linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53        struct spi_device       *spi = to_spi_device(dev);
  54
  55        /* spi controllers may cleanup for released devices */
  56        if (spi->controller->cleanup)
  57                spi->controller->cleanup(spi);
  58
  59        spi_controller_put(spi->controller);
  60        kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66        const struct spi_device *spi = to_spi_device(dev);
  67        int len;
  68
  69        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70        if (len != -ENODEV)
  71                return len;
  72
  73        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
  77#define SPI_STATISTICS_ATTRS(field, file)                               \
  78static ssize_t spi_controller_##field##_show(struct device *dev,        \
  79                                             struct device_attribute *attr, \
  80                                             char *buf)                 \
  81{                                                                       \
  82        struct spi_controller *ctlr = container_of(dev,                 \
  83                                         struct spi_controller, dev);   \
  84        return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
  85}                                                                       \
  86static struct device_attribute dev_attr_spi_controller_##field = {      \
  87        .attr = { .name = file, .mode = 0444 },                         \
  88        .show = spi_controller_##field##_show,                          \
  89};                                                                      \
  90static ssize_t spi_device_##field##_show(struct device *dev,            \
  91                                         struct device_attribute *attr, \
  92                                        char *buf)                      \
  93{                                                                       \
  94        struct spi_device *spi = to_spi_device(dev);                    \
  95        return spi_statistics_##field##_show(&spi->statistics, buf);    \
  96}                                                                       \
  97static struct device_attribute dev_attr_spi_device_##field = {          \
  98        .attr = { .name = file, .mode = 0444 },                         \
  99        .show = spi_device_##field##_show,                              \
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104                                            char *buf)                  \
 105{                                                                       \
 106        unsigned long flags;                                            \
 107        ssize_t len;                                                    \
 108        spin_lock_irqsave(&stat->lock, flags);                          \
 109        len = sprintf(buf, format_string, stat->field);                 \
 110        spin_unlock_irqrestore(&stat->lock, flags);                     \
 111        return len;                                                     \
 112}                                                                       \
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)                       \
 116        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 117                                 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 133        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 134                                 "transfer_bytes_histo_" number,        \
 135                                 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157        &dev_attr_modalias.attr,
 158        NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162        .attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166        &dev_attr_spi_device_messages.attr,
 167        &dev_attr_spi_device_transfers.attr,
 168        &dev_attr_spi_device_errors.attr,
 169        &dev_attr_spi_device_timedout.attr,
 170        &dev_attr_spi_device_spi_sync.attr,
 171        &dev_attr_spi_device_spi_sync_immediate.attr,
 172        &dev_attr_spi_device_spi_async.attr,
 173        &dev_attr_spi_device_bytes.attr,
 174        &dev_attr_spi_device_bytes_rx.attr,
 175        &dev_attr_spi_device_bytes_tx.attr,
 176        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 177        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 178        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 179        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 180        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 181        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 182        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 183        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 184        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 185        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 186        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 187        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 188        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 189        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 190        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 191        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 192        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 193        &dev_attr_spi_device_transfers_split_maxsize.attr,
 194        NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198        .name  = "statistics",
 199        .attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203        &spi_dev_group,
 204        &spi_device_statistics_group,
 205        NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209        &dev_attr_spi_controller_messages.attr,
 210        &dev_attr_spi_controller_transfers.attr,
 211        &dev_attr_spi_controller_errors.attr,
 212        &dev_attr_spi_controller_timedout.attr,
 213        &dev_attr_spi_controller_spi_sync.attr,
 214        &dev_attr_spi_controller_spi_sync_immediate.attr,
 215        &dev_attr_spi_controller_spi_async.attr,
 216        &dev_attr_spi_controller_bytes.attr,
 217        &dev_attr_spi_controller_bytes_rx.attr,
 218        &dev_attr_spi_controller_bytes_tx.attr,
 219        &dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220        &dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221        &dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222        &dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223        &dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224        &dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225        &dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226        &dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227        &dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228        &dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229        &dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230        &dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231        &dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232        &dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233        &dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234        &dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235        &dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236        &dev_attr_spi_controller_transfers_split_maxsize.attr,
 237        NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241        .name  = "statistics",
 242        .attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246        &spi_controller_statistics_group,
 247        NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251                                       struct spi_transfer *xfer,
 252                                       struct spi_controller *ctlr)
 253{
 254        unsigned long flags;
 255        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 256
 257        if (l2len < 0)
 258                l2len = 0;
 259
 260        spin_lock_irqsave(&stats->lock, flags);
 261
 262        stats->transfers++;
 263        stats->transfer_bytes_histo[l2len]++;
 264
 265        stats->bytes += xfer->len;
 266        if ((xfer->tx_buf) &&
 267            (xfer->tx_buf != ctlr->dummy_tx))
 268                stats->bytes_tx += xfer->len;
 269        if ((xfer->rx_buf) &&
 270            (xfer->rx_buf != ctlr->dummy_rx))
 271                stats->bytes_rx += xfer->len;
 272
 273        spin_unlock_irqrestore(&stats->lock, flags);
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282                                                const struct spi_device *sdev)
 283{
 284        while (id->name[0]) {
 285                if (!strcmp(sdev->modalias, id->name))
 286                        return id;
 287                id++;
 288        }
 289        return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296        return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302        const struct spi_device *spi = to_spi_device(dev);
 303        const struct spi_driver *sdrv = to_spi_driver(drv);
 304
 305        /* Attempt an OF style match */
 306        if (of_driver_match_device(dev, drv))
 307                return 1;
 308
 309        /* Then try ACPI */
 310        if (acpi_driver_match_device(dev, drv))
 311                return 1;
 312
 313        if (sdrv->id_table)
 314                return !!spi_match_id(sdrv->id_table, spi);
 315
 316        return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321        const struct spi_device         *spi = to_spi_device(dev);
 322        int rc;
 323
 324        rc = acpi_device_uevent_modalias(dev, env);
 325        if (rc != -ENODEV)
 326                return rc;
 327
 328        return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 329}
 330
 331struct bus_type spi_bus_type = {
 332        .name           = "spi",
 333        .dev_groups     = spi_dev_groups,
 334        .match          = spi_match_device,
 335        .uevent         = spi_uevent,
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 343        struct spi_device               *spi = to_spi_device(dev);
 344        int ret;
 345
 346        ret = of_clk_set_defaults(dev->of_node, false);
 347        if (ret)
 348                return ret;
 349
 350        if (dev->of_node) {
 351                spi->irq = of_irq_get(dev->of_node, 0);
 352                if (spi->irq == -EPROBE_DEFER)
 353                        return -EPROBE_DEFER;
 354                if (spi->irq < 0)
 355                        spi->irq = 0;
 356        }
 357
 358        ret = dev_pm_domain_attach(dev, true);
 359        if (ret != -EPROBE_DEFER) {
 360                ret = sdrv->probe(spi);
 361                if (ret)
 362                        dev_pm_domain_detach(dev, true);
 363        }
 364
 365        return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 371        int ret;
 372
 373        ret = sdrv->remove(to_spi_device(dev));
 374        dev_pm_domain_detach(dev, true);
 375
 376        return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 382
 383        sdrv->shutdown(to_spi_device(dev));
 384}
 385
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396        sdrv->driver.owner = owner;
 397        sdrv->driver.bus = &spi_bus_type;
 398        if (sdrv->probe)
 399                sdrv->driver.probe = spi_drv_probe;
 400        if (sdrv->remove)
 401                sdrv->driver.remove = spi_drv_remove;
 402        if (sdrv->shutdown)
 403                sdrv->driver.shutdown = spi_drv_shutdown;
 404        return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417        struct list_head        list;
 418        struct spi_board_info   board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450        struct spi_device       *spi;
 451
 452        if (!spi_controller_get(ctlr))
 453                return NULL;
 454
 455        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456        if (!spi) {
 457                spi_controller_put(ctlr);
 458                return NULL;
 459        }
 460
 461        spi->master = spi->controller = ctlr;
 462        spi->dev.parent = &ctlr->dev;
 463        spi->dev.bus = &spi_bus_type;
 464        spi->dev.release = spidev_release;
 465        spi->cs_gpio = -ENOENT;
 466
 467        spin_lock_init(&spi->statistics.lock);
 468
 469        device_initialize(&spi->dev);
 470        return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478        if (adev) {
 479                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480                return;
 481        }
 482
 483        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484                     spi->chip_select);
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489        struct spi_device *spi = to_spi_device(dev);
 490        struct spi_device *new_spi = data;
 491
 492        if (spi->controller == new_spi->controller &&
 493            spi->chip_select == new_spi->chip_select)
 494                return -EBUSY;
 495        return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509        static DEFINE_MUTEX(spi_add_lock);
 510        struct spi_controller *ctlr = spi->controller;
 511        struct device *dev = ctlr->dev.parent;
 512        int status;
 513
 514        /* Chipselects are numbered 0..max; validate. */
 515        if (spi->chip_select >= ctlr->num_chipselect) {
 516                dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517                        ctlr->num_chipselect);
 518                return -EINVAL;
 519        }
 520
 521        /* Set the bus ID string */
 522        spi_dev_set_name(spi);
 523
 524        /* We need to make sure there's no other device with this
 525         * chipselect **BEFORE** we call setup(), else we'll trash
 526         * its configuration.  Lock against concurrent add() calls.
 527         */
 528        mutex_lock(&spi_add_lock);
 529
 530        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531        if (status) {
 532                dev_err(dev, "chipselect %d already in use\n",
 533                                spi->chip_select);
 534                goto done;
 535        }
 536
 537        if (ctlr->cs_gpios)
 538                spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 539
 540        /* Drivers may modify this initial i/o setup, but will
 541         * normally rely on the device being setup.  Devices
 542         * using SPI_CS_HIGH can't coexist well otherwise...
 543         */
 544        status = spi_setup(spi);
 545        if (status < 0) {
 546                dev_err(dev, "can't setup %s, status %d\n",
 547                                dev_name(&spi->dev), status);
 548                goto done;
 549        }
 550
 551        /* Device may be bound to an active driver when this returns */
 552        status = device_add(&spi->dev);
 553        if (status < 0)
 554                dev_err(dev, "can't add %s, status %d\n",
 555                                dev_name(&spi->dev), status);
 556        else
 557                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 558
 559done:
 560        mutex_unlock(&spi_add_lock);
 561        return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580                                  struct spi_board_info *chip)
 581{
 582        struct spi_device       *proxy;
 583        int                     status;
 584
 585        /* NOTE:  caller did any chip->bus_num checks necessary.
 586         *
 587         * Also, unless we change the return value convention to use
 588         * error-or-pointer (not NULL-or-pointer), troubleshootability
 589         * suggests syslogged diagnostics are best here (ugh).
