linux/drivers/pci/host/vmd.c
<<
>>
Prefs
   1/*
   2 * Volume Management Device driver
   3 * Copyright (c) 2015, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/irq.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/msi.h>
  21#include <linux/pci.h>
  22#include <linux/srcu.h>
  23#include <linux/rculist.h>
  24#include <linux/rcupdate.h>
  25
  26#include <asm/irqdomain.h>
  27#include <asm/device.h>
  28#include <asm/msi.h>
  29#include <asm/msidef.h>
  30
  31#define VMD_CFGBAR      0
  32#define VMD_MEMBAR1     2
  33#define VMD_MEMBAR2     4
  34
  35/*
  36 * Lock for manipulating VMD IRQ lists.
  37 */
  38static DEFINE_RAW_SPINLOCK(list_lock);
  39
  40/**
  41 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
  42 * @node:       list item for parent traversal.
  43 * @irq:        back pointer to parent.
  44 * @enabled:    true if driver enabled IRQ
  45 * @virq:       the virtual IRQ value provided to the requesting driver.
  46 *
  47 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
  48 * a VMD IRQ using this structure.
  49 */
  50struct vmd_irq {
  51        struct list_head        node;
  52        struct vmd_irq_list     *irq;
  53        bool                    enabled;
  54        unsigned int            virq;
  55};
  56
  57/**
  58 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
  59 * @irq_list:   the list of irq's the VMD one demuxes to.
  60 * @srcu:       SRCU struct for local synchronization.
  61 * @count:      number of child IRQs assigned to this vector; used to track
  62 *              sharing.
  63 */
  64struct vmd_irq_list {
  65        struct list_head        irq_list;
  66        struct srcu_struct      srcu;
  67        unsigned int            count;
  68};
  69
  70struct vmd_dev {
  71        struct pci_dev          *dev;
  72
  73        spinlock_t              cfg_lock;
  74        char __iomem            *cfgbar;
  75
  76        int msix_count;
  77        struct vmd_irq_list     *irqs;
  78
  79        struct pci_sysdata      sysdata;
  80        struct resource         resources[3];
  81        struct irq_domain       *irq_domain;
  82        struct pci_bus          *bus;
  83
  84#ifdef CONFIG_X86_DEV_DMA_OPS
  85        struct dma_map_ops      dma_ops;
  86        struct dma_domain       dma_domain;
  87#endif
  88};
  89
  90static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
  91{
  92        return container_of(bus->sysdata, struct vmd_dev, sysdata);
  93}
  94
  95static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
  96                                           struct vmd_irq_list *irqs)
  97{
  98        return irqs - vmd->irqs;
  99}
 100
 101/*
 102 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
 103 * but the MSI entry for the hardware it's driving will be programmed with a
 104 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
 105 * domain into one of its own, and the VMD driver de-muxes these for the
 106 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
 107 * and irq_chip to set this up.
 108 */
 109static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
 110{
 111        struct vmd_irq *vmdirq = data->chip_data;
 112        struct vmd_irq_list *irq = vmdirq->irq;
 113        struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
 114
 115        msg->address_hi = MSI_ADDR_BASE_HI;
 116        msg->address_lo = MSI_ADDR_BASE_LO |
 117                          MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
 118        msg->data = 0;
 119}
 120
 121/*
 122 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
 123 */
 124static void vmd_irq_enable(struct irq_data *data)
 125{
 126        struct vmd_irq *vmdirq = data->chip_data;
 127        unsigned long flags;
 128
 129        raw_spin_lock_irqsave(&list_lock, flags);
 130        WARN_ON(vmdirq->enabled);
 131        list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
 132        vmdirq->enabled = true;
 133        raw_spin_unlock_irqrestore(&list_lock, flags);
 134
 135        data->chip->irq_unmask(data);
 136}
 137
 138static void vmd_irq_disable(struct irq_data *data)
 139{
 140        struct vmd_irq *vmdirq = data->chip_data;
 141        unsigned long flags;
 142
 143        data->chip->irq_mask(data);
 144
 145        raw_spin_lock_irqsave(&list_lock, flags);
 146        if (vmdirq->enabled) {
 147                list_del_rcu(&vmdirq->node);
 148                vmdirq->enabled = false;
 149        }
 150        raw_spin_unlock_irqrestore(&list_lock, flags);
 151}
 152
 153/*
 154 * XXX: Stubbed until we develop acceptable way to not create conflicts with
 155 * other devices sharing the same vector.
