linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/kernel.h>
  12#include <linux/delay.h>
  13#include <linux/dmi.h>
  14#include <linux/init.h>
  15#include <linux/of.h>
  16#include <linux/of_pci.h>
  17#include <linux/pci.h>
  18#include <linux/pm.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/spinlock.h>
  22#include <linux/string.h>
  23#include <linux/log2.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/pm_wakeup.h>
  26#include <linux/interrupt.h>
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pci-ats.h>
  32#include <asm/setup.h>
  33#include <asm/dma.h>
  34#include <linux/aer.h>
  35#include "pci.h"
  36
  37const char *pci_power_names[] = {
  38        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  39};
  40EXPORT_SYMBOL_GPL(pci_power_names);
  41
  42int isa_dma_bridge_buggy;
  43EXPORT_SYMBOL(isa_dma_bridge_buggy);
  44
  45int pci_pci_problems;
  46EXPORT_SYMBOL(pci_pci_problems);
  47
  48unsigned int pci_pm_d3_delay;
  49
  50static void pci_pme_list_scan(struct work_struct *work);
  51
  52static LIST_HEAD(pci_pme_list);
  53static DEFINE_MUTEX(pci_pme_list_mutex);
  54static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  55
  56struct pci_pme_device {
  57        struct list_head list;
  58        struct pci_dev *dev;
  59};
  60
  61#define PME_TIMEOUT 1000 /* How long between PME checks */
  62
  63static void pci_dev_d3_sleep(struct pci_dev *dev)
  64{
  65        unsigned int delay = dev->d3_delay;
  66
  67        if (delay < pci_pm_d3_delay)
  68                delay = pci_pm_d3_delay;
  69
  70        if (delay)
  71                msleep(delay);
  72}
  73
  74#ifdef CONFIG_PCI_DOMAINS
  75int pci_domains_supported = 1;
  76#endif
  77
  78#define DEFAULT_CARDBUS_IO_SIZE         (256)
  79#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  80/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  81unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  82unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  83
  84#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  85#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  86/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  87unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  88unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  89
  90#define DEFAULT_HOTPLUG_BUS_SIZE        1
  91unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  92
  93enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  94
  95/*
  96 * The default CLS is used if arch didn't set CLS explicitly and not
  97 * all pci devices agree on the same value.  Arch can override either
  98 * the dfl or actual value as it sees fit.  Don't forget this is
  99 * measured in 32-bit words, not bytes.
 100 */
 101u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 102u8 pci_cache_line_size;
 103
 104/*
 105 * If we set up a device for bus mastering, we need to check the latency
 106 * timer as certain BIOSes forget to set it properly.
 107 */
 108unsigned int pcibios_max_latency = 255;
 109
 110/* If set, the PCIe ARI capability will not be used. */
 111static bool pcie_ari_disabled;
 112
 113/* Disable bridge_d3 for all PCIe ports */
 114static bool pci_bridge_d3_disable;
 115/* Force bridge_d3 for all PCIe ports */
 116static bool pci_bridge_d3_force;
 117
 118static int __init pcie_port_pm_setup(char *str)
 119{
 120        if (!strcmp(str, "off"))
 121                pci_bridge_d3_disable = true;
 122        else if (!strcmp(str, "force"))
 123                pci_bridge_d3_force = true;
 124        return 1;
 125}
 126__setup("pcie_port_pm=", pcie_port_pm_setup);
 127
 128/**
 129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 130 * @bus: pointer to PCI bus structure to search
 131 *
 132 * Given a PCI bus, returns the highest PCI bus number present in the set
 133 * including the given PCI bus and its list of child PCI buses.
 134 */
 135unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 136{
 137        struct pci_bus *tmp;
 138        unsigned char max, n;
 139
 140        max = bus->busn_res.end;
 141        list_for_each_entry(tmp, &bus->children, node) {
 142                n = pci_bus_max_busnr(tmp);
 143                if (n > max)
 144                        max = n;
 145        }
 146        return max;
 147}
 148EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 149
 150#ifdef CONFIG_HAS_IOMEM
 151void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 152{
 153        struct resource *res = &pdev->resource[bar];
 154
 155        /*
 156         * Make sure the BAR is actually a memory resource, not an IO resource
 157         */
 158        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 159                dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
 160                return NULL;
 161        }
 162        return ioremap_nocache(res->start, resource_size(res));
 163}
 164EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 165
 166void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 167{
 168        /*
 169         * Make sure the BAR is actually a memory resource, not an IO resource
 170         */
 171        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 172                WARN_ON(1);
 173                return NULL;
 174        }
 175        return ioremap_wc(pci_resource_start(pdev, bar),
 176                          pci_resource_len(pdev, bar));
 177}
 178EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 179#endif
 180
 181
 182static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 183                                   u8 pos, int cap, int *ttl)
 184{
 185        u8 id;
 186        u16 ent;
 187
 188        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 189
 190        while ((*ttl)--) {
 191                if (pos < 0x40)
 192                        break;
 193                pos &= ~3;
 194                pci_bus_read_config_word(bus, devfn, pos, &ent);
 195
 196                id = ent & 0xff;
 197                if (id == 0xff)
 198                        break;
 199                if (id == cap)
 200                        return pos;
 201                pos = (ent >> 8);
 202        }
 203        return 0;
 204}
 205
 206static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 207                               u8 pos, int cap)
 208{
 209        int ttl = PCI_FIND_CAP_TTL;
 210
 211        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 212}
 213
 214int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 215{
 216        return __pci_find_next_cap(dev->bus, dev->devfn,
 217                                   pos + PCI_CAP_LIST_NEXT, cap);
 218}
 219EXPORT_SYMBOL_GPL(pci_find_next_capability);
 220
 221static int __pci_bus_find_cap_start(struct pci_bus *bus,
 222                                    unsigned int devfn, u8 hdr_type)
 223{
 224        u16 status;
 225
 226        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 227        if (!(status & PCI_STATUS_CAP_LIST))
 228                return 0;
 229
 230        switch (hdr_type) {
 231        case PCI_HEADER_TYPE_NORMAL:
 232        case PCI_HEADER_TYPE_BRIDGE:
 233                return PCI_CAPABILITY_LIST;
 234        case PCI_HEADER_TYPE_CARDBUS:
 235                return PCI_CB_CAPABILITY_LIST;
 236        }
 237
 238        return 0;
 239}
 240
 241/**
 242 * pci_find_capability - query for devices' capabilities
 243 * @dev: PCI device to query
 244 * @cap: capability code
 245 *
 246 * Tell if a device supports a given PCI capability.
 247 * Returns the address of the requested capability structure within the
 248 * device's PCI configuration space or 0 in case the device does not
 249 * support it.  Possible values for @cap:
 250 *
 251 *  %PCI_CAP_ID_PM           Power Management
 252 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 253 *  %PCI_CAP_ID_VPD          Vital Product Data
 254 *  %PCI_CAP_ID_SLOTID       Slot Identification
 255 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 256 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 257 *  %PCI_CAP_ID_PCIX         PCI-X
 258 *  %PCI_CAP_ID_EXP          PCI Express
 259 */
 260int pci_find_capability(struct pci_dev *dev, int cap)
 261{
 262        int pos;
 263
 264        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 265        if (pos)
 266                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 267
 268        return pos;
 269}
 270EXPORT_SYMBOL(pci_find_capability);
 271
 272/**
 273 * pci_bus_find_capability - query for devices' capabilities
 274 * @bus:   the PCI bus to query
 275 * @devfn: PCI device to query
 276 * @cap:   capability code
 277 *
 278 * Like pci_find_capability() but works for pci devices that do not have a
 279 * pci_dev structure set up yet.
 280 *
 281 * Returns the address of the requested capability structure within the
 282 * device's PCI configuration space or 0 in case the device does not
 283 * support it.
 284 */
 285int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 286{
 287        int pos;
 288        u8 hdr_type;
 289
 290        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 291
 292        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 293        if (pos)
 294                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 295
 296        return pos;
 297}
 298EXPORT_SYMBOL(pci_bus_find_capability);
 299
 300/**
 301 * pci_find_next_ext_capability - Find an extended capability
 302 * @dev: PCI device to query
 303 * @start: address at which to start looking (0 to start at beginning of list)
 304 * @cap: capability code
 305 *
 306 * Returns the address of the next matching extended capability structure
 307 * within the device's PCI configuration space or 0 if the device does
 308 * not support it.  Some capabilities can occur several times, e.g., the
 309 * vendor-specific capability, and this provides a way to find them all.
 310 */
 311int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 312{
 313        u32 header;
 314        int ttl;
 315        int pos = PCI_CFG_SPACE_SIZE;
 316
 317        /* minimum 8 bytes per capability */
 318        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 319
 320        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 321                return 0;
 322
 323        if (start)
 324                pos = start;
 325
 326        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 327                return 0;
 328
 329        /*
 330         * If we have no capabilities, this is indicated by cap ID,
 331         * cap version and next pointer all being 0.
 332         */
 333        if (header == 0)
 334                return 0;
 335
 336        while (ttl-- > 0) {
 337                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 338                        return pos;
 339
 340                pos = PCI_EXT_CAP_NEXT(header);
 341                if (pos < PCI_CFG_SPACE_SIZE)
 342                        break;
 343
 344                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 345                        break;
 346        }
 347
 348        return 0;
 349}
 350EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 351
 352/**
 353 * pci_find_ext_capability - Find an extended capability
 354 * @dev: PCI device to query
 355 * @cap: capability code
 356 *
 357 * Returns the address of the requested extended capability structure
 358 * within the device's PCI configuration space or 0 if the device does
 359 * not support it.  Possible values for @cap:
 360 *
 361 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 362 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 363 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 364 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 365 */
 366int pci_find_ext_capability(struct pci_dev *dev, int cap)
 367{
 368        return pci_find_next_ext_capability(dev, 0, cap);
 369}
 370EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 371
 372static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 373{
 374        int rc, ttl = PCI_FIND_CAP_TTL;
 375        u8 cap, mask;
 376
 377        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 378                mask = HT_3BIT_CAP_MASK;
 379        else
 380                mask = HT_5BIT_CAP_MASK;
 381
 382        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 383                                      PCI_CAP_ID_HT, &ttl);
 384        while (pos) {
 385                rc = pci_read_config_byte(dev, pos + 3, &cap);
 386                if (rc != PCIBIOS_SUCCESSFUL)
 387                        return 0;
 388
 389                if ((cap & mask) == ht_cap)
 390                        return pos;
 391
 392                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 393                                              pos + PCI_CAP_LIST_NEXT,
 394                                              PCI_CAP_ID_HT, &ttl);
 395        }
 396
 397        return 0;
 398}
 399/**
 400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 401 * @dev: PCI device to query
 402 * @pos: Position from which to continue searching
 403 * @ht_cap: Hypertransport capability code
 404 *
 405 * To be used in conjunction with pci_find_ht_capability() to search for
 406 * all capabilities matching @ht_cap. @pos should always be a value returned
 407 * from pci_find_ht_capability().
 408 *
 409 * NB. To be 100% safe against broken PCI devices, the caller should take
 410 * steps to avoid an infinite loop.
 411 */
 412int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 413{
 414        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 415}
 416EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 417
 418/**
 419 * pci_find_ht_capability - query a device's Hypertransport capabilities
 420 * @dev: PCI device to query
 421 * @ht_cap: Hypertransport capability code
 422 *
 423 * Tell if a device supports a given Hypertransport capability.
 424 * Returns an address within the device's PCI configuration space
 425 * or 0 in case the device does not support the request capability.
 426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 427 * which has a Hypertransport capability matching @ht_cap.
 428 */
 429int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 430{
 431        int pos;
 432
 433        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 434        if (pos)
 435                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 436
 437        return pos;
 438}
 439EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 440
 441/**
 442 * pci_find_parent_resource - return resource region of parent bus of given region
 443 * @dev: PCI device structure contains resources to be searched
 444 * @res: child resource record for which parent is sought
 445 *
 446 *  For given resource region of given device, return the resource
 447 *  region of parent bus the given region is contained in.
 448 */
 449struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 450                                          struct resource *res)
 451{
 452        const struct pci_bus *bus = dev->bus;
 453        struct resource *r;
 454        int i;
 455
 456        pci_bus_for_each_resource(bus, r, i) {
 457                if (!r)
 458                        continue;
 459                if (resource_contains(r, res)) {
 460
 461                        /*
 462                         * If the window is prefetchable but the BAR is
 463                         * not, the allocator made a mistake.
 464                         */
 465                        if (r->flags & IORESOURCE_PREFETCH &&
 466                            !(res->flags & IORESOURCE_PREFETCH))
 467                                return NULL;
 468
 469                        /*
 470                         * If we're below a transparent bridge, there may
 471                         * be both a positively-decoded aperture and a
 472                         * subtractively-decoded region that contain the BAR.
 473                         * We want the positively-decoded one, so this depends
 474                         * on pci_bus_for_each_resource() giving us those
 475                         * first.
 476                         */
 477                        return r;
 478                }
 479        }
 480        return NULL;
 481}
 482EXPORT_SYMBOL(pci_find_parent_resource);
 483
 484/**
 485 * pci_find_resource - Return matching PCI device resource
 486 * @dev: PCI device to query
 487 * @res: Resource to look for
 488 *
 489 * Goes over standard PCI resources (BARs) and checks if the given resource
 490 * is partially or fully contained in any of them. In that case the
 491 * matching resource is returned, %NULL otherwise.
 492 */
 493struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 494{
 495        int i;
 496
 497        for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 498                struct resource *r = &dev->resource[i];
 499
 500                if (r->start && resource_contains(r, res))
 501                        return r;
 502        }
 503
 504        return NULL;
 505}
 506EXPORT_SYMBOL(pci_find_resource);
 507
 508/**
 509 * pci_find_pcie_root_port - return PCIe Root Port
 510 * @dev: PCI device to query
 511 *
 512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 513 * for a given PCI Device.
 514 */
 515struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 516{
 517        struct pci_dev *bridge, *highest_pcie_bridge = dev;
 518
 519        bridge = pci_upstream_bridge(dev);
 520        while (bridge && pci_is_pcie(bridge)) {
 521                highest_pcie_bridge = bridge;
 522                bridge = pci_upstream_bridge(bridge);
 523        }
 524
 525        if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 526                return NULL;
 527
 528        return highest_pcie_bridge;
 529}
 530EXPORT_SYMBOL(pci_find_pcie_root_port);
 531
 532/**
 533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 534 * @dev: the PCI device to operate on
 535 * @pos: config space offset of status word
 536 * @mask: mask of bit(s) to care about in status word
 537 *
 538 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 539 */
 540int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 541{
 542        int i;
 543
 544        /* Wait for Transaction Pending bit clean */
 545        for (i = 0; i < 4; i++) {
 546                u16 status;
 547                if (i)
 548                        msleep((1 << (i - 1)) * 100);
 549
 550                pci_read_config_word(dev, pos, &status);
 551                if (!(status & mask))
 552                        return 1;
 553        }
 554
 555        return 0;
 556}
 557
 558/**
 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 560 * @dev: PCI device to have its BARs restored
 561 *
 562 * Restore the BAR values for a given device, so as to make it
 563 * accessible by its driver.
 564 */
 565static void pci_restore_bars(struct pci_dev *dev)
 566{
 567        int i;
 568
 569        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 570                pci_update_resource(dev, i);
 571}
 572
 573static const struct pci_platform_pm_ops *pci_platform_pm;
 574
 575int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 576{
 577        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 578            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 579                return -EINVAL;
 580        pci_platform_pm = ops;
 581        return 0;
 582}
 583
 584static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 585{
 586        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 587}
 588
 589static inline int platform_pci_set_power_state(struct pci_dev *dev,
 590                                               pci_power_t t)
 591{
 592        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 593}
 594
 595static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 596{
 597        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 598}
 599
 600static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 601{
 602        return pci_platform_pm ?
 603                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 604}
 605
 606static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 607{
 608        return pci_platform_pm ?
 609                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 610}
 611
 612static inline bool platform_pci_need_resume(struct pci_dev *dev)
 613{
 614        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 615}
 616
 617/**
 618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 619 *                           given PCI device
 620 * @dev: PCI device to handle.
 621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 622 *
 623 * RETURN VALUE:
 624 * -EINVAL if the requested state is invalid.
 625 * -EIO if device does not support PCI PM or its PM capabilities register has a
 626 * wrong version, or device doesn't support the requested state.
 627 * 0 if device already is in the requested state.
 628 * 0 if device's power state has been successfully changed.
 629 */
 630static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 631{
 632        u16 pmcsr;
 633        bool need_restore = false;
 634
 635        /* Check if we're already there */
 636        if (dev->current_state == state)
 637                return 0;
 638
 639        if (!dev->pm_cap)
 640                return -EIO;
 641
 642        if (state < PCI_D0 || state > PCI_D3hot)
 643                return -EINVAL;
 644
 645        /* Validate current state:
 646         * Can enter D0 from any state, but if we can only go deeper
 647         * to sleep if we're already in a low power state
 648         */
 649        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 650            && dev->current_state > state) {
 651                dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 652                        dev->current_state, state);
 653                return -EINVAL;
 654        }
 655
 656        /* check if this device supports the desired state */
 657        if ((state == PCI_D1 && !dev->d1_support)
 658           || (state == PCI_D2 && !dev->d2_support))
 659                return -EIO;
 660
 661        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 662
 663        /* If we're (effectively) in D3, force entire word to 0.
 664         * This doesn't affect PME_Status, disables PME_En, and
 665         * sets PowerState to 0.
 666         */
 667        switch (dev->current_state) {
 668        case PCI_D0:
 669        case PCI_D1:
 670        case PCI_D2:
 671                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 672                pmcsr |= state;
 673                break;
 674        case PCI_D3hot:
 675        case PCI_D3cold:
 676        case PCI_UNKNOWN: /* Boot-up */
 677                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 678                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 679                        need_restore = true;
 680                /* Fall-through: force to D0 */
 681        default:
 682                pmcsr = 0;
 683                break;
 684        }
 685
 686        /* enter specified state */
 687        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 688
 689        /* Mandatory power management transition delays */
 690        /* see PCI PM 1.1 5.6.1 table 18 */
 691        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 692                pci_dev_d3_sleep(dev);
 693        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 694                udelay(PCI_PM_D2_DELAY);
 695
 696        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 697        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 698        if (dev->current_state != state && printk_ratelimit())
 699                dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 700                         dev->current_state);
 701
 702        /*
 703         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 704         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 705         * from D3hot to D0 _may_ perform an internal reset, thereby
 706         * going to "D0 Uninitialized" rather than "D0 Initialized".
 707         * For example, at least some versions of the 3c905B and the
 708         * 3c556B exhibit this behaviour.
 709         *
 710         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 711         * devices in a D3hot state at boot.  Consequently, we need to
 712         * restore at least the BARs so that the device will be
 713         * accessible to its driver.
 714         */
 715        if (need_restore)
 716                pci_restore_bars(dev);
 717
 718        if (dev->bus->self)
 719                pcie_aspm_pm_state_change(dev->bus->self);
 720
 721        return 0;
 722}
 723
 724/**
 725 * pci_update_current_state - Read power state of given device and cache it
 726 * @dev: PCI device to handle.
