linux/drivers/net/ethernet/intel/i40evf/i40e_txrx.h
<<
>>
Prefs
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#ifndef _I40E_TXRX_H_
  28#define _I40E_TXRX_H_
  29
  30/* Interrupt Throttling and Rate Limiting Goodies */
  31
  32#define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
  33#define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
  34#define I40E_ITR_100K              0x0005
  35#define I40E_ITR_50K               0x000A
  36#define I40E_ITR_20K               0x0019
  37#define I40E_ITR_18K               0x001B
  38#define I40E_ITR_8K                0x003E
  39#define I40E_ITR_4K                0x007A
  40#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
  41#define I40E_ITR_RX_DEF            I40E_ITR_20K
  42#define I40E_ITR_TX_DEF            I40E_ITR_20K
  43#define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
  44#define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
  45#define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
  46#define I40E_DEFAULT_IRQ_WORK      256
  47#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
  48#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
  49#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
  50/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  51 * the value of the rate limit is non-zero
  52 */
  53#define INTRL_ENA                  BIT(6)
  54#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  55#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
  56#define I40E_INTRL_8K              125     /* 8000 ints/sec */
  57#define I40E_INTRL_62K             16      /* 62500 ints/sec */
  58#define I40E_INTRL_83K             12      /* 83333 ints/sec */
  59
  60#define I40E_QUEUE_END_OF_LIST 0x7FF
  61
  62/* this enum matches hardware bits and is meant to be used by DYN_CTLN
  63 * registers and QINT registers or more generally anywhere in the manual
  64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  65 * register but instead is a special value meaning "don't update" ITR0/1/2.
  66 */
  67enum i40e_dyn_idx_t {
  68        I40E_IDX_ITR0 = 0,
  69        I40E_IDX_ITR1 = 1,
  70        I40E_IDX_ITR2 = 2,
  71        I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
  72};
  73
  74/* these are indexes into ITRN registers */
  75#define I40E_RX_ITR    I40E_IDX_ITR0
  76#define I40E_TX_ITR    I40E_IDX_ITR1
  77#define I40E_PE_ITR    I40E_IDX_ITR2
  78
  79/* Supported RSS offloads */
  80#define I40E_DEFAULT_RSS_HENA ( \
  81        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  82        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  83        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  84        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  85        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  86        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  87        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  88        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  89        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  90        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  91        BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  92
  93#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  94        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  95        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  96        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  97        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  98        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  99        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 100
 101/* Supported Rx Buffer Sizes (a multiple of 128) */
 102#define I40E_RXBUFFER_256   256
 103#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
 104#define I40E_RXBUFFER_2048  2048
 105#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 106#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 107
 108/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 109 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 110 * this adds up to 512 bytes of extra data meaning the smallest allocation
 111 * we could have is 1K.
 112 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 113 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 114 */
 115#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
 116#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
 117#define i40e_rx_desc i40e_32byte_rx_desc
 118
 119#define I40E_RX_DMA_ATTR \
 120        (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
 121
 122/* Attempt to maximize the headroom available for incoming frames.  We
 123 * use a 2K buffer for receives and need 1536/1534 to store the data for
 124 * the frame.  This leaves us with 512 bytes of room.  From that we need
 125 * to deduct the space needed for the shared info and the padding needed
 126 * to IP align the frame.
 127 *
 128 * Note: For cache line sizes 256 or larger this value is going to end
 129 *       up negative.  In these cases we should fall back to the legacy
 130 *       receive path.
 131 */
 132#if (PAGE_SIZE < 8192)
 133#define I40E_2K_TOO_SMALL_WITH_PADDING \
 134((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
 135
 136static inline int i40e_compute_pad(int rx_buf_len)
 137{
 138        int page_size, pad_size;
 139
 140        page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 141        pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
 142
 143        return pad_size;
 144}
 145
 146static inline int i40e_skb_pad(void)
 147{
 148        int rx_buf_len;
 149
 150        /* If a 2K buffer cannot handle a standard Ethernet frame then
 151         * optimize padding for a 3K buffer instead of a 1.5K buffer.
 152         *
 153         * For a 3K buffer we need to add enough padding to allow for
 154         * tailroom due to NET_IP_ALIGN possibly shifting us out of
 155         * cache-line alignment.