 590         */
 591
 592        proxy = spi_alloc_device(ctlr);
 593        if (!proxy)
 594                return NULL;
 595
 596        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598        proxy->chip_select = chip->chip_select;
 599        proxy->max_speed_hz = chip->max_speed_hz;
 600        proxy->mode = chip->mode;
 601        proxy->irq = chip->irq;
 602        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603        proxy->dev.platform_data = (void *) chip->platform_data;
 604        proxy->controller_data = chip->controller_data;
 605        proxy->controller_state = NULL;
 606
 607        if (chip->properties) {
 608                status = device_add_properties(&proxy->dev, chip->properties);
 609                if (status) {
 610                        dev_err(&ctlr->dev,
 611                                "failed to add properties to '%s': %d\n",
 612                                chip->modalias, status);
 613                        goto err_dev_put;
 614                }
 615        }
 616
 617        status = spi_add_device(proxy);
 618        if (status < 0)
 619                goto err_remove_props;
 620
 621        return proxy;
 622
 623err_remove_props:
 624        if (chip->properties)
 625                device_remove_properties(&proxy->dev);
 626err_dev_put:
 627        spi_dev_put(proxy);
 628        return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641        if (!spi)
 642                return;
 643
 644        if (spi->dev.of_node) {
 645                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646                of_node_put(spi->dev.of_node);
 647        }
 648        if (ACPI_COMPANION(&spi->dev))
 649                acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650        device_unregister(&spi->dev);
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655                                              struct spi_board_info *bi)
 656{
 657        struct spi_device *dev;
 658
 659        if (ctlr->bus_num != bi->bus_num)
 660                return;
 661
 662        dev = spi_new_device(ctlr, bi);
 663        if (!dev)
 664                dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665                        bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692        struct boardinfo *bi;
 693        int i;
 694
 695        if (!n)
 696                return 0;
 697
 698        bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699        if (!bi)
 700                return -ENOMEM;
 701
 702        for (i = 0; i < n; i++, bi++, info++) {
 703                struct spi_controller *ctlr;
 704
 705                memcpy(&bi->board_info, info, sizeof(*info));
 706                if (info->properties) {
 707                        bi->board_info.properties =
 708                                        property_entries_dup(info->properties);
 709                        if (IS_ERR(bi->board_info.properties))
 710                                return PTR_ERR(bi->board_info.properties);
 711                }
 712
 713                mutex_lock(&board_lock);
 714                list_add_tail(&bi->list, &board_list);
 715                list_for_each_entry(ctlr, &spi_controller_list, list)
 716                        spi_match_controller_to_boardinfo(ctlr,
 717                                                          &bi->board_info);
 718                mutex_unlock(&board_lock);
 719        }
 720
 721        return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 727{
 728        if (spi->mode & SPI_CS_HIGH)
 729                enable = !enable;
 730
 731        if (gpio_is_valid(spi->cs_gpio)) {
 732                gpio_set_value(spi->cs_gpio, !enable);
 733                /* Some SPI masters need both GPIO CS & slave_select */
 734                if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735                    spi->controller->set_cs)
 736                        spi->controller->set_cs(spi, !enable);
 737        } else if (spi->controller->set_cs) {
 738                spi->controller->set_cs(spi, !enable);
 739        }
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744                       struct sg_table *sgt, void *buf, size_t len,
 745                       enum dma_data_direction dir)
 746{
 747        const bool vmalloced_buf = is_vmalloc_addr(buf);
 748        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750        const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751                                (unsigned long)buf < (PKMAP_BASE +
 752                                        (LAST_PKMAP * PAGE_SIZE)));
 753#else
 754        const bool kmap_buf = false;
 755#endif
 756        int desc_len;
 757        int sgs;
 758        struct page *vm_page;
 759        struct scatterlist *sg;
 760        void *sg_buf;
 761        size_t min;
 762        int i, ret;
 763
 764        if (vmalloced_buf || kmap_buf) {
 765                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767        } else if (virt_addr_valid(buf)) {
 768                desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769                sgs = DIV_ROUND_UP(len, desc_len);
 770        } else {
 771                return -EINVAL;
 772        }
 773
 774        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775        if (ret != 0)
 776                return ret;
 777
 778        sg = &sgt->sgl[0];
 779        for (i = 0; i < sgs; i++) {
 780
 781                if (vmalloced_buf || kmap_buf) {
 782                        min = min_t(size_t,
 783                                    len, desc_len - offset_in_page(buf));
 784                        if (vmalloced_buf)
 785                                vm_page = vmalloc_to_page(buf);
 786                        else
 787                                vm_page = kmap_to_page(buf);
 788                        if (!vm_page) {
 789                                sg_free_table(sgt);
 790                                return -ENOMEM;
 791                        }
 792                        sg_set_page(sg, vm_page,
 793                                    min, offset_in_page(buf));
 794                } else {
 795                        min = min_t(size_t, len, desc_len);
 796                        sg_buf = buf;
 797                        sg_set_buf(sg, sg_buf, min);
 798                }
 799
 800                buf += min;
 801                len -= min;
 802                sg = sg_next(sg);
 803        }
 804
 805        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 806        if (!ret)
 807                ret = -ENOMEM;
 808        if (ret < 0) {
 809                sg_free_table(sgt);
 810                return ret;
 811        }
 812
 813        sgt->nents = ret;
 814
 815        return 0;
 816}
 817
 818static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 819                          struct sg_table *sgt, enum dma_data_direction dir)
 820{
 821        if (sgt->orig_nents) {
 822                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 823                sg_free_table(sgt);
 824        }
 825}
 826
 827static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 828{
 829        struct device *tx_dev, *rx_dev;
 830        struct spi_transfer *xfer;
 831        int ret;
 832
 833        if (!ctlr->can_dma)
 834                return 0;
 835
 836        if (ctlr->dma_tx)
 837                tx_dev = ctlr->dma_tx->device->dev;
 838        else
 839                tx_dev = ctlr->dev.parent;
 840
 841        if (ctlr->dma_rx)
 842                rx_dev = ctlr->dma_rx->device->dev;
 843        else
 844                rx_dev = ctlr->dev.parent;
 845
 846        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 847                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 848                        continue;
 849
 850                if (xfer->tx_buf != NULL) {
 851                        ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 852                                          (void *)xfer->tx_buf, xfer->len,
 853                                          DMA_TO_DEVICE);
 854                        if (ret != 0)
 855                                return ret;
 856                }
 857
 858                if (xfer->rx_buf != NULL) {
 859                        ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 860                                          xfer->rx_buf, xfer->len,
 861                                          DMA_FROM_DEVICE);
 862                        if (ret != 0) {
 863                                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 864                                              DMA_TO_DEVICE);
 865                                return ret;
 866                        }
 867                }
 868        }
 869
 870        ctlr->cur_msg_mapped = true;
 871
 872        return 0;
 873}
 874
 875static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 876{
 877        struct spi_transfer *xfer;
 878        struct device *tx_dev, *rx_dev;
 879
 880        if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 881                return 0;
 882
 883        if (ctlr->dma_tx)
 884                tx_dev = ctlr->dma_tx->device->dev;
 885        else
 886                tx_dev = ctlr->dev.parent;
 887
 888        if (ctlr->dma_rx)
 889                rx_dev = ctlr->dma_rx->device->dev;
 890        else
 891                rx_dev = ctlr->dev.parent;
 892
 893        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 894                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 895                        continue;
 896
 897                spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 898                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 899        }
 900
 901        return 0;
 902}
 903#else /* !CONFIG_HAS_DMA */
 904static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 905                              struct sg_table *sgt, void *buf, size_t len,
 906                              enum dma_data_direction dir)
 907{
 908        return -EINVAL;
 909}
 910
 911static inline void spi_unmap_buf(struct spi_controller *ctlr,
 912                                 struct device *dev, struct sg_table *sgt,
 913                                 enum dma_data_direction dir)
 914{
 915}
 916
 917static inline int __spi_map_msg(struct spi_controller *ctlr,
 918                                struct spi_message *msg)
 919{
 920        return 0;
 921}
 922
 923static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 924                                  struct spi_message *msg)
 925{
 926        return 0;
 927}
 928#endif /* !CONFIG_HAS_DMA */
 929
 930static inline int spi_unmap_msg(struct spi_controller *ctlr,
 931                                struct spi_message *msg)
 932{
 933        struct spi_transfer *xfer;
 934
 935        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 936                /*
 937                 * Restore the original value of tx_buf or rx_buf if they are
 938                 * NULL.
 939                 */
 940                if (xfer->tx_buf == ctlr->dummy_tx)
 941                        xfer->tx_buf = NULL;
 942                if (xfer->rx_buf == ctlr->dummy_rx)
 943                        xfer->rx_buf = NULL;
 944        }
 945
 946        return __spi_unmap_msg(ctlr, msg);
 947}
 948
 949static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 950{
 951        struct spi_transfer *xfer;
 952        void *tmp;
 953        unsigned int max_tx, max_rx;
 954
 955        if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 956                max_tx = 0;
 957                max_rx = 0;
 958
 959                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 960                        if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 961                            !xfer->tx_buf)
 962                                max_tx = max(xfer->len, max_tx);
 963                        if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 964                            !xfer->rx_buf)
 965                                max_rx = max(xfer->len, max_rx);
 966                }
 967
 968                if (max_tx) {
 969                        tmp = krealloc(ctlr->dummy_tx, max_tx,
 970                                       GFP_KERNEL | GFP_DMA);
 971                        if (!tmp)
 972                                return -ENOMEM;
 973                        ctlr->dummy_tx = tmp;
 974                        memset(tmp, 0, max_tx);
 975                }
 976
 977                if (max_rx) {
 978                        tmp = krealloc(ctlr->dummy_rx, max_rx,
 979                                       GFP_KERNEL | GFP_DMA);
 980                        if (!tmp)
 981                                return -ENOMEM;
 982                        ctlr->dummy_rx = tmp;
 983                }
 984
 985                if (max_tx || max_rx) {
 986                        list_for_each_entry(xfer, &msg->transfers,
 987                                            transfer_list) {
 988                                if (!xfer->tx_buf)
 989                                        xfer->tx_buf = ctlr->dummy_tx;
 990                                if (!xfer->rx_buf)
 991                                        xfer->rx_buf = ctlr->dummy_rx;
 992                        }
 993                }
 994        }
 995
 996        return __spi_map_msg(ctlr, msg);
 997}
 998
 999/*
1000 * spi_transfer_one_message - Default implementation of transfer_one_message()
1001 *
1002 * This is a standard implementation of transfer_one_message() for
1003 * drivers which implement a transfer_one() operation.  It provides
1004 * standard handling of delays and chip select management.
