linux/drivers/net/wireless/ath/ath9k/eeprom.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include <linux/ath9k_platform.h>
  19
  20void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
  21{
  22        REG_WRITE(ah, reg, val);
  23
  24        if (ah->config.analog_shiftreg)
  25                udelay(100);
  26}
  27
  28void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
  29                               u32 shift, u32 val)
  30{
  31        REG_RMW(ah, reg, ((val << shift) & mask), mask);
  32
  33        if (ah->config.analog_shiftreg)
  34                udelay(100);
  35}
  36
  37int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
  38                             int16_t targetLeft, int16_t targetRight)
  39{
  40        int16_t rv;
  41
  42        if (srcRight == srcLeft) {
  43                rv = targetLeft;
  44        } else {
  45                rv = (int16_t) (((target - srcLeft) * targetRight +
  46                                 (srcRight - target) * targetLeft) /
  47                                (srcRight - srcLeft));
  48        }
  49        return rv;
  50}
  51
  52bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
  53                                    u16 *indexL, u16 *indexR)
  54{
  55        u16 i;
  56
  57        if (target <= pList[0]) {
  58                *indexL = *indexR = 0;
  59                return true;
  60        }
  61        if (target >= pList[listSize - 1]) {
  62                *indexL = *indexR = (u16) (listSize - 1);
  63                return true;
  64        }
  65
  66        for (i = 0; i < listSize - 1; i++) {
  67                if (pList[i] == target) {
  68                        *indexL = *indexR = i;
  69                        return true;
  70                }
  71                if (target < pList[i + 1]) {
  72                        *indexL = i;
  73                        *indexR = (u16) (i + 1);
  74                        return false;
  75                }
  76        }
  77        return false;
  78}
  79
  80void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
  81                                  int eep_start_loc, int size)
  82{
  83        int i = 0, j, addr;
  84        u32 addrdata[8];
  85        u32 data[8];
  86
  87        for (addr = 0; addr < size; addr++) {
  88                addrdata[i] = AR5416_EEPROM_OFFSET +
  89                        ((addr + eep_start_loc) << AR5416_EEPROM_S);
  90                i++;
  91                if (i == 8) {
  92                        REG_READ_MULTI(ah, addrdata, data, i);
  93
  94                        for (j = 0; j < i; j++) {
  95                                *eep_data = data[j];
  96                                eep_data++;
  97                        }
  98                        i = 0;
  99                }
 100        }
 101
 102        if (i != 0) {
 103                REG_READ_MULTI(ah, addrdata, data, i);
 104
 105                for (j = 0; j < i; j++) {
 106                        *eep_data = data[j];
 107                        eep_data++;
 108                }
 109        }
 110}
 111
 112static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
 113                                      off_t offset, u16 *data)
 114{
 115        if (offset >= blob_size)
 116                return false;
 117
 118        *data =  blob[offset];
 119        return true;
 120}
 121
 122static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
 123                                      off_t offset, u16 *data)
 124{
 125        return ath9k_hw_nvram_read_array(pdata->eeprom_data,
 126                                         ARRAY_SIZE(pdata->eeprom_data),
 127                                         offset, data);
 128}
 129
 130static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
 131                                         off_t offset, u16 *data)
 132{
 133        return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
 134                                         eeprom_blob->size / sizeof(u16),
 135                                         offset, data);
 136}
 137
 138bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
 139{
 140        struct ath_common *common = ath9k_hw_common(ah);
 141        struct ath9k_platform_data *pdata = ah->dev->platform_data;
 142        bool ret;
 143
 144        if (ah->eeprom_blob)
 145                ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
 146        else if (pdata && !pdata->use_eeprom)
 147                ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
 148        else
 149                ret = common->bus_ops->eeprom_read(common, off, data);
 150
 151        if (!ret)
 152                ath_dbg(common, EEPROM,
 153                        "unable to read eeprom region at offset %u\n", off);
 154
 155        return ret;
 156}
 157
 158int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
 159{
 160        u16 magic;
 161        u16 *eepdata;
 162        int i;
 163        bool needs_byteswap = false;
 164        struct ath_common *common = ath9k_hw_common(ah);
 165
 166        if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 167                ath_err(common, "Reading Magic # failed\n");
 168                return -EIO;
 169        }
 170
 171        if (swab16(magic) == AR5416_EEPROM_MAGIC) {
 172                needs_byteswap = true;