 156         */
 157        if (I40E_2K_TOO_SMALL_WITH_PADDING)
 158                rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 159        else
 160                rx_buf_len = I40E_RXBUFFER_1536;
 161
 162        /* if needed make room for NET_IP_ALIGN */
 163        rx_buf_len -= NET_IP_ALIGN;
 164
 165        return i40e_compute_pad(rx_buf_len);
 166}
 167
 168#define I40E_SKB_PAD i40e_skb_pad()
 169#else
 170#define I40E_2K_TOO_SMALL_WITH_PADDING false
 171#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 172#endif
 173
 174/**
 175 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
 176 * @rx_desc: pointer to receive descriptor (in le64 format)
 177 * @stat_err_bits: value to mask
 178 *
 179 * This function does some fast chicanery in order to return the
 180 * value of the mask which is really only used for boolean tests.
 181 * The status_error_len doesn't need to be shifted because it begins
 182 * at offset zero.
 183 */
 184static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
 185                                     const u64 stat_err_bits)
 186{
 187        return !!(rx_desc->wb.qword1.status_error_len &
 188                  cpu_to_le64(stat_err_bits));
 189}
 190
 191/* How many Rx Buffers do we bundle into one write to the hardware ? */
 192#define I40E_RX_BUFFER_WRITE    16      /* Must be power of 2 */
 193#define I40E_RX_INCREMENT(r, i) \
 194        do {                                    \
 195                (i)++;                          \
 196                if ((i) == (r)->count)          \
 197                        i = 0;                  \
 198                r->next_to_clean = i;           \
 199        } while (0)
 200
 201#define I40E_RX_NEXT_DESC(r, i, n)              \
 202        do {                                    \
 203                (i)++;                          \
 204                if ((i) == (r)->count)          \
 205                        i = 0;                  \
 206                (n) = I40E_RX_DESC((r), (i));   \
 207        } while (0)
 208
 209#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
 210        do {                                            \
 211                I40E_RX_NEXT_DESC((r), (i), (n));       \
 212                prefetch((n));                          \
 213        } while (0)
 214
 215#define I40E_MAX_BUFFER_TXD     8
 216#define I40E_MIN_TX_LEN         17
 217
 218/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 219 * In order to align with the read requests we will align the value to
 220 * the nearest 4K which represents our maximum read request size.
 221 */
 222#define I40E_MAX_READ_REQ_SIZE          4096
 223#define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
 224#define I40E_MAX_DATA_PER_TXD_ALIGNED \
 225        (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
 226
 227/**
 228 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
 229 * @size: transmit request size in bytes
 230 *
 231 * Due to hardware alignment restrictions (4K alignment), we need to
 232 * assume that we can have no more than 12K of data per descriptor, even
 233 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 234 * Thus, we need to divide by 12K. But division is slow! Instead,
 235 * we decompose the operation into shifts and one relatively cheap
 236 * multiply operation.
 237 *
 238 * To divide by 12K, we first divide by 4K, then divide by 3:
 239 *     To divide by 4K, shift right by 12 bits
 240 *     To divide by 3, multiply by 85, then divide by 256
 241 *     (Divide by 256 is done by shifting right by 8 bits)
 242 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 243 * 3, we'll underestimate near each multiple of 12K. This is actually more
 244 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 245 * segment.  For our purposes this is accurate out to 1M which is orders of
 246 * magnitude greater than our largest possible GSO size.
