linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h
<<
>>
Prefs
   1/*
   2 * drivers/net/ethernet/mellanox/mlxsw/cmd.h
   3 * Copyright (c) 2015 Mellanox Technologies. All rights reserved.
   4 * Copyright (c) 2015 Jiri Pirko <jiri@mellanox.com>
   5 * Copyright (c) 2015 Ido Schimmel <idosch@mellanox.com>
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions are met:
   9 *
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions and the following disclaimer.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. Neither the names of the copyright holders nor the names of its
  16 *    contributors may be used to endorse or promote products derived from
  17 *    this software without specific prior written permission.
  18 *
  19 * Alternatively, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") version 2 as published by the Free
  21 * Software Foundation.
  22 *
  23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  33 * POSSIBILITY OF SUCH DAMAGE.
  34 */
  35
  36#ifndef _MLXSW_CMD_H
  37#define _MLXSW_CMD_H
  38
  39#include "item.h"
  40
  41#define MLXSW_CMD_MBOX_SIZE     4096
  42
  43static inline char *mlxsw_cmd_mbox_alloc(void)
  44{
  45        return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
  46}
  47
  48static inline void mlxsw_cmd_mbox_free(char *mbox)
  49{
  50        kfree(mbox);
  51}
  52
  53static inline void mlxsw_cmd_mbox_zero(char *mbox)
  54{
  55        memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
  56}
  57
  58struct mlxsw_core;
  59
  60int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
  61                   u32 in_mod, bool out_mbox_direct,
  62                   char *in_mbox, size_t in_mbox_size,
  63                   char *out_mbox, size_t out_mbox_size);
  64
  65static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
  66                                    u8 opcode_mod, u32 in_mod, char *in_mbox,
  67                                    size_t in_mbox_size)
  68{
  69        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
  70                              in_mbox, in_mbox_size, NULL, 0);
  71}
  72
  73static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
  74                                     u8 opcode_mod, u32 in_mod,
  75                                     bool out_mbox_direct,
  76                                     char *out_mbox, size_t out_mbox_size)
  77{
  78        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
  79                              out_mbox_direct, NULL, 0,
  80                              out_mbox, out_mbox_size);
  81}
  82
  83static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
  84                                      u8 opcode_mod, u32 in_mod)
  85{
  86        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
  87                              NULL, 0, NULL, 0);
  88}
  89
  90enum mlxsw_cmd_opcode {
  91        MLXSW_CMD_OPCODE_QUERY_FW               = 0x004,
  92        MLXSW_CMD_OPCODE_QUERY_BOARDINFO        = 0x006,
  93        MLXSW_CMD_OPCODE_QUERY_AQ_CAP           = 0x003,
  94        MLXSW_CMD_OPCODE_MAP_FA                 = 0xFFF,
  95        MLXSW_CMD_OPCODE_UNMAP_FA               = 0xFFE,
  96        MLXSW_CMD_OPCODE_CONFIG_PROFILE         = 0x100,
  97        MLXSW_CMD_OPCODE_ACCESS_REG             = 0x040,
  98        MLXSW_CMD_OPCODE_SW2HW_DQ               = 0x201,
  99        MLXSW_CMD_OPCODE_HW2SW_DQ               = 0x202,
 100        MLXSW_CMD_OPCODE_2ERR_DQ                = 0x01E,
 101        MLXSW_CMD_OPCODE_QUERY_DQ               = 0x022,
 102        MLXSW_CMD_OPCODE_SW2HW_CQ               = 0x016,
 103        MLXSW_CMD_OPCODE_HW2SW_CQ               = 0x017,
 104        MLXSW_CMD_OPCODE_QUERY_CQ               = 0x018,
 105        MLXSW_CMD_OPCODE_SW2HW_EQ               = 0x013,
 106        MLXSW_CMD_OPCODE_HW2SW_EQ               = 0x014,
 107        MLXSW_CMD_OPCODE_QUERY_EQ               = 0x015,
 108        MLXSW_CMD_OPCODE_QUERY_RESOURCES        = 0x101,
 109};
 110
 111static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
 112{
 113        switch (opcode) {
 114        case MLXSW_CMD_OPCODE_QUERY_FW:
 115                return "QUERY_FW";
 116        case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
 117                return "QUERY_BOARDINFO";
 118        case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
 119                return "QUERY_AQ_CAP";
 120        case MLXSW_CMD_OPCODE_MAP_FA:
 121                return "MAP_FA";
 122        case MLXSW_CMD_OPCODE_UNMAP_FA:
 123                return "UNMAP_FA";
 124        case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
 125                return "CONFIG_PROFILE";
 126        case MLXSW_CMD_OPCODE_ACCESS_REG:
 127                return "ACCESS_REG";
 128        case MLXSW_CMD_OPCODE_SW2HW_DQ:
 129                return "SW2HW_DQ";
 130        case MLXSW_CMD_OPCODE_HW2SW_DQ:
 131                return "HW2SW_DQ";
 132        case MLXSW_CMD_OPCODE_2ERR_DQ:
 133                return "2ERR_DQ";
 134        case MLXSW_CMD_OPCODE_QUERY_DQ:
 135                return "QUERY_DQ";
 136        case MLXSW_CMD_OPCODE_SW2HW_CQ:
 137                return "SW2HW_CQ";
 138        case MLXSW_CMD_OPCODE_HW2SW_CQ:
 139                return "HW2SW_CQ";
 140        case MLXSW_CMD_OPCODE_QUERY_CQ:
 141                return "QUERY_CQ";
 142        case MLXSW_CMD_OPCODE_SW2HW_EQ:
 143                return "SW2HW_EQ";
 144        case MLXSW_CMD_OPCODE_HW2SW_EQ:
 145                return "HW2SW_EQ";
 146        case MLXSW_CMD_OPCODE_QUERY_EQ:
 147                return "QUERY_EQ";
 148        case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
 149                return "QUERY_RESOURCES";
 150        default:
 151                return "*UNKNOWN*";
 152        }
 153}
 154
 155enum mlxsw_cmd_status {
 156        /* Command execution succeeded. */
 157        MLXSW_CMD_STATUS_OK             = 0x00,
 158        /* Internal error (e.g. bus error) occurred while processing command. */
 159        MLXSW_CMD_STATUS_INTERNAL_ERR   = 0x01,
 160        /* Operation/command not supported or opcode modifier not supported. */
 161        MLXSW_CMD_STATUS_BAD_OP         = 0x02,
 162        /* Parameter not supported, parameter out of range. */
 163        MLXSW_CMD_STATUS_BAD_PARAM      = 0x03,
 164        /* System was not enabled or bad system state. */
 165        MLXSW_CMD_STATUS_BAD_SYS_STATE  = 0x04,
 166        /* Attempt to access reserved or unallocated resource, or resource in
 167         * inappropriate ownership.
 168         */
 169        MLXSW_CMD_STATUS_BAD_RESOURCE   = 0x05,
 170        /* Requested resource is currently executing a command. */
 171        MLXSW_CMD_STATUS_RESOURCE_BUSY  = 0x06,
 172        /* Required capability exceeds device limits. */
 173        MLXSW_CMD_STATUS_EXCEED_LIM     = 0x08,
 174        /* Resource is not in the appropriate state or ownership. */
 175        MLXSW_CMD_STATUS_BAD_RES_STATE  = 0x09,
 176        /* Index out of range (might be beyond table size or attempt to
 177         * access a reserved resource).
 178         */
 179        MLXSW_CMD_STATUS_BAD_INDEX      = 0x0A,
 180        /* NVMEM checksum/CRC failed. */
 181        MLXSW_CMD_STATUS_BAD_NVMEM      = 0x0B,
 182        /* Bad management packet (silently discarded). */
 183        MLXSW_CMD_STATUS_BAD_PKT        = 0x30,
 184};
 185
 186static inline const char *mlxsw_cmd_status_str(u8 status)
 187{
 188        switch (status) {
 189        case MLXSW_CMD_STATUS_OK:
 190                return "OK";
 191        case MLXSW_CMD_STATUS_INTERNAL_ERR:
 192                return "INTERNAL_ERR";
 193        case MLXSW_CMD_STATUS_BAD_OP:
 194                return "BAD_OP";
 195        case MLXSW_CMD_STATUS_BAD_PARAM:
 196                return "BAD_PARAM";
 197        case MLXSW_CMD_STATUS_BAD_SYS_STATE:
 198                return "BAD_SYS_STATE";
 199        case MLXSW_CMD_STATUS_BAD_RESOURCE:
 200                return "BAD_RESOURCE";
 201        case MLXSW_CMD_STATUS_RESOURCE_BUSY:
 202                return "RESOURCE_BUSY";
 203        case MLXSW_CMD_STATUS_EXCEED_LIM:
 204                return "EXCEED_LIM";
 205        case MLXSW_CMD_STATUS_BAD_RES_STATE:
 206                return "BAD_RES_STATE";
 207        case MLXSW_CMD_STATUS_BAD_INDEX:
 208                return "BAD_INDEX";
 209        case MLXSW_CMD_STATUS_BAD_NVMEM:
 210                return "BAD_NVMEM";
 211        case MLXSW_CMD_STATUS_BAD_PKT:
 212                return "BAD_PKT";
 213        default:
 214                return "*UNKNOWN*";
 215        }
 216}
 217
 218/* QUERY_FW - Query Firmware
 219 * -------------------------
 220 * OpMod == 0, INMmod == 0
 221 * -----------------------
 222 * The QUERY_FW command retrieves information related to firmware, command
 223 * interface version and the amount of resources that should be allocated to
 224 * the firmware.