 173                ath_dbg(common, EEPROM,
 174                        "EEPROM needs byte-swapping to correct endianness.\n");
 175        } else if (magic != AR5416_EEPROM_MAGIC) {
 176                if (ath9k_hw_use_flash(ah)) {
 177                        ath_dbg(common, EEPROM,
 178                                "Ignoring invalid EEPROM magic (0x%04x).\n",
 179                                magic);
 180                } else {
 181                        ath_err(common,
 182                                "Invalid EEPROM magic (0x%04x).\n", magic);
 183                        return -EINVAL;
 184                }
 185        }
 186
 187        if (needs_byteswap) {
 188                if (ah->ah_flags & AH_NO_EEP_SWAP) {
 189                        ath_info(common,
 190                                 "Ignoring endianness difference in EEPROM magic bytes.\n");
 191                } else {
 192                        eepdata = (u16 *)(&ah->eeprom);
 193
 194                        for (i = 0; i < size; i++)
 195                                eepdata[i] = swab16(eepdata[i]);
 196                }
 197        }
 198
 199        if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
 200                *swap_needed = true;
 201                ath_dbg(common, EEPROM,
 202                        "Big Endian EEPROM detected according to EEPMISC register.\n");
 203        } else {
 204                *swap_needed = false;
 205        }
 206
 207        return 0;
 208}
 209
 210bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
 211{
 212        u32 i, sum = 0;
 213        u16 *eepdata = (u16 *)(&ah->eeprom);
 214        struct ath_common *common = ath9k_hw_common(ah);
 215
 216        for (i = 0; i < size; i++)
 217                sum ^= eepdata[i];
 218
 219        if (sum != 0xffff) {
 220                ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
 221                return false;
 222        }
 223
 224        return true;
 225}
 226
 227bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
 228{
 229        struct ath_common *common = ath9k_hw_common(ah);
 230
 231        if (ah->eep_ops->get_eeprom_ver(ah) != version ||
 232            ah->eep_ops->get_eeprom_rev(ah) < minrev) {
 233                ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
 234                        ah->eep_ops->get_eeprom_ver(ah),
 235                        ah->eep_ops->get_eeprom_rev(ah));
 236                return false;
 237        }
 238
 239        return true;
 240}
 241
 242void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
 243                             u8 *pVpdList, u16 numIntercepts,
 244                             u8 *pRetVpdList)
 245{
 246        u16 i, k;
 247        u8 currPwr = pwrMin;
 248        u16 idxL = 0, idxR = 0;
 249
 250        for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
 251                ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
 252                                               numIntercepts, &(idxL),
 253                                               &(idxR));
 254                if (idxR < 1)
 255                        idxR = 1;
 256                if (idxL == numIntercepts - 1)
 257                        idxL = (u16) (numIntercepts - 2);
 258                if (pPwrList[idxL] == pPwrList[idxR])
 259                        k = pVpdList[idxL];
 260                else
 261                        k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
 262                                   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
 263                                  (pPwrList[idxR] - pPwrList[idxL]));
 264                pRetVpdList[i] = (u8) k;
 265                currPwr += 2;
 266        }
 267}
 268
 269void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
 270                                       struct ath9k_channel *chan,
 271                                       struct cal_target_power_leg *powInfo,
 272                                       u16 numChannels,
 273                                       struct cal_target_power_leg *pNewPower,
 274                                       u16 numRates, bool isExtTarget)
 275{
 276        struct chan_centers centers;
 277        u16 clo, chi;
 278        int i;
 279        int matchIndex = -1, lowIndex = -1;
 280        u16 freq;
 281
 282        ath9k_hw_get_channel_centers(ah, chan, &centers);
 283        freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
 284
 285        if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
 286                                       IS_CHAN_2GHZ(chan))) {
 287                matchIndex = 0;
 288        } else {
 289                for (i = 0; (i < numChannels) &&
 290                             (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 291                        if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 292                                                       IS_CHAN_2GHZ(chan))) {
 293                                matchIndex = i;
 294                                break;
 295                        } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 296                                                IS_CHAN_2GHZ(chan)) && i > 0 &&
 297                                   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 298                                                IS_CHAN_2GHZ(chan))) {
