {
1909                .id     = 0x00041180,
1910                .mask   = 0xff0fffff,
1911                .data   = &variant_arm,
1912        },
1913        {
1914                .id     = 0x01041180,
1915                .mask   = 0xff0fffff,
1916                .data   = &variant_arm_extended_fifo,
1917        },
1918        {
1919                .id     = 0x02041180,
1920                .mask   = 0xff0fffff,
1921                .data   = &variant_arm_extended_fifo_hwfc,
1922        },
1923        {
1924                .id     = 0x00041181,
1925                .mask   = 0x000fffff,
1926                .data   = &variant_arm,
1927        },
1928        /* ST Micro variants */
1929        {
1930                .id     = 0x00180180,
1931                .mask   = 0x00ffffff,
1932                .data   = &variant_u300,
1933        },
1934        {
1935                .id     = 0x10180180,
1936                .mask   = 0xf0ffffff,
1937                .data   = &variant_nomadik,
1938        },
1939        {
1940                .id     = 0x00280180,
1941                .mask   = 0x00ffffff,
1942                .data   = &variant_nomadik,
1943        },
1944        {
1945                .id     = 0x00480180,
1946                .mask   = 0xf0ffffff,
1947                .data   = &variant_ux500,
1948        },
1949        {
1950                .id     = 0x10480180,
1951                .mask   = 0xf0ffffff,
1952                .data   = &variant_ux500v2,
1953        },
1954        /* Qualcomm variants */
1955        {
1956                .id     = 0x00051180,
1957                .mask   = 0x000fffff,
1958                .data   = &variant_qcom,
1959        },
1960        { 0, 0 },
1961};
1962
1963MODULE_DEVICE_TABLE(amba, mmci_ids);
1964
1965static struct amba_driver mmci_driver = {
1966        .drv            = {
1967                .name   = DRIVER_NAME,
1968                .pm     = &mmci_dev_pm_ops,
1969        },
1970        .probe          = mmci_probe,
1971        .remove         = mmci_remove,
1972        .id_table       = mmci_ids,
1973};
1974
1975module_amba_driver(mmci_driver);
1976
1977module_param(fmax, uint, 0444);
1978
1979MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1980MODULE_LICENSE("GPL");
1981