 727 * @state: State to cache in case the device doesn't have the PM capability
 728 *
 729 * The power state is read from the PMCSR register, which however is
 730 * inaccessible in D3cold.  The platform firmware is therefore queried first
 731 * to detect accessibility of the register.  In case the platform firmware
 732 * reports an incorrect state or the device isn't power manageable by the
 733 * platform at all, we try to detect D3cold by testing accessibility of the
 734 * vendor ID in config space.
 735 */
 736void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 737{
 738        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 739            !pci_device_is_present(dev)) {
 740                dev->current_state = PCI_D3cold;
 741        } else if (dev->pm_cap) {
 742                u16 pmcsr;
 743
 744                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 745                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 746        } else {
 747                dev->current_state = state;
 748        }
 749}
 750
 751/**
 752 * pci_power_up - Put the given device into D0 forcibly
 753 * @dev: PCI device to power up
 754 */
 755void pci_power_up(struct pci_dev *dev)
 756{
 757        if (platform_pci_power_manageable(dev))
 758                platform_pci_set_power_state(dev, PCI_D0);
 759
 760        pci_raw_set_power_state(dev, PCI_D0);
 761        pci_update_current_state(dev, PCI_D0);
 762}
 763
 764/**
 765 * pci_platform_power_transition - Use platform to change device power state
 766 * @dev: PCI device to handle.
 767 * @state: State to put the device into.
 768 */
 769static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 770{
 771        int error;
 772
 773        if (platform_pci_power_manageable(dev)) {
 774                error = platform_pci_set_power_state(dev, state);
 775                if (!error)
 776                        pci_update_current_state(dev, state);
 777        } else
 778                error = -ENODEV;
 779
 780        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 781                dev->current_state = PCI_D0;
 782
 783        return error;
 784}
 785
 786/**
 787 * pci_wakeup - Wake up a PCI device
 788 * @pci_dev: Device to handle.
 789 * @ign: ignored parameter
 790 */
 791static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 792{
 793        pci_wakeup_event(pci_dev);
 794        pm_request_resume(&pci_dev->dev);
 795        return 0;
 796}
 797
 798/**
 799 * pci_wakeup_bus - Walk given bus and wake up devices on it
 800 * @bus: Top bus of the subtree to walk.
 801 */
 802static void pci_wakeup_bus(struct pci_bus *bus)
 803{
 804        if (bus)
 805                pci_walk_bus(bus, pci_wakeup, NULL);
 806}
 807
 808/**
 809 * __pci_start_power_transition - Start power transition of a PCI device
 810 * @dev: PCI device to handle.
 811 * @state: State to put the device into.
 812 */
 813static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 814{
 815        if (state == PCI_D0) {
 816                pci_platform_power_transition(dev, PCI_D0);
 817                /*
 818                 * Mandatory power management transition delays, see
 819                 * PCI Express Base Specification Revision 2.0 Section
 820                 * 6.6.1: Conventional Reset.  Do not delay for
 821                 * devices powered on/off by corresponding bridge,
 822                 * because have already delayed for the bridge.
 823                 */
 824                if (dev->runtime_d3cold) {
 825                        if (dev->d3cold_delay)
 826                                msleep(dev->d3cold_delay);
 827                        /*
 828                         * When powering on a bridge from D3cold, the
 829                         * whole hierarchy may be powered on into
 830                         * D0uninitialized state, resume them to give
 831                         * them a chance to suspend again
 832                         */
 833                        pci_wakeup_bus(dev->subordinate);
 834                }
 835        }
 836}
 837
 838/**
 839 * __pci_dev_set_current_state - Set current state of a PCI device
 840 * @dev: Device to handle
 841 * @data: pointer to state to be set
 842 */
 843static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 844{
 845        pci_power_t state = *(pci_power_t *)data;
 846
 847        dev->current_state = state;
 848        return 0;
 849}
 850
 851/**
 852 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 853 * @bus: Top bus of the subtree to walk.
 854 * @state: state to be set
 855 */
 856static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 857{
 858        if (bus)
 859                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 860}
 861
 862/**
 863 * __pci_complete_power_transition - Complete power transition of a PCI device
 864 * @dev: PCI device to handle.
 865 * @state: State to put the device into.
 866 *
 867 * This function should not be called directly by device drivers.
 868 */
 869int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 870{
 871        int ret;
 872
 873        if (state <= PCI_D0)
 874                return -EINVAL;
 875        ret = pci_platform_power_transition(dev, state);
 876        /* Power off the bridge may power off the whole hierarchy */
 877        if (!ret && state == PCI_D3cold)
 878                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 879        return ret;
 880}
 881EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 882
 883/**
 884 * pci_set_power_state - Set the power state of a PCI device
 885 * @dev: PCI device to handle.
 886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 887 *
 888 * Transition a device to a new power state, using the platform firmware and/or
 889 * the device's PCI PM registers.
 890 *
 891 * RETURN VALUE:
 892 * -EINVAL if the requested state is invalid.
 893 * -EIO if device does not support PCI PM or its PM capabilities register has a
 894 * wrong version, or device doesn't support the requested state.
 895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 896 * 0 if device already is in the requested state.
 897 * 0 if the transition is to D3 but D3 is not supported.
 898 * 0 if device's power state has been successfully changed.
 899 */
 900int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 901{
 902        int error;
 903
 904        /* bound the state we're entering */
 905        if (state > PCI_D3cold)
 906                state = PCI_D3cold;
 907        else if (state < PCI_D0)
 908                state = PCI_D0;
 909        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 910                /*
 911                 * If the device or the parent bridge do not support PCI PM,
 912                 * ignore the request if we're doing anything other than putting
 913                 * it into D0 (which would only happen on boot).
 914                 */
 915                return 0;
 916
 917        /* Check if we're already there */
 918        if (dev->current_state == state)
 919                return 0;
 920
 921        __pci_start_power_transition(dev, state);
 922
 923        /* This device is quirked not to be put into D3, so
 924           don't put it in D3 */
 925        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 926                return 0;
 927
 928        /*
 929         * To put device in D3cold, we put device into D3hot in native
 930         * way, then put device into D3cold with platform ops
 931         */
 932        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 933                                        PCI_D3hot : state);
 934
 935        if (!__pci_complete_power_transition(dev, state))
 936                error = 0;
 937
 938        return error;
 939}
 940EXPORT_SYMBOL(pci_set_power_state);
 941
 942/**
 943 * pci_choose_state - Choose the power state of a PCI device
 944 * @dev: PCI device to be suspended
 945 * @state: target sleep state for the whole system. This is the value
 946 *      that is passed to suspend() function.
 947 *
 948 * Returns PCI power state suitable for given device and given system
 949 * message.
 950 */
 951
 952pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 953{
 954        pci_power_t ret;
 955
 956        if (!dev->pm_cap)
 957                return PCI_D0;
 958
 959        ret = platform_pci_choose_state(dev);
 960        if (ret != PCI_POWER_ERROR)
 961                return ret;
 962
 963        switch (state.event) {
 964        case PM_EVENT_ON:
 965                return PCI_D0;
 966        case PM_EVENT_FREEZE:
 967        case PM_EVENT_PRETHAW:
 968                /* REVISIT both freeze and pre-thaw "should" use D0 */
 969        case PM_EVENT_SUSPEND:
 970        case PM_EVENT_HIBERNATE:
 971                return PCI_D3hot;
 972        default:
 973                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 974                         state.event);
 975                BUG();
 976        }
 977        return PCI_D0;
 978}
 979EXPORT_SYMBOL(pci_choose_state);
 980
 981#define PCI_EXP_SAVE_REGS       7
 982
 983static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 984                                                       u16 cap, bool extended)
 985{
 986        struct pci_cap_saved_state *tmp;
 987
 988        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 989                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 990                        return tmp;
 991        }
 992        return NULL;
 993}
 994
 995struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 996{
 997        return _pci_find_saved_cap(dev, cap, false);
 998}
 999
1000struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1001{
1002        return _pci_find_saved_cap(dev, cap, true);
1003}
1004
1005static int pci_save_pcie_state(struct pci_dev *dev)
1006{
1007        int i = 0;
1008        struct pci_cap_saved_state *save_state;
1009        u16 *cap;
1010
1011        if (!pci_is_pcie(dev))
1012                return 0;
1013
1014        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1015        if (!save_state) {
1016                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1017                return -ENOMEM;
1018        }
1019
1020        cap = (u16 *)&save_state->cap.data[0];
1021        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1022        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1023        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1024        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1025        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1026        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1027        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1028
1029        return 0;
1030}
1031
1032static void pci_restore_pcie_state(struct pci_dev *dev)
1033{
1034        int i = 0;
1035        struct pci_cap_saved_state *save_state;
1036        u16 *cap;
1037
1038        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1039        if (!save_state)
1040                return;
1041
1042        cap = (u16 *)&save_state->cap.data[0];
1043        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1044        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1045        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1046        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1047        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1048        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1049        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1050}
1051
1052
1053static int pci_save_pcix_state(struct pci_dev *dev)
1054{
1055        int pos;
1056        struct pci_cap_saved_state *save_state;
1057
1058        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059        if (!pos)
1060                return 0;
1061
1062        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1063        if (!save_state) {
1064                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1065                return -ENOMEM;
1066        }
1067
1068        pci_read_config_word(dev, pos + PCI_X_CMD,
1069                             (u16 *)save_state->cap.data);
1070
1071        return 0;
1072}
1073
1074static void pci_restore_pcix_state(struct pci_dev *dev)
1075{
1076        int i = 0, pos;
1077        struct pci_cap_saved_state *save_state;
1078        u16 *cap;
1079
1080        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1081        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1082        if (!save_state || !pos)
1083                return;
1084        cap = (u16 *)&save_state->cap.data[0];
1085
1086        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1087}
1088
1089
1090/**
1091 * pci_save_state - save the PCI configuration space of a device before suspending
1092 * @dev: - PCI device that we're dealing with
1093 */
1094int pci_save_state(struct pci_dev *dev)
1095{
1096        int i;
1097        /* XXX: 100% dword access ok here? */
1098        for (i = 0; i < 16; i++)
1099                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1100        dev->state_saved = true;
1101
1102        i = pci_save_pcie_state(dev);
1103        if (i != 0)
1104                return i;
1105
1106        i = pci_save_pcix_state(dev);
1107        if (i != 0)
1108                return i;
1109
1110        return pci_save_vc_state(dev);
1111}
1112EXPORT_SYMBOL(pci_save_state);
1113
1114static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1115                                     u32 saved_val, int retry)
1116{
1117        u32 val;
1118
1119        pci_read_config_dword(pdev, offset, &val);
1120        if (val == saved_val)
1121                return;
1122
1123        for (;;) {
1124                dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1125                        offset, val, saved_val);
1126                pci_write_config_dword(pdev, offset, saved_val);
1127                if (retry-- <= 0)
1128                        return;
1129
1130                pci_read_config_dword(pdev, offset, &val);
1131                if (val == saved_val)
1132                        return;
1133
1134                mdelay(1);
1135        }
1136}
1137
1138static void pci_restore_config_space_range(struct pci_dev *pdev,
1139                                           int start, int end, int retry)
1140{
1141        int index;
1142
1143        for (index = end; index >= start; index--)
1144                pci_restore_config_dword(pdev, 4 * index,
1145                                         pdev->saved_config_space[index],
1146                                         retry);
1147}
1148
1149static void pci_restore_config_space(struct pci_dev *pdev)
1150{
1151        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1152                pci_restore_config_space_range(pdev, 10, 15, 0);
1153                /* Restore BARs before the command register. */
1154                pci_restore_config_space_range(pdev, 4, 9, 10);
1155                pci_restore_config_space_range(pdev, 0, 3, 0);
1156        } else {
1157                pci_restore_config_space_range(pdev, 0, 15, 0);
1158        }
1159}
1160
1161/**
1162 * pci_restore_state - Restore the saved state of a PCI device
1163 * @dev: - PCI device that we're dealing with
1164 */
1165void pci_restore_state(struct pci_dev *dev)
1166{
1167        if (!dev->state_saved)
1168                return;
1169
1170        /* PCI Express register must be restored first */
1171        pci_restore_pcie_state(dev);
1172        pci_restore_pasid_state(dev);
1173        pci_restore_pri_state(dev);
1174        pci_restore_ats_state(dev);
1175        pci_restore_vc_state(dev);
1176
1177        pci_cleanup_aer_error_status_regs(dev);
1178
1179        pci_restore_config_space(dev);
1180
1181        pci_restore_pcix_state(dev);
1182        pci_restore_msi_state(dev);
1183
1184        /* Restore ACS and IOV configuration state */
1185        pci_enable_acs(dev);
1186        pci_restore_iov_state(dev);
1187
1188        dev->state_saved = false;
1189}
1190EXPORT_SYMBOL(pci_restore_state);
1191
1192struct pci_saved_state {
1193        u32 config_space[16];
1194        struct pci_cap_saved_data cap[0];
1195};
1196
1197/**
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 *                         the device saved state.
1200 * @dev: PCI device that we're dealing with
1201 *
1202 * Return NULL if no state or error.
1203 */
1204struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205{
1206        struct pci_saved_state *state;
1207        struct pci_cap_saved_state *tmp;
1208        struct pci_cap_saved_data *cap;
1209        size_t size;
1210
1211        if (!dev->state_saved)
1212                return NULL;
1213
1214        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215
1216        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218
1219        state = kzalloc(size, GFP_KERNEL);
1220        if (!state)
1221                return NULL;
1222
1223        memcpy(state->config_space, dev->saved_config_space,
1224               sizeof(state->config_space));
1225
1226        cap = state->cap;
1227        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229                memcpy(cap, &tmp->cap, len);
1230                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231        }
1232        /* Empty cap_save terminates list */
1233
1234        return state;
1235}
1236EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237
1238/**
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1242 */
1243int pci_load_saved_state(struct pci_dev *dev,
1244                         struct pci_saved_state *state)
1245{
1246        struct pci_cap_saved_data *cap;
1247
1248        dev->state_saved = false;
1249
1250        if (!state)
1251                return 0;
1252
1253        memcpy(dev->saved_config_space, state->config_space,
1254               sizeof(state->config_space));
1255
1256        cap = state->cap;
1257        while (cap->size) {
1258                struct pci_cap_saved_state *tmp;
1259
1260                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261                if (!tmp || tmp->cap.size != cap->size)
1262                        return -EINVAL;
1263
1264                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266                       sizeof(struct pci_cap_saved_data) + cap->size);
1267        }
1268
1269        dev->state_saved = true;
1270        return 0;
1271}
1272EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273
1274/**
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 *                                 and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1279 */
1280int pci_load_and_free_saved_state(struct pci_dev *dev,
1281                                  struct pci_saved_state **state)
1282{
1283        int ret = pci_load_saved_state(dev, *state);
1284        kfree(*state);
1285        *state = NULL;
1286        return ret;
1287}
1288EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289
1290int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291{
1292        return pci_enable_resources(dev, bars);
1293}
1294
1295static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296{
1297        int err;
1298        struct pci_dev *bridge;
1299        u16 cmd;
1300        u8 pin;
1301
1302        err = pci_set_power_state(dev, PCI_D0);
1303        if (err < 0 && err != -EIO)
1304                return err;
1305
1306        bridge = pci_upstream_bridge(dev);
1307        if (bridge)
1308                pcie_aspm_powersave_config_link(bridge);
1309
1310        err = pcibios_enable_device(dev, bars);
1311        if (err < 0)
1312                return err;
1313        pci_fixup_device(pci_fixup_enable, dev);
1314
1315        if (dev->msi_enabled || dev->msix_enabled)
1316                return 0;
1317
1318        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319        if (pin) {
1320                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321                if (cmd & PCI_COMMAND_INTX_DISABLE)
1322                        pci_write_config_word(dev, PCI_COMMAND,
1323                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1324        }
1325
1326        return 0;
1327}
1328
1329/**
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1332 *
1333 *  Note this function is a backend of pci_default_resume and is not supposed
1334 *  to be called by normal code, write proper resume handler and use it instead.
1335 */
1336int pci_reenable_device(struct pci_dev *dev)
1337{
1338        if (pci_is_enabled(dev))
1339                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340        return 0;
1341}
1342EXPORT_SYMBOL(pci_reenable_device);
1343
1344static void pci_enable_bridge(struct pci_dev *dev)
1345{
1346        struct pci_dev *bridge;
1347        int retval;
1348
1349        bridge = pci_upstream_bridge(dev);
1350        if (bridge)
1351                pci_enable_bridge(bridge);
1352
1353        if (pci_is_enabled(dev)) {
1354                if (!dev->is_busmaster)
1355                        pci_set_master(dev);
1356                return;
1357        }
1358
1359        retval = pci_enable_device(dev);
1360        if (retval)
1361                dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362                        retval);
1363        pci_set_master(dev);
1364}
1365
1366static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367{
1368        struct pci_dev *bridge;
1369        int err;
1370        int i, bars = 0;
1371
1372        /*
1373         * Power state could be unknown at this point, either due to a fresh
1374         * boot or a device removal call.  So get the current power state
1375         * so that things like MSI message writing will behave as expected
1376         * (e.g. if the device really is in D0 at enable time).
1377         */
1378        if (dev->pm_cap) {
1379                u16 pmcsr;
1380                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382        }
1383
1384        if (atomic_inc_return(&dev->enable_cnt) > 1)
1385                return 0;               /* already enabled */
1386
1387        bridge = pci_upstream_bridge(dev);
1388        if (bridge)
1389                pci_enable_bridge(bridge);
1390
1391        /* only skip sriov related */
1392        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393                if (dev->resource[i].flags & flags)
1394                        bars |= (1 << i);
1395        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396                if (dev->resource[i].flags & flags)
1397                        bars |= (1 << i);
1398
1399        err = do_pci_enable_device(dev, bars);
1400        if (err < 0)
1401                atomic_dec(&dev->enable_cnt);
1402        return err;
1403}
1404
1405/**
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1408 *
1409 *  Initialize device before it's used by a driver. Ask low-level code
1410 *  to enable I/O resources. Wake up the device if it was suspended.
1411 *  Beware, this function can fail.
1412 */
1413int pci_enable_device_io(struct pci_dev *dev)
1414{
1415        return pci_enable_device_flags(dev, IORESOURCE_IO);
1416}
1417EXPORT_SYMBOL(pci_enable_device_io);
1418
1419/**
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1422 *
1423 *  Initialize device before it's used by a driver. Ask low-level code
1424 *  to enable Memory resources. Wake up the device if it was suspended.
1425 *  Beware, this function can fail.
1426 */
1427int pci_enable_device_mem(struct pci_dev *dev)
1428{
1429        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430}
1431EXPORT_SYMBOL(pci_enable_device_mem);
1432
1433/**
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1436 *
1437 *  Initialize device before it's used by a driver. Ask low-level code
1438 *  to enable I/O and memory. Wake up the device if it was suspended.
1439 *  Beware, this function can fail.
1440 *
1441 *  Note we don't actually enable the device many times if we call
1442 *  this function repeatedly (we just increment the count).