 299                                lowIndex = i - 1;
 300                                break;
 301                        }
 302                }
 303                if ((matchIndex == -1) && (lowIndex == -1))
 304                        matchIndex = i - 1;
 305        }
 306
 307        if (matchIndex != -1) {
 308                *pNewPower = powInfo[matchIndex];
 309        } else {
 310                clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 311                                         IS_CHAN_2GHZ(chan));
 312                chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 313                                         IS_CHAN_2GHZ(chan));
 314
 315                for (i = 0; i < numRates; i++) {
 316                        pNewPower->tPow2x[i] =
 317                                (u8)ath9k_hw_interpolate(freq, clo, chi,
 318                                                powInfo[lowIndex].tPow2x[i],
 319                                                powInfo[lowIndex + 1].tPow2x[i]);
 320                }
 321        }
 322}
 323
 324void ath9k_hw_get_target_powers(struct ath_hw *ah,
 325                                struct ath9k_channel *chan,
 326                                struct cal_target_power_ht *powInfo,
 327                                u16 numChannels,
 328                                struct cal_target_power_ht *pNewPower,
 329                                u16 numRates, bool isHt40Target)
 330{
 331        struct chan_centers centers;
 332        u16 clo, chi;
 333        int i;
 334        int matchIndex = -1, lowIndex = -1;
 335        u16 freq;
 336
 337        ath9k_hw_get_channel_centers(ah, chan, &centers);
 338        freq = isHt40Target ? centers.synth_center : centers.ctl_center;
 339
 340        if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
 341                matchIndex = 0;
 342        } else {
 343                for (i = 0; (i < numChannels) &&
 344                             (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 345                        if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 346                                                       IS_CHAN_2GHZ(chan))) {
 347                                matchIndex = i;
 348                                break;
 349                        } else
 350                                if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 351                                                IS_CHAN_2GHZ(chan)) && i > 0 &&
 352                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 353                                                IS_CHAN_2GHZ(chan))) {
 354                                        lowIndex = i - 1;
 355                                        break;
 356                                }
 357                }
 358                if ((matchIndex == -1) && (lowIndex == -1))
 359                        matchIndex = i - 1;
 360        }
 361
 362        if (matchIndex != -1) {
 363                *pNewPower = powInfo[matchIndex];
 364        } else {
 365                clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 366                                         IS_CHAN_2GHZ(chan));
 367                chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 368                                         IS_CHAN_2GHZ(chan));
 369
 370                for (i = 0; i < numRates; i++) {
 371                        pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
 372                                                clo, chi,
 373                                                powInfo[lowIndex].tPow2x[i],
 374                                                powInfo[lowIndex + 1].tPow2x[i]);
 375                }
 376        }
 377}
 378
 379u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
 380                                bool is2GHz, int num_band_edges)
 381{
 382        u16 twiceMaxEdgePower = MAX_RATE_POWER;
 383        int i;
 384
 385        for (i = 0; (i < num_band_edges) &&
 386                     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 387                if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
 388                        twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
 389                        break;
 390                } else if ((i > 0) &&
 391                           (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
 392                                                      is2GHz))) {
 393                        if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
 394                                               is2GHz) < freq &&
 395                            CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
 396                                twiceMaxEdgePower =
 397                                        CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
 398                        }
 399                        break;
 400                }
 401        }
 402
 403        return twiceMaxEdgePower;
 404}
 405
 406u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
 407                              u8 antenna_reduction)
 408{
 409        u16 reduction = antenna_reduction;
 410
 411        /*
 412         * Reduce scaled Power by number of chains active
 413         * to get the per chain tx power level.