 247 *
 248 * This would then be implemented as:
 249 *     return (((size >> 12) * 85) >> 8) + 1;
 250 *
 251 * Since multiplication and division are commutative, we can reorder
 252 * operations into:
 253 *     return ((size * 85) >> 20) + 1;
 254 */
 255static inline unsigned int i40e_txd_use_count(unsigned int size)
 256{
 257        return ((size * 85) >> 20) + 1;
 258}
 259
 260/* Tx Descriptors needed, worst case */
 261#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
 262#define I40E_MIN_DESC_PENDING   4
 263
 264#define I40E_TX_FLAGS_HW_VLAN           BIT(1)
 265#define I40E_TX_FLAGS_SW_VLAN           BIT(2)
 266#define I40E_TX_FLAGS_TSO               BIT(3)
 267#define I40E_TX_FLAGS_IPV4              BIT(4)
 268#define I40E_TX_FLAGS_IPV6              BIT(5)
 269#define I40E_TX_FLAGS_FCCRC             BIT(6)
 270#define I40E_TX_FLAGS_FSO               BIT(7)
 271#define I40E_TX_FLAGS_FD_SB             BIT(9)
 272#define I40E_TX_FLAGS_VXLAN_TUNNEL      BIT(10)
 273#define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
 274#define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
 275#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
 276#define I40E_TX_FLAGS_VLAN_SHIFT        16
 277
 278struct i40e_tx_buffer {
 279        struct i40e_tx_desc *next_to_watch;
 280        union {
 281                struct sk_buff *skb;
 282                void *raw_buf;
 283        };
 284        unsigned int bytecount;
 285        unsigned short gso_segs;
 286
 287        DEFINE_DMA_UNMAP_ADDR(dma);
 288        DEFINE_DMA_UNMAP_LEN(len);
 289        u32 tx_flags;
 290};
 291
 292struct i40e_rx_buffer {
 293        dma_addr_t dma;
 294        struct page *page;
 295#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 296        __u32 page_offset;
 297#else
 298        __u16 page_offset;
 299#endif
 300        __u16 pagecnt_bias;
 301};
 302
 303struct i40e_queue_stats {
 304        u64 packets;
 305        u64 bytes;
 306};
 307
 308struct i40e_tx_queue_stats {
 309        u64 restart_queue;
 310        u64 tx_busy;
 311        u64 tx_done_old;
 312        u64 tx_linearize;
 313        u64 tx_force_wb;
 314        u64 tx_lost_interrupt;
 315};
 316
 317struct i40e_rx_queue_stats {
 318        u64 non_eop_descs;
 319        u64 alloc_page_failed;
 320        u64 alloc_buff_failed;
 321        u64 page_reuse_count;
 322        u64 realloc_count;
 323};
 324
 325enum i40e_ring_state_t {
 326        __I40E_TX_FDIR_INIT_DONE,
 327        __I40E_TX_XPS_INIT_DONE,
 328};
 329
 330/* some useful defines for virtchannel interface, which
 331 * is the only remaining user of header split
 332 */
 333#define I40E_RX_DTYPE_NO_SPLIT      0
 334#define I40E_RX_DTYPE_HEADER_SPLIT  1
 335#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
 336#define I40E_RX_SPLIT_L2      0x1
 337#define I40E_RX_SPLIT_IP      0x2
 338#define I40E_RX_SPLIT_TCP_UDP 0x4
 339#define I40E_RX_SPLIT_SCTP    0x8
 340
 341/* struct that defines a descriptor ring, associated with a VSI */
 342struct i40e_ring {
 343        struct i40e_ring *next;         /* pointer to next ring in q_vector */
 344        void *desc;                     /* Descriptor ring memory */
 345        struct device *dev;             /* Used for DMA mapping */
 346        struct net_device *netdev;      /* netdev ring maps to */
 347        union {
 348                struct i40e_tx_buffer *tx_bi;
 349                struct i40e_rx_buffer *rx_bi;
 350        };
 351        unsigned long state;
 352        u16 queue_index;                /* Queue number of ring */
 353        u8 dcb_tc;                      /* Traffic class of ring */
 354        u8 __iomem *tail;
 355
 356        /* high bit set means dynamic, use accessors routines to read/write.
 357         * hardware only supports 2us resolution for the ITR registers.
 358         * these values always store the USER setting, and must be converted
 359         * before programming to a register.
 360         */
 361        u16 rx_itr_setting;
 362        u16 tx_itr_setting;
 363
 364        u16 count;                      /* Number of descriptors */
 365        u16 reg_idx;                    /* HW register index of the ring */
 366        u16 rx_buf_len;
 367
 368        /* used in interrupt processing */
 369        u16 next_to_use;
 370        u16 next_to_clean;
 371
 372        u8 atr_sample_rate;
 373        u8 atr_count;
 374
 375        bool ring_active;               /* is ring online or not */
 376        bool arm_wb;            /* do something to arm write back */
 377        u8 packet_stride;
 378
 379        u16 flags;
 380#define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
 381#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
 382
 383        /* stats structs */
 384        struct i40e_queue_stats stats;
 385        struct u64_stats_sync syncp;
 386        union {
 387                struct i40e_tx_queue_stats tx_stats;
 388                struct i40e_rx_queue_stats rx_stats;
 389        };
 390
 391        unsigned int size;              /* length of descriptor ring in bytes */
 392        dma_addr_t dma;                 /* physical address of ring */
 393
 394        struct i40e_vsi *vsi;           /* Backreference to associated VSI */
 395        struct i40e_q_vector *q_vector; /* Backreference to associated vector */
 396
 397        struct rcu_head rcu;            /* to avoid race on free */
 398        u16 next_to_alloc;
 399        struct sk_buff *skb;            /* When i40evf_clean_rx_ring_irq() must
 400                                         * return before it sees the EOP for
 401                                         * the current packet, we save that skb
 402                                         * here and resume receiving this
 403                                         * packet the next time
 404                                         * i40evf_clean_rx_ring_irq() is called
 405                                         * for this ring.