 225 */
 226
 227static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
 228                                     char *out_mbox)
 229{
 230        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
 231                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 232}
 233
 234/* cmd_mbox_query_fw_fw_pages
 235 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
 236 */
 237MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
 238
 239/* cmd_mbox_query_fw_fw_rev_major
 240 * Firmware Revision - Major
 241 */
 242MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
 243
 244/* cmd_mbox_query_fw_fw_rev_subminor
 245 * Firmware Sub-minor version (Patch level)
 246 */
 247MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
 248
 249/* cmd_mbox_query_fw_fw_rev_minor
 250 * Firmware Revision - Minor
 251 */
 252MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
 253
 254/* cmd_mbox_query_fw_core_clk
 255 * Internal Clock Frequency (in MHz)
 256 */
 257MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
 258
 259/* cmd_mbox_query_fw_cmd_interface_rev
 260 * Command Interface Interpreter Revision ID. This number is bumped up
 261 * every time a non-backward-compatible change is done for the command
 262 * interface. The current cmd_interface_rev is 1.
 263 */
 264MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
 265
 266/* cmd_mbox_query_fw_dt
 267 * If set, Debug Trace is supported
 268 */
 269MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
 270
 271/* cmd_mbox_query_fw_api_version
 272 * Indicates the version of the API, to enable software querying
 273 * for compatibility. The current api_version is 1.
 274 */
 275MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
 276
 277/* cmd_mbox_query_fw_fw_hour
 278 * Firmware timestamp - hour
 279 */
 280MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
 281
 282/* cmd_mbox_query_fw_fw_minutes
 283 * Firmware timestamp - minutes
 284 */
 285MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
 286
 287/* cmd_mbox_query_fw_fw_seconds
 288 * Firmware timestamp - seconds
 289 */
 290MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
 291
 292/* cmd_mbox_query_fw_fw_year
 293 * Firmware timestamp - year
 294 */
 295MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
 296
 297/* cmd_mbox_query_fw_fw_month
 298 * Firmware timestamp - month
 299 */
 300MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
 301
 302/* cmd_mbox_query_fw_fw_day
 303 * Firmware timestamp - day
 304 */
 305MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
 306
 307/* cmd_mbox_query_fw_clr_int_base_offset
 308 * Clear Interrupt register's offset from clr_int_bar register
 309 * in PCI address space.
 310 */
 311MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
 312
 313/* cmd_mbox_query_fw_clr_int_bar
 314 * PCI base address register (BAR) where clr_int register is located.
 315 * 00 - BAR 0-1 (64 bit BAR)
 316 */
 317MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
 318
 319/* cmd_mbox_query_fw_error_buf_offset
 320 * Read Only buffer for internal error reports of offset
 321 * from error_buf_bar register in PCI address space).
 322 */
 323MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
 324
 325/* cmd_mbox_query_fw_error_buf_size
 326 * Internal error buffer size in DWORDs
 327 */
 328MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
 329
 330/* cmd_mbox_query_fw_error_int_bar
 331 * PCI base address register (BAR) where error buffer
 332 * register is located.
 333 * 00 - BAR 0-1 (64 bit BAR)
 334 */
 335MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
 336
 337/* cmd_mbox_query_fw_doorbell_page_offset
 338 * Offset of the doorbell page
 339 */
 340MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
 341
 342/* cmd_mbox_query_fw_doorbell_page_bar
 343 * PCI base address register (BAR) of the doorbell page
 344 * 00 - BAR 0-1 (64 bit BAR)
 345 */
 346MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
 347
 348/* QUERY_BOARDINFO - Query Board Information
 349 * -----------------------------------------
 350 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 351 * -----------------------------------
 352 * The QUERY_BOARDINFO command retrieves adapter specific parameters.
 353 */
 354
 355static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
 356                                      char *out_mbox)
 357{
 358        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
 359                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 360}
 361
 362/* cmd_mbox_boardinfo_intapin
 363 * When PCIe interrupt messages are being used, this value is used for clearing
 364 * an interrupt. When using MSI-X, this register is not used.
 365 */
 366MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
 367
 368/* cmd_mbox_boardinfo_vsd_vendor_id
 369 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
 370 * specifying/formatting the VSD. The vsd_vendor_id identifies the management
 371 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
 372 * format and encoding as long as they use their assigned vsd_vendor_id.
 373 */
 374MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
 375
 376/* cmd_mbox_boardinfo_vsd
 377 * Vendor Specific Data. The VSD string that is burnt to the Flash
 378 * with the firmware.
 379 */
 380#define MLXSW_CMD_BOARDINFO_VSD_LEN 208
 381MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
 382
 383/* cmd_mbox_boardinfo_psid
 384 * The PSID field is a 16-ascii (byte) character string which acts as
 385 * the board ID. The PSID format is used in conjunction with
 386 * Mellanox vsd_vendor_id (15B3h).
 387 */
 388#define MLXSW_CMD_BOARDINFO_PSID_LEN 16
 389MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
 390
 391/* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
 392 * -----------------------------------------------------
 393 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 394 * -----------------------------------
 395 * The QUERY_AQ_CAP command returns the device asynchronous queues
 396 * capabilities supported.
 397 */
 398
 399static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
 400                                         char *out_mbox)
 401{
 402        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
 403                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 404}
 405
 406/* cmd_mbox_query_aq_cap_log_max_sdq_sz
 407 * Log (base 2) of max WQEs allowed on SDQ.