 414         */
 415        switch (ar5416_get_ntxchains(ah->txchainmask)) {
 416        case 1:
 417                break;
 418        case 2:
 419                reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
 420                break;
 421        case 3:
 422                reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
 423                break;
 424        }
 425
 426        if (power_limit > reduction)
 427                power_limit -= reduction;
 428        else
 429                power_limit = 0;
 430
 431        return power_limit;
 432}
 433
 434void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
 435{
 436        struct ath_common *common = ath9k_hw_common(ah);
 437        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 438
 439        switch (ar5416_get_ntxchains(ah->txchainmask)) {
 440        case 1:
 441                break;
 442        case 2:
 443                regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
 444                break;
 445        case 3:
 446                regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
 447                break;
 448        default:
 449                ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 450                break;
 451        }
 452}
 453
 454void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
 455                                struct ath9k_channel *chan,
 456                                void *pRawDataSet,
 457                                u8 *bChans, u16 availPiers,
 458                                u16 tPdGainOverlap,
 459                                u16 *pPdGainBoundaries, u8 *pPDADCValues,
 460                                u16 numXpdGains)
 461{
 462        int i, j, k;
 463        int16_t ss;
 464        u16 idxL = 0, idxR = 0, numPiers;
 465        static u8 vpdTableL[AR5416_NUM_PD_GAINS]
 466                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 467        static u8 vpdTableR[AR5416_NUM_PD_GAINS]
 468                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 469        static u8 vpdTableI[AR5416_NUM_PD_GAINS]
 470                [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 471
 472        u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
 473        u8 minPwrT4[AR5416_NUM_PD_GAINS];
 474        u8 maxPwrT4[AR5416_NUM_PD_GAINS];
 475        int16_t vpdStep;
 476        int16_t tmpVal;
 477        u16 sizeCurrVpdTable, maxIndex, tgtIndex;
 478        bool match;
 479        int16_t minDelta = 0;
 480        struct chan_centers centers;
 481        int pdgain_boundary_default;
 482        struct cal_data_per_freq *data_def = pRawDataSet;
 483        struct cal_data_per_freq_4k *data_4k = pRawDataSet;
 484        struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
 485        bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
 486        int intercepts;
 487
 488        if (AR_SREV_9287(ah))
 489                intercepts = AR9287_PD_GAIN_ICEPTS;
 490        else
 491                intercepts = AR5416_PD_GAIN_ICEPTS;
 492
 493        memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
 494        ath9k_hw_get_channel_centers(ah, chan, &centers);
 495
 496        for (numPiers = 0; numPiers < availPiers; numPiers++) {
 497                if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
 498                        break;
 499        }
 500
 501        match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
 502                                                             IS_CHAN_2GHZ(chan)),
 503                                               bChans, numPiers, &idxL, &idxR);
 504
 505        if (match) {
 506                if (AR_SREV_9287(ah)) {
 507                        for (i = 0; i < numXpdGains; i++) {
 508                                minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
 509                                maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
 510                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 511                                                data_9287[idxL].pwrPdg[i],
 512                                                data_9287[idxL].vpdPdg[i],
 513                                                intercepts,
 514                                                vpdTableI[i]);
 515                        }
 516                } else if (eeprom_4k) {
 517                        for (i = 0; i < numXpdGains; i++) {
 518                                minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
 519                                maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
 520                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 521                                                data_4k[idxL].pwrPdg[i],
 522                                                data_4k[idxL].vpdPdg[i],
 523                                                intercepts,
 524                                                vpdTableI[i]);
 525                        }
 526                } else {
 527                        for (i = 0; i < numXpdGains; i++) {
 528                                minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
 529                                maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
 530                                ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 531                                                data_def[idxL].pwrPdg[i],
 532                                                data_def[idxL].vpdPdg[i],
 533                                                intercepts,
 534                                                vpdTableI[i]);
 535                        }
 536                }
 537        } else {
 538                for (i = 0; i < numXpdGains; i++) {
 539                        if (AR_SREV_9287(ah)) {
 540                                pVpdL = data_9287[idxL].vpdPdg[i];
 541                                pPwrL = data_9287[idxL].pwrPdg[i];
 542                                pVpdR = data_9287[idxR].vpdPdg[i];
 543                                pPwrR = data_9287[idxR].pwrPdg[i];
 544                        } else if (eeprom_4k) {
 545                                pVpdL = data_4k[idxL].vpdPdg[i];
 546                                pPwrL = data_4k[idxL].pwrPdg[i];
 547                                pVpdR = data_4k[idxR].vpdPdg[i];
 548                                pPwrR = data_4k[idxR].pwrPdg[i];
 549                        } else {
 550                                pVpdL = data_def[idxL].vpdPdg[i];
 551                                pPwrL = data_def[idxL].pwrPdg[i];
 552                                pVpdR = data_def[idxR].vpdPdg[i];
 553                                pPwrR = data_def[idxR].pwrPdg[i];
 554                        }
 555
 556                        minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
 557
 558                        maxPwrT4[i] =
 559                                min(pPwrL[intercepts - 1],
 560                                    pPwrR[intercepts - 1]);
 561
 562
 563                        ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 564                                                pPwrL, pVpdL,
 565                                                intercepts,
 566                                                vpdTableL[i]);
 567                        ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 568                                                pPwrR, pVpdR,
 569                                                intercepts,
 570                                                vpdTableR[i]);
 571
 572                        for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
 573                                vpdTableI[i][j] =
 574                                        (u8)(ath9k_hw_interpolate((u16)