1443 */
1444int pci_enable_device(struct pci_dev *dev)
1445{
1446        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447}
1448EXPORT_SYMBOL(pci_enable_device);
1449
1450/*
1451 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately.  pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1455 */
1456struct pci_devres {
1457        unsigned int enabled:1;
1458        unsigned int pinned:1;
1459        unsigned int orig_intx:1;
1460        unsigned int restore_intx:1;
1461        u32 region_mask;
1462};
1463
1464static void pcim_release(struct device *gendev, void *res)
1465{
1466        struct pci_dev *dev = to_pci_dev(gendev);
1467        struct pci_devres *this = res;
1468        int i;
1469
1470        if (dev->msi_enabled)
1471                pci_disable_msi(dev);
1472        if (dev->msix_enabled)
1473                pci_disable_msix(dev);
1474
1475        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476                if (this->region_mask & (1 << i))
1477                        pci_release_region(dev, i);
1478
1479        if (this->restore_intx)
1480                pci_intx(dev, this->orig_intx);
1481
1482        if (this->enabled && !this->pinned)
1483                pci_disable_device(dev);
1484}
1485
1486static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487{
1488        struct pci_devres *dr, *new_dr;
1489
1490        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491        if (dr)
1492                return dr;
1493
1494        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495        if (!new_dr)
1496                return NULL;
1497        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498}
1499
1500static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501{
1502        if (pci_is_managed(pdev))
1503                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504        return NULL;
1505}
1506
1507/**
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1510 *
1511 * Managed pci_enable_device().
1512 */
1513int pcim_enable_device(struct pci_dev *pdev)
1514{
1515        struct pci_devres *dr;
1516        int rc;
1517
1518        dr = get_pci_dr(pdev);
1519        if (unlikely(!dr))
1520                return -ENOMEM;
1521        if (dr->enabled)
1522                return 0;
1523
1524        rc = pci_enable_device(pdev);
1525        if (!rc) {
1526                pdev->is_managed = 1;
1527                dr->enabled = 1;
1528        }
1529        return rc;
1530}
1531EXPORT_SYMBOL(pcim_enable_device);
1532
1533/**
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1536 *
1537 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1538 * driver detach.  @pdev must have been enabled with
1539 * pcim_enable_device().
1540 */
1541void pcim_pin_device(struct pci_dev *pdev)
1542{
1543        struct pci_devres *dr;
1544
1545        dr = find_pci_dr(pdev);
1546        WARN_ON(!dr || !dr->enabled);
1547        if (dr)
1548                dr->pinned = 1;
1549}
1550EXPORT_SYMBOL(pcim_pin_device);
1551
1552/*
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1555 *
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1559 */
1560int __weak pcibios_add_device(struct pci_dev *dev)
1561{
1562        return 0;
1563}
1564
1565/**
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1568 *
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1572 */
1573void __weak pcibios_release_device(struct pci_dev *dev) {}
1574
1575/**
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1578 *
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1581 * override this.
1582 */
1583void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584
1585/**
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1589 *
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1593 */
1594void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595
1596static void do_pci_disable_device(struct pci_dev *dev)
1597{
1598        u16 pci_command;
1599
1600        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601        if (pci_command & PCI_COMMAND_MASTER) {
1602                pci_command &= ~PCI_COMMAND_MASTER;
1603                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604        }
1605
1606        pcibios_disable_device(dev);
1607}
1608
1609/**
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1612 *
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1615 */
1616void pci_disable_enabled_device(struct pci_dev *dev)
1617{
1618        if (pci_is_enabled(dev))
1619                do_pci_disable_device(dev);
1620}
1621
1622/**
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1625 *
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore.  This only involves disabling PCI bus-mastering, if active.
1628 *
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1631 */
1632void pci_disable_device(struct pci_dev *dev)
1633{
1634        struct pci_devres *dr;
1635
1636        dr = find_pci_dr(dev);
1637        if (dr)
1638                dr->enabled = 0;
1639
1640        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641                      "disabling already-disabled device");
1642
1643        if (atomic_dec_return(&dev->enable_cnt) != 0)
1644                return;
1645
1646        do_pci_disable_device(dev);
1647
1648        dev->is_busmaster = 0;
1649}
1650EXPORT_SYMBOL(pci_disable_device);
1651
1652/**
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1656 *
1657 *
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1660 */
1661int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662                                        enum pcie_reset_state state)
1663{
1664        return -EINVAL;
1665}
1666
1667/**
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1671 *
1672 *
1673 * Sets the PCI reset state for the device.
1674 */
1675int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676{
1677        return pcibios_set_pcie_reset_state(dev, state);
1678}
1679EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680
1681/**
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1684 *
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set).  Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1688 */
1689bool pci_check_pme_status(struct pci_dev *dev)
1690{
1691        int pmcsr_pos;
1692        u16 pmcsr;
1693        bool ret = false;
1694
1695        if (!dev->pm_cap)
1696                return false;
1697
1698        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701                return false;
1702
1703        /* Clear PME status. */
1704        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706                /* Disable PME to avoid interrupt flood. */
1707                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708                ret = true;
1709        }
1710
1711        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712
1713        return ret;
1714}
1715
1716/**
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720 *
1721 * Check if @dev has generated PME and queue a resume request for it in that
1722 * case.
1723 */
1724static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725{
1726        if (pme_poll_reset && dev->pme_poll)
1727                dev->pme_poll = false;
1728
1729        if (pci_check_pme_status(dev)) {
1730                pci_wakeup_event(dev);
1731                pm_request_resume(&dev->dev);
1732        }
1733        return 0;
1734}
1735
1736/**
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1739 */
1740void pci_pme_wakeup_bus(struct pci_bus *bus)
1741{
1742        if (bus)
1743                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744}
1745
1746
1747/**
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1751 */
1752bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753{
1754        if (!dev->pm_cap)
1755                return false;
1756
1757        return !!(dev->pme_support & (1 << state));
1758}
1759EXPORT_SYMBOL(pci_pme_capable);
1760
1761static void pci_pme_list_scan(struct work_struct *work)
1762{
1763        struct pci_pme_device *pme_dev, *n;
1764
1765        mutex_lock(&pci_pme_list_mutex);
1766        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767                if (pme_dev->dev->pme_poll) {
1768                        struct pci_dev *bridge;
1769
1770                        bridge = pme_dev->dev->bus->self;
1771                        /*
1772                         * If bridge is in low power state, the
1773                         * configuration space of subordinate devices
1774                         * may be not accessible
1775                         */
1776                        if (bridge && bridge->current_state != PCI_D0)
1777                                continue;
1778                        pci_pme_wakeup(pme_dev->dev, NULL);
1779                } else {
1780                        list_del(&pme_dev->list);
1781                        kfree(pme_dev);
1782                }
1783        }
1784        if (!list_empty(&pci_pme_list))
1785                queue_delayed_work(system_freezable_wq, &pci_pme_work,
1786                                   msecs_to_jiffies(PME_TIMEOUT));
1787        mutex_unlock(&pci_pme_list_mutex);
1788}
1789
1790static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791{
1792        u16 pmcsr;
1793
1794        if (!dev->pme_support)
1795                return;
1796
1797        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798        /* Clear PME_Status by writing 1 to it and enable PME# */
1799        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800        if (!enable)
1801                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802
1803        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804}
1805
1806/**
1807 * pci_pme_restore - Restore PME configuration after config space restore.
1808 * @dev: PCI device to update.
1809 */
1810void pci_pme_restore(struct pci_dev *dev)
1811{
1812        u16 pmcsr;
1813
1814        if (!dev->pme_support)
1815                return;
1816
1817        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1818        if (dev->wakeup_prepared) {
1819                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1820                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1821        } else {
1822                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1823                pmcsr |= PCI_PM_CTRL_PME_STATUS;
1824        }
1825        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1826}
1827
1828/**
1829 * pci_pme_active - enable or disable PCI device's PME# function
1830 * @dev: PCI device to handle.
1831 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1832 *
1833 * The caller must verify that the device is capable of generating PME# before
1834 * calling this function with @enable equal to 'true'.
1835 */
1836void pci_pme_active(struct pci_dev *dev, bool enable)
1837{
1838        __pci_pme_active(dev, enable);
1839
1840        /*
1841         * PCI (as opposed to PCIe) PME requires that the device have
1842         * its PME# line hooked up correctly. Not all hardware vendors
1843         * do this, so the PME never gets delivered and the device
1844         * remains asleep. The easiest way around this is to
1845         * periodically walk the list of suspended devices and check
1846         * whether any have their PME flag set. The assumption is that
1847         * we'll wake up often enough anyway that this won't be a huge
1848         * hit, and the power savings from the devices will still be a
1849         * win.
1850         *
1851         * Although PCIe uses in-band PME message instead of PME# line
1852         * to report PME, PME does not work for some PCIe devices in
1853         * reality.  For example, there are devices that set their PME
1854         * status bits, but don't really bother to send a PME message;
1855         * there are PCI Express Root Ports that don't bother to
1856         * trigger interrupts when they receive PME messages from the
1857         * devices below.  So PME poll is used for PCIe devices too.
1858         */
1859
1860        if (dev->pme_poll) {
1861                struct pci_pme_device *pme_dev;
1862                if (enable) {
1863                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1864                                          GFP_KERNEL);
1865                        if (!pme_dev) {
1866                                dev_warn(&dev->dev, "can't enable PME#\n");
1867                                return;
1868                        }
1869                        pme_dev->dev = dev;
1870                        mutex_lock(&pci_pme_list_mutex);
1871                        list_add(&pme_dev->list, &pci_pme_list);
1872                        if (list_is_singular(&pci_pme_list))
1873                                queue_delayed_work(system_freezable_wq,
1874                                                   &pci_pme_work,
1875                                                   msecs_to_jiffies(PME_TIMEOUT));
1876                        mutex_unlock(&pci_pme_list_mutex);
1877                } else {
1878                        mutex_lock(&pci_pme_list_mutex);
1879                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1880                                if (pme_dev->dev == dev) {
1881                                        list_del(&pme_dev->list);
1882                                        kfree(pme_dev);
1883                                        break;
1884                                }
1885                        }
1886                        mutex_unlock(&pci_pme_list_mutex);
1887                }
1888        }
1889
1890        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1891}
1892EXPORT_SYMBOL(pci_pme_active);
1893
1894/**
1895 * pci_enable_wake - enable PCI device as wakeup event source
1896 * @dev: PCI device affected
1897 * @state: PCI state from which device will issue wakeup events
1898 * @enable: True to enable event generation; false to disable
1899 *
1900 * This enables the device as a wakeup event source, or disables it.
1901 * When such events involves platform-specific hooks, those hooks are
1902 * called automatically by this routine.
1903 *
1904 * Devices with legacy power management (no standard PCI PM capabilities)
1905 * always require such platform hooks.
1906 *
1907 * RETURN VALUE:
1908 * 0 is returned on success
1909 * -EINVAL is returned if device is not supposed to wake up the system
1910 * Error code depending on the platform is returned if both the platform and
1911 * the native mechanism fail to enable the generation of wake-up events
1912 */
1913int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1914{
1915        int ret = 0;
1916
1917        /*
1918         * Bridges can only signal wakeup on behalf of subordinate devices,
1919         * but that is set up elsewhere, so skip them.
1920         */
1921        if (pci_has_subordinate(dev))
1922                return 0;
1923
1924        /* Don't do the same thing twice in a row for one device. */
1925        if (!!enable == !!dev->wakeup_prepared)
1926                return 0;
1927
1928        /*
1929         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1930         * Anderson we should be doing PME# wake enable followed by ACPI wake
1931         * enable.  To disable wake-up we call the platform first, for symmetry.
1932         */
1933
1934        if (enable) {
1935                int error;
1936
1937                if (pci_pme_capable(dev, state))
1938                        pci_pme_active(dev, true);
1939                else
1940                        ret = 1;
1941                error = platform_pci_set_wakeup(dev, true);
1942                if (ret)
1943                        ret = error;
1944                if (!ret)
1945                        dev->wakeup_prepared = true;
1946        } else {
1947                platform_pci_set_wakeup(dev, false);
1948                pci_pme_active(dev, false);
1949                dev->wakeup_prepared = false;
1950        }
1951
1952        return ret;
1953}
1954EXPORT_SYMBOL(pci_enable_wake);
1955
1956/**
1957 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1958 * @dev: PCI device to prepare
1959 * @enable: True to enable wake-up event generation; false to disable
1960 *
1961 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1962 * and this function allows them to set that up cleanly - pci_enable_wake()
1963 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1964 * ordering constraints.
1965 *
1966 * This function only returns error code if the device is not capable of
1967 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1968 * enable wake-up power for it.
1969 */
1970int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1971{
1972        return pci_pme_capable(dev, PCI_D3cold) ?
1973                        pci_enable_wake(dev, PCI_D3cold, enable) :
1974                        pci_enable_wake(dev, PCI_D3hot, enable);
1975}
1976EXPORT_SYMBOL(pci_wake_from_d3);
1977
1978/**
1979 * pci_target_state - find an appropriate low power state for a given PCI dev
1980 * @dev: PCI device
1981 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1982 *
1983 * Use underlying platform code to find a supported low power state for @dev.
1984 * If the platform can't manage @dev, return the deepest state from which it
1985 * can generate wake events, based on any available PME info.
1986 */
1987static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1988{
1989        pci_power_t target_state = PCI_D3hot;
1990
1991        if (platform_pci_power_manageable(dev)) {
1992                /*
1993                 * Call the platform to choose the target state of the device
1994                 * and enable wake-up from this state if supported.
1995                 */
1996                pci_power_t state = platform_pci_choose_state(dev);
1997
1998                switch (state) {
1999                case PCI_POWER_ERROR:
2000                case PCI_UNKNOWN:
2001                        break;
2002                case PCI_D1:
2003                case PCI_D2:
2004                        if (pci_no_d1d2(dev))
2005                                break;
2006                default:
2007                        target_state = state;
2008                }
2009
2010                return target_state;
2011        }
2012
2013        if (!dev->pm_cap)
2014                target_state = PCI_D0;
2015
2016        /*
2017         * If the device is in D3cold even though it's not power-manageable by
2018         * the platform, it may have been powered down by non-standard means.
2019         * Best to let it slumber.
2020         */
2021        if (dev->current_state == PCI_D3cold)
2022                target_state = PCI_D3cold;
2023
2024        if (wakeup) {
2025                /*
2026                 * Find the deepest state from which the device can generate
2027                 * wake-up events, make it the target state and enable device
2028                 * to generate PME#.
2029                 */
2030                if (dev->pme_support) {
2031                        while (target_state
2032                              && !(dev->pme_support & (1 << target_state)))
2033                                target_state--;
2034                }
2035        }
2036
2037        return target_state;
2038}
2039
2040/**
2041 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2042 * @dev: Device to handle.
2043 *
2044 * Choose the power state appropriate for the device depending on whether
2045 * it can wake up the system and/or is power manageable by the platform
2046 * (PCI_D3hot is the default) and put the device into that state.
2047 */
2048int pci_prepare_to_sleep(struct pci_dev *dev)
2049{
2050        bool wakeup = device_may_wakeup(&dev->dev);
2051        pci_power_t target_state = pci_target_state(dev, wakeup);
2052        int error;
2053
2054        if (target_state == PCI_POWER_ERROR)
2055                return -EIO;
2056
2057        pci_enable_wake(dev, target_state, wakeup);
2058
2059        error = pci_set_power_state(dev, target_state);
2060
2061        if (error)
2062                pci_enable_wake(dev, target_state, false);
2063
2064        return error;
2065}
2066EXPORT_SYMBOL(pci_prepare_to_sleep);
2067
2068/**
2069 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2070 * @dev: Device to handle.
2071 *
2072 * Disable device's system wake-up capability and put it into D0.
2073 */
2074int pci_back_from_sleep(struct pci_dev *dev)
2075{
2076        pci_enable_wake(dev, PCI_D0, false);
2077        return pci_set_power_state(dev, PCI_D0);
2078}
2079EXPORT_SYMBOL(pci_back_from_sleep);
2080
2081/**
2082 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2083 * @dev: PCI device being suspended.
2084 *
2085 * Prepare @dev to generate wake-up events at run time and put it into a low
2086 * power state.
2087 */
2088int pci_finish_runtime_suspend(struct pci_dev *dev)
2089{
2090        pci_power_t target_state;
2091        int error;
2092
2093        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2094        if (target_state == PCI_POWER_ERROR)
2095                return -EIO;
2096
2097        dev->runtime_d3cold = target_state == PCI_D3cold;
2098
2099        pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2100
2101        error = pci_set_power_state(dev, target_state);
2102
2103        if (error) {
2104                pci_enable_wake(dev, target_state, false);
2105                dev->runtime_d3cold = false;
2106        }
2107
2108        return error;
2109}
2110
2111/**
2112 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2113 * @dev: Device to check.
2114 *
2115 * Return true if the device itself is capable of generating wake-up events
2116 * (through the platform or using the native PCIe PME) or if the device supports
2117 * PME and one of its upstream bridges can generate wake-up events.
2118 */
2119bool pci_dev_run_wake(struct pci_dev *dev)
2120{
2121        struct pci_bus *bus = dev->bus;
2122
2123        if (device_can_wakeup(&dev->dev))
2124                return true;
2125
2126        if (!dev->pme_support)
2127                return false;
2128
2129        /* PME-capable in principle, but not from the target power state */
2130        if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2131                return false;
2132
2133        while (bus->parent) {
2134                struct pci_dev *bridge = bus->self;
2135
2136                if (device_can_wakeup(&bridge->dev))
2137                        return true;
2138
2139                bus = bus->parent;
2140        }
2141
2142        /* We have reached the root bus. */
2143        if (bus->bridge)
2144                return device_can_wakeup(bus->bridge);
2145
2146        return false;
2147}
2148EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2149
2150/**
2151 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2152 * @pci_dev: Device to check.
2153 *
2154 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2155 * reconfigured due to wakeup settings difference between system and runtime
2156 * suspend and the current power state of it is suitable for the upcoming
2157 * (system) transition.
2158 *
2159 * If the device is not configured for system wakeup, disable PME for it before
2160 * returning 'true' to prevent it from waking up the system unnecessarily.
2161 */
2162bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2163{
2164        struct device *dev = &pci_dev->dev;
2165        bool wakeup = device_may_wakeup(dev);
2166
2167        if (!pm_runtime_suspended(dev)
2168            || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2169            || platform_pci_need_resume(pci_dev)
2170            || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2171                return false;
2172
2173        /*
2174         * At this point the device is good to go unless it's been configured
2175         * to generate PME at the runtime suspend time, but it is not supposed
2176         * to wake up the system.  In that case, simply disable PME for it
2177         * (it will have to be re-enabled on exit from system resume).
2178         *
2179         * If the device's power state is D3cold and the platform check above
2180         * hasn't triggered, the device's configuration is suitable and we don't
2181         * need to manipulate it at all.
2182         */
2183        spin_lock_irq(&dev->power.lock);
2184
2185        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2186            !wakeup)
2187                __pci_pme_active(pci_dev, false);
2188
2189        spin_unlock_irq(&dev->power.lock);
2190        return true;
2191}
2192
2193/**
2194 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2195 * @pci_dev: Device to handle.
2196 *
2197 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2198 * it might have been disabled during the prepare phase of system suspend if
2199 * the device was not configured for system wakeup.