1005 */
1006static int spi_transfer_one_message(struct spi_controller *ctlr,
1007                                    struct spi_message *msg)
1008{
1009        struct spi_transfer *xfer;
1010        bool keep_cs = false;
1011        int ret = 0;
1012        unsigned long long ms = 1;
1013        struct spi_statistics *statm = &ctlr->statistics;
1014        struct spi_statistics *stats = &msg->spi->statistics;
1015
1016        spi_set_cs(msg->spi, true);
1017
1018        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1019        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1020
1021        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1022                trace_spi_transfer_start(msg, xfer);
1023
1024                spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1025                spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026
1027                if (xfer->tx_buf || xfer->rx_buf) {
1028                        reinit_completion(&ctlr->xfer_completion);
1029
1030                        ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1031                        if (ret < 0) {
1032                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1033                                                               errors);
1034                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1035                                                               errors);
1036                                dev_err(&msg->spi->dev,
1037                                        "SPI transfer failed: %d\n", ret);
1038                                goto out;
1039                        }
1040
1041                        if (ret > 0) {
1042                                ret = 0;
1043                                ms = 8LL * 1000LL * xfer->len;
1044                                do_div(ms, xfer->speed_hz);
1045                                ms += ms + 200; /* some tolerance */
1046
1047                                if (ms > UINT_MAX)
1048                                        ms = UINT_MAX;
1049
1050                                ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051                                                                 msecs_to_jiffies(ms));
1052                        }
1053
1054                        if (ms == 0) {
1055                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1056                                                               timedout);
1057                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1058                                                               timedout);
1059                                dev_err(&msg->spi->dev,
1060                                        "SPI transfer timed out\n");
1061                                msg->status = -ETIMEDOUT;
1062                        }
1063                } else {
1064                        if (xfer->len)
1065                                dev_err(&msg->spi->dev,
1066                                        "Bufferless transfer has length %u\n",
1067                                        xfer->len);
1068                }
1069
1070                trace_spi_transfer_stop(msg, xfer);
1071
1072                if (msg->status != -EINPROGRESS)
1073                        goto out;
1074
1075                if (xfer->delay_usecs) {
1076                        u16 us = xfer->delay_usecs;
1077
1078                        if (us <= 10)
1079                                udelay(us);
1080                        else
1081                                usleep_range(us, us + DIV_ROUND_UP(us, 10));
1082                }
1083
1084                if (xfer->cs_change) {
1085                        if (list_is_last(&xfer->transfer_list,
1086                                         &msg->transfers)) {
1087                                keep_cs = true;
1088                        } else {
1089                                spi_set_cs(msg->spi, false);
1090                                udelay(10);
1091                                spi_set_cs(msg->spi, true);
1092                        }
1093                }
1094
1095                msg->actual_length += xfer->len;
1096        }
1097
1098out:
1099        if (ret != 0 || !keep_cs)
1100                spi_set_cs(msg->spi, false);
1101
1102        if (msg->status == -EINPROGRESS)
1103                msg->status = ret;
1104
1105        if (msg->status && ctlr->handle_err)
1106                ctlr->handle_err(ctlr, msg);
1107
1108        spi_res_release(ctlr, msg);
1109
1110        spi_finalize_current_message(ctlr);
1111
1112        return ret;
1113}
1114
1115/**
1116 * spi_finalize_current_transfer - report completion of a transfer
1117 * @ctlr: the controller reporting completion
1118 *
1119 * Called by SPI drivers using the core transfer_one_message()
1120 * implementation to notify it that the current interrupt driven
1121 * transfer has finished and the next one may be scheduled.
1122 */
1123void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124{
1125        complete(&ctlr->xfer_completion);
1126}
1127EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1128
1129/**
1130 * __spi_pump_messages - function which processes spi message queue
1131 * @ctlr: controller to process queue for
1132 * @in_kthread: true if we are in the context of the message pump thread
1133 *
1134 * This function checks if there is any spi message in the queue that
1135 * needs processing and if so call out to the driver to initialize hardware
1136 * and transfer each message.
1137 *
1138 * Note that it is called both from the kthread itself and also from
1139 * inside spi_sync(); the queue extraction handling at the top of the
1140 * function should deal with this safely.
1141 */
1142static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143{
1144        unsigned long flags;
1145        bool was_busy = false;
1146        int ret;
1147
1148        /* Lock queue */
1149        spin_lock_irqsave(&ctlr->queue_lock, flags);
1150
1151        /* Make sure we are not already running a message */
1152        if (ctlr->cur_msg) {
1153                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1154                return;
1155        }
1156
1157        /* If another context is idling the device then defer */
1158        if (ctlr->idling) {
1159                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1160                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1161                return;
1162        }
1163
1164        /* Check if the queue is idle */
1165        if (list_empty(&ctlr->queue) || !ctlr->running) {
1166                if (!ctlr->busy) {
1167                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1168                        return;
1169                }
1170
1171                /* Only do teardown in the thread */
1172                if (!in_kthread) {
1173                        kthread_queue_work(&ctlr->kworker,
1174                                           &ctlr->pump_messages);
1175                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176                        return;
1177                }
1178
1179                ctlr->busy = false;
1180                ctlr->idling = true;
1181                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182
1183                kfree(ctlr->dummy_rx);
1184                ctlr->dummy_rx = NULL;
1185                kfree(ctlr->dummy_tx);
1186                ctlr->dummy_tx = NULL;
1187                if (ctlr->unprepare_transfer_hardware &&
1188                    ctlr->unprepare_transfer_hardware(ctlr))
1189                        dev_err(&ctlr->dev,
1190                                "failed to unprepare transfer hardware\n");
1191                if (ctlr->auto_runtime_pm) {
1192                        pm_runtime_mark_last_busy(ctlr->dev.parent);
1193                        pm_runtime_put_autosuspend(ctlr->dev.parent);
1194                }
1195                trace_spi_controller_idle(ctlr);
1196
1197                spin_lock_irqsave(&ctlr->queue_lock, flags);
1198                ctlr->idling = false;
1199                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200                return;
1201        }
1202
1203        /* Extract head of queue */
1204        ctlr->cur_msg =
1205                list_first_entry(&ctlr->queue, struct spi_message, queue);
1206
1207        list_del_init(&ctlr->cur_msg->queue);
1208        if (ctlr->busy)
1209                was_busy = true;
1210        else
1211                ctlr->busy = true;
1212        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213
1214        mutex_lock(&ctlr->io_mutex);
1215
1216        if (!was_busy && ctlr->auto_runtime_pm) {
1217                ret = pm_runtime_get_sync(ctlr->dev.parent);
1218                if (ret < 0) {
1219                        dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220                                ret);
1221                        mutex_unlock(&ctlr->io_mutex);
1222                        return;
1223                }
1224        }
1225
1226        if (!was_busy)
1227                trace_spi_controller_busy(ctlr);
1228
1229        if (!was_busy && ctlr->prepare_transfer_hardware) {
1230                ret = ctlr->prepare_transfer_hardware(ctlr);
1231                if (ret) {
1232                        dev_err(&ctlr->dev,
1233                                "failed to prepare transfer hardware\n");
1234
1235                        if (ctlr->auto_runtime_pm)
1236                                pm_runtime_put(ctlr->dev.parent);
1237                        mutex_unlock(&ctlr->io_mutex);
1238                        return;
1239                }
1240        }
1241
1242        trace_spi_message_start(ctlr->cur_msg);
1243
1244        if (ctlr->prepare_message) {
1245                ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246                if (ret) {
1247                        dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248                                ret);
1249                        ctlr->cur_msg->status = ret;
1250                        spi_finalize_current_message(ctlr);
1251                        goto out;
1252                }
1253                ctlr->cur_msg_prepared = true;
1254        }
1255
1256        ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257        if (ret) {
1258                ctlr->cur_msg->status = ret;
1259                spi_finalize_current_message(ctlr);
1260                goto out;
1261        }
1262
1263        ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264        if (ret) {
1265                dev_err(&ctlr->dev,
1266                        "failed to transfer one message from queue\n");
1267                goto out;
1268        }
1269
1270out:
1271        mutex_unlock(&ctlr->io_mutex);
1272
1273        /* Prod the scheduler in case transfer_one() was busy waiting */
1274        if (!ret)
1275                cond_resched();
1276}
1277
1278/**
1279 * spi_pump_messages - kthread work function which processes spi message queue
1280 * @work: pointer to kthread work struct contained in the controller struct
1281 */
1282static void spi_pump_messages(struct kthread_work *work)
1283{
1284        struct spi_controller *ctlr =
1285                container_of(work, struct spi_controller, pump_messages);
1286
1287        __spi_pump_messages(ctlr, true);
1288}
1289
1290static int spi_init_queue(struct spi_controller *ctlr)
1291{
1292        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1293
1294        ctlr->running = false;
1295        ctlr->busy = false;
1296
1297        kthread_init_worker(&ctlr->kworker);
1298        ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299                                         "%s", dev_name(&ctlr->dev));
1300        if (IS_ERR(ctlr->kworker_task)) {
1301                dev_err(&ctlr->dev, "failed to create message pump task\n");
1302                return PTR_ERR(ctlr->kworker_task);
1303        }
1304        kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305
1306        /*
1307         * Controller config will indicate if this controller should run the
1308         * message pump with high (realtime) priority to reduce the transfer
1309         * latency on the bus by minimising the delay between a transfer
1310         * request and the scheduling of the message pump thread. Without this
1311         * setting the message pump thread will remain at default priority.
1312         */
1313        if (ctlr->rt) {
1314                dev_info(&ctlr->dev,
1315                        "will run message pump with realtime priority\n");
1316                sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317        }
1318
1319        return 0;
1320}
1321
1322/**
1323 * spi_get_next_queued_message() - called by driver to check for queued
1324 * messages
1325 * @ctlr: the controller to check for queued messages
1326 *
1327 * If there are more messages in the queue, the next message is returned from
1328 * this call.
1329 *
1330 * Return: the next message in the queue, else NULL if the queue is empty.
1331 */
1332struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333{
1334        struct spi_message *next;
1335        unsigned long flags;
1336
1337        /* get a pointer to the next message, if any */
1338        spin_lock_irqsave(&ctlr->queue_lock, flags);
1339        next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340                                        queue);
1341        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342
1343        return next;
1344}
1345EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1346
1347/**
1348 * spi_finalize_current_message() - the current message is complete
1349 * @ctlr: the controller to return the message to
1350 *
1351 * Called by the driver to notify the core that the message in the front of the
1352 * queue is complete and can be removed from the queue.
1353 */
1354void spi_finalize_current_message(struct spi_controller *ctlr)
1355{
1356        struct spi_message *mesg;
1357        unsigned long flags;
1358        int ret;
1359
1360        spin_lock_irqsave(&ctlr->queue_lock, flags);
1361        mesg = ctlr->cur_msg;
1362        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363
1364        spi_unmap_msg(ctlr, mesg);
1365
1366        if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367                ret = ctlr->unprepare_message(ctlr, mesg);
1368                if (ret) {
1369                        dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370                                ret);
1371                }
1372        }
1373
1374        spin_lock_irqsave(&ctlr->queue_lock, flags);
1375        ctlr->cur_msg = NULL;
1376        ctlr->cur_msg_prepared = false;
1377        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379
1380        trace_spi_message_done(mesg);
1381
1382        mesg->state = NULL;
1383        if (mesg->complete)
1384                mesg->complete(mesg->context);
1385}
1386EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1387
1388static int spi_start_queue(struct spi_controller *ctlr)
1389{
1390        unsigned long flags;
1391
1392        spin_lock_irqsave(&ctlr->queue_lock, flags);
1393
1394        if (ctlr->running || ctlr->busy) {
1395                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396                return -EBUSY;
1397        }
1398
1399        ctlr->running = true;
1400        ctlr->cur_msg = NULL;
1401        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402
1403        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404
1405        return 0;
1406}
1407
1408static int spi_stop_queue(struct spi_controller *ctlr)
1409{
1410        unsigned long flags;
1411        unsigned limit = 500;
1412        int ret = 0;
1413
1414        spin_lock_irqsave(&ctlr->queue_lock, flags);
1415
1416        /*
1417         * This is a bit lame, but is optimized for the common execution path.
1418         * A wait_queue on the ctlr->busy could be used, but then the common
1419         * execution path (pump_messages) would be required to call wake_up or
1420         * friends on every SPI message. Do this instead.
1421         */
1422        while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424                usleep_range(10000, 11000);
1425                spin_lock_irqsave(&ctlr->queue_lock, flags);
1426        }
1427
1428        if (!list_empty(&ctlr->queue) || ctlr->busy)
1429                ret = -EBUSY;
1430        else
1431                ctlr->running = false;
1432
1433        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434
1435        if (ret) {
1436                dev_warn(&ctlr->dev, "could not stop message queue\n");
1437                return ret;
1438        }
1439        return ret;
1440}
1441
1442static int spi_destroy_queue(struct spi_controller *ctlr)
1443{
1444        int ret;
1445
1446        ret = spi_stop_queue(ctlr);
1447
1448        /*
1449         * kthread_flush_worker will block until all work is done.