 408 */
 409MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
 410
 411/* cmd_mbox_query_aq_cap_max_num_sdqs
 412 * Maximum number of SDQs.
 413 */
 414MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
 415
 416/* cmd_mbox_query_aq_cap_log_max_rdq_sz
 417 * Log (base 2) of max WQEs allowed on RDQ.
 418 */
 419MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
 420
 421/* cmd_mbox_query_aq_cap_max_num_rdqs
 422 * Maximum number of RDQs.
 423 */
 424MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
 425
 426/* cmd_mbox_query_aq_cap_log_max_cq_sz
 427 * Log (base 2) of max CQEs allowed on CQ.
 428 */
 429MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
 430
 431/* cmd_mbox_query_aq_cap_max_num_cqs
 432 * Maximum number of CQs.
 433 */
 434MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
 435
 436/* cmd_mbox_query_aq_cap_log_max_eq_sz
 437 * Log (base 2) of max EQEs allowed on EQ.
 438 */
 439MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
 440
 441/* cmd_mbox_query_aq_cap_max_num_eqs
 442 * Maximum number of EQs.
 443 */
 444MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
 445
 446/* cmd_mbox_query_aq_cap_max_sg_sq
 447 * The maximum S/G list elements in an DSQ. DSQ must not contain
 448 * more S/G entries than indicated here.
 449 */
 450MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
 451
 452/* cmd_mbox_query_aq_cap_
 453 * The maximum S/G list elements in an DRQ. DRQ must not contain
 454 * more S/G entries than indicated here.
 455 */
 456MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
 457
 458/* MAP_FA - Map Firmware Area
 459 * --------------------------
 460 * OpMod == 0 (N/A), INMmod == Number of VPM entries
 461 * -------------------------------------------------
 462 * The MAP_FA command passes physical pages to the switch. These pages
 463 * are used to store the device firmware. MAP_FA can be executed multiple
 464 * times until all the firmware area is mapped (the size that should be
 465 * mapped is retrieved through the QUERY_FW command). All required pages
 466 * must be mapped to finish the initialization phase. Physical memory
 467 * passed in this command must be pinned.
 468 */
 469
 470#define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
 471
 472static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
 473                                   char *in_mbox, u32 vpm_entries_count)
 474{
 475        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
 476                                 0, vpm_entries_count,
 477                                 in_mbox, MLXSW_CMD_MBOX_SIZE);
 478}
 479
 480/* cmd_mbox_map_fa_pa
 481 * Physical Address.
 482 */
 483MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
 484
 485/* cmd_mbox_map_fa_log2size
 486 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
 487 * that starts at PA_L/H.
 488 */
 489MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
 490
 491/* UNMAP_FA - Unmap Firmware Area
 492 * ------------------------------
 493 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 494 * -----------------------------------
 495 * The UNMAP_FA command unload the firmware and unmaps all the
 496 * firmware area. After this command is completed the device will not access
 497 * the pages that were mapped to the firmware area. After executing UNMAP_FA
 498 * command, software reset must be done prior to execution of MAP_FW command.
 499 */
 500
 501static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
 502{
 503        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
 504}
 505
 506/* QUERY_RESOURCES - Query chip resources
 507 * --------------------------------------
 508 * OpMod == 0 (N/A) , INMmod is index
 509 * ----------------------------------
 510 * The QUERY_RESOURCES command retrieves information related to chip resources
 511 * by resource ID. Every command returns 32 entries. INmod is being use as base.
 512 * for example, index 1 will return entries 32-63. When the tables end and there
 513 * are no more sources in the table, will return resource id 0xFFF to indicate
 514 * it.
 515 */
 516
 517#define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
 518#define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
 519#define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
 520
 521static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
 522                                            char *out_mbox, int index)
 523{
 524        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
 525                                  0, index, false, out_mbox,
 526                                  MLXSW_CMD_MBOX_SIZE);
 527}
 528
 529/* cmd_mbox_query_resource_id
 530 * The resource id. 0xFFFF indicates table's end.
 531 */
 532MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
 533
 534/* cmd_mbox_query_resource_data
 535 * The resource
 536 */
 537MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
 538                     0x00, 0, 40, 0x8, 0, false);
 539
 540/* CONFIG_PROFILE (Set) - Configure Switch Profile
 541 * ------------------------------
 542 * OpMod == 1 (Set), INMmod == 0 (N/A)
 543 * -----------------------------------
 544 * The CONFIG_PROFILE command sets the switch profile. The command can be
 545 * executed on the device only once at startup in order to allocate and
 546 * configure all switch resources and prepare it for operational mode.
 547 * It is not possible to change the device profile after the chip is
 548 * in operational mode.
 549 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
 550 * state therefore it is required to perform software reset to the device
 551 * following an unsuccessful completion of the command. It is required
 552 * to perform software reset to the device to change an existing profile.
 553 */
 554
 555static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
 556                                               char *in_mbox)
 557{
 558        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
 559                                 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
 560}
 561
 562/* cmd_mbox_config_profile_set_max_vepa_channels
 563 * Capability bit. Setting a bit to 1 configures the profile
 564 * according to the mailbox contents.