2200 */
2201void pci_dev_complete_resume(struct pci_dev *pci_dev)
2202{
2203        struct device *dev = &pci_dev->dev;
2204
2205        if (!pci_dev_run_wake(pci_dev))
2206                return;
2207
2208        spin_lock_irq(&dev->power.lock);
2209
2210        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2211                __pci_pme_active(pci_dev, true);
2212
2213        spin_unlock_irq(&dev->power.lock);
2214}
2215
2216void pci_config_pm_runtime_get(struct pci_dev *pdev)
2217{
2218        struct device *dev = &pdev->dev;
2219        struct device *parent = dev->parent;
2220
2221        if (parent)
2222                pm_runtime_get_sync(parent);
2223        pm_runtime_get_noresume(dev);
2224        /*
2225         * pdev->current_state is set to PCI_D3cold during suspending,
2226         * so wait until suspending completes
2227         */
2228        pm_runtime_barrier(dev);
2229        /*
2230         * Only need to resume devices in D3cold, because config
2231         * registers are still accessible for devices suspended but
2232         * not in D3cold.
2233         */
2234        if (pdev->current_state == PCI_D3cold)
2235                pm_runtime_resume(dev);
2236}
2237
2238void pci_config_pm_runtime_put(struct pci_dev *pdev)
2239{
2240        struct device *dev = &pdev->dev;
2241        struct device *parent = dev->parent;
2242
2243        pm_runtime_put(dev);
2244        if (parent)
2245                pm_runtime_put_sync(parent);
2246}
2247
2248/**
2249 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2250 * @bridge: Bridge to check
2251 *
2252 * This function checks if it is possible to move the bridge to D3.
2253 * Currently we only allow D3 for recent enough PCIe ports.
2254 */
2255bool pci_bridge_d3_possible(struct pci_dev *bridge)
2256{
2257        unsigned int year;
2258
2259        if (!pci_is_pcie(bridge))
2260                return false;
2261
2262        switch (pci_pcie_type(bridge)) {
2263        case PCI_EXP_TYPE_ROOT_PORT:
2264        case PCI_EXP_TYPE_UPSTREAM:
2265        case PCI_EXP_TYPE_DOWNSTREAM:
2266                if (pci_bridge_d3_disable)
2267                        return false;
2268
2269                /*
2270                 * Hotplug interrupts cannot be delivered if the link is down,
2271                 * so parents of a hotplug port must stay awake. In addition,
2272                 * hotplug ports handled by firmware in System Management Mode
2273                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2274                 * For simplicity, disallow in general for now.
2275                 */
2276                if (bridge->is_hotplug_bridge)
2277                        return false;
2278
2279                if (pci_bridge_d3_force)
2280                        return true;
2281
2282                /*
2283                 * It should be safe to put PCIe ports from 2015 or newer
2284                 * to D3.
2285                 */
2286                if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2287                    year >= 2015) {
2288                        return true;
2289                }
2290                break;
2291        }
2292
2293        return false;
2294}
2295
2296static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2297{
2298        bool *d3cold_ok = data;
2299
2300        if (/* The device needs to be allowed to go D3cold ... */
2301            dev->no_d3cold || !dev->d3cold_allowed ||
2302
2303            /* ... and if it is wakeup capable to do so from D3cold. */
2304            (device_may_wakeup(&dev->dev) &&
2305             !pci_pme_capable(dev, PCI_D3cold)) ||
2306
2307            /* If it is a bridge it must be allowed to go to D3. */
2308            !pci_power_manageable(dev))
2309
2310                *d3cold_ok = false;
2311
2312        return !*d3cold_ok;
2313}
2314
2315/*
2316 * pci_bridge_d3_update - Update bridge D3 capabilities
2317 * @dev: PCI device which is changed
2318 *
2319 * Update upstream bridge PM capabilities accordingly depending on if the
2320 * device PM configuration was changed or the device is being removed.  The
2321 * change is also propagated upstream.
2322 */
2323void pci_bridge_d3_update(struct pci_dev *dev)
2324{
2325        bool remove = !device_is_registered(&dev->dev);
2326        struct pci_dev *bridge;
2327        bool d3cold_ok = true;
2328
2329        bridge = pci_upstream_bridge(dev);
2330        if (!bridge || !pci_bridge_d3_possible(bridge))
2331                return;
2332
2333        /*
2334         * If D3 is currently allowed for the bridge, removing one of its
2335         * children won't change that.
2336         */
2337        if (remove && bridge->bridge_d3)
2338                return;
2339
2340        /*
2341         * If D3 is currently allowed for the bridge and a child is added or
2342         * changed, disallowance of D3 can only be caused by that child, so
2343         * we only need to check that single device, not any of its siblings.
2344         *
2345         * If D3 is currently not allowed for the bridge, checking the device
2346         * first may allow us to skip checking its siblings.
2347         */
2348        if (!remove)
2349                pci_dev_check_d3cold(dev, &d3cold_ok);
2350
2351        /*
2352         * If D3 is currently not allowed for the bridge, this may be caused
2353         * either by the device being changed/removed or any of its siblings,
2354         * so we need to go through all children to find out if one of them
2355         * continues to block D3.
2356         */
2357        if (d3cold_ok && !bridge->bridge_d3)
2358                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2359                             &d3cold_ok);
2360
2361        if (bridge->bridge_d3 != d3cold_ok) {
2362                bridge->bridge_d3 = d3cold_ok;
2363                /* Propagate change to upstream bridges */
2364                pci_bridge_d3_update(bridge);
2365        }
2366}
2367
2368/**
2369 * pci_d3cold_enable - Enable D3cold for device
2370 * @dev: PCI device to handle
2371 *
2372 * This function can be used in drivers to enable D3cold from the device
2373 * they handle.  It also updates upstream PCI bridge PM capabilities
2374 * accordingly.
2375 */
2376void pci_d3cold_enable(struct pci_dev *dev)
2377{
2378        if (dev->no_d3cold) {
2379                dev->no_d3cold = false;
2380                pci_bridge_d3_update(dev);
2381        }
2382}
2383EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2384
2385/**
2386 * pci_d3cold_disable - Disable D3cold for device
2387 * @dev: PCI device to handle
2388 *
2389 * This function can be used in drivers to disable D3cold from the device
2390 * they handle.  It also updates upstream PCI bridge PM capabilities
2391 * accordingly.
2392 */
2393void pci_d3cold_disable(struct pci_dev *dev)
2394{
2395        if (!dev->no_d3cold) {
2396                dev->no_d3cold = true;
2397                pci_bridge_d3_update(dev);
2398        }
2399}
2400EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2401
2402/**
2403 * pci_pm_init - Initialize PM functions of given PCI device
2404 * @dev: PCI device to handle.
2405 */
2406void pci_pm_init(struct pci_dev *dev)
2407{
2408        int pm;
2409        u16 pmc;
2410
2411        pm_runtime_forbid(&dev->dev);
2412        pm_runtime_set_active(&dev->dev);
2413        pm_runtime_enable(&dev->dev);
2414        device_enable_async_suspend(&dev->dev);
2415        dev->wakeup_prepared = false;
2416
2417        dev->pm_cap = 0;
2418        dev->pme_support = 0;
2419
2420        /* find PCI PM capability in list */
2421        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2422        if (!pm)
2423                return;
2424        /* Check device's ability to generate PME# */
2425        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2426
2427        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2428                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2429                        pmc & PCI_PM_CAP_VER_MASK);
2430                return;
2431        }
2432
2433        dev->pm_cap = pm;
2434        dev->d3_delay = PCI_PM_D3_WAIT;
2435        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2436        dev->bridge_d3 = pci_bridge_d3_possible(dev);
2437        dev->d3cold_allowed = true;
2438
2439        dev->d1_support = false;
2440        dev->d2_support = false;
2441        if (!pci_no_d1d2(dev)) {
2442                if (pmc & PCI_PM_CAP_D1)
2443                        dev->d1_support = true;
2444                if (pmc & PCI_PM_CAP_D2)
2445                        dev->d2_support = true;
2446
2447                if (dev->d1_support || dev->d2_support)
2448                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2449                                   dev->d1_support ? " D1" : "",
2450                                   dev->d2_support ? " D2" : "");
2451        }
2452
2453        pmc &= PCI_PM_CAP_PME_MASK;
2454        if (pmc) {
2455                dev_printk(KERN_DEBUG, &dev->dev,
2456                         "PME# supported from%s%s%s%s%s\n",
2457                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2458                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2459                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2460                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2461                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2462                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2463                dev->pme_poll = true;
2464                /*
2465                 * Make device's PM flags reflect the wake-up capability, but
2466                 * let the user space enable it to wake up the system as needed.
2467                 */
2468                device_set_wakeup_capable(&dev->dev, true);
2469                /* Disable the PME# generation functionality */
2470                pci_pme_active(dev, false);
2471        }
2472}
2473
2474static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2475{
2476        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2477
2478        switch (prop) {
2479        case PCI_EA_P_MEM:
2480        case PCI_EA_P_VF_MEM:
2481                flags |= IORESOURCE_MEM;
2482                break;
2483        case PCI_EA_P_MEM_PREFETCH:
2484        case PCI_EA_P_VF_MEM_PREFETCH:
2485                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2486                break;
2487        case PCI_EA_P_IO:
2488                flags |= IORESOURCE_IO;
2489                break;
2490        default:
2491                return 0;
2492        }
2493
2494        return flags;
2495}
2496
2497static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2498                                            u8 prop)
2499{
2500        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2501                return &dev->resource[bei];
2502#ifdef CONFIG_PCI_IOV
2503        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2504                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2505                return &dev->resource[PCI_IOV_RESOURCES +
2506                                      bei - PCI_EA_BEI_VF_BAR0];
2507#endif
2508        else if (bei == PCI_EA_BEI_ROM)
2509                return &dev->resource[PCI_ROM_RESOURCE];
2510        else
2511                return NULL;
2512}
2513
2514/* Read an Enhanced Allocation (EA) entry */
2515static int pci_ea_read(struct pci_dev *dev, int offset)
2516{
2517        struct resource *res;
2518        int ent_size, ent_offset = offset;
2519        resource_size_t start, end;
2520        unsigned long flags;
2521        u32 dw0, bei, base, max_offset;
2522        u8 prop;
2523        bool support_64 = (sizeof(resource_size_t) >= 8);
2524
2525        pci_read_config_dword(dev, ent_offset, &dw0);
2526        ent_offset += 4;
2527
2528        /* Entry size field indicates DWORDs after 1st */
2529        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2530
2531        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2532                goto out;
2533
2534        bei = (dw0 & PCI_EA_BEI) >> 4;
2535        prop = (dw0 & PCI_EA_PP) >> 8;
2536
2537        /*
2538         * If the Property is in the reserved range, try the Secondary
2539         * Property instead.
2540         */
2541        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2542                prop = (dw0 & PCI_EA_SP) >> 16;
2543        if (prop > PCI_EA_P_BRIDGE_IO)
2544                goto out;
2545
2546        res = pci_ea_get_resource(dev, bei, prop);
2547        if (!res) {
2548                dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2549                goto out;
2550        }
2551
2552        flags = pci_ea_flags(dev, prop);
2553        if (!flags) {
2554                dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2555                goto out;
2556        }
2557
2558        /* Read Base */
2559        pci_read_config_dword(dev, ent_offset, &base);
2560        start = (base & PCI_EA_FIELD_MASK);
2561        ent_offset += 4;
2562
2563        /* Read MaxOffset */
2564        pci_read_config_dword(dev, ent_offset, &max_offset);
2565        ent_offset += 4;
2566
2567        /* Read Base MSBs (if 64-bit entry) */
2568        if (base & PCI_EA_IS_64) {
2569                u32 base_upper;
2570
2571                pci_read_config_dword(dev, ent_offset, &base_upper);
2572                ent_offset += 4;
2573
2574                flags |= IORESOURCE_MEM_64;
2575
2576                /* entry starts above 32-bit boundary, can't use */
2577                if (!support_64 && base_upper)
2578                        goto out;
2579
2580                if (support_64)
2581                        start |= ((u64)base_upper << 32);
2582        }
2583
2584        end = start + (max_offset | 0x03);
2585
2586        /* Read MaxOffset MSBs (if 64-bit entry) */
2587        if (max_offset & PCI_EA_IS_64) {
2588                u32 max_offset_upper;
2589
2590                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2591                ent_offset += 4;
2592
2593                flags |= IORESOURCE_MEM_64;
2594
2595                /* entry too big, can't use */
2596                if (!support_64 && max_offset_upper)
2597                        goto out;
2598
2599                if (support_64)
2600                        end += ((u64)max_offset_upper << 32);
2601        }
2602
2603        if (end < start) {
2604                dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2605                goto out;
2606        }
2607
2608        if (ent_size != ent_offset - offset) {
2609                dev_err(&dev->dev,
2610                        "EA Entry Size (%d) does not match length read (%d)\n",
2611                        ent_size, ent_offset - offset);
2612                goto out;
2613        }
2614
2615        res->name = pci_name(dev);
2616        res->start = start;
2617        res->end = end;
2618        res->flags = flags;
2619
2620        if (bei <= PCI_EA_BEI_BAR5)
2621                dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2622                           bei, res, prop);
2623        else if (bei == PCI_EA_BEI_ROM)
2624                dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2625                           res, prop);
2626        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2627                dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2628                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
2629        else
2630                dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2631                           bei, res, prop);
2632
2633out:
2634        return offset + ent_size;
2635}
2636
2637/* Enhanced Allocation Initialization */
2638void pci_ea_init(struct pci_dev *dev)
2639{
2640        int ea;
2641        u8 num_ent;
2642        int offset;
2643        int i;
2644
2645        /* find PCI EA capability in list */
2646        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2647        if (!ea)
2648                return;
2649
2650        /* determine the number of entries */
2651        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2652                                        &num_ent);
2653        num_ent &= PCI_EA_NUM_ENT_MASK;
2654
2655        offset = ea + PCI_EA_FIRST_ENT;
2656
2657        /* Skip DWORD 2 for type 1 functions */
2658        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2659                offset += 4;
2660
2661        /* parse each EA entry */
2662        for (i = 0; i < num_ent; ++i)
2663                offset = pci_ea_read(dev, offset);
2664}
2665
2666static void pci_add_saved_cap(struct pci_dev *pci_dev,
2667        struct pci_cap_saved_state *new_cap)
2668{
2669        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2670}
2671
2672/**
2673 * _pci_add_cap_save_buffer - allocate buffer for saving given
2674 *                            capability registers
2675 * @dev: the PCI device
2676 * @cap: the capability to allocate the buffer for
2677 * @extended: Standard or Extended capability ID
2678 * @size: requested size of the buffer
2679 */
2680static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2681                                    bool extended, unsigned int size)
2682{
2683        int pos;
2684        struct pci_cap_saved_state *save_state;
2685
2686        if (extended)
2687                pos = pci_find_ext_capability(dev, cap);
2688        else
2689                pos = pci_find_capability(dev, cap);
2690
2691        if (!pos)
2692                return 0;
2693
2694        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2695        if (!save_state)
2696                return -ENOMEM;
2697
2698        save_state->cap.cap_nr = cap;
2699        save_state->cap.cap_extended = extended;
2700        save_state->cap.size = size;
2701        pci_add_saved_cap(dev, save_state);
2702
2703        return 0;
2704}
2705
2706int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2707{
2708        return _pci_add_cap_save_buffer(dev, cap, false, size);
2709}
2710
2711int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2712{
2713        return _pci_add_cap_save_buffer(dev, cap, true, size);
2714}
2715
2716/**
2717 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2718 * @dev: the PCI device
2719 */
2720void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2721{
2722        int error;
2723
2724        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2725                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2726        if (error)
2727                dev_err(&dev->dev,
2728                        "unable to preallocate PCI Express save buffer\n");
2729
2730        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2731        if (error)
2732                dev_err(&dev->dev,
2733                        "unable to preallocate PCI-X save buffer\n");
2734
2735        pci_allocate_vc_save_buffers(dev);
2736}
2737
2738void pci_free_cap_save_buffers(struct pci_dev *dev)
2739{
2740        struct pci_cap_saved_state *tmp;
2741        struct hlist_node *n;
2742
2743        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2744                kfree(tmp);
2745}
2746
2747/**
2748 * pci_configure_ari - enable or disable ARI forwarding
2749 * @dev: the PCI device
2750 *
2751 * If @dev and its upstream bridge both support ARI, enable ARI in the
2752 * bridge.  Otherwise, disable ARI in the bridge.
2753 */
2754void pci_configure_ari(struct pci_dev *dev)
2755{
2756        u32 cap;
2757        struct pci_dev *bridge;
2758
2759        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2760                return;
2761
2762        bridge = dev->bus->self;
2763        if (!bridge)
2764                return;
2765
2766        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2767        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2768                return;
2769
2770        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2771                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2772                                         PCI_EXP_DEVCTL2_ARI);
2773                bridge->ari_enabled = 1;
2774        } else {
2775                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2776                                           PCI_EXP_DEVCTL2_ARI);
2777                bridge->ari_enabled = 0;
2778        }
2779}
2780
2781static int pci_acs_enable;
2782
2783/**
2784 * pci_request_acs - ask for ACS to be enabled if supported
2785 */
2786void pci_request_acs(void)
2787{
2788        pci_acs_enable = 1;
2789}
2790
2791/**
2792 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2793 * @dev: the PCI device
2794 */
2795static void pci_std_enable_acs(struct pci_dev *dev)
2796{
2797        int pos;
2798        u16 cap;
2799        u16 ctrl;
2800
2801        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2802        if (!pos)
2803                return;
2804
2805        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2806        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2807
2808        /* Source Validation */
2809        ctrl |= (cap & PCI_ACS_SV);
2810
2811        /* P2P Request Redirect */
2812        ctrl |= (cap & PCI_ACS_RR);
2813
2814        /* P2P Completion Redirect */
2815        ctrl |= (cap & PCI_ACS_CR);
2816
2817        /* Upstream Forwarding */
2818        ctrl |= (cap & PCI_ACS_UF);
2819
2820        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2821}
2822
2823/**
2824 * pci_enable_acs - enable ACS if hardware support it
2825 * @dev: the PCI device
2826 */
2827void pci_enable_acs(struct pci_dev *dev)
2828{
2829        if (!pci_acs_enable)
2830                return;
2831
2832        if (!pci_dev_specific_enable_acs(dev))
2833                return;
2834
2835        pci_std_enable_acs(dev);
2836}
2837
2838static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2839{
2840        int pos;
2841        u16 cap, ctrl;
2842
2843        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2844        if (!pos)
2845                return false;
2846
2847        /*
2848         * Except for egress control, capabilities are either required
2849         * or only required if controllable.  Features missing from the
2850         * capability field can therefore be assumed as hard-wired enabled.
2851         */
2852        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2853        acs_flags &= (cap | PCI_ACS_EC);
2854
2855        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2856        return (ctrl & acs_flags) == acs_flags;
2857}
2858
2859/**
2860 * pci_acs_enabled - test ACS against required flags for a given device
2861 * @pdev: device to test
2862 * @acs_flags: required PCI ACS flags
2863 *
2864 * Return true if the device supports the provided flags.  Automatically
2865 * filters out flags that are not implemented on multifunction devices.
2866 *
2867 * Note that this interface checks the effective ACS capabilities of the
2868 * device rather than the actual capabilities.  For instance, most single
2869 * function endpoints are not required to support ACS because they have no
2870 * opportunity for peer-to-peer access.  We therefore return 'true'
2871 * regardless of whether the device exposes an ACS capability.  This makes
2872 * it much easier for callers of this function to ignore the actual type
2873 * or topology of the device when testing ACS support.
2874 */
2875bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2876{
2877        int ret;
2878
2879        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2880        if (ret >= 0)
2881                return ret > 0;
2882
2883        /*
2884         * Conventional PCI and PCI-X devices never support ACS, either
2885         * effectively or actually.  The shared bus topology implies that
2886         * any device on the bus can receive or snoop DMA.