1450         * If the reason that stop_queue timed out is that the work will never
1451         * finish, then it does no good to call flush/stop thread, so
1452         * return anyway.
1453         */
1454        if (ret) {
1455                dev_err(&ctlr->dev, "problem destroying queue\n");
1456                return ret;
1457        }
1458
1459        kthread_flush_worker(&ctlr->kworker);
1460        kthread_stop(ctlr->kworker_task);
1461
1462        return 0;
1463}
1464
1465static int __spi_queued_transfer(struct spi_device *spi,
1466                                 struct spi_message *msg,
1467                                 bool need_pump)
1468{
1469        struct spi_controller *ctlr = spi->controller;
1470        unsigned long flags;
1471
1472        spin_lock_irqsave(&ctlr->queue_lock, flags);
1473
1474        if (!ctlr->running) {
1475                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476                return -ESHUTDOWN;
1477        }
1478        msg->actual_length = 0;
1479        msg->status = -EINPROGRESS;
1480
1481        list_add_tail(&msg->queue, &ctlr->queue);
1482        if (!ctlr->busy && need_pump)
1483                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484
1485        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486        return 0;
1487}
1488
1489/**
1490 * spi_queued_transfer - transfer function for queued transfers
1491 * @spi: spi device which is requesting transfer
1492 * @msg: spi message which is to handled is queued to driver queue
1493 *
1494 * Return: zero on success, else a negative error code.
1495 */
1496static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1497{
1498        return __spi_queued_transfer(spi, msg, true);
1499}
1500
1501static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502{
1503        int ret;
1504
1505        ctlr->transfer = spi_queued_transfer;
1506        if (!ctlr->transfer_one_message)
1507                ctlr->transfer_one_message = spi_transfer_one_message;
1508
1509        /* Initialize and start queue */
1510        ret = spi_init_queue(ctlr);
1511        if (ret) {
1512                dev_err(&ctlr->dev, "problem initializing queue\n");
1513                goto err_init_queue;
1514        }
1515        ctlr->queued = true;
1516        ret = spi_start_queue(ctlr);
1517        if (ret) {
1518                dev_err(&ctlr->dev, "problem starting queue\n");
1519                goto err_start_queue;
1520        }
1521
1522        return 0;
1523
1524err_start_queue:
1525        spi_destroy_queue(ctlr);
1526err_init_queue:
1527        return ret;
1528}
1529
1530/*-------------------------------------------------------------------------*/
1531
1532#if defined(CONFIG_OF)
1533static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534                           struct device_node *nc)
1535{
1536        u32 value;
1537        int rc;
1538
1539        /* Mode (clock phase/polarity/etc.) */
1540        if (of_property_read_bool(nc, "spi-cpha"))
1541                spi->mode |= SPI_CPHA;
1542        if (of_property_read_bool(nc, "spi-cpol"))
1543                spi->mode |= SPI_CPOL;
1544        if (of_property_read_bool(nc, "spi-cs-high"))
1545                spi->mode |= SPI_CS_HIGH;
1546        if (of_property_read_bool(nc, "spi-3wire"))
1547                spi->mode |= SPI_3WIRE;
1548        if (of_property_read_bool(nc, "spi-lsb-first"))
1549                spi->mode |= SPI_LSB_FIRST;
1550
1551        /* Device DUAL/QUAD mode */
1552        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553                switch (value) {
1554                case 1:
1555                        break;
1556                case 2:
1557                        spi->mode |= SPI_TX_DUAL;
1558                        break;
1559                case 4:
1560                        spi->mode |= SPI_TX_QUAD;
1561                        break;
1562                default:
1563                        dev_warn(&ctlr->dev,
1564                                "spi-tx-bus-width %d not supported\n",
1565                                value);
1566                        break;
1567                }
1568        }
1569
1570        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571                switch (value) {
1572                case 1:
1573                        break;
1574                case 2:
1575                        spi->mode |= SPI_RX_DUAL;
1576                        break;
1577                case 4:
1578                        spi->mode |= SPI_RX_QUAD;
1579                        break;
1580                default:
1581                        dev_warn(&ctlr->dev,
1582                                "spi-rx-bus-width %d not supported\n",
1583                                value);
1584                        break;
1585                }
1586        }
1587
1588        if (spi_controller_is_slave(ctlr)) {
1589                if (strcmp(nc->name, "slave")) {
1590                        dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1591                                nc);
1592                        return -EINVAL;
1593                }
1594                return 0;
1595        }
1596
1597        /* Device address */
1598        rc = of_property_read_u32(nc, "reg", &value);
1599        if (rc) {
1600                dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1601                        nc, rc);
1602                return rc;
1603        }
1604        spi->chip_select = value;
1605
1606        /* Device speed */
1607        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1608        if (rc) {
1609                dev_err(&ctlr->dev,
1610                        "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1611                return rc;
1612        }
1613        spi->max_speed_hz = value;
1614
1615        return 0;
1616}
1617
1618static struct spi_device *
1619of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1620{
1621        struct spi_device *spi;
1622        int rc;
1623
1624        /* Alloc an spi_device */
1625        spi = spi_alloc_device(ctlr);
1626        if (!spi) {
1627                dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1628                rc = -ENOMEM;
1629                goto err_out;
1630        }
1631
1632        /* Select device driver */
1633        rc = of_modalias_node(nc, spi->modalias,
1634                                sizeof(spi->modalias));
1635        if (rc < 0) {
1636                dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1637                goto err_out;
1638        }
1639
1640        rc = of_spi_parse_dt(ctlr, spi, nc);
1641        if (rc)
1642                goto err_out;
1643
1644        /* Store a pointer to the node in the device structure */
1645        of_node_get(nc);
1646        spi->dev.of_node = nc;
1647
1648        /* Register the new device */
1649        rc = spi_add_device(spi);
1650        if (rc) {
1651                dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1652                goto err_of_node_put;
1653        }
1654
1655        return spi;
1656
1657err_of_node_put:
1658        of_node_put(nc);
1659err_out:
1660        spi_dev_put(spi);
1661        return ERR_PTR(rc);
1662}
1663
1664/**
1665 * of_register_spi_devices() - Register child devices onto the SPI bus
1666 * @ctlr:       Pointer to spi_controller device
1667 *
1668 * Registers an spi_device for each child node of controller node which
1669 * represents a valid SPI slave.
1670 */
1671static void of_register_spi_devices(struct spi_controller *ctlr)
1672{
1673        struct spi_device *spi;
1674        struct device_node *nc;
1675
1676        if (!ctlr->dev.of_node)
1677                return;
1678
1679        for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680                if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681                        continue;
1682                spi = of_register_spi_device(ctlr, nc);
1683                if (IS_ERR(spi)) {
1684                        dev_warn(&ctlr->dev,
1685                                 "Failed to create SPI device for %pOF\n", nc);
1686                        of_node_clear_flag(nc, OF_POPULATED);
1687                }
1688        }
1689}
1690#else
1691static void of_register_spi_devices(struct spi_controller *ctlr) { }
1692#endif
1693
1694#ifdef CONFIG_ACPI
1695static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1696{
1697        struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1698        const union acpi_object *obj;
1699
1700        if (!x86_apple_machine)
1701                return;
1702
1703        if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1704            && obj->buffer.length >= 4)
1705                spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1706
1707        if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1708            && obj->buffer.length == 8)
1709                spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1710
1711        if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1712            && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1713                spi->mode |= SPI_LSB_FIRST;
1714
1715        if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1716            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1717                spi->mode |= SPI_CPOL;
1718
1719        if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1720            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1721                spi->mode |= SPI_CPHA;
1722}
1723
1724static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1725{
1726        struct spi_device *spi = data;
1727        struct spi_controller *ctlr = spi->controller;
1728
1729        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1730                struct acpi_resource_spi_serialbus *sb;
1731
1732                sb = &ares->data.spi_serial_bus;
1733                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1734                        /*
1735                         * ACPI DeviceSelection numbering is handled by the
1736                         * host controller driver in Windows and can vary
1737                         * from driver to driver. In Linux we always expect
1738                         * 0 .. max - 1 so we need to ask the driver to
1739                         * translate between the two schemes.