 156 */
 157static int vmd_irq_set_affinity(struct irq_data *data,
 158                                const struct cpumask *dest, bool force)
 159{
 160        return -EINVAL;
 161}
 162
 163static struct irq_chip vmd_msi_controller = {
 164        .name                   = "VMD-MSI",
 165        .irq_enable             = vmd_irq_enable,
 166        .irq_disable            = vmd_irq_disable,
 167        .irq_compose_msi_msg    = vmd_compose_msi_msg,
 168        .irq_set_affinity       = vmd_irq_set_affinity,
 169};
 170
 171static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
 172                                     msi_alloc_info_t *arg)
 173{
 174        return 0;
 175}
 176
 177/*
 178 * XXX: We can be even smarter selecting the best IRQ once we solve the
 179 * affinity problem.
 180 */
 181static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
 182{
 183        int i, best = 1;
 184        unsigned long flags;
 185
 186        if (pci_is_bridge(msi_desc_to_pci_dev(desc)) || vmd->msix_count == 1)
 187                return &vmd->irqs[0];
 188
 189        raw_spin_lock_irqsave(&list_lock, flags);
 190        for (i = 1; i < vmd->msix_count; i++)
 191                if (vmd->irqs[i].count < vmd->irqs[best].count)
 192                        best = i;
 193        vmd->irqs[best].count++;
 194        raw_spin_unlock_irqrestore(&list_lock, flags);
 195
 196        return &vmd->irqs[best];
 197}
 198
 199static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
 200                        unsigned int virq, irq_hw_number_t hwirq,
 201                        msi_alloc_info_t *arg)
 202{
 203        struct msi_desc *desc = arg->desc;
 204        struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
 205        struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
 206        unsigned int index, vector;
 207
 208        if (!vmdirq)
 209                return -ENOMEM;
 210
 211        INIT_LIST_HEAD(&vmdirq->node);
 212        vmdirq->irq = vmd_next_irq(vmd, desc);
 213        vmdirq->virq = virq;
 214        index = index_from_irqs(vmd, vmdirq->irq);
 215        vector = pci_irq_vector(vmd->dev, index);
 216
 217        irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
 218                            handle_untracked_irq, vmd, NULL);
 219        return 0;
 220}
 221
 222static void vmd_msi_free(struct irq_domain *domain,
 223                        struct msi_domain_info *info, unsigned int virq)
 224{
 225        struct vmd_irq *vmdirq = irq_get_chip_data(virq);
 226        unsigned long flags;
 227
 228        synchronize_srcu(&vmdirq->irq->srcu);
 229
 230        /* XXX: Potential optimization to rebalance */
 231        raw_spin_lock_irqsave(&list_lock, flags);
 232        vmdirq->irq->count--;
 233        raw_spin_unlock_irqrestore(&list_lock, flags);
 234
 235        kfree(vmdirq);
 236}
 237
 238static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
 239                           int nvec, msi_alloc_info_t *arg)
 240{
 241        struct pci_dev *pdev = to_pci_dev(dev);
 242        struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 243
 244        if (nvec > vmd->msix_count)
 245                return vmd->msix_count;
 246
 247        memset(arg, 0, sizeof(*arg));
 248        return 0;
 249}
 250
 251static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
 252{
 253        arg->desc = desc;
 254}
 255
 256static struct msi_domain_ops vmd_msi_domain_ops = {
 257        .get_hwirq      = vmd_get_hwirq,
 258        .msi_init       = vmd_msi_init,
 259        .msi_free       = vmd_msi_free,
 260        .msi_prepare    = vmd_msi_prepare,
 261        .set_desc       = vmd_set_desc,
 262};
 263
 264static struct msi_domain_info vmd_msi_domain_info = {
 265        .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 266                          MSI_FLAG_PCI_MSIX,
 267        .ops            = &vmd_msi_domain_ops,
 268        .chip           = &vmd_msi_controller,
 269};
 270
 271#ifdef CONFIG_X86_DEV_DMA_OPS
 272/*
 273 * VMD replaces the requester ID with its own.  DMA mappings for devices in a
 274 * VMD domain need to be mapped for the VMD, not the device requiring
 275 * the mapping.