2887         */
2888        if (!pci_is_pcie(pdev))
2889                return false;
2890
2891        switch (pci_pcie_type(pdev)) {
2892        /*
2893         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2894         * but since their primary interface is PCI/X, we conservatively
2895         * handle them as we would a non-PCIe device.
2896         */
2897        case PCI_EXP_TYPE_PCIE_BRIDGE:
2898        /*
2899         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2900         * applicable... must never implement an ACS Extended Capability...".
2901         * This seems arbitrary, but we take a conservative interpretation
2902         * of this statement.
2903         */
2904        case PCI_EXP_TYPE_PCI_BRIDGE:
2905        case PCI_EXP_TYPE_RC_EC:
2906                return false;
2907        /*
2908         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2909         * implement ACS in order to indicate their peer-to-peer capabilities,
2910         * regardless of whether they are single- or multi-function devices.
2911         */
2912        case PCI_EXP_TYPE_DOWNSTREAM:
2913        case PCI_EXP_TYPE_ROOT_PORT:
2914                return pci_acs_flags_enabled(pdev, acs_flags);
2915        /*
2916         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2917         * implemented by the remaining PCIe types to indicate peer-to-peer
2918         * capabilities, but only when they are part of a multifunction
2919         * device.  The footnote for section 6.12 indicates the specific
2920         * PCIe types included here.
2921         */
2922        case PCI_EXP_TYPE_ENDPOINT:
2923        case PCI_EXP_TYPE_UPSTREAM:
2924        case PCI_EXP_TYPE_LEG_END:
2925        case PCI_EXP_TYPE_RC_END:
2926                if (!pdev->multifunction)
2927                        break;
2928
2929                return pci_acs_flags_enabled(pdev, acs_flags);
2930        }
2931
2932        /*
2933         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2934         * to single function devices with the exception of downstream ports.
2935         */
2936        return true;
2937}
2938
2939/**
2940 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2941 * @start: starting downstream device
2942 * @end: ending upstream device or NULL to search to the root bus
2943 * @acs_flags: required flags
2944 *
2945 * Walk up a device tree from start to end testing PCI ACS support.  If
2946 * any step along the way does not support the required flags, return false.
2947 */
2948bool pci_acs_path_enabled(struct pci_dev *start,
2949                          struct pci_dev *end, u16 acs_flags)
2950{
2951        struct pci_dev *pdev, *parent = start;
2952
2953        do {
2954                pdev = parent;
2955
2956                if (!pci_acs_enabled(pdev, acs_flags))
2957                        return false;
2958
2959                if (pci_is_root_bus(pdev->bus))
2960                        return (end == NULL);
2961
2962                parent = pdev->bus->self;
2963        } while (pdev != end);
2964
2965        return true;
2966}
2967
2968/**
2969 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2970 * @dev: the PCI device
2971 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2972 *
2973 * Perform INTx swizzling for a device behind one level of bridge.  This is
2974 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2975 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2976 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2977 * the PCI Express Base Specification, Revision 2.1)
2978 */
2979u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2980{
2981        int slot;
2982
2983        if (pci_ari_enabled(dev->bus))
2984                slot = 0;
2985        else
2986                slot = PCI_SLOT(dev->devfn);
2987
2988        return (((pin - 1) + slot) % 4) + 1;
2989}
2990
2991int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2992{
2993        u8 pin;
2994
2995        pin = dev->pin;
2996        if (!pin)
2997                return -1;
2998
2999        while (!pci_is_root_bus(dev->bus)) {
3000                pin = pci_swizzle_interrupt_pin(dev, pin);
3001                dev = dev->bus->self;
3002        }
3003        *bridge = dev;
3004        return pin;
3005}
3006
3007/**
3008 * pci_common_swizzle - swizzle INTx all the way to root bridge
3009 * @dev: the PCI device
3010 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3011 *
3012 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3013 * bridges all the way up to a PCI root bus.
3014 */
3015u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3016{
3017        u8 pin = *pinp;
3018
3019        while (!pci_is_root_bus(dev->bus)) {
3020                pin = pci_swizzle_interrupt_pin(dev, pin);
3021                dev = dev->bus->self;
3022        }
3023        *pinp = pin;
3024        return PCI_SLOT(dev->devfn);
3025}
3026EXPORT_SYMBOL_GPL(pci_common_swizzle);
3027
3028/**
3029 *      pci_release_region - Release a PCI bar
3030 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
3031 *      @bar: BAR to release
3032 *
3033 *      Releases the PCI I/O and memory resources previously reserved by a
3034 *      successful call to pci_request_region.  Call this function only
3035 *      after all use of the PCI regions has ceased.
3036 */
3037void pci_release_region(struct pci_dev *pdev, int bar)
3038{
3039        struct pci_devres *dr;
3040
3041        if (pci_resource_len(pdev, bar) == 0)
3042                return;
3043        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3044                release_region(pci_resource_start(pdev, bar),
3045                                pci_resource_len(pdev, bar));
3046        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3047                release_mem_region(pci_resource_start(pdev, bar),
3048                                pci_resource_len(pdev, bar));
3049
3050        dr = find_pci_dr(pdev);
3051        if (dr)
3052                dr->region_mask &= ~(1 << bar);
3053}
3054EXPORT_SYMBOL(pci_release_region);
3055
3056/**
3057 *      __pci_request_region - Reserved PCI I/O and memory resource
3058 *      @pdev: PCI device whose resources are to be reserved
3059 *      @bar: BAR to be reserved
3060 *      @res_name: Name to be associated with resource.
3061 *      @exclusive: whether the region access is exclusive or not
3062 *
3063 *      Mark the PCI region associated with PCI device @pdev BR @bar as
3064 *      being reserved by owner @res_name.  Do not access any
3065 *      address inside the PCI regions unless this call returns
3066 *      successfully.
3067 *
3068 *      If @exclusive is set, then the region is marked so that userspace
3069 *      is explicitly not allowed to map the resource via /dev/mem or
3070 *      sysfs MMIO access.
3071 *
3072 *      Returns 0 on success, or %EBUSY on error.  A warning
3073 *      message is also printed on failure.
3074 */
3075static int __pci_request_region(struct pci_dev *pdev, int bar,
3076                                const char *res_name, int exclusive)
3077{
3078        struct pci_devres *dr;
3079
3080        if (pci_resource_len(pdev, bar) == 0)
3081                return 0;
3082
3083        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3084                if (!request_region(pci_resource_start(pdev, bar),
3085                            pci_resource_len(pdev, bar), res_name))
3086                        goto err_out;
3087        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3088                if (!__request_mem_region(pci_resource_start(pdev, bar),
3089                                        pci_resource_len(pdev, bar), res_name,
3090                                        exclusive))
3091                        goto err_out;
3092        }
3093
3094        dr = find_pci_dr(pdev);
3095        if (dr)
3096                dr->region_mask |= 1 << bar;
3097
3098        return 0;
3099
3100err_out:
3101        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3102                 &pdev->resource[bar]);
3103        return -EBUSY;
3104}
3105
3106/**
3107 *      pci_request_region - Reserve PCI I/O and memory resource
3108 *      @pdev: PCI device whose resources are to be reserved
3109 *      @bar: BAR to be reserved
3110 *      @res_name: Name to be associated with resource
3111 *
3112 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
3113 *      being reserved by owner @res_name.  Do not access any
3114 *      address inside the PCI regions unless this call returns
3115 *      successfully.
3116 *
3117 *      Returns 0 on success, or %EBUSY on error.  A warning
3118 *      message is also printed on failure.
3119 */
3120int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3121{
3122        return __pci_request_region(pdev, bar, res_name, 0);
3123}
3124EXPORT_SYMBOL(pci_request_region);
3125
3126/**
3127 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
3128 *      @pdev: PCI device whose resources are to be reserved
3129 *      @bar: BAR to be reserved
3130 *      @res_name: Name to be associated with resource.
3131 *
3132 *      Mark the PCI region associated with PCI device @pdev BR @bar as
3133 *      being reserved by owner @res_name.  Do not access any
3134 *      address inside the PCI regions unless this call returns
3135 *      successfully.
3136 *
3137 *      Returns 0 on success, or %EBUSY on error.  A warning
3138 *      message is also printed on failure.
3139 *
3140 *      The key difference that _exclusive makes it that userspace is
3141 *      explicitly not allowed to map the resource via /dev/mem or
3142 *      sysfs.
3143 */
3144int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3145                                 const char *res_name)
3146{
3147        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3148}
3149EXPORT_SYMBOL(pci_request_region_exclusive);
3150
3151/**
3152 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3153 * @pdev: PCI device whose resources were previously reserved
3154 * @bars: Bitmask of BARs to be released
3155 *
3156 * Release selected PCI I/O and memory resources previously reserved.
3157 * Call this function only after all use of the PCI regions has ceased.
3158 */
3159void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3160{
3161        int i;
3162
3163        for (i = 0; i < 6; i++)
3164                if (bars & (1 << i))
3165                        pci_release_region(pdev, i);
3166}
3167EXPORT_SYMBOL(pci_release_selected_regions);
3168
3169static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3170                                          const char *res_name, int excl)
3171{
3172        int i;
3173
3174        for (i = 0; i < 6; i++)
3175                if (bars & (1 << i))
3176                        if (__pci_request_region(pdev, i, res_name, excl))
3177                                goto err_out;
3178        return 0;
3179
3180err_out:
3181        while (--i >= 0)
3182                if (bars & (1 << i))
3183                        pci_release_region(pdev, i);
3184
3185        return -EBUSY;
3186}
3187
3188
3189/**
3190 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3191 * @pdev: PCI device whose resources are to be reserved
3192 * @bars: Bitmask of BARs to be requested
3193 * @res_name: Name to be associated with resource
3194 */
3195int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3196                                 const char *res_name)
3197{
3198        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3199}
3200EXPORT_SYMBOL(pci_request_selected_regions);
3201
3202int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3203                                           const char *res_name)
3204{
3205        return __pci_request_selected_regions(pdev, bars, res_name,
3206                        IORESOURCE_EXCLUSIVE);
3207}
3208EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3209
3210/**
3211 *      pci_release_regions - Release reserved PCI I/O and memory resources
3212 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
3213 *
3214 *      Releases all PCI I/O and memory resources previously reserved by a
3215 *      successful call to pci_request_regions.  Call this function only
3216 *      after all use of the PCI regions has ceased.
3217 */
3218
3219void pci_release_regions(struct pci_dev *pdev)
3220{
3221        pci_release_selected_regions(pdev, (1 << 6) - 1);
3222}
3223EXPORT_SYMBOL(pci_release_regions);
3224
3225/**
3226 *      pci_request_regions - Reserved PCI I/O and memory resources
3227 *      @pdev: PCI device whose resources are to be reserved
3228 *      @res_name: Name to be associated with resource.
3229 *
3230 *      Mark all PCI regions associated with PCI device @pdev as
3231 *      being reserved by owner @res_name.  Do not access any
3232 *      address inside the PCI regions unless this call returns
3233 *      successfully.
3234 *
3235 *      Returns 0 on success, or %EBUSY on error.  A warning
3236 *      message is also printed on failure.
3237 */
3238int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3239{
3240        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3241}
3242EXPORT_SYMBOL(pci_request_regions);
3243
3244/**
3245 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3246 *      @pdev: PCI device whose resources are to be reserved
3247 *      @res_name: Name to be associated with resource.
3248 *
3249 *      Mark all PCI regions associated with PCI device @pdev as
3250 *      being reserved by owner @res_name.  Do not access any
3251 *      address inside the PCI regions unless this call returns
3252 *      successfully.
3253 *
3254 *      pci_request_regions_exclusive() will mark the region so that
3255 *      /dev/mem and the sysfs MMIO access will not be allowed.
3256 *
3257 *      Returns 0 on success, or %EBUSY on error.  A warning
3258 *      message is also printed on failure.
3259 */
3260int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3261{
3262        return pci_request_selected_regions_exclusive(pdev,
3263                                        ((1 << 6) - 1), res_name);
3264}
3265EXPORT_SYMBOL(pci_request_regions_exclusive);
3266
3267#ifdef PCI_IOBASE
3268struct io_range {
3269        struct list_head list;
3270        phys_addr_t start;
3271        resource_size_t size;
3272};
3273
3274static LIST_HEAD(io_range_list);
3275static DEFINE_SPINLOCK(io_range_lock);
3276#endif
3277
3278/*
3279 * Record the PCI IO range (expressed as CPU physical address + size).
3280 * Return a negative value if an error has occured, zero otherwise
3281 */
3282int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3283{
3284        int err = 0;
3285
3286#ifdef PCI_IOBASE
3287        struct io_range *range;
3288        resource_size_t allocated_size = 0;
3289
3290        /* check if the range hasn't been previously recorded */
3291        spin_lock(&io_range_lock);
3292        list_for_each_entry(range, &io_range_list, list) {
3293                if (addr >= range->start && addr + size <= range->start + size) {
3294                        /* range already registered, bail out */
3295                        goto end_register;
3296                }
3297                allocated_size += range->size;
3298        }
3299
3300        /* range not registed yet, check for available space */
3301        if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3302                /* if it's too big check if 64K space can be reserved */
3303                if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3304                        err = -E2BIG;
3305                        goto end_register;
3306                }
3307
3308                size = SZ_64K;
3309                pr_warn("Requested IO range too big, new size set to 64K\n");
3310        }
3311
3312        /* add the range to the list */
3313        range = kzalloc(sizeof(*range), GFP_ATOMIC);
3314        if (!range) {
3315                err = -ENOMEM;
3316                goto end_register;
3317        }
3318
3319        range->start = addr;
3320        range->size = size;
3321
3322        list_add_tail(&range->list, &io_range_list);
3323
3324end_register:
3325        spin_unlock(&io_range_lock);
3326#endif
3327
3328        return err;
3329}
3330
3331phys_addr_t pci_pio_to_address(unsigned long pio)
3332{
3333        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3334
3335#ifdef PCI_IOBASE
3336        struct io_range *range;
3337        resource_size_t allocated_size = 0;
3338
3339        if (pio > IO_SPACE_LIMIT)
3340                return address;
3341
3342        spin_lock(&io_range_lock);
3343        list_for_each_entry(range, &io_range_list, list) {
3344                if (pio >= allocated_size && pio < allocated_size + range->size) {
3345                        address = range->start + pio - allocated_size;
3346                        break;
3347                }
3348                allocated_size += range->size;
3349        }
3350        spin_unlock(&io_range_lock);
3351#endif
3352
3353        return address;
3354}
3355
3356unsigned long __weak pci_address_to_pio(phys_addr_t address)
3357{
3358#ifdef PCI_IOBASE
3359        struct io_range *res;
3360        resource_size_t offset = 0;
3361        unsigned long addr = -1;
3362
3363        spin_lock(&io_range_lock);
3364        list_for_each_entry(res, &io_range_list, list) {
3365                if (address >= res->start && address < res->start + res->size) {
3366                        addr = address - res->start + offset;
3367                        break;
3368                }
3369                offset += res->size;
3370        }
3371        spin_unlock(&io_range_lock);
3372
3373        return addr;
3374#else
3375        if (address > IO_SPACE_LIMIT)
3376                return (unsigned long)-1;
3377
3378        return (unsigned long) address;
3379#endif
3380}
3381
3382/**
3383 *      pci_remap_iospace - Remap the memory mapped I/O space
3384 *      @res: Resource describing the I/O space
3385 *      @phys_addr: physical address of range to be mapped
3386 *
3387 *      Remap the memory mapped I/O space described by the @res
3388 *      and the CPU physical address @phys_addr into virtual address space.
3389 *      Only architectures that have memory mapped IO functions defined
3390 *      (and the PCI_IOBASE value defined) should call this function.
3391 */
3392int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3393{
3394#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3395        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3396
3397        if (!(res->flags & IORESOURCE_IO))
3398                return -EINVAL;
3399
3400        if (res->end > IO_SPACE_LIMIT)
3401                return -EINVAL;
3402
3403        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3404                                  pgprot_device(PAGE_KERNEL));
3405#else
3406        /* this architecture does not have memory mapped I/O space,
3407           so this function should never be called */
3408        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3409        return -ENODEV;
3410#endif
3411}
3412EXPORT_SYMBOL(pci_remap_iospace);
3413
3414/**
3415 *      pci_unmap_iospace - Unmap the memory mapped I/O space
3416 *      @res: resource to be unmapped
3417 *
3418 *      Unmap the CPU virtual address @res from virtual address space.
3419 *      Only architectures that have memory mapped IO functions defined
3420 *      (and the PCI_IOBASE value defined) should call this function.
3421 */
3422void pci_unmap_iospace(struct resource *res)
3423{
3424#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3425        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3426
3427        unmap_kernel_range(vaddr, resource_size(res));
3428#endif
3429}
3430EXPORT_SYMBOL(pci_unmap_iospace);
3431
3432/**
3433 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3434 * @dev: Generic device to remap IO address for
3435 * @offset: Resource address to map
3436 * @size: Size of map
3437 *
3438 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3439 * detach.
3440 */
3441void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3442                                      resource_size_t offset,
3443                                      resource_size_t size)
3444{
3445        void __iomem **ptr, *addr;
3446
3447        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3448        if (!ptr)
3449                return NULL;
3450
3451        addr = pci_remap_cfgspace(offset, size);
3452        if (addr) {
3453                *ptr = addr;
3454                devres_add(dev, ptr);
3455        } else
3456                devres_free(ptr);
3457
3458        return addr;
3459}
3460EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3461
3462/**
3463 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3464 * @dev: generic device to handle the resource for
3465 * @res: configuration space resource to be handled
3466 *
3467 * Checks that a resource is a valid memory region, requests the memory
3468 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3469 * proper PCI configuration space memory attributes are guaranteed.
3470 *
3471 * All operations are managed and will be undone on driver detach.
3472 *
3473 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3474 * on failure. Usage example:
3475 *
3476 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3477 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3478 *      if (IS_ERR(base))
3479 *              return PTR_ERR(base);
3480 */
3481void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3482                                          struct resource *res)
3483{
3484        resource_size_t size;
3485        const char *name;
3486        void __iomem *dest_ptr;
3487
3488        BUG_ON(!dev);
3489
3490        if (!res || resource_type(res) != IORESOURCE_MEM) {
3491                dev_err(dev, "invalid resource\n");
3492                return IOMEM_ERR_PTR(-EINVAL);
3493        }
3494
3495        size = resource_size(res);
3496        name = res->name ?: dev_name(dev);
3497
3498        if (!devm_request_mem_region(dev, res->start, size, name)) {
3499                dev_err(dev, "can't request region for resource %pR\n", res);
3500                return IOMEM_ERR_PTR(-EBUSY);
3501        }
3502
3503        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3504        if (!dest_ptr) {
3505                dev_err(dev, "ioremap failed for resource %pR\n", res);
3506                devm_release_mem_region(dev, res->start, size);
3507                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3508        }
3509
3510        return dest_ptr;
3511}
3512EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3513
3514static void __pci_set_master(struct pci_dev *dev, bool enable)
3515{
3516        u16 old_cmd, cmd;
3517
3518        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3519        if (enable)
3520                cmd = old_cmd | PCI_COMMAND_MASTER;
3521        else
3522                cmd = old_cmd & ~PCI_COMMAND_MASTER;
3523        if (cmd != old_cmd) {
3524                dev_dbg(&dev->dev, "%s bus mastering\n",
3525                        enable ? "enabling" : "disabling");
3526                pci_write_config_word(dev, PCI_COMMAND, cmd);
3527        }
3528        dev->is_busmaster = enable;
3529}
3530
3531/**
3532 * pcibios_setup - process "pci=" kernel boot arguments
3533 * @str: string used to pass in "pci=" kernel boot arguments
3534 *
3535 * Process kernel boot arguments.  This is the default implementation.