1740                         */
1741                        if (ctlr->fw_translate_cs) {
1742                                int cs = ctlr->fw_translate_cs(ctlr,
1743                                                sb->device_selection);
1744                                if (cs < 0)
1745                                        return cs;
1746                                spi->chip_select = cs;
1747                        } else {
1748                                spi->chip_select = sb->device_selection;
1749                        }
1750
1751                        spi->max_speed_hz = sb->connection_speed;
1752
1753                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1754                                spi->mode |= SPI_CPHA;
1755                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1756                                spi->mode |= SPI_CPOL;
1757                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1758                                spi->mode |= SPI_CS_HIGH;
1759                }
1760        } else if (spi->irq < 0) {
1761                struct resource r;
1762
1763                if (acpi_dev_resource_interrupt(ares, 0, &r))
1764                        spi->irq = r.start;
1765        }
1766
1767        /* Always tell the ACPI core to skip this resource */
1768        return 1;
1769}
1770
1771static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1772                                            struct acpi_device *adev)
1773{
1774        struct list_head resource_list;
1775        struct spi_device *spi;
1776        int ret;
1777
1778        if (acpi_bus_get_status(adev) || !adev->status.present ||
1779            acpi_device_enumerated(adev))
1780                return AE_OK;
1781
1782        spi = spi_alloc_device(ctlr);
1783        if (!spi) {
1784                dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1785                        dev_name(&adev->dev));
1786                return AE_NO_MEMORY;
1787        }
1788
1789        ACPI_COMPANION_SET(&spi->dev, adev);
1790        spi->irq = -1;
1791
1792        INIT_LIST_HEAD(&resource_list);
1793        ret = acpi_dev_get_resources(adev, &resource_list,
1794                                     acpi_spi_add_resource, spi);
1795        acpi_dev_free_resource_list(&resource_list);
1796
1797        acpi_spi_parse_apple_properties(spi);
1798
1799        if (ret < 0 || !spi->max_speed_hz) {
1800                spi_dev_put(spi);
1801                return AE_OK;
1802        }
1803
1804        acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1805                          sizeof(spi->modalias));
1806
1807        if (spi->irq < 0)
1808                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1809
1810        acpi_device_set_enumerated(adev);
1811
1812        adev->power.flags.ignore_parent = true;
1813        if (spi_add_device(spi)) {
1814                adev->power.flags.ignore_parent = false;
1815                dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1816                        dev_name(&adev->dev));
1817                spi_dev_put(spi);
1818        }
1819
1820        return AE_OK;
1821}
1822
1823static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1824                                       void *data, void **return_value)
1825{
1826        struct spi_controller *ctlr = data;
1827        struct acpi_device *adev;
1828
1829        if (acpi_bus_get_device(handle, &adev))
1830                return AE_OK;
1831
1832        return acpi_register_spi_device(ctlr, adev);
1833}
1834
1835static void acpi_register_spi_devices(struct spi_controller *ctlr)
1836{
1837        acpi_status status;
1838        acpi_handle handle;
1839
1840        handle = ACPI_HANDLE(ctlr->dev.parent);
1841        if (!handle)
1842                return;
1843
1844        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1845                                     acpi_spi_add_device, NULL, ctlr, NULL);
1846        if (ACPI_FAILURE(status))
1847                dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1848}
1849#else
1850static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1851#endif /* CONFIG_ACPI */
1852
1853static void spi_controller_release(struct device *dev)
1854{
1855        struct spi_controller *ctlr;
1856
1857        ctlr = container_of(dev, struct spi_controller, dev);
1858        kfree(ctlr);
1859}
1860
1861static struct class spi_master_class = {
1862        .name           = "spi_master",
1863        .owner          = THIS_MODULE,
1864        .dev_release    = spi_controller_release,
1865        .dev_groups     = spi_master_groups,
1866};
1867
1868#ifdef CONFIG_SPI_SLAVE
1869/**
1870 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1871 *                   controller
1872 * @spi: device used for the current transfer
1873 */
1874int spi_slave_abort(struct spi_device *spi)
1875{
1876        struct spi_controller *ctlr = spi->controller;
1877
1878        if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1879                return ctlr->slave_abort(ctlr);
1880
1881        return -ENOTSUPP;
1882}
1883EXPORT_SYMBOL_GPL(spi_slave_abort);
1884
1885static int match_true(struct device *dev, void *data)
1886{
1887        return 1;
1888}
1889
1890static ssize_t spi_slave_show(struct device *dev,
1891                              struct device_attribute *attr, char *buf)
1892{
1893        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1894                                                   dev);
1895        struct device *child;
1896
1897        child = device_find_child(&ctlr->dev, NULL, match_true);
1898        return sprintf(buf, "%s\n",
1899                       child ? to_spi_device(child)->modalias : NULL);
1900}
1901
1902static ssize_t spi_slave_store(struct device *dev,
1903                               struct device_attribute *attr, const char *buf,
1904                               size_t count)
1905{
1906        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1907                                                   dev);
1908        struct spi_device *spi;
1909        struct device *child;
1910        char name[32];
1911        int rc;
1912
1913        rc = sscanf(buf, "%31s", name);
1914        if (rc != 1 || !name[0])
1915                return -EINVAL;
1916
1917        child = device_find_child(&ctlr->dev, NULL, match_true);
1918        if (child) {
1919                /* Remove registered slave */
1920                device_unregister(child);
1921                put_device(child);
1922        }
1923
1924        if (strcmp(name, "(null)")) {
1925                /* Register new slave */
1926                spi = spi_alloc_device(ctlr);
1927                if (!spi)
1928                        return -ENOMEM;
1929
1930                strlcpy(spi->modalias, name, sizeof(spi->modalias));
1931
1932                rc = spi_add_device(spi);
1933                if (rc) {
1934                        spi_dev_put(spi);
1935                        return rc;
1936                }
1937        }
1938
1939        return count;
1940}
1941
1942static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1943
1944static struct attribute *spi_slave_attrs[] = {
1945        &dev_attr_slave.attr,
1946        NULL,
1947};
1948
1949static const struct attribute_group spi_slave_group = {
1950        .attrs = spi_slave_attrs,
1951};
1952
1953static const struct attribute_group *spi_slave_groups[] = {
1954        &spi_controller_statistics_group,
1955        &spi_slave_group,
1956        NULL,
1957};
1958
1959static struct class spi_slave_class = {
1960        .name           = "spi_slave",
1961        .owner          = THIS_MODULE,
1962        .dev_release    = spi_controller_release,
1963        .dev_groups     = spi_slave_groups,
1964};
1965#else
1966extern struct class spi_slave_class;    /* dummy */
1967#endif
1968
1969/**
1970 * __spi_alloc_controller - allocate an SPI master or slave controller
1971 * @dev: the controller, possibly using the platform_bus
1972 * @size: how much zeroed driver-private data to allocate; the pointer to this
1973 *      memory is in the driver_data field of the returned device,
1974 *      accessible with spi_controller_get_devdata().
1975 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1976 *      slave (true) controller
1977 * Context: can sleep
1978 *
1979 * This call is used only by SPI controller drivers, which are the
1980 * only ones directly touching chip registers.  It's how they allocate
1981 * an spi_controller structure, prior to calling spi_register_controller().
1982 *
1983 * This must be called from context that can sleep.
1984 *
1985 * The caller is responsible for assigning the bus number and initializing the
1986 * controller's methods before calling spi_register_controller(); and (after
1987 * errors adding the device) calling spi_controller_put() to prevent a memory
1988 * leak.
1989 *
1990 * Return: the SPI controller structure on success, else NULL.
1991 */
1992struct spi_controller *__spi_alloc_controller(struct device *dev,
1993                                              unsigned int size, bool slave)
1994{
1995        struct spi_controller   *ctlr;
1996
1997        if (!dev)
1998                return NULL;
1999
2000        ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2001        if (!ctlr)
2002                return NULL;
2003
2004        device_initialize(&ctlr->dev);
2005        ctlr->bus_num = -1;
2006        ctlr->num_chipselect = 1;
2007        ctlr->slave = slave;
2008        if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2009                ctlr->dev.class = &spi_slave_class;
2010        else
2011                ctlr->dev.class = &spi_master_class;
2012        ctlr->dev.parent = dev;
2013        pm_suspend_ignore_children(&ctlr->dev, true);
2014        spi_controller_set_devdata(ctlr, &ctlr[1]);
2015
2016        return ctlr;
2017}
2018EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2019
2020#ifdef CONFIG_OF
2021static int of_spi_register_master(struct spi_controller *ctlr)
2022{
2023        int nb, i, *cs;
2024        struct device_node *np = ctlr->dev.of_node;
2025
2026        if (!np)
2027                return 0;
2028
2029        nb = of_gpio_named_count(np, "cs-gpios");
2030        ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2031
2032        /* Return error only for an incorrectly formed cs-gpios property */
2033        if (nb == 0 || nb == -ENOENT)
2034                return 0;
2035        else if (nb < 0)
2036                return nb;
2037
2038        cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2039                          GFP_KERNEL);
2040        ctlr->cs_gpios = cs;
2041
2042        if (!ctlr->cs_gpios)
2043                return -ENOMEM;
2044
2045        for (i = 0; i < ctlr->num_chipselect; i++)
2046                cs[i] = -ENOENT;
2047
2048        for (i = 0; i < nb; i++)
2049                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2050
2051        return 0;
2052}
2053#else
2054static int of_spi_register_master(struct spi_controller *ctlr)
2055{
2056        return 0;
2057}
2058#endif
2059
2060/**
2061 * spi_register_controller - register SPI master or slave controller
2062 * @ctlr: initialized master, originally from spi_alloc_master() or
2063 *      spi_alloc_slave()
2064 * Context: can sleep
2065 *
2066 * SPI controllers connect to their drivers using some non-SPI bus,
2067 * such as the platform bus.  The final stage of probe() in that code
2068 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2069 *
2070 * SPI controllers use board specific (often SOC specific) bus numbers,
2071 * and board-specific addressing for SPI devices combines those numbers
2072 * with chip select numbers.  Since SPI does not directly support dynamic
2073 * device identification, boards need configuration tables telling which
2074 * chip is at which address.
2075 *
2076 * This must be called from context that can sleep.  It returns zero on
2077 * success, else a negative error code (dropping the controller's refcount).
2078 * After a successful return, the caller is responsible for calling
2079 * spi_unregister_controller().
2080 *
2081 * Return: zero on success, else a negative error code.
2082 */
2083int spi_register_controller(struct spi_controller *ctlr)
2084{
2085        struct device           *dev = ctlr->dev.parent;
2086        struct boardinfo        *bi;
2087        int                     status = -ENODEV;
2088        int                     id, first_dynamic;
2089
2090        if (!dev)
2091                return -ENODEV;
2092
2093        if (!spi_controller_is_slave(ctlr)) {
2094                status = of_spi_register_master(ctlr);
2095                if (status)
2096                        return status;
2097        }
2098
2099        /* even if it's just one always-selected device, there must
2100         * be at least one chipselect
2101         */
2102        if (ctlr->num_chipselect == 0)
2103                return -EINVAL;
2104        /* allocate dynamic bus number using Linux idr */
2105        if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2106                id = of_alias_get_id(ctlr->dev.of_node, "spi");
2107                if (id >= 0) {
2108                        ctlr->bus_num = id;
2109                        mutex_lock(&board_lock);
2110                        id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2111                                       ctlr->bus_num + 1, GFP_KERNEL);
2112                        mutex_unlock(&board_lock);
2113                        if (WARN(id < 0, "couldn't get idr"))
2114                                return id == -ENOSPC ? -EBUSY : id;
2115                }
2116        }
2117        if (ctlr->bus_num < 0) {
2118                first_dynamic = of_alias_get_highest_id("spi");
2119                if (first_dynamic < 0)
2120                        first_dynamic = 0;
2121                else
2122                        first_dynamic++;
2123
2124                mutex_lock(&board_lock);
2125                id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2126                               0, GFP_KERNEL);
2127                mutex_unlock(&board_lock);
2128                if (WARN(id < 0, "couldn't get idr"))
2129                        return id;
2130                ctlr->bus_num = id;
2131        }
2132        INIT_LIST_HEAD(&ctlr->queue);
2133        spin_lock_init(&ctlr->queue_lock);
2134        spin_lock_init(&ctlr->bus_lock_spinlock);
2135        mutex_init(&ctlr->bus_lock_mutex);
2136        mutex_init(&ctlr->io_mutex);
2137        ctlr->bus_lock_flag = 0;
2138        init_completion(&ctlr->xfer_completion);
2139        if (!ctlr->max_dma_len)
2140                ctlr->max_dma_len = INT_MAX;
2141
2142        /* register the device, then userspace will see it.
2143         * registration fails if the bus ID is in use.
2144         */
2145        dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2146        status = device_add(&ctlr->dev);
2147        if (status < 0) {
2148                /* free bus id */
2149                mutex_lock(&board_lock);
2150                idr_remove(&spi_master_idr, ctlr->bus_num);
2151                mutex_unlock(&board_lock);
2152                goto done;
2153        }
2154        dev_dbg(dev, "registered %s %s\n",
2155                        spi_controller_is_slave(ctlr) ? "slave" : "master",
2156                        dev_name(&ctlr->dev));
2157
2158        /* If we're using a queued driver, start the queue */
2159        if (ctlr->transfer)
2160                dev_info(dev, "controller is unqueued, this is deprecated\n");
2161        else {
2162                status = spi_controller_initialize_queue(ctlr);
2163                if (status) {
2164                        device_del(&ctlr->dev);
2165                        /* free bus id */
2166                        mutex_lock(&board_lock);
2167                        idr_remove(&spi_master_idr, ctlr->bus_num);
2168                        mutex_unlock(&board_lock);
2169                        goto done;
2170                }
2171        }
2172        /* add statistics */
2173        spin_lock_init(&ctlr->statistics.lock);
2174
2175        mutex_lock(&board_lock);
2176        list_add_tail(&ctlr->list, &spi_controller_list);
2177        list_for_each_entry(bi, &board_list, list)
2178                spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2179        mutex_unlock(&board_lock);
2180
2181        /* Register devices from the device tree and ACPI */
2182        of_register_spi_devices(ctlr);
2183        acpi_register_spi_devices(ctlr);
2184done:
2185        return status;
2186}
2187EXPORT_SYMBOL_GPL(spi_register_controller);
2188
2189static void devm_spi_unregister(struct device *dev, void *res)
2190{
2191        spi_unregister_controller(*(struct spi_controller **)res);
2192}
2193
2194/**
2195 * devm_spi_register_controller - register managed SPI master or slave
2196 *      controller
2197 * @dev:    device managing SPI controller
2198 * @ctlr: initialized controller, originally from spi_alloc_master() or
2199 *      spi_alloc_slave()
2200 * Context: can sleep
2201 *
2202 * Register a SPI device as with spi_register_controller() which will
2203 * automatically be unregister
2204 *
2205 * Return: zero on success, else a negative error code.