 276 */
 277static struct device *to_vmd_dev(struct device *dev)
 278{
 279        struct pci_dev *pdev = to_pci_dev(dev);
 280        struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 281
 282        return &vmd->dev->dev;
 283}
 284
 285static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
 286{
 287        return get_dma_ops(to_vmd_dev(dev));
 288}
 289
 290static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
 291                       gfp_t flag, unsigned long attrs)
 292{
 293        return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
 294                                       attrs);
 295}
 296
 297static void vmd_free(struct device *dev, size_t size, void *vaddr,
 298                     dma_addr_t addr, unsigned long attrs)
 299{
 300        return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
 301                                      attrs);
 302}
 303
 304static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
 305                    void *cpu_addr, dma_addr_t addr, size_t size,
 306                    unsigned long attrs)
 307{
 308        return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
 309                                      size, attrs);
 310}
 311
 312static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
 313                           void *cpu_addr, dma_addr_t addr, size_t size,
 314                           unsigned long attrs)
 315{
 316        return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
 317                                             addr, size, attrs);
 318}
 319
 320static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
 321                               unsigned long offset, size_t size,
 322                               enum dma_data_direction dir,
 323                               unsigned long attrs)
 324{
 325        return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
 326                                          dir, attrs);
 327}
 328
 329static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
 330                           enum dma_data_direction dir, unsigned long attrs)
 331{
 332        vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
 333}
 334
 335static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 336                      enum dma_data_direction dir, unsigned long attrs)
 337{
 338        return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
 339}
 340
 341static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 342                         enum dma_data_direction dir, unsigned long attrs)
 343{
 344        vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
 345}
 346
 347static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
 348                                    size_t size, enum dma_data_direction dir)
 349{
 350        vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
 351}
 352
 353static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
 354                                       size_t size, enum dma_data_direction dir)
 355{
 356        vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
 357                                                 dir);
 358}
 359
 360static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 361                                int nents, enum dma_data_direction dir)
 362{
 363        vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
 364}
 365
 366static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 367                                   int nents, enum dma_data_direction dir)
 368{
 369        vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
 370}
 371
 372static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
 373{
 374        return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
 375}
 376
 377static int vmd_dma_supported(struct device *dev, u64 mask)
 378{
 379        return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
 380}
 381
 382#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 383static u64 vmd_get_required_mask(struct device *dev)
 384{
 385        return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
 386}
 387#endif
 388
 389static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
 390{
 391        struct dma_domain *domain = &vmd->dma_domain;
 392
 393        if (get_dma_ops(&vmd->dev->dev))
 394                del_dma_domain(domain);
 395}
 396
 397#define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
 398        do {                                    \
 399                if (source->fn)                 \
 400                        dest->fn = vmd_##fn;    \
 401        } while (0)
 402
 403static void vmd_setup_dma_ops(struct vmd_dev *vmd)
 404{
 405        const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
 406        struct dma_map_ops *dest = &vmd->dma_ops;
 407        struct dma_domain *domain = &vmd->dma_domain;
 408
 409        domain->domain_nr = vmd->sysdata.domain;
 410        domain->dma_ops = dest;
 411
 412        if (!source)
 413                return;
 414        ASSIGN_VMD_DMA_OPS(source, dest, alloc);
 415        ASSIGN_VMD_DMA_OPS(source, dest, free);
 416        ASSIGN_VMD_DMA_OPS(source, dest, mmap);
 417        ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
 418        ASSIGN_VMD_DMA_OPS(source, dest, map_page);
 419        ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
 420        ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
 421        ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
 422        ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
 423        ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
 424        ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
 425        ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
 426        ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
 427        ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
 428#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 429        ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
 430#endif
 431        add_dma_domain(domain);
 432}
 433#undef ASSIGN_VMD_DMA_OPS
 434#else
 435static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
 436static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
 437#endif
 438
 439static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 440                                  unsigned int devfn, int reg, int len)
 441{
 442        char __iomem *addr = vmd->cfgbar +
 443                             (bus->number << 20) + (devfn << 12) + reg;
 444
 445        if ((addr - vmd->cfgbar) + len >=
 446            resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 447                return NULL;
 448
 449        return addr;
 450}
 451
 452/*
 453 * CPU may deadlock if config space is not serialized on some versions of this
 454 * hardware, so all config space access is done under a spinlock.