3536 * Architecture specific implementations can override this as necessary.
3537 */
3538char * __weak __init pcibios_setup(char *str)
3539{
3540        return str;
3541}
3542
3543/**
3544 * pcibios_set_master - enable PCI bus-mastering for device dev
3545 * @dev: the PCI device to enable
3546 *
3547 * Enables PCI bus-mastering for the device.  This is the default
3548 * implementation.  Architecture specific implementations can override
3549 * this if necessary.
3550 */
3551void __weak pcibios_set_master(struct pci_dev *dev)
3552{
3553        u8 lat;
3554
3555        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3556        if (pci_is_pcie(dev))
3557                return;
3558
3559        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3560        if (lat < 16)
3561                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3562        else if (lat > pcibios_max_latency)
3563                lat = pcibios_max_latency;
3564        else
3565                return;
3566
3567        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3568}
3569
3570/**
3571 * pci_set_master - enables bus-mastering for device dev
3572 * @dev: the PCI device to enable
3573 *
3574 * Enables bus-mastering on the device and calls pcibios_set_master()
3575 * to do the needed arch specific settings.
3576 */
3577void pci_set_master(struct pci_dev *dev)
3578{
3579        __pci_set_master(dev, true);
3580        pcibios_set_master(dev);
3581}
3582EXPORT_SYMBOL(pci_set_master);
3583
3584/**
3585 * pci_clear_master - disables bus-mastering for device dev
3586 * @dev: the PCI device to disable
3587 */
3588void pci_clear_master(struct pci_dev *dev)
3589{
3590        __pci_set_master(dev, false);
3591}
3592EXPORT_SYMBOL(pci_clear_master);
3593
3594/**
3595 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3596 * @dev: the PCI device for which MWI is to be enabled
3597 *
3598 * Helper function for pci_set_mwi.
3599 * Originally copied from drivers/net/acenic.c.
3600 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3601 *
3602 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3603 */
3604int pci_set_cacheline_size(struct pci_dev *dev)
3605{
3606        u8 cacheline_size;
3607
3608        if (!pci_cache_line_size)
3609                return -EINVAL;
3610
3611        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3612           equal to or multiple of the right value. */
3613        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3614        if (cacheline_size >= pci_cache_line_size &&
3615            (cacheline_size % pci_cache_line_size) == 0)
3616                return 0;
3617
3618        /* Write the correct value. */
3619        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3620        /* Read it back. */
3621        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3622        if (cacheline_size == pci_cache_line_size)
3623                return 0;
3624
3625        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3626                   pci_cache_line_size << 2);
3627
3628        return -EINVAL;
3629}
3630EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3631
3632/**
3633 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3634 * @dev: the PCI device for which MWI is enabled
3635 *
3636 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3637 *
3638 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3639 */
3640int pci_set_mwi(struct pci_dev *dev)
3641{
3642#ifdef PCI_DISABLE_MWI
3643        return 0;
3644#else
3645        int rc;
3646        u16 cmd;
3647
3648        rc = pci_set_cacheline_size(dev);
3649        if (rc)
3650                return rc;
3651
3652        pci_read_config_word(dev, PCI_COMMAND, &cmd);
3653        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3654                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3655                cmd |= PCI_COMMAND_INVALIDATE;
3656                pci_write_config_word(dev, PCI_COMMAND, cmd);
3657        }
3658        return 0;
3659#endif
3660}
3661EXPORT_SYMBOL(pci_set_mwi);
3662
3663/**
3664 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3665 * @dev: the PCI device for which MWI is enabled
3666 *
3667 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3668 * Callers are not required to check the return value.
3669 *
3670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3671 */
3672int pci_try_set_mwi(struct pci_dev *dev)
3673{
3674#ifdef PCI_DISABLE_MWI
3675        return 0;
3676#else
3677        return pci_set_mwi(dev);
3678#endif
3679}
3680EXPORT_SYMBOL(pci_try_set_mwi);
3681
3682/**
3683 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3684 * @dev: the PCI device to disable
3685 *
3686 * Disables PCI Memory-Write-Invalidate transaction on the device
3687 */
3688void pci_clear_mwi(struct pci_dev *dev)
3689{
3690#ifndef PCI_DISABLE_MWI
3691        u16 cmd;
3692
3693        pci_read_config_word(dev, PCI_COMMAND, &cmd);
3694        if (cmd & PCI_COMMAND_INVALIDATE) {
3695                cmd &= ~PCI_COMMAND_INVALIDATE;
3696                pci_write_config_word(dev, PCI_COMMAND, cmd);
3697        }
3698#endif
3699}
3700EXPORT_SYMBOL(pci_clear_mwi);
3701
3702/**
3703 * pci_intx - enables/disables PCI INTx for device dev
3704 * @pdev: the PCI device to operate on
3705 * @enable: boolean: whether to enable or disable PCI INTx
3706 *
3707 * Enables/disables PCI INTx for device dev
3708 */
3709void pci_intx(struct pci_dev *pdev, int enable)
3710{
3711        u16 pci_command, new;
3712
3713        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3714
3715        if (enable)
3716                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3717        else
3718                new = pci_command | PCI_COMMAND_INTX_DISABLE;
3719
3720        if (new != pci_command) {
3721                struct pci_devres *dr;
3722
3723                pci_write_config_word(pdev, PCI_COMMAND, new);
3724
3725                dr = find_pci_dr(pdev);
3726                if (dr && !dr->restore_intx) {
3727                        dr->restore_intx = 1;
3728                        dr->orig_intx = !enable;
3729                }
3730        }
3731}
3732EXPORT_SYMBOL_GPL(pci_intx);
3733
3734static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3735{
3736        struct pci_bus *bus = dev->bus;
3737        bool mask_updated = true;
3738        u32 cmd_status_dword;
3739        u16 origcmd, newcmd;
3740        unsigned long flags;
3741        bool irq_pending;
3742
3743        /*
3744         * We do a single dword read to retrieve both command and status.
3745         * Document assumptions that make this possible.
3746         */
3747        BUILD_BUG_ON(PCI_COMMAND % 4);
3748        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3749
3750        raw_spin_lock_irqsave(&pci_lock, flags);
3751
3752        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3753
3754        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3755
3756        /*
3757         * Check interrupt status register to see whether our device
3758         * triggered the interrupt (when masking) or the next IRQ is
3759         * already pending (when unmasking).
3760         */
3761        if (mask != irq_pending) {
3762                mask_updated = false;
3763                goto done;
3764        }
3765
3766        origcmd = cmd_status_dword;
3767        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3768        if (mask)
3769                newcmd |= PCI_COMMAND_INTX_DISABLE;
3770        if (newcmd != origcmd)
3771                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3772
3773done:
3774        raw_spin_unlock_irqrestore(&pci_lock, flags);
3775
3776        return mask_updated;
3777}
3778
3779/**
3780 * pci_check_and_mask_intx - mask INTx on pending interrupt
3781 * @dev: the PCI device to operate on
3782 *
3783 * Check if the device dev has its INTx line asserted, mask it and
3784 * return true in that case. False is returned if no interrupt was
3785 * pending.
3786 */
3787bool pci_check_and_mask_intx(struct pci_dev *dev)
3788{
3789        return pci_check_and_set_intx_mask(dev, true);
3790}
3791EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3792
3793/**
3794 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3795 * @dev: the PCI device to operate on
3796 *
3797 * Check if the device dev has its INTx line asserted, unmask it if not
3798 * and return true. False is returned and the mask remains active if
3799 * there was still an interrupt pending.
3800 */
3801bool pci_check_and_unmask_intx(struct pci_dev *dev)
3802{
3803        return pci_check_and_set_intx_mask(dev, false);
3804}
3805EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3806
3807/**
3808 * pci_wait_for_pending_transaction - waits for pending transaction
3809 * @dev: the PCI device to operate on
3810 *
3811 * Return 0 if transaction is pending 1 otherwise.
3812 */
3813int pci_wait_for_pending_transaction(struct pci_dev *dev)
3814{
3815        if (!pci_is_pcie(dev))
3816                return 1;
3817
3818        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3819                                    PCI_EXP_DEVSTA_TRPND);
3820}
3821EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3822
3823static void pci_flr_wait(struct pci_dev *dev)
3824{
3825        int delay = 1, timeout = 60000;
3826        u32 id;
3827
3828        /*
3829         * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3830         * 100ms, but may silently discard requests while the FLR is in
3831         * progress.  Wait 100ms before trying to access the device.
3832         */
3833        msleep(100);
3834
3835        /*
3836         * After 100ms, the device should not silently discard config
3837         * requests, but it may still indicate that it needs more time by
3838         * responding to them with CRS completions.  The Root Port will
3839         * generally synthesize ~0 data to complete the read (except when
3840         * CRS SV is enabled and the read was for the Vendor ID; in that
3841         * case it synthesizes 0x0001 data).
3842         *
3843         * Wait for the device to return a non-CRS completion.  Read the
3844         * Command register instead of Vendor ID so we don't have to
3845         * contend with the CRS SV value.
3846         */
3847        pci_read_config_dword(dev, PCI_COMMAND, &id);
3848        while (id == ~0) {
3849                if (delay > timeout) {
3850                        dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3851                                 100 + delay - 1);
3852                        return;
3853                }
3854
3855                if (delay > 1000)
3856                        dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3857                                 100 + delay - 1);
3858
3859                msleep(delay);
3860                delay *= 2;
3861                pci_read_config_dword(dev, PCI_COMMAND, &id);
3862        }
3863
3864        if (delay > 1000)
3865                dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3866}
3867
3868/**
3869 * pcie_has_flr - check if a device supports function level resets
3870 * @dev:        device to check
3871 *
3872 * Returns true if the device advertises support for PCIe function level
3873 * resets.
3874 */
3875static bool pcie_has_flr(struct pci_dev *dev)
3876{
3877        u32 cap;
3878
3879        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3880                return false;
3881
3882        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3883        return cap & PCI_EXP_DEVCAP_FLR;
3884}
3885
3886/**
3887 * pcie_flr - initiate a PCIe function level reset
3888 * @dev:        device to reset
3889 *
3890 * Initiate a function level reset on @dev.  The caller should ensure the
3891 * device supports FLR before calling this function, e.g. by using the
3892 * pcie_has_flr() helper.
3893 */
3894void pcie_flr(struct pci_dev *dev)
3895{
3896        if (!pci_wait_for_pending_transaction(dev))
3897                dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3898
3899        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3900        pci_flr_wait(dev);
3901}
3902EXPORT_SYMBOL_GPL(pcie_flr);
3903
3904static int pci_af_flr(struct pci_dev *dev, int probe)
3905{
3906        int pos;
3907        u8 cap;
3908
3909        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3910        if (!pos)
3911                return -ENOTTY;
3912
3913        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3914                return -ENOTTY;
3915
3916        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3917        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3918                return -ENOTTY;
3919
3920        if (probe)
3921                return 0;
3922
3923        /*
3924         * Wait for Transaction Pending bit to clear.  A word-aligned test
3925         * is used, so we use the conrol offset rather than status and shift
3926         * the test bit to match.
3927         */
3928        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3929                                 PCI_AF_STATUS_TP << 8))
3930                dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3931
3932        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3933        pci_flr_wait(dev);
3934        return 0;
3935}
3936
3937/**
3938 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3939 * @dev: Device to reset.
3940 * @probe: If set, only check if the device can be reset this way.
3941 *
3942 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3943 * unset, it will be reinitialized internally when going from PCI_D3hot to
3944 * PCI_D0.  If that's the case and the device is not in a low-power state
3945 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3946 *
3947 * NOTE: This causes the caller to sleep for twice the device power transition
3948 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3949 * by default (i.e. unless the @dev's d3_delay field has a different value).
3950 * Moreover, only devices in D0 can be reset by this function.
3951 */
3952static int pci_pm_reset(struct pci_dev *dev, int probe)
3953{
3954        u16 csr;
3955
3956        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3957                return -ENOTTY;
3958
3959        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3960        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3961                return -ENOTTY;
3962
3963        if (probe)
3964                return 0;
3965
3966        if (dev->current_state != PCI_D0)
3967                return -EINVAL;
3968
3969        csr &= ~PCI_PM_CTRL_STATE_MASK;
3970        csr |= PCI_D3hot;
3971        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3972        pci_dev_d3_sleep(dev);
3973
3974        csr &= ~PCI_PM_CTRL_STATE_MASK;
3975        csr |= PCI_D0;
3976        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3977        pci_dev_d3_sleep(dev);
3978
3979        return 0;
3980}
3981
3982void pci_reset_secondary_bus(struct pci_dev *dev)
3983{
3984        u16 ctrl;
3985
3986        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3987        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3988        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3989        /*
3990         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3991         * this to 2ms to ensure that we meet the minimum requirement.
3992         */
3993        msleep(2);
3994
3995        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3996        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3997
3998        /*
3999         * Trhfa for conventional PCI is 2^25 clock cycles.
4000         * Assuming a minimum 33MHz clock this results in a 1s
4001         * delay before we can consider subordinate devices to
4002         * be re-initialized.  PCIe has some ways to shorten this,
4003         * but we don't make use of them yet.
4004         */
4005        ssleep(1);
4006}
4007
4008void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4009{
4010        pci_reset_secondary_bus(dev);
4011}
4012
4013/**
4014 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4015 * @dev: Bridge device
4016 *
4017 * Use the bridge control register to assert reset on the secondary bus.
4018 * Devices on the secondary bus are left in power-on state.
4019 */
4020void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4021{
4022        pcibios_reset_secondary_bus(dev);
4023}
4024EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4025
4026static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4027{
4028        struct pci_dev *pdev;
4029
4030        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4031            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4032                return -ENOTTY;
4033
4034        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4035                if (pdev != dev)
4036                        return -ENOTTY;
4037
4038        if (probe)
4039                return 0;
4040
4041        pci_reset_bridge_secondary_bus(dev->bus->self);
4042
4043        return 0;
4044}
4045
4046static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4047{
4048        int rc = -ENOTTY;
4049
4050        if (!hotplug || !try_module_get(hotplug->ops->owner))
4051                return rc;
4052
4053        if (hotplug->ops->reset_slot)
4054                rc = hotplug->ops->reset_slot(hotplug, probe);
4055
4056        module_put(hotplug->ops->owner);
4057
4058        return rc;
4059}
4060
4061static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4062{
4063        struct pci_dev *pdev;
4064
4065        if (dev->subordinate || !dev->slot ||
4066            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4067                return -ENOTTY;
4068
4069        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4070                if (pdev != dev && pdev->slot == dev->slot)
4071                        return -ENOTTY;
4072
4073        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4074}
4075
4076static void pci_dev_lock(struct pci_dev *dev)
4077{
4078        pci_cfg_access_lock(dev);
4079        /* block PM suspend, driver probe, etc. */
4080        device_lock(&dev->dev);
4081}
4082
4083/* Return 1 on successful lock, 0 on contention */
4084static int pci_dev_trylock(struct pci_dev *dev)
4085{
4086        if (pci_cfg_access_trylock(dev)) {
4087                if (device_trylock(&dev->dev))
4088                        return 1;
4089                pci_cfg_access_unlock(dev);
4090        }
4091
4092        return 0;
4093}
4094
4095static void pci_dev_unlock(struct pci_dev *dev)
4096{
4097        device_unlock(&dev->dev);
4098        pci_cfg_access_unlock(dev);
4099}
4100
4101static void pci_dev_save_and_disable(struct pci_dev *dev)
4102{
4103        const struct pci_error_handlers *err_handler =
4104                        dev->driver ? dev->driver->err_handler : NULL;
4105
4106        /*
4107         * dev->driver->err_handler->reset_prepare() is protected against
4108         * races with ->remove() by the device lock, which must be held by
4109         * the caller.
4110         */
4111        if (err_handler && err_handler->reset_prepare)
4112                err_handler->reset_prepare(dev);
4113
4114        /*
4115         * Wake-up device prior to save.  PM registers default to D0 after
4116         * reset and a simple register restore doesn't reliably return
4117         * to a non-D0 state anyway.
4118         */
4119        pci_set_power_state(dev, PCI_D0);
4120
4121        pci_save_state(dev);
4122        /*
4123         * Disable the device by clearing the Command register, except for
4124         * INTx-disable which is set.  This not only disables MMIO and I/O port
4125         * BARs, but also prevents the device from being Bus Master, preventing
4126         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4127         * compliant devices, INTx-disable prevents legacy interrupts.
4128         */
4129        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4130}
4131
4132static void pci_dev_restore(struct pci_dev *dev)
4133{
4134        const struct pci_error_handlers *err_handler =
4135                        dev->driver ? dev->driver->err_handler : NULL;
4136
4137        pci_restore_state(dev);
4138
4139        /*
4140         * dev->driver->err_handler->reset_done() is protected against
4141         * races with ->remove() by the device lock, which must be held by
4142         * the caller.
4143         */
4144        if (err_handler && err_handler->reset_done)
4145                err_handler->reset_done(dev);
4146}
4147
4148/**
4149 * __pci_reset_function - reset a PCI device function
4150 * @dev: PCI device to reset
4151 *
4152 * Some devices allow an individual function to be reset without affecting
4153 * other functions in the same device.  The PCI device must be responsive
4154 * to PCI config space in order to use this function.
4155 *
4156 * The device function is presumed to be unused when this function is called.
4157 * Resetting the device will make the contents of PCI configuration space
4158 * random, so any caller of this must be prepared to reinitialise the
4159 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4160 * etc.
4161 *
4162 * Returns 0 if the device function was successfully reset or negative if the
4163 * device doesn't support resetting a single function.
4164 */
4165int __pci_reset_function(struct pci_dev *dev)
4166{
4167        int ret;
4168
4169        pci_dev_lock(dev);
4170        ret = __pci_reset_function_locked(dev);
4171        pci_dev_unlock(dev);
4172
4173        return ret;
4174}
4175EXPORT_SYMBOL_GPL(__pci_reset_function);
4176
4177/**
4178 * __pci_reset_function_locked - reset a PCI device function while holding
4179 * the @dev mutex lock.
4180 * @dev: PCI device to reset
4181 *
4182 * Some devices allow an individual function to be reset without affecting
4183 * other functions in the same device.  The PCI device must be responsive
4184 * to PCI config space in order to use this function.
4185 *
4186 * The device function is presumed to be unused and the caller is holding
4187 * the device mutex lock when this function is called.
4188 * Resetting the device will make the contents of PCI configuration space
4189 * random, so any caller of this must be prepared to reinitialise the
4190 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4191 * etc.
4192 *
4193 * Returns 0 if the device function was successfully reset or negative if the
4194 * device doesn't support resetting a single function.