 565 */
 566MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
 567
 568/* cmd_mbox_config_profile_set_max_lag
 569 * Capability bit. Setting a bit to 1 configures the profile
 570 * according to the mailbox contents.
 571 */
 572MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
 573
 574/* cmd_mbox_config_profile_set_max_port_per_lag
 575 * Capability bit. Setting a bit to 1 configures the profile
 576 * according to the mailbox contents.
 577 */
 578MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
 579
 580/* cmd_mbox_config_profile_set_max_mid
 581 * Capability bit. Setting a bit to 1 configures the profile
 582 * according to the mailbox contents.
 583 */
 584MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
 585
 586/* cmd_mbox_config_profile_set_max_pgt
 587 * Capability bit. Setting a bit to 1 configures the profile
 588 * according to the mailbox contents.
 589 */
 590MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
 591
 592/* cmd_mbox_config_profile_set_max_system_port
 593 * Capability bit. Setting a bit to 1 configures the profile
 594 * according to the mailbox contents.
 595 */
 596MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
 597
 598/* cmd_mbox_config_profile_set_max_vlan_groups
 599 * Capability bit. Setting a bit to 1 configures the profile
 600 * according to the mailbox contents.
 601 */
 602MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
 603
 604/* cmd_mbox_config_profile_set_max_regions
 605 * Capability bit. Setting a bit to 1 configures the profile
 606 * according to the mailbox contents.
 607 */
 608MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
 609
 610/* cmd_mbox_config_profile_set_flood_mode
 611 * Capability bit. Setting a bit to 1 configures the profile
 612 * according to the mailbox contents.
 613 */
 614MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
 615
 616/* cmd_mbox_config_profile_set_max_flood_tables
 617 * Capability bit. Setting a bit to 1 configures the profile
 618 * according to the mailbox contents.
 619 */
 620MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
 621
 622/* cmd_mbox_config_profile_set_max_ib_mc
 623 * Capability bit. Setting a bit to 1 configures the profile
 624 * according to the mailbox contents.
 625 */
 626MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
 627
 628/* cmd_mbox_config_profile_set_max_pkey
 629 * Capability bit. Setting a bit to 1 configures the profile
 630 * according to the mailbox contents.
 631 */
 632MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
 633
 634/* cmd_mbox_config_profile_set_adaptive_routing_group_cap
 635 * Capability bit. Setting a bit to 1 configures the profile
 636 * according to the mailbox contents.
 637 */
 638MLXSW_ITEM32(cmd_mbox, config_profile,
 639             set_adaptive_routing_group_cap, 0x0C, 14, 1);
 640
 641/* cmd_mbox_config_profile_set_ar_sec
 642 * Capability bit. Setting a bit to 1 configures the profile
 643 * according to the mailbox contents.
 644 */
 645MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
 646
 647/* cmd_mbox_config_set_kvd_linear_size
 648 * Capability bit. Setting a bit to 1 configures the profile
 649 * according to the mailbox contents.
 650 */
 651MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
 652
 653/* cmd_mbox_config_set_kvd_hash_single_size
 654 * Capability bit. Setting a bit to 1 configures the profile
 655 * according to the mailbox contents.
 656 */
 657MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
 658
 659/* cmd_mbox_config_set_kvd_hash_double_size
 660 * Capability bit. Setting a bit to 1 configures the profile
 661 * according to the mailbox contents.
 662 */
 663MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
 664
 665/* cmd_mbox_config_profile_max_vepa_channels
 666 * Maximum number of VEPA channels per port (0 through 16)
 667 * 0 - multi-channel VEPA is disabled
 668 */
 669MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
 670
 671/* cmd_mbox_config_profile_max_lag
 672 * Maximum number of LAG IDs requested.
 673 */
 674MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
 675
 676/* cmd_mbox_config_profile_max_port_per_lag
 677 * Maximum number of ports per LAG requested.
 678 */
 679MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
 680
 681/* cmd_mbox_config_profile_max_mid
 682 * Maximum Multicast IDs.
 683 * Multicast IDs are allocated from 0 to max_mid-1
 684 */
 685MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
 686
 687/* cmd_mbox_config_profile_max_pgt
 688 * Maximum records in the Port Group Table per Switch Partition.
 689 * Port Group Table indexes are from 0 to max_pgt-1
 690 */
 691MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
 692
 693/* cmd_mbox_config_profile_max_system_port
 694 * The maximum number of system ports that can be allocated.
 695 */
 696MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
 697
 698/* cmd_mbox_config_profile_max_vlan_groups
 699 * Maximum number VLAN Groups for VLAN binding.
 700 */
 701MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
 702
 703/* cmd_mbox_config_profile_max_regions
 704 * Maximum number of TCAM Regions.
 705 */
 706MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
 707
 708/* cmd_mbox_config_profile_max_flood_tables
 709 * Maximum number of single-entry flooding tables. Different flooding tables
 710 * can be associated with different packet types.