 455 */
 456static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
 457                        int len, u32 *value)
 458{
 459        struct vmd_dev *vmd = vmd_from_bus(bus);
 460        char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 461        unsigned long flags;
 462        int ret = 0;
 463
 464        if (!addr)
 465                return -EFAULT;
 466
 467        spin_lock_irqsave(&vmd->cfg_lock, flags);
 468        switch (len) {
 469        case 1:
 470                *value = readb(addr);
 471                break;
 472        case 2:
 473                *value = readw(addr);
 474                break;
 475        case 4:
 476                *value = readl(addr);
 477                break;
 478        default:
 479                ret = -EINVAL;
 480                break;
 481        }
 482        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 483        return ret;
 484}
 485
 486/*
 487 * VMD h/w converts non-posted config writes to posted memory writes. The
 488 * read-back in this function forces the completion so it returns only after
 489 * the config space was written, as expected.
 490 */
 491static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
 492                         int len, u32 value)
 493{
 494        struct vmd_dev *vmd = vmd_from_bus(bus);
 495        char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 496        unsigned long flags;
 497        int ret = 0;
 498
 499        if (!addr)
 500                return -EFAULT;
 501
 502        spin_lock_irqsave(&vmd->cfg_lock, flags);
 503        switch (len) {
 504        case 1:
 505                writeb(value, addr);
 506                readb(addr);
 507                break;
 508        case 2:
 509                writew(value, addr);
 510                readw(addr);
 511                break;
 512        case 4:
 513                writel(value, addr);
 514                readl(addr);
 515                break;
 516        default:
 517                ret = -EINVAL;
 518                break;
 519        }
 520        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 521        return ret;
 522}
 523
 524static struct pci_ops vmd_ops = {
 525        .read           = vmd_pci_read,
 526        .write          = vmd_pci_write,
 527};
 528
 529static void vmd_attach_resources(struct vmd_dev *vmd)
 530{
 531        vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
 532        vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
 533}
 534
 535static void vmd_detach_resources(struct vmd_dev *vmd)
 536{
 537        vmd->dev->resource[VMD_MEMBAR1].child = NULL;
 538        vmd->dev->resource[VMD_MEMBAR2].child = NULL;
 539}
 540
 541/*
 542 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
 543 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
 544 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
 545 * currently reserved.
 546 */
 547static int vmd_find_free_domain(void)
 548{
 549        int domain = 0xffff;
 550        struct pci_bus *bus = NULL;
 551
 552        while ((bus = pci_find_next_bus(bus)) != NULL)
 553                domain = max_t(int, domain, pci_domain_nr(bus));
 554        return domain + 1;
 555}
 556
 557static int vmd_enable_domain(struct vmd_dev *vmd)
 558{
 559        struct pci_sysdata *sd = &vmd->sysdata;
 560        struct fwnode_handle *fn;
 561        struct resource *res;
 562        u32 upper_bits;
 563        unsigned long flags;
 564        LIST_HEAD(resources);
 565
 566        res = &vmd->dev->resource[VMD_CFGBAR];
 567        vmd->resources[0] = (struct resource) {
 568                .name  = "VMD CFGBAR",
 569                .start = 0,
 570                .end   = (resource_size(res) >> 20) - 1,
 571                .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
 572        };
 573
 574        /*
 575         * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
 576         * put 32-bit resources in the window.