2206 */
2207int devm_spi_register_controller(struct device *dev,
2208                                 struct spi_controller *ctlr)
2209{
2210        struct spi_controller **ptr;
2211        int ret;
2212
2213        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2214        if (!ptr)
2215                return -ENOMEM;
2216
2217        ret = spi_register_controller(ctlr);
2218        if (!ret) {
2219                *ptr = ctlr;
2220                devres_add(dev, ptr);
2221        } else {
2222                devres_free(ptr);
2223        }
2224
2225        return ret;
2226}
2227EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2228
2229static int __unregister(struct device *dev, void *null)
2230{
2231        spi_unregister_device(to_spi_device(dev));
2232        return 0;
2233}
2234
2235/**
2236 * spi_unregister_controller - unregister SPI master or slave controller
2237 * @ctlr: the controller being unregistered
2238 * Context: can sleep
2239 *
2240 * This call is used only by SPI controller drivers, which are the
2241 * only ones directly touching chip registers.
2242 *
2243 * This must be called from context that can sleep.
2244 */
2245void spi_unregister_controller(struct spi_controller *ctlr)
2246{
2247        struct spi_controller *found;
2248        int dummy;
2249
2250        /* First make sure that this controller was ever added */
2251        mutex_lock(&board_lock);
2252        found = idr_find(&spi_master_idr, ctlr->bus_num);
2253        mutex_unlock(&board_lock);
2254        if (found != ctlr) {
2255                dev_dbg(&ctlr->dev,
2256                        "attempting to delete unregistered controller [%s]\n",
2257                        dev_name(&ctlr->dev));
2258                return;
2259        }
2260        if (ctlr->queued) {
2261                if (spi_destroy_queue(ctlr))
2262                        dev_err(&ctlr->dev, "queue remove failed\n");
2263        }
2264        mutex_lock(&board_lock);
2265        list_del(&ctlr->list);
2266        mutex_unlock(&board_lock);
2267
2268        dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2269        device_unregister(&ctlr->dev);
2270        /* free bus id */
2271        mutex_lock(&board_lock);
2272        idr_remove(&spi_master_idr, ctlr->bus_num);
2273        mutex_unlock(&board_lock);
2274}
2275EXPORT_SYMBOL_GPL(spi_unregister_controller);
2276
2277int spi_controller_suspend(struct spi_controller *ctlr)
2278{
2279        int ret;
2280
2281        /* Basically no-ops for non-queued controllers */
2282        if (!ctlr->queued)
2283                return 0;
2284
2285        ret = spi_stop_queue(ctlr);
2286        if (ret)
2287                dev_err(&ctlr->dev, "queue stop failed\n");
2288
2289        return ret;
2290}
2291EXPORT_SYMBOL_GPL(spi_controller_suspend);
2292
2293int spi_controller_resume(struct spi_controller *ctlr)
2294{
2295        int ret;
2296
2297        if (!ctlr->queued)
2298                return 0;
2299
2300        ret = spi_start_queue(ctlr);
2301        if (ret)
2302                dev_err(&ctlr->dev, "queue restart failed\n");
2303
2304        return ret;
2305}
2306EXPORT_SYMBOL_GPL(spi_controller_resume);
2307
2308static int __spi_controller_match(struct device *dev, const void *data)
2309{
2310        struct spi_controller *ctlr;
2311        const u16 *bus_num = data;
2312
2313        ctlr = container_of(dev, struct spi_controller, dev);
2314        return ctlr->bus_num == *bus_num;
2315}
2316
2317/**
2318 * spi_busnum_to_master - look up master associated with bus_num
2319 * @bus_num: the master's bus number
2320 * Context: can sleep
2321 *
2322 * This call may be used with devices that are registered after
2323 * arch init time.  It returns a refcounted pointer to the relevant
2324 * spi_controller (which the caller must release), or NULL if there is
2325 * no such master registered.
2326 *
2327 * Return: the SPI master structure on success, else NULL.
2328 */
2329struct spi_controller *spi_busnum_to_master(u16 bus_num)
2330{
2331        struct device           *dev;
2332        struct spi_controller   *ctlr = NULL;
2333
2334        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2335                                __spi_controller_match);
2336        if (dev)
2337                ctlr = container_of(dev, struct spi_controller, dev);
2338        /* reference got in class_find_device */
2339        return ctlr;
2340}
2341EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2342
2343/*-------------------------------------------------------------------------*/
2344
2345/* Core methods for SPI resource management */
2346
2347/**
2348 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2349 *                 during the processing of a spi_message while using
2350 *                 spi_transfer_one
2351 * @spi:     the spi device for which we allocate memory
2352 * @release: the release code to execute for this resource
2353 * @size:    size to alloc and return
2354 * @gfp:     GFP allocation flags
2355 *
2356 * Return: the pointer to the allocated data
2357 *
2358 * This may get enhanced in the future to allocate from a memory pool
2359 * of the @spi_device or @spi_controller to avoid repeated allocations.
2360 */
2361void *spi_res_alloc(struct spi_device *spi,
2362                    spi_res_release_t release,
2363                    size_t size, gfp_t gfp)
2364{
2365        struct spi_res *sres;
2366
2367        sres = kzalloc(sizeof(*sres) + size, gfp);
2368        if (!sres)
2369                return NULL;
2370
2371        INIT_LIST_HEAD(&sres->entry);
2372        sres->release = release;
2373
2374        return sres->data;
2375}
2376EXPORT_SYMBOL_GPL(spi_res_alloc);
2377
2378/**
2379 * spi_res_free - free an spi resource
2380 * @res: pointer to the custom data of a resource
2381 *
2382 */
2383void spi_res_free(void *res)
2384{
2385        struct spi_res *sres = container_of(res, struct spi_res, data);
2386
2387        if (!res)
2388                return;
2389
2390        WARN_ON(!list_empty(&sres->entry));
2391        kfree(sres);
2392}
2393EXPORT_SYMBOL_GPL(spi_res_free);
2394
2395/**
2396 * spi_res_add - add a spi_res to the spi_message
2397 * @message: the spi message
2398 * @res:     the spi_resource
2399 */
2400void spi_res_add(struct spi_message *message, void *res)
2401{
2402        struct spi_res *sres = container_of(res, struct spi_res, data);
2403
2404        WARN_ON(!list_empty(&sres->entry));
2405        list_add_tail(&sres->entry, &message->resources);
2406}
2407EXPORT_SYMBOL_GPL(spi_res_add);
2408
2409/**
2410 * spi_res_release - release all spi resources for this message
2411 * @ctlr:  the @spi_controller
2412 * @message: the @spi_message
2413 */
2414void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2415{
2416        struct spi_res *res;
2417
2418        while (!list_empty(&message->resources)) {
2419                res = list_last_entry(&message->resources,
2420                                      struct spi_res, entry);
2421
2422                if (res->release)
2423                        res->release(ctlr, message, res->data);
2424
2425                list_del(&res->entry);
2426
2427                kfree(res);
2428        }
2429}
2430EXPORT_SYMBOL_GPL(spi_res_release);
2431
2432/*-------------------------------------------------------------------------*/
2433
2434/* Core methods for spi_message alterations */
2435
2436static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2437                                            struct spi_message *msg,
2438                                            void *res)
2439{
2440        struct spi_replaced_transfers *rxfer = res;
2441        size_t i;
2442
2443        /* call extra callback if requested */
2444        if (rxfer->release)
2445                rxfer->release(ctlr, msg, res);
2446
2447        /* insert replaced transfers back into the message */
2448        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2449
2450        /* remove the formerly inserted entries */
2451        for (i = 0; i < rxfer->inserted; i++)
2452                list_del(&rxfer->inserted_transfers[i].transfer_list);
2453}
2454
2455/**
2456 * spi_replace_transfers - replace transfers with several transfers
2457 *                         and register change with spi_message.resources
2458 * @msg:           the spi_message we work upon
2459 * @xfer_first:    the first spi_transfer we want to replace
2460 * @remove:        number of transfers to remove
2461 * @insert:        the number of transfers we want to insert instead
2462 * @release:       extra release code necessary in some circumstances
2463 * @extradatasize: extra data to allocate (with alignment guarantees
2464 *                 of struct @spi_transfer)
2465 * @gfp:           gfp flags
2466 *
2467 * Returns: pointer to @spi_replaced_transfers,
2468 *          PTR_ERR(...) in case of errors.
2469 */
2470struct spi_replaced_transfers *spi_replace_transfers(
2471        struct spi_message *msg,
2472        struct spi_transfer *xfer_first,
2473        size_t remove,
2474        size_t insert,
2475        spi_replaced_release_t release,
2476        size_t extradatasize,
2477        gfp_t gfp)
2478{
2479        struct spi_replaced_transfers *rxfer;
2480        struct spi_transfer *xfer;
2481        size_t i;
2482
2483        /* allocate the structure using spi_res */
2484        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2485                              insert * sizeof(struct spi_transfer)
2486                              + sizeof(struct spi_replaced_transfers)
2487                              + extradatasize,
2488                              gfp);
2489        if (!rxfer)
2490                return ERR_PTR(-ENOMEM);
2491
2492        /* the release code to invoke before running the generic release */
2493        rxfer->release = release;
2494
2495        /* assign extradata */
2496        if (extradatasize)
2497                rxfer->extradata =
2498                        &rxfer->inserted_transfers[insert];
2499
2500        /* init the replaced_transfers list */
2501        INIT_LIST_HEAD(&rxfer->replaced_transfers);
2502
2503        /* assign the list_entry after which we should reinsert
2504         * the @replaced_transfers - it may be spi_message.messages!
2505         */
2506        rxfer->replaced_after = xfer_first->transfer_list.prev;
2507
2508        /* remove the requested number of transfers */
2509        for (i = 0; i < remove; i++) {
2510                /* if the entry after replaced_after it is msg->transfers
2511                 * then we have been requested to remove more transfers
2512                 * than are in the list
2513                 */
2514                if (rxfer->replaced_after->next == &msg->transfers) {
2515                        dev_err(&msg->spi->dev,
2516                                "requested to remove more spi_transfers than are available\n");
2517                        /* insert replaced transfers back into the message */
2518                        list_splice(&rxfer->replaced_transfers,
2519                                    rxfer->replaced_after);
2520
2521                        /* free the spi_replace_transfer structure */
2522                        spi_res_free(rxfer);
2523
2524                        /* and return with an error */
2525                        return ERR_PTR(-EINVAL);
2526                }
2527
2528                /* remove the entry after replaced_after from list of
2529                 * transfers and add it to list of replaced_transfers
2530                 */
2531                list_move_tail(rxfer->replaced_after->next,
2532                               &rxfer->replaced_transfers);
2533        }
2534
2535        /* create copy of the given xfer with identical settings
2536         * based on the first transfer to get removed
2537         */
2538        for (i = 0; i < insert; i++) {
2539                /* we need to run in reverse order */
2540                xfer = &rxfer->inserted_transfers[insert - 1 - i];
2541
2542                /* copy all spi_transfer data */
2543                memcpy(xfer, xfer_first, sizeof(*xfer));
2544
2545                /* add to list */
2546                list_add(&xfer->transfer_list, rxfer->replaced_after);
2547
2548                /* clear cs_change and delay_usecs for all but the last */
2549                if (i) {
2550                        xfer->cs_change = false;
2551                        xfer->delay_usecs = 0;
2552                }
2553        }
2554
2555        /* set up inserted */
2556        rxfer->inserted = insert;
2557
2558        /* and register it with spi_res/spi_message */
2559        spi_res_add(msg, rxfer);
2560
2561        return rxfer;
2562}
2563EXPORT_SYMBOL_GPL(spi_replace_transfers);
2564
2565static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2566                                        struct spi_message *msg,
2567                                        struct spi_transfer **xferp,
2568                                        size_t maxsize,
2569                                        gfp_t gfp)
2570{
2571        struct spi_transfer *xfer = *xferp, *xfers;
2572        struct spi_replaced_transfers *srt;
2573        size_t offset;
2574        size_t count, i;
2575
2576        /* warn once about this fact that we are splitting a transfer */
2577        dev_warn_once(&msg->spi->dev,
2578                      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2579                      xfer->len, maxsize);
2580
2581        /* calculate how many we have to replace */
2582        count = DIV_ROUND_UP(xfer->len, maxsize);
2583
2584        /* create replacement */
2585        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2586        if (IS_ERR(srt))
2587                return PTR_ERR(srt);
2588        xfers = srt->inserted_transfers;
2589
2590        /* now handle each of those newly inserted spi_transfers
2591         * note that the replacements spi_transfers all are preset
2592         * to the same values as *xferp, so tx_buf, rx_buf and len
2593         * are all identical (as well as most others)
2594         * so we just have to fix up len and the pointers.