 711 */
 712MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
 713
 714/* cmd_mbox_config_profile_max_vid_flood_tables
 715 * Maximum number of per-vid flooding tables. Flooding tables are associated
 716 * to the different packet types for the different switch partitions.
 717 * Table size is 4K entries covering all VID space.
 718 */
 719MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
 720
 721/* cmd_mbox_config_profile_flood_mode
 722 * Flooding mode to use.
 723 * 0-2 - Backward compatible modes for SwitchX devices.
 724 * 3 - Mixed mode, where:
 725 * max_flood_tables indicates the number of single-entry tables.
 726 * max_vid_flood_tables indicates the number of per-VID tables.
 727 * max_fid_offset_flood_tables indicates the number of FID-offset tables.
 728 * max_fid_flood_tables indicates the number of per-FID tables.
 729 */
 730MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
 731
 732/* cmd_mbox_config_profile_max_fid_offset_flood_tables
 733 * Maximum number of FID-offset flooding tables.
 734 */
 735MLXSW_ITEM32(cmd_mbox, config_profile,
 736             max_fid_offset_flood_tables, 0x34, 24, 4);
 737
 738/* cmd_mbox_config_profile_fid_offset_flood_table_size
 739 * The size (number of entries) of each FID-offset flood table.
 740 */
 741MLXSW_ITEM32(cmd_mbox, config_profile,
 742             fid_offset_flood_table_size, 0x34, 0, 16);
 743
 744/* cmd_mbox_config_profile_max_fid_flood_tables
 745 * Maximum number of per-FID flooding tables.
 746 *
 747 * Note: This flooding tables cover special FIDs only (vFIDs), starting at
 748 * FID value 4K and higher.
 749 */
 750MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
 751
 752/* cmd_mbox_config_profile_fid_flood_table_size
 753 * The size (number of entries) of each per-FID table.
 754 */
 755MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
 756
 757/* cmd_mbox_config_profile_max_ib_mc
 758 * Maximum number of multicast FDB records for InfiniBand
 759 * FDB (in 512 chunks) per InfiniBand switch partition.
 760 */
 761MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
 762
 763/* cmd_mbox_config_profile_max_pkey
 764 * Maximum per port PKEY table size (for PKEY enforcement)
 765 */
 766MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
 767
 768/* cmd_mbox_config_profile_ar_sec
 769 * Primary/secondary capability
 770 * Describes the number of adaptive routing sub-groups
 771 * 0 - disable primary/secondary (single group)
 772 * 1 - enable primary/secondary (2 sub-groups)
 773 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
 774 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
 775 */
 776MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
 777
 778/* cmd_mbox_config_profile_adaptive_routing_group_cap
 779 * Adaptive Routing Group Capability. Indicates the number of AR groups
 780 * supported. Note that when Primary/secondary is enabled, each
 781 * primary/secondary couple consumes 2 adaptive routing entries.
 782 */
 783MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
 784
 785/* cmd_mbox_config_profile_arn
 786 * Adaptive Routing Notification Enable
 787 * Not supported in SwitchX, SwitchX-2
 788 */
 789MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
 790
 791/* cmd_mbox_config_kvd_linear_size
 792 * KVD Linear Size
 793 * Valid for Spectrum only
 794 * Allowed values are 128*N where N=0 or higher
 795 */
 796MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
 797
 798/* cmd_mbox_config_kvd_hash_single_size
 799 * KVD Hash single-entries size
 800 * Valid for Spectrum only
 801 * Allowed values are 128*N where N=0 or higher
 802 * Must be greater or equal to cap_min_kvd_hash_single_size
 803 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
 804 */
 805MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
 806
 807/* cmd_mbox_config_kvd_hash_double_size
 808 * KVD Hash double-entries size (units of single-size entries)
 809 * Valid for Spectrum only
 810 * Allowed values are 128*N where N=0 or higher
 811 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
 812 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
 813 */
 814MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
 815
 816/* cmd_mbox_config_profile_swid_config_mask
 817 * Modify Switch Partition Configuration mask. When set, the configu-
 818 * ration value for the Switch Partition are taken from the mailbox.
 819 * When clear, the current configuration values are used.
 820 * Bit 0 - set type
 821 * Bit 1 - properties
 822 * Other - reserved
 823 */
 824MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
 825                     0x60, 24, 8, 0x08, 0x00, false);
 826
 827/* cmd_mbox_config_profile_swid_config_type
 828 * Switch Partition type.
 829 * 0000 - disabled (Switch Partition does not exist)
 830 * 0001 - InfiniBand
 831 * 0010 - Ethernet
 832 * 1000 - router port (SwitchX-2 only)
 833 * Other - reserved
 834 */
 835MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
 836                     0x60, 20, 4, 0x08, 0x00, false);
 837
 838/* cmd_mbox_config_profile_swid_config_properties
 839 * Switch Partition properties.
 840 */
 841MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
 842                     0x60, 0, 8, 0x08, 0x00, false);
 843
 844/* ACCESS_REG - Access EMAD Supported Register
 845 * ----------------------------------
 846 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 847 * -------------------------------------
 848 * The ACCESS_REG command supports accessing device registers. This access
 849 * is mainly used for bootstrapping.