4195 */
4196int __pci_reset_function_locked(struct pci_dev *dev)
4197{
4198        int rc;
4199
4200        might_sleep();
4201
4202        rc = pci_dev_specific_reset(dev, 0);
4203        if (rc != -ENOTTY)
4204                return rc;
4205        if (pcie_has_flr(dev)) {
4206                pcie_flr(dev);
4207                return 0;
4208        }
4209        rc = pci_af_flr(dev, 0);
4210        if (rc != -ENOTTY)
4211                return rc;
4212        rc = pci_pm_reset(dev, 0);
4213        if (rc != -ENOTTY)
4214                return rc;
4215        rc = pci_dev_reset_slot_function(dev, 0);
4216        if (rc != -ENOTTY)
4217                return rc;
4218        return pci_parent_bus_reset(dev, 0);
4219}
4220EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4221
4222/**
4223 * pci_probe_reset_function - check whether the device can be safely reset
4224 * @dev: PCI device to reset
4225 *
4226 * Some devices allow an individual function to be reset without affecting
4227 * other functions in the same device.  The PCI device must be responsive
4228 * to PCI config space in order to use this function.
4229 *
4230 * Returns 0 if the device function can be reset or negative if the
4231 * device doesn't support resetting a single function.
4232 */
4233int pci_probe_reset_function(struct pci_dev *dev)
4234{
4235        int rc;
4236
4237        might_sleep();
4238
4239        rc = pci_dev_specific_reset(dev, 1);
4240        if (rc != -ENOTTY)
4241                return rc;
4242        if (pcie_has_flr(dev))
4243                return 0;
4244        rc = pci_af_flr(dev, 1);
4245        if (rc != -ENOTTY)
4246                return rc;
4247        rc = pci_pm_reset(dev, 1);
4248        if (rc != -ENOTTY)
4249                return rc;
4250        rc = pci_dev_reset_slot_function(dev, 1);
4251        if (rc != -ENOTTY)
4252                return rc;
4253
4254        return pci_parent_bus_reset(dev, 1);
4255}
4256
4257/**
4258 * pci_reset_function - quiesce and reset a PCI device function
4259 * @dev: PCI device to reset
4260 *
4261 * Some devices allow an individual function to be reset without affecting
4262 * other functions in the same device.  The PCI device must be responsive
4263 * to PCI config space in order to use this function.
4264 *
4265 * This function does not just reset the PCI portion of a device, but
4266 * clears all the state associated with the device.  This function differs
4267 * from __pci_reset_function in that it saves and restores device state
4268 * over the reset.
4269 *
4270 * Returns 0 if the device function was successfully reset or negative if the
4271 * device doesn't support resetting a single function.
4272 */
4273int pci_reset_function(struct pci_dev *dev)
4274{
4275        int rc;
4276
4277        rc = pci_probe_reset_function(dev);
4278        if (rc)
4279                return rc;
4280
4281        pci_dev_lock(dev);
4282        pci_dev_save_and_disable(dev);
4283
4284        rc = __pci_reset_function_locked(dev);
4285
4286        pci_dev_restore(dev);
4287        pci_dev_unlock(dev);
4288
4289        return rc;
4290}
4291EXPORT_SYMBOL_GPL(pci_reset_function);
4292
4293/**
4294 * pci_reset_function_locked - quiesce and reset a PCI device function
4295 * @dev: PCI device to reset
4296 *
4297 * Some devices allow an individual function to be reset without affecting
4298 * other functions in the same device.  The PCI device must be responsive
4299 * to PCI config space in order to use this function.
4300 *
4301 * This function does not just reset the PCI portion of a device, but
4302 * clears all the state associated with the device.  This function differs
4303 * from __pci_reset_function() in that it saves and restores device state
4304 * over the reset.  It also differs from pci_reset_function() in that it
4305 * requires the PCI device lock to be held.
4306 *
4307 * Returns 0 if the device function was successfully reset or negative if the
4308 * device doesn't support resetting a single function.
4309 */
4310int pci_reset_function_locked(struct pci_dev *dev)
4311{
4312        int rc;
4313
4314        rc = pci_probe_reset_function(dev);
4315        if (rc)
4316                return rc;
4317
4318        pci_dev_save_and_disable(dev);
4319
4320        rc = __pci_reset_function_locked(dev);
4321
4322        pci_dev_restore(dev);
4323
4324        return rc;
4325}
4326EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4327
4328/**
4329 * pci_try_reset_function - quiesce and reset a PCI device function
4330 * @dev: PCI device to reset
4331 *
4332 * Same as above, except return -EAGAIN if unable to lock device.
4333 */
4334int pci_try_reset_function(struct pci_dev *dev)
4335{
4336        int rc;
4337
4338        rc = pci_probe_reset_function(dev);
4339        if (rc)
4340                return rc;
4341
4342        if (!pci_dev_trylock(dev))
4343                return -EAGAIN;
4344
4345        pci_dev_save_and_disable(dev);
4346        rc = __pci_reset_function_locked(dev);
4347        pci_dev_unlock(dev);
4348
4349        pci_dev_restore(dev);
4350        return rc;
4351}
4352EXPORT_SYMBOL_GPL(pci_try_reset_function);
4353
4354/* Do any devices on or below this bus prevent a bus reset? */
4355static bool pci_bus_resetable(struct pci_bus *bus)
4356{
4357        struct pci_dev *dev;
4358
4359        list_for_each_entry(dev, &bus->devices, bus_list) {
4360                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4361                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4362                        return false;
4363        }
4364
4365        return true;
4366}
4367
4368/* Lock devices from the top of the tree down */
4369static void pci_bus_lock(struct pci_bus *bus)
4370{
4371        struct pci_dev *dev;
4372
4373        list_for_each_entry(dev, &bus->devices, bus_list) {
4374                pci_dev_lock(dev);
4375                if (dev->subordinate)
4376                        pci_bus_lock(dev->subordinate);
4377        }
4378}
4379
4380/* Unlock devices from the bottom of the tree up */
4381static void pci_bus_unlock(struct pci_bus *bus)
4382{
4383        struct pci_dev *dev;
4384
4385        list_for_each_entry(dev, &bus->devices, bus_list) {
4386                if (dev->subordinate)
4387                        pci_bus_unlock(dev->subordinate);
4388                pci_dev_unlock(dev);
4389        }
4390}
4391
4392/* Return 1 on successful lock, 0 on contention */
4393static int pci_bus_trylock(struct pci_bus *bus)
4394{
4395        struct pci_dev *dev;
4396
4397        list_for_each_entry(dev, &bus->devices, bus_list) {
4398                if (!pci_dev_trylock(dev))
4399                        goto unlock;
4400                if (dev->subordinate) {
4401                        if (!pci_bus_trylock(dev->subordinate)) {
4402                                pci_dev_unlock(dev);
4403                                goto unlock;
4404                        }
4405                }
4406        }
4407        return 1;
4408
4409unlock:
4410        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4411                if (dev->subordinate)
4412                        pci_bus_unlock(dev->subordinate);
4413                pci_dev_unlock(dev);
4414        }
4415        return 0;
4416}
4417
4418/* Do any devices on or below this slot prevent a bus reset? */
4419static bool pci_slot_resetable(struct pci_slot *slot)
4420{
4421        struct pci_dev *dev;
4422
4423        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4424                if (!dev->slot || dev->slot != slot)
4425                        continue;
4426                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4427                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4428                        return false;
4429        }
4430
4431        return true;
4432}
4433
4434/* Lock devices from the top of the tree down */
4435static void pci_slot_lock(struct pci_slot *slot)
4436{
4437        struct pci_dev *dev;
4438
4439        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4440                if (!dev->slot || dev->slot != slot)
4441                        continue;
4442                pci_dev_lock(dev);
4443                if (dev->subordinate)
4444                        pci_bus_lock(dev->subordinate);
4445        }
4446}
4447
4448/* Unlock devices from the bottom of the tree up */
4449static void pci_slot_unlock(struct pci_slot *slot)
4450{
4451        struct pci_dev *dev;
4452
4453        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4454                if (!dev->slot || dev->slot != slot)
4455                        continue;
4456                if (dev->subordinate)
4457                        pci_bus_unlock(dev->subordinate);
4458                pci_dev_unlock(dev);
4459        }
4460}
4461
4462/* Return 1 on successful lock, 0 on contention */
4463static int pci_slot_trylock(struct pci_slot *slot)
4464{
4465        struct pci_dev *dev;
4466
4467        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4468                if (!dev->slot || dev->slot != slot)
4469                        continue;
4470                if (!pci_dev_trylock(dev))
4471                        goto unlock;
4472                if (dev->subordinate) {
4473                        if (!pci_bus_trylock(dev->subordinate)) {
4474                                pci_dev_unlock(dev);
4475                                goto unlock;
4476                        }
4477                }
4478        }
4479        return 1;
4480
4481unlock:
4482        list_for_each_entry_continue_reverse(dev,
4483                                             &slot->bus->devices, bus_list) {
4484                if (!dev->slot || dev->slot != slot)
4485                        continue;
4486                if (dev->subordinate)
4487                        pci_bus_unlock(dev->subordinate);
4488                pci_dev_unlock(dev);
4489        }
4490        return 0;
4491}
4492
4493/* Save and disable devices from the top of the tree down */
4494static void pci_bus_save_and_disable(struct pci_bus *bus)
4495{
4496        struct pci_dev *dev;
4497
4498        list_for_each_entry(dev, &bus->devices, bus_list) {
4499                pci_dev_lock(dev);
4500                pci_dev_save_and_disable(dev);
4501                pci_dev_unlock(dev);
4502                if (dev->subordinate)
4503                        pci_bus_save_and_disable(dev->subordinate);
4504        }
4505}
4506
4507/*
4508 * Restore devices from top of the tree down - parent bridges need to be
4509 * restored before we can get to subordinate devices.
4510 */
4511static void pci_bus_restore(struct pci_bus *bus)
4512{
4513        struct pci_dev *dev;
4514
4515        list_for_each_entry(dev, &bus->devices, bus_list) {
4516                pci_dev_lock(dev);
4517                pci_dev_restore(dev);
4518                pci_dev_unlock(dev);
4519                if (dev->subordinate)
4520                        pci_bus_restore(dev->subordinate);
4521        }
4522}
4523
4524/* Save and disable devices from the top of the tree down */
4525static void pci_slot_save_and_disable(struct pci_slot *slot)
4526{
4527        struct pci_dev *dev;
4528
4529        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4530                if (!dev->slot || dev->slot != slot)
4531                        continue;
4532                pci_dev_save_and_disable(dev);
4533                if (dev->subordinate)
4534                        pci_bus_save_and_disable(dev->subordinate);
4535        }
4536}
4537
4538/*
4539 * Restore devices from top of the tree down - parent bridges need to be
4540 * restored before we can get to subordinate devices.
4541 */
4542static void pci_slot_restore(struct pci_slot *slot)
4543{
4544        struct pci_dev *dev;
4545
4546        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4547                if (!dev->slot || dev->slot != slot)
4548                        continue;
4549                pci_dev_restore(dev);
4550                if (dev->subordinate)
4551                        pci_bus_restore(dev->subordinate);
4552        }
4553}
4554
4555static int pci_slot_reset(struct pci_slot *slot, int probe)
4556{
4557        int rc;
4558
4559        if (!slot || !pci_slot_resetable(slot))
4560                return -ENOTTY;
4561
4562        if (!probe)
4563                pci_slot_lock(slot);
4564
4565        might_sleep();
4566
4567        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4568
4569        if (!probe)
4570                pci_slot_unlock(slot);
4571
4572        return rc;
4573}
4574
4575/**
4576 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4577 * @slot: PCI slot to probe
4578 *
4579 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4580 */
4581int pci_probe_reset_slot(struct pci_slot *slot)
4582{
4583        return pci_slot_reset(slot, 1);
4584}
4585EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4586
4587/**
4588 * pci_reset_slot - reset a PCI slot
4589 * @slot: PCI slot to reset
4590 *
4591 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4592 * independent of other slots.  For instance, some slots may support slot power
4593 * control.  In the case of a 1:1 bus to slot architecture, this function may
4594 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4595 * Generally a slot reset should be attempted before a bus reset.  All of the
4596 * function of the slot and any subordinate buses behind the slot are reset
4597 * through this function.  PCI config space of all devices in the slot and
4598 * behind the slot is saved before and restored after reset.
4599 *
4600 * Return 0 on success, non-zero on error.
4601 */
4602int pci_reset_slot(struct pci_slot *slot)
4603{
4604        int rc;
4605
4606        rc = pci_slot_reset(slot, 1);
4607        if (rc)
4608                return rc;
4609
4610        pci_slot_save_and_disable(slot);
4611
4612        rc = pci_slot_reset(slot, 0);
4613
4614        pci_slot_restore(slot);
4615
4616        return rc;
4617}
4618EXPORT_SYMBOL_GPL(pci_reset_slot);
4619
4620/**
4621 * pci_try_reset_slot - Try to reset a PCI slot
4622 * @slot: PCI slot to reset
4623 *
4624 * Same as above except return -EAGAIN if the slot cannot be locked
4625 */
4626int pci_try_reset_slot(struct pci_slot *slot)
4627{
4628        int rc;
4629
4630        rc = pci_slot_reset(slot, 1);
4631        if (rc)
4632                return rc;
4633
4634        pci_slot_save_and_disable(slot);
4635
4636        if (pci_slot_trylock(slot)) {
4637                might_sleep();
4638                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4639                pci_slot_unlock(slot);
4640        } else
4641                rc = -EAGAIN;
4642
4643        pci_slot_restore(slot);
4644
4645        return rc;
4646}
4647EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4648
4649static int pci_bus_reset(struct pci_bus *bus, int probe)
4650{
4651        if (!bus->self || !pci_bus_resetable(bus))
4652                return -ENOTTY;
4653
4654        if (probe)
4655                return 0;
4656
4657        pci_bus_lock(bus);
4658
4659        might_sleep();
4660
4661        pci_reset_bridge_secondary_bus(bus->self);
4662
4663        pci_bus_unlock(bus);
4664
4665        return 0;
4666}
4667
4668/**
4669 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4670 * @bus: PCI bus to probe
4671 *
4672 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4673 */
4674int pci_probe_reset_bus(struct pci_bus *bus)
4675{
4676        return pci_bus_reset(bus, 1);
4677}
4678EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4679
4680/**
4681 * pci_reset_bus - reset a PCI bus
4682 * @bus: top level PCI bus to reset
4683 *
4684 * Do a bus reset on the given bus and any subordinate buses, saving
4685 * and restoring state of all devices.
4686 *
4687 * Return 0 on success, non-zero on error.
4688 */
4689int pci_reset_bus(struct pci_bus *bus)
4690{
4691        int rc;
4692
4693        rc = pci_bus_reset(bus, 1);
4694        if (rc)
4695                return rc;
4696
4697        pci_bus_save_and_disable(bus);
4698
4699        rc = pci_bus_reset(bus, 0);
4700
4701        pci_bus_restore(bus);
4702
4703        return rc;
4704}
4705EXPORT_SYMBOL_GPL(pci_reset_bus);
4706
4707/**
4708 * pci_try_reset_bus - Try to reset a PCI bus
4709 * @bus: top level PCI bus to reset
4710 *
4711 * Same as above except return -EAGAIN if the bus cannot be locked
4712 */
4713int pci_try_reset_bus(struct pci_bus *bus)
4714{
4715        int rc;
4716
4717        rc = pci_bus_reset(bus, 1);
4718        if (rc)
4719                return rc;
4720
4721        pci_bus_save_and_disable(bus);
4722
4723        if (pci_bus_trylock(bus)) {
4724                might_sleep();
4725                pci_reset_bridge_secondary_bus(bus->self);
4726                pci_bus_unlock(bus);
4727        } else
4728                rc = -EAGAIN;
4729
4730        pci_bus_restore(bus);
4731
4732        return rc;
4733}
4734EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4735
4736/**
4737 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4738 * @dev: PCI device to query
4739 *
4740 * Returns mmrbc: maximum designed memory read count in bytes
4741 *    or appropriate error value.
4742 */
4743int pcix_get_max_mmrbc(struct pci_dev *dev)
4744{
4745        int cap;
4746        u32 stat;
4747
4748        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4749        if (!cap)
4750                return -EINVAL;
4751
4752        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4753                return -EINVAL;
4754
4755        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4756}
4757EXPORT_SYMBOL(pcix_get_max_mmrbc);
4758
4759/**
4760 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4761 * @dev: PCI device to query
4762 *
4763 * Returns mmrbc: maximum memory read count in bytes
4764 *    or appropriate error value.
4765 */
4766int pcix_get_mmrbc(struct pci_dev *dev)
4767{
4768        int cap;
4769        u16 cmd;
4770
4771        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4772        if (!cap)
4773                return -EINVAL;
4774
4775        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4776                return -EINVAL;
4777
4778        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4779}
4780EXPORT_SYMBOL(pcix_get_mmrbc);
4781
4782/**
4783 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4784 * @dev: PCI device to query
4785 * @mmrbc: maximum memory read count in bytes
4786 *    valid values are 512, 1024, 2048, 4096
4787 *
4788 * If possible sets maximum memory read byte count, some bridges have erratas
4789 * that prevent this.
4790 */
4791int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4792{
4793        int cap;
4794        u32 stat, v, o;
4795        u16 cmd;
4796
4797        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4798                return -EINVAL;
4799
4800        v = ffs(mmrbc) - 10;
4801
4802        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4803        if (!cap)
4804                return -EINVAL;
4805
4806        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4807                return -EINVAL;
4808
4809        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4810                return -E2BIG;
4811
4812        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4813                return -EINVAL;
4814
4815        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4816        if (o != v) {
4817                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4818                        return -EIO;
4819
4820                cmd &= ~PCI_X_CMD_MAX_READ;
4821                cmd |= v << 2;
4822                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4823                        return -EIO;
4824        }
4825        return 0;
4826}
4827EXPORT_SYMBOL(pcix_set_mmrbc);
4828
4829/**
4830 * pcie_get_readrq - get PCI Express read request size
4831 * @dev: PCI device to query
4832 *
4833 * Returns maximum memory read request in bytes
4834 *    or appropriate error value.
4835 */
4836int pcie_get_readrq(struct pci_dev *dev)
4837{
4838        u16 ctl;
4839
4840        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4841
4842        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4843}
4844EXPORT_SYMBOL(pcie_get_readrq);
4845
4846/**
4847 * pcie_set_readrq - set PCI Express maximum memory read request
4848 * @dev: PCI device to query
4849 * @rq: maximum memory read count in bytes
4850 *    valid values are 128, 256, 512, 1024, 2048, 4096
4851 *
4852 * If possible sets maximum memory read request in bytes
4853 */
4854int pcie_set_readrq(struct pci_dev *dev, int rq)
4855{
4856        u16 v;
4857
4858        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4859                return -EINVAL;
4860
4861        /*
4862         * If using the "performance" PCIe config, we clamp the
4863         * read rq size to the max packet size to prevent the
4864         * host bridge generating requests larger than we can
4865         * cope with
4866         */
4867        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4868                int mps = pcie_get_mps(dev);
4869
4870                if (mps < rq)
4871                        rq = mps;
4872        }
4873
4874        v = (ffs(rq) - 8) << 12;
4875
4876        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4877                                                  PCI_EXP_DEVCTL_READRQ, v);
4878}
4879EXPORT_SYMBOL(pcie_set_readrq);
4880
4881/**
4882 * pcie_get_mps - get PCI Express maximum payload size
4883 * @dev: PCI device to query
4884 *
4885 * Returns maximum payload size in bytes
4886 */
4887int pcie_get_mps(struct pci_dev *dev)
4888{
4889        u16 ctl;
4890
4891        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4892
4893        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4894}
4895EXPORT_SYMBOL(pcie_get_mps);
4896
4897/**
4898 * pcie_set_mps - set PCI Express maximum payload size
4899 * @dev: PCI device to query
4900 * @mps: maximum payload size in bytes
4901 *    valid values are 128, 256, 512, 1024, 2048, 4096
4902 *
4903 * If possible sets maximum payload size
4904 */
4905int pcie_set_mps(struct pci_dev *dev, int mps)
4906{
4907        u16 v;
4908
4909        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4910                return -EINVAL;
4911
4912        v = ffs(mps) - 8;
4913        if (v > dev->pcie_mpss)
4914                return -EINVAL;
4915        v <<= 5;
4916
4917        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4918                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
4919}
4920EXPORT_SYMBOL(pcie_set_mps);
4921
4922/**
4923 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4924 * @dev: PCI device to query
4925 * @speed: storage for minimum speed
4926 * @width: storage for minimum width
4927 *
4928 * This function will walk up the PCI device chain and determine the minimum
4929 * link width and speed of the device.