 577         *
 578         * There's no hardware reason why a 64-bit window *couldn't*
 579         * contain a 32-bit resource, but pbus_size_mem() computes the
 580         * bridge window size assuming a 64-bit window will contain no
 581         * 32-bit resources.  __pci_assign_resource() enforces that
 582         * artificial restriction to make sure everything will fit.
 583         *
 584         * The only way we could use a 64-bit non-prefechable MEMBAR is
 585         * if its address is <4GB so that we can convert it to a 32-bit
 586         * resource.  To be visible to the host OS, all VMD endpoints must
 587         * be initially configured by platform BIOS, which includes setting
 588         * up these resources.  We can assume the device is configured
 589         * according to the platform needs.
 590         */
 591        res = &vmd->dev->resource[VMD_MEMBAR1];
 592        upper_bits = upper_32_bits(res->end);
 593        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 594        if (!upper_bits)
 595                flags &= ~IORESOURCE_MEM_64;
 596        vmd->resources[1] = (struct resource) {
 597                .name  = "VMD MEMBAR1",
 598                .start = res->start,
 599                .end   = res->end,
 600                .flags = flags,
 601                .parent = res,
 602        };
 603
 604        res = &vmd->dev->resource[VMD_MEMBAR2];
 605        upper_bits = upper_32_bits(res->end);
 606        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 607        if (!upper_bits)
 608                flags &= ~IORESOURCE_MEM_64;
 609        vmd->resources[2] = (struct resource) {
 610                .name  = "VMD MEMBAR2",
 611                .start = res->start + 0x2000,
 612                .end   = res->end,
 613                .flags = flags,
 614                .parent = res,
 615        };
 616
 617        sd->vmd_domain = true;
 618        sd->domain = vmd_find_free_domain();
 619        if (sd->domain < 0)
 620                return sd->domain;
 621
 622        sd->node = pcibus_to_node(vmd->dev->bus);
 623
 624        fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
 625        if (!fn)
 626                return -ENODEV;
 627
 628        vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
 629                                                    x86_vector_domain);
 630        irq_domain_free_fwnode(fn);
 631        if (!vmd->irq_domain)
 632                return -ENODEV;
 633
 634        pci_add_resource(&resources, &vmd->resources[0]);
 635        pci_add_resource(&resources, &vmd->resources[1]);
 636        pci_add_resource(&resources, &vmd->resources[2]);
 637        vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
 638                                       &resources);
 639        if (!vmd->bus) {
 640                pci_free_resource_list(&resources);
 641                irq_domain_remove(vmd->irq_domain);
 642                return -ENODEV;
 643        }
 644
 645        vmd_attach_resources(vmd);
 646        vmd_setup_dma_ops(vmd);
 647        dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 648        pci_rescan_bus(vmd->bus);
 649
 650        WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
 651                               "domain"), "Can't create symlink to domain\n");
 652        return 0;
 653}
 654
 655static irqreturn_t vmd_irq(int irq, void *data)
 656{
 657        struct vmd_irq_list *irqs = data;
 658        struct vmd_irq *vmdirq;
 659        int idx;
 660
 661        idx = srcu_read_lock(&irqs->srcu);
 662        list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
 663                generic_handle_irq(vmdirq->virq);
 664        srcu_read_unlock(&irqs->srcu, idx);
 665
 666        return IRQ_HANDLED;
 667}
 668
 669static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
 670{
 671        struct vmd_dev *vmd;
 672        int i, err;
 673
 674        if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
 675                return -ENOMEM;
 676
 677        vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
 678        if (!vmd)
 679                return -ENOMEM;
 680
 681        vmd->dev = dev;
 682        err = pcim_enable_device(dev);