2595         *
2596         * this also includes support for the depreciated
2597         * spi_message.is_dma_mapped interface
2598         */
2599
2600        /* the first transfer just needs the length modified, so we
2601         * run it outside the loop
2602         */
2603        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2604
2605        /* all the others need rx_buf/tx_buf also set */
2606        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2607                /* update rx_buf, tx_buf and dma */
2608                if (xfers[i].rx_buf)
2609                        xfers[i].rx_buf += offset;
2610                if (xfers[i].rx_dma)
2611                        xfers[i].rx_dma += offset;
2612                if (xfers[i].tx_buf)
2613                        xfers[i].tx_buf += offset;
2614                if (xfers[i].tx_dma)
2615                        xfers[i].tx_dma += offset;
2616
2617                /* update length */
2618                xfers[i].len = min(maxsize, xfers[i].len - offset);
2619        }
2620
2621        /* we set up xferp to the last entry we have inserted,
2622         * so that we skip those already split transfers
2623         */
2624        *xferp = &xfers[count - 1];
2625
2626        /* increment statistics counters */
2627        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2628                                       transfers_split_maxsize);
2629        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2630                                       transfers_split_maxsize);
2631
2632        return 0;
2633}
2634
2635/**
2636 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2637 *                              when an individual transfer exceeds a
2638 *                              certain size
2639 * @ctlr:    the @spi_controller for this transfer
2640 * @msg:   the @spi_message to transform
2641 * @maxsize:  the maximum when to apply this
2642 * @gfp: GFP allocation flags
2643 *
2644 * Return: status of transformation
2645 */
2646int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2647                                struct spi_message *msg,
2648                                size_t maxsize,
2649                                gfp_t gfp)
2650{
2651        struct spi_transfer *xfer;
2652        int ret;
2653
2654        /* iterate over the transfer_list,
2655         * but note that xfer is advanced to the last transfer inserted
2656         * to avoid checking sizes again unnecessarily (also xfer does
2657         * potentiall belong to a different list by the time the
2658         * replacement has happened
2659         */
2660        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2661                if (xfer->len > maxsize) {
2662                        ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2663                                                           maxsize, gfp);
2664                        if (ret)
2665                                return ret;
2666                }
2667        }
2668
2669        return 0;
2670}
2671EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2672
2673/*-------------------------------------------------------------------------*/
2674
2675/* Core methods for SPI controller protocol drivers.  Some of the
2676 * other core methods are currently defined as inline functions.
2677 */
2678
2679static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2680                                        u8 bits_per_word)
2681{
2682        if (ctlr->bits_per_word_mask) {
2683                /* Only 32 bits fit in the mask */
2684                if (bits_per_word > 32)
2685                        return -EINVAL;
2686                if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2687                        return -EINVAL;
2688        }
2689
2690        return 0;
2691}
2692
2693/**
2694 * spi_setup - setup SPI mode and clock rate
2695 * @spi: the device whose settings are being modified
2696 * Context: can sleep, and no requests are queued to the device
2697 *
2698 * SPI protocol drivers may need to update the transfer mode if the
2699 * device doesn't work with its default.  They may likewise need
2700 * to update clock rates or word sizes from initial values.  This function
2701 * changes those settings, and must be called from a context that can sleep.
2702 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2703 * effect the next time the device is selected and data is transferred to
2704 * or from it.  When this function returns, the spi device is deselected.
2705 *
2706 * Note that this call will fail if the protocol driver specifies an option
2707 * that the underlying controller or its driver does not support.  For
2708 * example, not all hardware supports wire transfers using nine bit words,
2709 * LSB-first wire encoding, or active-high chipselects.
2710 *
2711 * Return: zero on success, else a negative error code.
2712 */
2713int spi_setup(struct spi_device *spi)
2714{
2715        unsigned        bad_bits, ugly_bits;
2716        int             status;
2717
2718        /* check mode to prevent that DUAL and QUAD set at the same time
2719         */
2720        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2721                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2722                dev_err(&spi->dev,
2723                "setup: can not select dual and quad at the same time\n");
2724                return -EINVAL;
2725        }
2726        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2727         */
2728        if ((spi->mode & SPI_3WIRE) && (spi->mode &
2729                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2730                return -EINVAL;
2731        /* help drivers fail *cleanly* when they need options
2732         * that aren't supported with their current controller
2733         */
2734        bad_bits = spi->mode & ~spi->controller->mode_bits;
2735        ugly_bits = bad_bits &
2736                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2737        if (ugly_bits) {
2738                dev_warn(&spi->dev,
2739                         "setup: ignoring unsupported mode bits %x\n",
2740                         ugly_bits);
2741                spi->mode &= ~ugly_bits;
2742                bad_bits &= ~ugly_bits;
2743        }
2744        if (bad_bits) {
2745                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2746                        bad_bits);
2747                return -EINVAL;
2748        }
2749
2750        if (!spi->bits_per_word)
2751                spi->bits_per_word = 8;
2752
2753        status = __spi_validate_bits_per_word(spi->controller,
2754                                              spi->bits_per_word);
2755        if (status)
2756                return status;
2757
2758        if (!spi->max_speed_hz)
2759                spi->max_speed_hz = spi->controller->max_speed_hz;
2760
2761        if (spi->controller->setup)
2762                status = spi->controller->setup(spi);
2763
2764        spi_set_cs(spi, false);
2765
2766        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2767                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2768                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2769                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2770                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2771                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
2772                        spi->bits_per_word, spi->max_speed_hz,
2773                        status);
2774
2775        return status;
2776}
2777EXPORT_SYMBOL_GPL(spi_setup);
2778
2779static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2780{
2781        struct spi_controller *ctlr = spi->controller;
2782        struct spi_transfer *xfer;
2783        int w_size;
2784
2785        if (list_empty(&message->transfers))
2786                return -EINVAL;
2787
2788        /* Half-duplex links include original MicroWire, and ones with
2789         * only one data pin like SPI_3WIRE (switches direction) or where
2790         * either MOSI or MISO is missing.  They can also be caused by
2791         * software limitations.
2792         */
2793        if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2794            (spi->mode & SPI_3WIRE)) {
2795                unsigned flags = ctlr->flags;
2796
2797                list_for_each_entry(xfer, &message->transfers, transfer_list) {
2798                        if (xfer->rx_buf && xfer->tx_buf)
2799                                return -EINVAL;
2800                        if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2801                                return -EINVAL;
2802                        if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2803                                return -EINVAL;
2804                }
2805        }
2806
2807        /**
2808         * Set transfer bits_per_word and max speed as spi device default if
2809         * it is not set for this transfer.
2810         * Set transfer tx_nbits and rx_nbits as single transfer default
2811         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2812         */
2813        message->frame_length = 0;
2814        list_for_each_entry(xfer, &message->transfers, transfer_list) {
2815                message->frame_length += xfer->len;
2816                if (!xfer->bits_per_word)
2817                        xfer->bits_per_word = spi->bits_per_word;
2818
2819                if (!xfer->speed_hz)
2820                        xfer->speed_hz = spi->max_speed_hz;
2821                if (!xfer->speed_hz)
2822                        xfer->speed_hz = ctlr->max_speed_hz;
2823
2824                if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2825                        xfer->speed_hz = ctlr->max_speed_hz;
2826
2827                if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2828                        return -EINVAL;
2829
2830                /*
2831                 * SPI transfer length should be multiple of SPI word size
2832                 * where SPI word size should be power-of-two multiple
2833                 */
2834                if (xfer->bits_per_word <= 8)
2835                        w_size = 1;
2836                else if (xfer->bits_per_word <= 16)
2837                        w_size = 2;
2838                else
2839                        w_size = 4;
2840
2841                /* No partial transfers accepted */
2842                if (xfer->len % w_size)
2843                        return -EINVAL;
2844
2845                if (xfer->speed_hz && ctlr->min_speed_hz &&
2846                    xfer->speed_hz < ctlr->min_speed_hz)
2847                        return -EINVAL;
2848
2849                if (xfer->tx_buf && !xfer->tx_nbits)
2850                        xfer->tx_nbits = SPI_NBITS_SINGLE;
2851                if (xfer->rx_buf && !xfer->rx_nbits)
2852                        xfer->rx_nbits = SPI_NBITS_SINGLE;
2853                /* check transfer tx/rx_nbits:
2854                 * 1. check the value matches one of single, dual and quad
2855                 * 2. check tx/rx_nbits match the mode in spi_device
2856                 */
2857                if (xfer->tx_buf) {
2858                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2859                                xfer->tx_nbits != SPI_NBITS_DUAL &&
2860                                xfer->tx_nbits != SPI_NBITS_QUAD)
2861                                return -EINVAL;
2862                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2863                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2864                                return -EINVAL;
2865                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2866                                !(spi->mode & SPI_TX_QUAD))
2867                                return -EINVAL;
2868                }
2869                /* check transfer rx_nbits */
2870                if (xfer->rx_buf) {
2871                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2872                                xfer->rx_nbits != SPI_NBITS_DUAL &&
2873                                xfer->rx_nbits != SPI_NBITS_QUAD)
2874                                return -EINVAL;
2875                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2876                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2877                                return -EINVAL;
2878                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2879                                !(spi->mode & SPI_RX_QUAD))
2880                                return -EINVAL;
2881                }
2882        }
2883
2884        message->status = -EINPROGRESS;
2885
2886        return 0;
2887}
2888
2889static int __spi_async(struct spi_device *spi, struct spi_message *message)
2890{
2891        struct spi_controller *ctlr = spi->controller;
2892
2893        message->spi = spi;
2894
2895        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2896        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2897
2898        trace_spi_message_submit(message);
2899
2900        return ctlr->transfer(spi, message);
2901}
2902
2903/**
2904 * spi_async - asynchronous SPI transfer
2905 * @spi: device with which data will be exchanged
2906 * @message: describes the data transfers, including completion callback
2907 * Context: any (irqs may be blocked, etc)
2908 *
2909 * This call may be used in_irq and other contexts which can't sleep,
2910 * as well as from task contexts which can sleep.
2911 *
2912 * The completion callback is invoked in a context which can't sleep.
2913 * Before that invocation, the value of message->status is undefined.