4930 */
4931int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4932                          enum pcie_link_width *width)
4933{
4934        int ret;
4935
4936        *speed = PCI_SPEED_UNKNOWN;
4937        *width = PCIE_LNK_WIDTH_UNKNOWN;
4938
4939        while (dev) {
4940                u16 lnksta;
4941                enum pci_bus_speed next_speed;
4942                enum pcie_link_width next_width;
4943
4944                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4945                if (ret)
4946                        return ret;
4947
4948                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4949                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4950                        PCI_EXP_LNKSTA_NLW_SHIFT;
4951
4952                if (next_speed < *speed)
4953                        *speed = next_speed;
4954
4955                if (next_width < *width)
4956                        *width = next_width;
4957
4958                dev = dev->bus->self;
4959        }
4960
4961        return 0;
4962}
4963EXPORT_SYMBOL(pcie_get_minimum_link);
4964
4965/**
4966 * pci_select_bars - Make BAR mask from the type of resource
4967 * @dev: the PCI device for which BAR mask is made
4968 * @flags: resource type mask to be selected
4969 *
4970 * This helper routine makes bar mask from the type of resource.
4971 */
4972int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4973{
4974        int i, bars = 0;
4975        for (i = 0; i < PCI_NUM_RESOURCES; i++)
4976                if (pci_resource_flags(dev, i) & flags)
4977                        bars |= (1 << i);
4978        return bars;
4979}
4980EXPORT_SYMBOL(pci_select_bars);
4981
4982/* Some architectures require additional programming to enable VGA */
4983static arch_set_vga_state_t arch_set_vga_state;
4984
4985void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4986{
4987        arch_set_vga_state = func;      /* NULL disables */
4988}
4989
4990static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4991                                  unsigned int command_bits, u32 flags)
4992{
4993        if (arch_set_vga_state)
4994                return arch_set_vga_state(dev, decode, command_bits,
4995                                                flags);
4996        return 0;
4997}
4998
4999/**
5000 * pci_set_vga_state - set VGA decode state on device and parents if requested
5001 * @dev: the PCI device
5002 * @decode: true = enable decoding, false = disable decoding
5003 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5004 * @flags: traverse ancestors and change bridges
5005 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5006 */
5007int pci_set_vga_state(struct pci_dev *dev, bool decode,
5008                      unsigned int command_bits, u32 flags)
5009{
5010        struct pci_bus *bus;
5011        struct pci_dev *bridge;
5012        u16 cmd;
5013        int rc;
5014
5015        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5016
5017        /* ARCH specific VGA enables */
5018        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5019        if (rc)
5020                return rc;
5021
5022        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5023                pci_read_config_word(dev, PCI_COMMAND, &cmd);
5024                if (decode == true)
5025                        cmd |= command_bits;
5026                else
5027                        cmd &= ~command_bits;
5028                pci_write_config_word(dev, PCI_COMMAND, cmd);
5029        }
5030
5031        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5032                return 0;
5033
5034        bus = dev->bus;
5035        while (bus) {
5036                bridge = bus->self;
5037                if (bridge) {
5038                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5039                                             &cmd);
5040                        if (decode == true)
5041                                cmd |= PCI_BRIDGE_CTL_VGA;
5042                        else
5043                                cmd &= ~PCI_BRIDGE_CTL_VGA;
5044                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5045                                              cmd);
5046                }
5047                bus = bus->parent;
5048        }
5049        return 0;
5050}
5051
5052/**
5053 * pci_add_dma_alias - Add a DMA devfn alias for a device
5054 * @dev: the PCI device for which alias is added
5055 * @devfn: alias slot and function
5056 *
5057 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5058 * It should be called early, preferably as PCI fixup header quirk.
5059 */
5060void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5061{
5062        if (!dev->dma_alias_mask)
5063                dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5064                                              sizeof(long), GFP_KERNEL);
5065        if (!dev->dma_alias_mask) {
5066                dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5067                return;
5068        }
5069
5070        set_bit(devfn, dev->dma_alias_mask);
5071        dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5072                 PCI_SLOT(devfn), PCI_FUNC(devfn));
5073}
5074
5075bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5076{
5077        return (dev1->dma_alias_mask &&
5078                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5079               (dev2->dma_alias_mask &&
5080                test_bit(dev1->devfn, dev2->dma_alias_mask));
5081}
5082
5083bool pci_device_is_present(struct pci_dev *pdev)
5084{
5085        u32 v;
5086
5087        if (pci_dev_is_disconnected(pdev))
5088                return false;
5089        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5090}
5091EXPORT_SYMBOL_GPL(pci_device_is_present);
5092
5093void pci_ignore_hotplug(struct pci_dev *dev)
5094{
5095        struct pci_dev *bridge = dev->bus->self;
5096
5097        dev->ignore_hotplug = 1;
5098        /* Propagate the "ignore hotplug" setting to the parent bridge. */
5099        if (bridge)
5100                bridge->ignore_hotplug = 1;
5101}
5102EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5103
5104resource_size_t __weak pcibios_default_alignment(void)
5105{
5106        return 0;
5107}
5108
5109#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5110static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5111static DEFINE_SPINLOCK(resource_alignment_lock);
5112
5113/**
5114 * pci_specified_resource_alignment - get resource alignment specified by user.
5115 * @dev: the PCI device to get
5116 * @resize: whether or not to change resources' size when reassigning alignment
5117 *
5118 * RETURNS: Resource alignment if it is specified.
5119 *          Zero if it is not specified.
5120 */
5121static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5122                                                        bool *resize)
5123{
5124        int seg, bus, slot, func, align_order, count;
5125        unsigned short vendor, device, subsystem_vendor, subsystem_device;
5126        resource_size_t align = pcibios_default_alignment();
5127        char *p;
5128
5129        spin_lock(&resource_alignment_lock);
5130        p = resource_alignment_param;
5131        if (!*p && !align)
5132                goto out;
5133        if (pci_has_flag(PCI_PROBE_ONLY)) {
5134                align = 0;
5135                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5136                goto out;
5137        }
5138
5139        while (*p) {
5140                count = 0;
5141                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5142                                                        p[count] == '@') {
5143                        p += count + 1;
5144                } else {
5145                        align_order = -1;
5146                }
5147                if (strncmp(p, "pci:", 4) == 0) {
5148                        /* PCI vendor/device (subvendor/subdevice) ids are specified */
5149                        p += 4;
5150                        if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5151                                &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5152                                if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5153                                        printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5154                                                p);
5155                                        break;
5156                                }
5157                                subsystem_vendor = subsystem_device = 0;
5158                        }
5159                        p += count;
5160                        if ((!vendor || (vendor == dev->vendor)) &&
5161                                (!device || (device == dev->device)) &&
5162                                (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5163                                (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5164                                *resize = true;
5165                                if (align_order == -1)
5166                                        align = PAGE_SIZE;
5167                                else
5168                                        align = 1 << align_order;
5169                                /* Found */
5170                                break;
5171                        }
5172                }
5173                else {
5174                        if (sscanf(p, "%x:%x:%x.%x%n",
5175                                &seg, &bus, &slot, &func, &count) != 4) {
5176                                seg = 0;
5177                                if (sscanf(p, "%x:%x.%x%n",
5178                                                &bus, &slot, &func, &count) != 3) {
5179                                        /* Invalid format */
5180                                        printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5181                                                p);
5182                                        break;
5183                                }
5184                        }
5185                        p += count;
5186                        if (seg == pci_domain_nr(dev->bus) &&
5187                                bus == dev->bus->number &&
5188                                slot == PCI_SLOT(dev->devfn) &&
5189                                func == PCI_FUNC(dev->devfn)) {
5190                                *resize = true;
5191                                if (align_order == -1)
5192                                        align = PAGE_SIZE;
5193                                else
5194                                        align = 1 << align_order;
5195                                /* Found */
5196                                break;
5197                        }
5198                }
5199                if (*p != ';' && *p != ',') {
5200                        /* End of param or invalid format */
5201                        break;
5202                }
5203                p++;
5204        }
5205out:
5206        spin_unlock(&resource_alignment_lock);
5207        return align;
5208}
5209
5210static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5211                                           resource_size_t align, bool resize)
5212{
5213        struct resource *r = &dev->resource[bar];
5214        resource_size_t size;
5215
5216        if (!(r->flags & IORESOURCE_MEM))
5217                return;
5218
5219        if (r->flags & IORESOURCE_PCI_FIXED) {
5220                dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5221                         bar, r, (unsigned long long)align);
5222                return;
5223        }
5224
5225        size = resource_size(r);
5226        if (size >= align)
5227                return;
5228
5229        /*
5230         * Increase the alignment of the resource.  There are two ways we
5231         * can do this:
5232         *
5233         * 1) Increase the size of the resource.  BARs are aligned on their
5234         *    size, so when we reallocate space for this resource, we'll
5235         *    allocate it with the larger alignment.  This also prevents
5236         *    assignment of any other BARs inside the alignment region, so
5237         *    if we're requesting page alignment, this means no other BARs
5238         *    will share the page.
5239         *
5240         *    The disadvantage is that this makes the resource larger than
5241         *    the hardware BAR, which may break drivers that compute things
5242         *    based on the resource size, e.g., to find registers at a
5243         *    fixed offset before the end of the BAR.
5244         *
5245         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5246         *    set r->start to the desired alignment.  By itself this
5247         *    doesn't prevent other BARs being put inside the alignment
5248         *    region, but if we realign *every* resource of every device in
5249         *    the system, none of them will share an alignment region.
5250         *
5251         * When the user has requested alignment for only some devices via
5252         * the "pci=resource_alignment" argument, "resize" is true and we
5253         * use the first method.  Otherwise we assume we're aligning all
5254         * devices and we use the second.
5255         */
5256
5257        dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5258                 bar, r, (unsigned long long)align);
5259
5260        if (resize) {
5261                r->start = 0;
5262                r->end = align - 1;
5263        } else {
5264                r->flags &= ~IORESOURCE_SIZEALIGN;
5265                r->flags |= IORESOURCE_STARTALIGN;
5266                r->start = align;
5267                r->end = r->start + size - 1;
5268        }
5269        r->flags |= IORESOURCE_UNSET;
5270}
5271
5272/*
5273 * This function disables memory decoding and releases memory resources
5274 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5275 * It also rounds up size to specified alignment.
5276 * Later on, the kernel will assign page-aligned memory resource back
5277 * to the device.
5278 */
5279void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5280{
5281        int i;
5282        struct resource *r;
5283        resource_size_t align;
5284        u16 command;
5285        bool resize = false;
5286
5287        /*
5288         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5289         * 3.4.1.11.  Their resources are allocated from the space
5290         * described by the VF BARx register in the PF's SR-IOV capability.
5291         * We can't influence their alignment here.
5292         */
5293        if (dev->is_virtfn)
5294                return;
5295
5296        /* check if specified PCI is target device to reassign */
5297        align = pci_specified_resource_alignment(dev, &resize);
5298        if (!align)
5299                return;
5300
5301        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5302            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5303                dev_warn(&dev->dev,
5304                        "Can't reassign resources to host bridge.\n");
5305                return;
5306        }
5307
5308        dev_info(&dev->dev,
5309                "Disabling memory decoding and releasing memory resources.\n");
5310        pci_read_config_word(dev, PCI_COMMAND, &command);
5311        command &= ~PCI_COMMAND_MEMORY;
5312        pci_write_config_word(dev, PCI_COMMAND, command);
5313
5314        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5315                pci_request_resource_alignment(dev, i, align, resize);
5316
5317        /*
5318         * Need to disable bridge's resource window,
5319         * to enable the kernel to reassign new resource
5320         * window later on.
5321         */
5322        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5323            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5324                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5325                        r = &dev->resource[i];
5326                        if (!(r->flags & IORESOURCE_MEM))
5327                                continue;
5328                        r->flags |= IORESOURCE_UNSET;
5329                        r->end = resource_size(r) - 1;
5330                        r->start = 0;
5331                }
5332                pci_disable_bridge_window(dev);
5333        }
5334}
5335
5336static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5337{
5338        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5339                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5340        spin_lock(&resource_alignment_lock);
5341        strncpy(resource_alignment_param, buf, count);
5342        resource_alignment_param[count] = '\0';
5343        spin_unlock(&resource_alignment_lock);
5344        return count;
5345}
5346
5347static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5348{
5349        size_t count;
5350        spin_lock(&resource_alignment_lock);
5351        count = snprintf(buf, size, "%s", resource_alignment_param);
5352        spin_unlock(&resource_alignment_lock);
5353        return count;
5354}
5355
5356static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5357{
5358        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5359}
5360
5361static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5362                                        const char *buf, size_t count)
5363{
5364        return pci_set_resource_alignment_param(buf, count);
5365}
5366
5367static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5368                                        pci_resource_alignment_store);
5369
5370static int __init pci_resource_alignment_sysfs_init(void)
5371{
5372        return bus_create_file(&pci_bus_type,
5373                                        &bus_attr_resource_alignment);
5374}
5375late_initcall(pci_resource_alignment_sysfs_init);
5376
5377static void pci_no_domains(void)
5378{
5379#ifdef CONFIG_PCI_DOMAINS
5380        pci_domains_supported = 0;
5381#endif
5382}
5383
5384#ifdef CONFIG_PCI_DOMAINS
5385static atomic_t __domain_nr = ATOMIC_INIT(-1);
5386
5387int pci_get_new_domain_nr(void)
5388{
5389        return atomic_inc_return(&__domain_nr);
5390}
5391
5392#ifdef CONFIG_PCI_DOMAINS_GENERIC
5393static int of_pci_bus_find_domain_nr(struct device *parent)
5394{
5395        static int use_dt_domains = -1;
5396        int domain = -1;
5397
5398        if (parent)
5399                domain = of_get_pci_domain_nr(parent->of_node);
5400        /*
5401         * Check DT domain and use_dt_domains values.
5402         *
5403         * If DT domain property is valid (domain >= 0) and
5404         * use_dt_domains != 0, the DT assignment is valid since this means
5405         * we have not previously allocated a domain number by using
5406         * pci_get_new_domain_nr(); we should also update use_dt_domains to
5407         * 1, to indicate that we have just assigned a domain number from
5408         * DT.
5409         *
5410         * If DT domain property value is not valid (ie domain < 0), and we
5411         * have not previously assigned a domain number from DT
5412         * (use_dt_domains != 1) we should assign a domain number by
5413         * using the:
5414         *
5415         * pci_get_new_domain_nr()
5416         *
5417         * API and update the use_dt_domains value to keep track of method we
5418         * are using to assign domain numbers (use_dt_domains = 0).
5419         *
5420         * All other combinations imply we have a platform that is trying
5421         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5422         * which is a recipe for domain mishandling and it is prevented by
5423         * invalidating the domain value (domain = -1) and printing a
5424         * corresponding error.
5425         */
5426        if (domain >= 0 && use_dt_domains) {
5427                use_dt_domains = 1;
5428        } else if (domain < 0 && use_dt_domains != 1) {
5429                use_dt_domains = 0;
5430                domain = pci_get_new_domain_nr();
5431        } else {
5432                dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5433                        parent->of_node);
5434                domain = -1;
5435        }
5436
5437        return domain;
5438}
5439
5440int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5441{
5442        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5443                               acpi_pci_bus_find_domain_nr(bus);
5444}
5445#endif
5446#endif
5447
5448/**
5449 * pci_ext_cfg_avail - can we access extended PCI config space?
5450 *
5451 * Returns 1 if we can access PCI extended config space (offsets
5452 * greater than 0xff). This is the default implementation. Architecture
5453 * implementations can override this.
5454 */
5455int __weak pci_ext_cfg_avail(void)
5456{
5457        return 1;
5458}
5459
5460void __weak pci_fixup_cardbus(struct pci_bus *bus)
5461{
5462}
5463EXPORT_SYMBOL(pci_fixup_cardbus);
5464
5465static int __init pci_setup(char *str)
5466{
5467        while (str) {
5468                char *k = strchr(str, ',');
5469                if (k)
5470                        *k++ = 0;
5471                if (*str && (str = pcibios_setup(str)) && *str) {
5472                        if (!strcmp(str, "nomsi")) {
5473                                pci_no_msi();
5474                        } else if (!strcmp(str, "noaer")) {
5475                                pci_no_aer();
5476                        } else if (!strncmp(str, "realloc=", 8)) {
5477                                pci_realloc_get_opt(str + 8);
5478                        } else if (!strncmp(str, "realloc", 7)) {
5479                                pci_realloc_get_opt("on");
5480                        } else if (!strcmp(str, "nodomains")) {
5481                                pci_no_domains();
5482                        } else if (!strncmp(str, "noari", 5)) {
5483                                pcie_ari_disabled = true;
5484                        } else if (!strncmp(str, "cbiosize=", 9)) {
5485                                pci_cardbus_io_size = memparse(str + 9, &str);
5486                        } else if (!strncmp(str, "cbmemsize=", 10)) {
5487                                pci_cardbus_mem_size = memparse(str + 10, &str);
5488                        } else if (!strncmp(str, "resource_alignment=", 19)) {
5489                                pci_set_resource_alignment_param(str + 19,
5490                                                        strlen(str + 19));
5491                        } else if (!strncmp(str, "ecrc=", 5)) {
5492                                pcie_ecrc_get_policy(str + 5);
5493                        } else if (!strncmp(str, "hpiosize=", 9)) {
5494                                pci_hotplug_io_size = memparse(str + 9, &str);
5495                        } else if (!strncmp(str, "hpmemsize=", 10)) {
5496                                pci_hotplug_mem_size = memparse(str + 10, &str);
5497                        } else if (!strncmp(str, "hpbussize=", 10)) {
5498                                pci_hotplug_bus_size =
5499                                        simple_strtoul(str + 10, &str, 0);
5500                                if (pci_hotplug_bus_size > 0xff)
5501                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5502                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5503                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
5504                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5505                                pcie_bus_config = PCIE_BUS_SAFE;
5506                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5507                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
5508                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5509                                pcie_bus_config = PCIE_BUS_PEER2PEER;
5510                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
5511                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5512                        } else {
5513                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
5514                                                str);
5515                        }
5516                }
5517                str = k;
5518        }
5519        return 0;
5520}
5521early_param("pci", pci_setup);
5522