 683        if (err < 0)
 684                return err;
 685
 686        vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
 687        if (!vmd->cfgbar)
 688                return -ENOMEM;
 689
 690        pci_set_master(dev);
 691        if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
 692            dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
 693                return -ENODEV;
 694
 695        vmd->msix_count = pci_msix_vec_count(dev);
 696        if (vmd->msix_count < 0)
 697                return -ENODEV;
 698
 699        vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
 700                                        PCI_IRQ_MSIX);
 701        if (vmd->msix_count < 0)
 702                return vmd->msix_count;
 703
 704        vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
 705                                 GFP_KERNEL);
 706        if (!vmd->irqs)
 707                return -ENOMEM;
 708
 709        for (i = 0; i < vmd->msix_count; i++) {
 710                err = init_srcu_struct(&vmd->irqs[i].srcu);
 711                if (err)
 712                        return err;
 713
 714                INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
 715                err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
 716                                       vmd_irq, IRQF_NO_THREAD,
 717                                       "vmd", &vmd->irqs[i]);
 718                if (err)
 719                        return err;
 720        }
 721
 722        spin_lock_init(&vmd->cfg_lock);
 723        pci_set_drvdata(dev, vmd);
 724        err = vmd_enable_domain(vmd);
 725        if (err)
 726                return err;
 727
 728        dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
 729                 vmd->sysdata.domain);
 730        return 0;
 731}
 732
 733static void vmd_cleanup_srcu(struct vmd_dev *vmd)
 734{
 735        int i;
 736
 737        for (i = 0; i < vmd->msix_count; i++)
 738                cleanup_srcu_struct(&vmd->irqs[i].srcu);
 739}
 740
 741static void vmd_remove(struct pci_dev *dev)
 742{
 743        struct vmd_dev *vmd = pci_get_drvdata(dev);
 744
 745        vmd_detach_resources(vmd);
 746        sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
 747        pci_stop_root_bus(vmd->bus);
 748        pci_remove_root_bus(vmd->bus);
 749        vmd_cleanup_srcu(vmd);
 750        vmd_teardown_dma_ops(vmd);
 751        irq_domain_remove(vmd->irq_domain);
 752}
 753
 754#ifdef CONFIG_PM_SLEEP
 755static int vmd_suspend(struct device *dev)
 756{
 757        struct pci_dev *pdev = to_pci_dev(dev);
 758        struct vmd_dev *vmd = pci_get_drvdata(pdev);
 759        int i;
 760
 761        for (i = 0; i < vmd->msix_count; i++)
 762                devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
 763
 764        pci_save_state(pdev);
 765        return 0;
 766}
 767
 768static int vmd_resume(struct device *dev)
 769{
 770        struct pci_dev *pdev = to_pci_dev(dev);
 771        struct vmd_dev *vmd = pci_get_drvdata(pdev);
 772        int err, i;
 773
 774        for (i = 0; i < vmd->msix_count; i++) {
 775                err = devm_request_irq(dev, pci_irq_vector(pdev, i),
 776                                       vmd_irq, IRQF_NO_THREAD,
 777                                       "vmd", &vmd->irqs[i]);
 778                if (err)
 779                        return err;
 780        }
 781
 782        pci_restore_state(pdev);
 783        return 0;
 784}
 785#endif
 786static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
 787
 788static const struct pci_device_id vmd_ids[] = {
 789        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
 790        {0,}
 791};
 792MODULE_DEVICE_TABLE(pci, vmd_ids);
 793
 794static struct pci_driver vmd_drv = {
 795        .name           = "vmd",
 796        .id_table       = vmd_ids,
 797        .probe          = vmd_probe,
 798        .remove         = vmd_remove,
 799        .driver         = {
 800                .pm     = &vmd_dev_pm_ops,
 801        },
 802};
 803module_pci_driver(vmd_drv);
 804
 805MODULE_AUTHOR("Intel Corporation");
 806MODULE_LICENSE("GPL v2");
 807MODULE_VERSION("0.6");
 808