 406                                         */
 407} ____cacheline_internodealigned_in_smp;
 408
 409static inline bool ring_uses_build_skb(struct i40e_ring *ring)
 410{
 411        return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
 412}
 413
 414static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
 415{
 416        ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 417}
 418
 419static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
 420{
 421        ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 422}
 423
 424enum i40e_latency_range {
 425        I40E_LOWEST_LATENCY = 0,
 426        I40E_LOW_LATENCY = 1,
 427        I40E_BULK_LATENCY = 2,
 428};
 429
 430struct i40e_ring_container {
 431        /* array of pointers to rings */
 432        struct i40e_ring *ring;
 433        unsigned int total_bytes;       /* total bytes processed this int */
 434        unsigned int total_packets;     /* total packets processed this int */
 435        unsigned long last_itr_update;  /* jiffies of last ITR update */
 436        u16 count;
 437        enum i40e_latency_range latency_range;
 438        u16 itr;
 439};
 440
 441/* iterator for handling rings in ring container */
 442#define i40e_for_each_ring(pos, head) \
 443        for (pos = (head).ring; pos != NULL; pos = pos->next)
 444
 445static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
 446{
 447#if (PAGE_SIZE < 8192)
 448        if (ring->rx_buf_len > (PAGE_SIZE / 2))
 449                return 1;
 450#endif
 451        return 0;
 452}
 453
 454#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
 455
 456bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
 457netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 458void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
 459void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
 460int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
 461int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
 462void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
 463void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
 464int i40evf_napi_poll(struct napi_struct *napi, int budget);
 465void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
 466u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
 467int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
 468bool __i40evf_chk_linearize(struct sk_buff *skb);
 469
 470/**
 471 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
 472 * @skb:     send buffer
 473 * @tx_ring: ring to send buffer on
 474 *
 475 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 476 * there is not enough descriptors available in this ring since we need at least
 477 * one descriptor.
 478 **/
 479static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
 480{
 481        const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 482        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 483        int count = 0, size = skb_headlen(skb);
 484
 485        for (;;) {
 486                count += i40e_txd_use_count(size);
 487
 488                if (!nr_frags--)
 489                        break;
 490
 491                size = skb_frag_size(frag++);
 492        }
 493
 494        return count;
 495}
 496
 497/**
 498 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
 499 * @tx_ring: the ring to be checked
 500 * @size:    the size buffer we want to assure is available
 501 *
 502 * Returns 0 if stop is not needed
 503 **/
 504static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 505{
 506        if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
 507                return 0;
 508        return __i40evf_maybe_stop_tx(tx_ring, size);
 509}
 510
 511/**
 512 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 513 * @skb:      send buffer
 514 * @count:    number of buffers used
 515 *
 516 * Note: Our HW can't scatter-gather more than 8 fragments to build
 517 * a packet on the wire and so we need to figure out the cases where we
 518 * need to linearize the skb.
 519 **/
 520static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
 521{
 522        /* Both TSO and single send will work if count is less than 8 */
 523        if (likely(count < I40E_MAX_BUFFER_TXD))
 524                return false;
 525
 526        if (skb_is_gso(skb))
 527                return __i40evf_chk_linearize(skb);
 528
 529        /* we can support up to 8 data buffers for a single send */
 530        return count != I40E_MAX_BUFFER_TXD;
 531}
 532/**
 533 * @ring: Tx ring to find the netdev equivalent of
 534 **/
 535static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
 536{
 537        return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 538}
 539#endif /* _I40E_TXRX_H_ */
 540