 575                                             FREQ2FBIN(centers.
 576                                                       synth_center,
 577                                                       IS_CHAN_2GHZ
 578                                                       (chan)),
 579                                             bChans[idxL], bChans[idxR],
 580                                             vpdTableL[i][j], vpdTableR[i][j]));
 581                        }
 582                }
 583        }
 584
 585        k = 0;
 586
 587        for (i = 0; i < numXpdGains; i++) {
 588                if (i == (numXpdGains - 1))
 589                        pPdGainBoundaries[i] =
 590                                (u16)(maxPwrT4[i] / 2);
 591                else
 592                        pPdGainBoundaries[i] =
 593                                (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
 594
 595                pPdGainBoundaries[i] =
 596                        min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
 597
 598                minDelta = 0;
 599
 600                if (i == 0) {
 601                        if (AR_SREV_9280_20_OR_LATER(ah))
 602                                ss = (int16_t)(0 - (minPwrT4[i] / 2));
 603                        else
 604                                ss = 0;
 605                } else {
 606                        ss = (int16_t)((pPdGainBoundaries[i - 1] -
 607                                        (minPwrT4[i] / 2)) -
 608                                       tPdGainOverlap + 1 + minDelta);
 609                }
 610                vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
 611                vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 612
 613                while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 614                        tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
 615                        pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
 616                        ss++;
 617                }
 618
 619                sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
 620                tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
 621                                (minPwrT4[i] / 2));
 622                maxIndex = (tgtIndex < sizeCurrVpdTable) ?
 623                        tgtIndex : sizeCurrVpdTable;
 624
 625                while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 626                        pPDADCValues[k++] = vpdTableI[i][ss++];
 627                }
 628
 629                vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
 630                                    vpdTableI[i][sizeCurrVpdTable - 2]);
 631                vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 632
 633                if (tgtIndex >= maxIndex) {
 634                        while ((ss <= tgtIndex) &&
 635                               (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 636                                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
 637                                                    (ss - maxIndex + 1) * vpdStep));
 638                                pPDADCValues[k++] = (u8)((tmpVal > 255) ?
 639                                                         255 : tmpVal);
 640                                ss++;
 641                        }
 642                }
 643        }
 644
 645        if (eeprom_4k)
 646                pdgain_boundary_default = 58;
 647        else
 648                pdgain_boundary_default = pPdGainBoundaries[i - 1];
 649
 650        while (i < AR5416_PD_GAINS_IN_MASK) {
 651                pPdGainBoundaries[i] = pdgain_boundary_default;
 652                i++;
 653        }
 654
 655        while (k < AR5416_NUM_PDADC_VALUES) {
 656                pPDADCValues[k] = pPDADCValues[k - 1];
 657                k++;
 658        }
 659}
 660
 661int ath9k_hw_eeprom_init(struct ath_hw *ah)
 662{
 663        int status;
 664
 665        if (AR_SREV_9300_20_OR_LATER(ah))
 666                ah->eep_ops = &eep_ar9300_ops;
 667        else if (AR_SREV_9287(ah)) {
 668                ah->eep_ops = &eep_ar9287_ops;
 669        } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
 670                ah->eep_ops = &eep_4k_ops;
 671        } else {
 672                ah->eep_ops = &eep_def_ops;
 673        }
 674
 675        if (!ah->eep_ops->fill_eeprom(ah))
 676                return -EIO;
 677
 678        status = ah->eep_ops->check_eeprom(ah);
 679
 680        return status;
 681}
 682