 850 */
 851
 852static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
 853                                       char *in_mbox, char *out_mbox)
 854{
 855        return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
 856                              0, 0, false, in_mbox, MLXSW_CMD_MBOX_SIZE,
 857                              out_mbox, MLXSW_CMD_MBOX_SIZE);
 858}
 859
 860/* SW2HW_DQ - Software to Hardware DQ
 861 * ----------------------------------
 862 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 863 * INMmod == DQ number
 864 * ----------------------------------------------
 865 * The SW2HW_DQ command transitions a descriptor queue from software to
 866 * hardware ownership. The command enables posting WQEs and ringing DoorBells
 867 * on the descriptor queue.
 868 */
 869
 870static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
 871                                       char *in_mbox, u32 dq_number,
 872                                       u8 opcode_mod)
 873{
 874        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
 875                                 opcode_mod, dq_number,
 876                                 in_mbox, MLXSW_CMD_MBOX_SIZE);
 877}
 878
 879enum {
 880        MLXSW_CMD_OPCODE_MOD_SDQ = 0,
 881        MLXSW_CMD_OPCODE_MOD_RDQ = 1,
 882};
 883
 884static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
 885                                      char *in_mbox, u32 dq_number)
 886{
 887        return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
 888                                    MLXSW_CMD_OPCODE_MOD_SDQ);
 889}
 890
 891static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
 892                                      char *in_mbox, u32 dq_number)
 893{
 894        return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
 895                                    MLXSW_CMD_OPCODE_MOD_RDQ);
 896}
 897
 898/* cmd_mbox_sw2hw_dq_cq
 899 * Number of the CQ that this Descriptor Queue reports completions to.
 900 */
 901MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
 902
 903/* cmd_mbox_sw2hw_dq_sdq_tclass
 904 * SDQ: CPU Egress TClass
 905 * RDQ: Reserved
 906 */
 907MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
 908
 909/* cmd_mbox_sw2hw_dq_log2_dq_sz
 910 * Log (base 2) of the Descriptor Queue size in 4KB pages.
 911 */
 912MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
 913
 914/* cmd_mbox_sw2hw_dq_pa
 915 * Physical Address.
 916 */
 917MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
 918
 919/* HW2SW_DQ - Hardware to Software DQ
 920 * ----------------------------------
 921 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 922 * INMmod == DQ number
 923 * ----------------------------------------------
 924 * The HW2SW_DQ command transitions a descriptor queue from hardware to
 925 * software ownership. Incoming packets on the DQ are silently discarded,
 926 * SW should not post descriptors on nonoperational DQs.
 927 */
 928
 929static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
 930                                       u32 dq_number, u8 opcode_mod)
 931{
 932        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
 933                                   opcode_mod, dq_number);
 934}
 935
 936static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
 937                                      u32 dq_number)
 938{
 939        return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
 940                                    MLXSW_CMD_OPCODE_MOD_SDQ);
 941}
 942
 943static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
 944                                      u32 dq_number)
 945{
 946        return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
 947                                    MLXSW_CMD_OPCODE_MOD_RDQ);
 948}
 949
 950/* 2ERR_DQ - To Error DQ
 951 * ---------------------
 952 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 953 * INMmod == DQ number
 954 * ----------------------------------------------
 955 * The 2ERR_DQ command transitions the DQ into the error state from the state
 956 * in which it has been. While the command is executed, some in-process
 957 * descriptors may complete. Once the DQ transitions into the error state,
 958 * if there are posted descriptors on the RDQ/SDQ, the hardware writes
 959 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
 960 * When the command is completed successfully, the DQ is already in
 961 * the error state.
 962 */
 963
 964static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
 965                                      u32 dq_number, u8 opcode_mod)
 966{
 967        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
 968                                   opcode_mod, dq_number);
 969}
 970
 971static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
 972                                     u32 dq_number)
 973{
 974        return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
 975                                   MLXSW_CMD_OPCODE_MOD_SDQ);
 976}
 977
 978static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
 979                                     u32 dq_number)
 980{
 981        return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
 982                                   MLXSW_CMD_OPCODE_MOD_RDQ);
 983}
 984
 985/* QUERY_DQ - Query DQ
 986 * ---------------------
 987 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 988 * INMmod == DQ number
 989 * ----------------------------------------------
 990 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
 991 *
 992 * Note: Output mailbox has the same format as SW2HW_DQ.
 993 */
 994
 995static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
 996                                       char *out_mbox, u32 dq_number,
 997                                       u8 opcode_mod)
 998{
 999        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1000                                  opcode_mod, dq_number, false,
1001                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1002}
1003
1004static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1005                                      char *out_mbox, u32 dq_number)
1006{
1007        return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1008                                    MLXSW_CMD_OPCODE_MOD_SDQ);
1009}
1010
1011static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1012                                      char *out_mbox, u32 dq_number)
1013{
1014        return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1015                                    MLXSW_CMD_OPCODE_MOD_RDQ);
1016}
1017
1018/* SW2HW_CQ - Software to Hardware CQ
1019 * ----------------------------------
1020 * OpMod == 0 (N/A), INMmod == CQ number
1021 * -------------------------------------
1022 * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1023 * to hardware. The command takes the CQ context entry from the input mailbox
1024 * and stores it in the CQC in the ownership of the hardware. The command fails
1025 * if the requested CQC entry is already in the ownership of the hardware.
1026 */
1027
1028static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1029                                     char *in_mbox, u32 cq_number)
1030{
1031        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1032                                 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1033}
1034
1035/* cmd_mbox_sw2hw_cq_cv
1036 * CQE Version.
1037 * 0 - CQE Version 0, 1 - CQE Version 1
1038 */
1039MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cv, 0x00, 28, 4);
1040
1041/* cmd_mbox_sw2hw_cq_c_eqn
1042 * Event Queue this CQ reports completion events to.
1043 */
1044MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1045
1046/* cmd_mbox_sw2hw_cq_st
1047 * Event delivery state machine
1048 * 0x0 - FIRED
1049 * 0x1 - ARMED (Request for Notification)
1050 */
1051MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1052
1053/* cmd_mbox_sw2hw_cq_log_cq_size
1054 * Log (base 2) of the CQ size (in entries).
1055 */
1056MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1057
1058/* cmd_mbox_sw2hw_cq_producer_counter
1059 * Producer Counter. The counter is incremented for each CQE that is
1060 * written by the HW to the CQ.
1061 * Maintained by HW (valid for the QUERY_CQ command only)
1062 */
1063MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1064
1065/* cmd_mbox_sw2hw_cq_pa
1066 * Physical Address.
1067 */
1068MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1069
1070/* HW2SW_CQ - Hardware to Software CQ
1071 * ----------------------------------
1072 * OpMod == 0 (N/A), INMmod == CQ number
1073 * -------------------------------------
1074 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1075 * to software. The CQC entry is invalidated as a result of this command.
1076 */
1077
1078static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1079                                     u32 cq_number)
1080{
1081        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1082                                   0, cq_number);
1083}
1084
1085/* QUERY_CQ - Query CQ
1086 * ----------------------------------
1087 * OpMod == 0 (N/A), INMmod == CQ number
1088 * -------------------------------------
1089 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1090 * The command stores the snapshot in the output mailbox in the software format.
1091 * Note that the CQ context state and values are not affected by the QUERY_CQ
1092 * command. The QUERY_CQ command is for debug purposes only.
1093 *
1094 * Note: Output mailbox has the same format as SW2HW_CQ.
1095 */
1096
1097static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1098                                     char *out_mbox, u32 cq_number)
1099{
1100        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1101                                  0, cq_number, false,
1102                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1103}
1104
1105/* SW2HW_EQ - Software to Hardware EQ
1106 * ----------------------------------
1107 * OpMod == 0 (N/A), INMmod == EQ number
1108 * -------------------------------------
1109 * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1110 * to hardware. The command takes the EQ context entry from the input mailbox
1111 * and stores it in the EQC in the ownership of the hardware. The command fails
1112 * if the requested EQC entry is already in the ownership of the hardware.
1113 */
1114
1115static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1116                                     char *in_mbox, u32 eq_number)
1117{
1118        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1119                                 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1120}
1121
1122/* cmd_mbox_sw2hw_eq_int_msix
1123 * When set, MSI-X cycles will be generated by this EQ.
1124 * When cleared, an interrupt will be generated by this EQ.
1125 */
1126MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1127
1128/* cmd_mbox_sw2hw_eq_st
1129 * Event delivery state machine
1130 * 0x0 - FIRED
1131 * 0x1 - ARMED (Request for Notification)
1132 * 0x11 - Always ARMED
1133 * other - reserved
1134 */
1135MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1136
1137/* cmd_mbox_sw2hw_eq_log_eq_size
1138 * Log (base 2) of the EQ size (in entries).
1139 */
1140MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1141
1142/* cmd_mbox_sw2hw_eq_producer_counter
1143 * Producer Counter. The counter is incremented for each EQE that is written
1144 * by the HW to the EQ.
1145 * Maintained by HW (valid for the QUERY_EQ command only)
1146 */
1147MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1148
1149/* cmd_mbox_sw2hw_eq_pa
1150 * Physical Address.
1151 */
1152MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1153
1154/* HW2SW_EQ - Hardware to Software EQ
1155 * ----------------------------------
1156 * OpMod == 0 (N/A), INMmod == EQ number
1157 * -------------------------------------
1158 */
1159
1160static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1161                                     u32 eq_number)
1162{
1163        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1164                                   0, eq_number);
1165}
1166
1167/* QUERY_EQ - Query EQ
1168 * ----------------------------------
1169 * OpMod == 0 (N/A), INMmod == EQ number
1170 * -------------------------------------
1171 *
1172 * Note: Output mailbox has the same format as SW2HW_EQ.
1173 */
1174
1175static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1176                                     char *out_mbox, u32 eq_number)
1177{
1178        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1179                                  0, eq_number, false,
1180                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1181}
1182
1183#endif
1184