2914 * When the callback is issued, message->status holds either zero (to
2915 * indicate complete success) or a negative error code.  After that
2916 * callback returns, the driver which issued the transfer request may
2917 * deallocate the associated memory; it's no longer in use by any SPI
2918 * core or controller driver code.
2919 *
2920 * Note that although all messages to a spi_device are handled in
2921 * FIFO order, messages may go to different devices in other orders.
2922 * Some device might be higher priority, or have various "hard" access
2923 * time requirements, for example.
2924 *
2925 * On detection of any fault during the transfer, processing of
2926 * the entire message is aborted, and the device is deselected.
2927 * Until returning from the associated message completion callback,
2928 * no other spi_message queued to that device will be processed.
2929 * (This rule applies equally to all the synchronous transfer calls,
2930 * which are wrappers around this core asynchronous primitive.)
2931 *
2932 * Return: zero on success, else a negative error code.
2933 */
2934int spi_async(struct spi_device *spi, struct spi_message *message)
2935{
2936        struct spi_controller *ctlr = spi->controller;
2937        int ret;
2938        unsigned long flags;
2939
2940        ret = __spi_validate(spi, message);
2941        if (ret != 0)
2942                return ret;
2943
2944        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2945
2946        if (ctlr->bus_lock_flag)
2947                ret = -EBUSY;
2948        else
2949                ret = __spi_async(spi, message);
2950
2951        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2952
2953        return ret;
2954}
2955EXPORT_SYMBOL_GPL(spi_async);
2956
2957/**
2958 * spi_async_locked - version of spi_async with exclusive bus usage
2959 * @spi: device with which data will be exchanged
2960 * @message: describes the data transfers, including completion callback
2961 * Context: any (irqs may be blocked, etc)
2962 *
2963 * This call may be used in_irq and other contexts which can't sleep,
2964 * as well as from task contexts which can sleep.
2965 *
2966 * The completion callback is invoked in a context which can't sleep.
2967 * Before that invocation, the value of message->status is undefined.
2968 * When the callback is issued, message->status holds either zero (to
2969 * indicate complete success) or a negative error code.  After that
2970 * callback returns, the driver which issued the transfer request may
2971 * deallocate the associated memory; it's no longer in use by any SPI
2972 * core or controller driver code.
2973 *
2974 * Note that although all messages to a spi_device are handled in
2975 * FIFO order, messages may go to different devices in other orders.
2976 * Some device might be higher priority, or have various "hard" access
2977 * time requirements, for example.
2978 *
2979 * On detection of any fault during the transfer, processing of
2980 * the entire message is aborted, and the device is deselected.
2981 * Until returning from the associated message completion callback,
2982 * no other spi_message queued to that device will be processed.
2983 * (This rule applies equally to all the synchronous transfer calls,
2984 * which are wrappers around this core asynchronous primitive.)
2985 *
2986 * Return: zero on success, else a negative error code.
2987 */
2988int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2989{
2990        struct spi_controller *ctlr = spi->controller;
2991        int ret;
2992        unsigned long flags;
2993
2994        ret = __spi_validate(spi, message);
2995        if (ret != 0)
2996                return ret;
2997
2998        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2999
3000        ret = __spi_async(spi, message);
3001
3002        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3003
3004        return ret;
3005
3006}
3007EXPORT_SYMBOL_GPL(spi_async_locked);
3008
3009
3010int spi_flash_read(struct spi_device *spi,
3011                   struct spi_flash_read_message *msg)
3012
3013{
3014        struct spi_controller *master = spi->controller;
3015        struct device *rx_dev = NULL;
3016        int ret;
3017
3018        if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3019             msg->addr_nbits == SPI_NBITS_DUAL) &&
3020            !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3021                return -EINVAL;
3022        if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3023             msg->addr_nbits == SPI_NBITS_QUAD) &&
3024            !(spi->mode & SPI_TX_QUAD))
3025                return -EINVAL;
3026        if (msg->data_nbits == SPI_NBITS_DUAL &&
3027            !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3028                return -EINVAL;
3029        if (msg->data_nbits == SPI_NBITS_QUAD &&
3030            !(spi->mode &  SPI_RX_QUAD))
3031                return -EINVAL;
3032
3033        if (master->auto_runtime_pm) {
3034                ret = pm_runtime_get_sync(master->dev.parent);
3035                if (ret < 0) {
3036                        dev_err(&master->dev, "Failed to power device: %d\n",
3037                                ret);
3038                        return ret;
3039                }
3040        }
3041
3042        mutex_lock(&master->bus_lock_mutex);
3043        mutex_lock(&master->io_mutex);
3044        if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3045                rx_dev = master->dma_rx->device->dev;
3046                ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3047                                  msg->buf, msg->len,
3048                                  DMA_FROM_DEVICE);
3049                if (!ret)
3050                        msg->cur_msg_mapped = true;
3051        }
3052        ret = master->spi_flash_read(spi, msg);
3053        if (msg->cur_msg_mapped)
3054                spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3055                              DMA_FROM_DEVICE);
3056        mutex_unlock(&master->io_mutex);
3057        mutex_unlock(&master->bus_lock_mutex);
3058
3059        if (master->auto_runtime_pm)
3060                pm_runtime_put(master->dev.parent);
3061
3062        return ret;
3063}
3064EXPORT_SYMBOL_GPL(spi_flash_read);
3065
3066/*-------------------------------------------------------------------------*/
3067
3068/* Utility methods for SPI protocol drivers, layered on
3069 * top of the core.  Some other utility methods are defined as
3070 * inline functions.
3071 */
3072
3073static void spi_complete(void *arg)
3074{
3075        complete(arg);
3076}
3077
3078static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3079{
3080        DECLARE_COMPLETION_ONSTACK(done);
3081        int status;
3082        struct spi_controller *ctlr = spi->controller;
3083        unsigned long flags;
3084
3085        status = __spi_validate(spi, message);
3086        if (status != 0)
3087                return status;
3088
3089        message->complete = spi_complete;
3090        message->context = &done;
3091        message->spi = spi;
3092
3093        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3094        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3095
3096        /* If we're not using the legacy transfer method then we will
3097         * try to transfer in the calling context so special case.
3098         * This code would be less tricky if we could remove the
3099         * support for driver implemented message queues.
3100         */
3101        if (ctlr->transfer == spi_queued_transfer) {
3102                spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3103
3104                trace_spi_message_submit(message);
3105
3106                status = __spi_queued_transfer(spi, message, false);
3107
3108                spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3109        } else {
3110                status = spi_async_locked(spi, message);
3111        }
3112
3113        if (status == 0) {
3114                /* Push out the messages in the calling context if we
3115                 * can.
3116                 */
3117                if (ctlr->transfer == spi_queued_transfer) {
3118                        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3119                                                       spi_sync_immediate);
3120                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3121                                                       spi_sync_immediate);
3122                        __spi_pump_messages(ctlr, false);
3123                }
3124
3125                wait_for_completion(&done);
3126                status = message->status;
3127        }
3128        message->context = NULL;
3129        return status;
3130}
3131
3132/**
3133 * spi_sync - blocking/synchronous SPI data transfers
3134 * @spi: device with which data will be exchanged
3135 * @message: describes the data transfers
3136 * Context: can sleep
3137 *
3138 * This call may only be used from a context that may sleep.  The sleep
3139 * is non-interruptible, and has no timeout.  Low-overhead controller
3140 * drivers may DMA directly into and out of the message buffers.
3141 *
3142 * Note that the SPI device's chip select is active during the message,
3143 * and then is normally disabled between messages.  Drivers for some
3144 * frequently-used devices may want to minimize costs of selecting a chip,
3145 * by leaving it selected in anticipation that the next message will go
3146 * to the same chip.  (That may increase power usage.)
3147 *
3148 * Also, the caller is guaranteeing that the memory associated with the
3149 * message will not be freed before this call returns.
3150 *
3151 * Return: zero on success, else a negative error code.
3152 */
3153int spi_sync(struct spi_device *spi, struct spi_message *message)
3154{
3155        int ret;
3156
3157        mutex_lock(&spi->controller->bus_lock_mutex);
3158        ret = __spi_sync(spi, message);
3159        mutex_unlock(&spi->controller->bus_lock_mutex);
3160
3161        return ret;
3162}
3163EXPORT_SYMBOL_GPL(spi_sync);
3164
3165/**
3166 * spi_sync_locked - version of spi_sync with exclusive bus usage
3167 * @spi: device with which data will be exchanged
3168 * @message: describes the data transfers
3169 * Context: can sleep
3170 *
3171 * This call may only be used from a context that may sleep.  The sleep
3172 * is non-interruptible, and has no timeout.  Low-overhead controller
3173 * drivers may DMA directly into and out of the message buffers.
3174 *
3175 * This call should be used by drivers that require exclusive access to the
3176 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3177 * be released by a spi_bus_unlock call when the exclusive access is over.
3178 *
3179 * Return: zero on success, else a negative error code.
3180 */
3181int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3182{
3183        return __spi_sync(spi, message);
3184}
3185EXPORT_SYMBOL_GPL(spi_sync_locked);
3186
3187/**
3188 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3189 * @ctlr: SPI bus master that should be locked for exclusive bus access
3190 * Context: can sleep
3191 *
3192 * This call may only be used from a context that may sleep.  The sleep
3193 * is non-interruptible, and has no timeout.
3194 *
3195 * This call should be used by drivers that require exclusive access to the
3196 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3197 * exclusive access is over. Data transfer must be done by spi_sync_locked
3198 * and spi_async_locked calls when the SPI bus lock is held.
3199 *
3200 * Return: always zero.
3201 */
3202int spi_bus_lock(struct spi_controller *ctlr)
3203{
3204        unsigned long flags;
3205
3206        mutex_lock(&ctlr->bus_lock_mutex);
3207
3208        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3209        ctlr->bus_lock_flag = 1;
3210        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3211
3212        /* mutex remains locked until spi_bus_unlock is called */
3213
3214        return 0;
3215}
3216EXPORT_SYMBOL_GPL(spi_bus_lock);
3217
3218/**
3219 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3220 * @ctlr: SPI bus master that was locked for exclusive bus access
3221 * Context: can sleep
3222 *
3223 * This call may only be used from a context that may sleep.  The sleep
3224 * is non-interruptible, and has no timeout.
3225 *
3226 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3227 * call.
3228 *
3229 * Return: always zero.
3230 */
3231int spi_bus_unlock(struct spi_controller *ctlr)
3232{
3233        ctlr->bus_lock_flag = 0;
3234
3235        mutex_unlock(&ctlr->bus_lock_mutex);
3236
3237        return 0;
3238}
3239EXPORT_SYMBOL_GPL(spi_bus_unlock);
3240
3241/* portable code must never pass more than 32 bytes */
3242#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3243
3244static u8       *buf;
3245
3246/**
3247 * spi_write_then_read - SPI synchronous write followed by read
3248 * @spi: device with which data will be exchanged
3249 * @txbuf: data to be written (need not be dma-safe)
3250 * @n_tx: size of txbuf, in bytes
3251 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3252 * @n_rx: size of rxbuf, in bytes
3253 * Context: can sleep
3254 *
3255 * This performs a half duplex MicroWire style transaction with the
3256 * device, sending txbuf and then reading rxbuf.  The return value
3257 * is zero for success, else a negative errno status code.
3258 * This call may only be used from a context that may sleep.
3259 *
3260 * Parameters to this routine are always copied using a small buffer;
3261 * portable code should never use this for more than 32 bytes.
3262 * Performance-sensitive or bulk transfer code should instead use
3263 * spi_{async,sync}() calls with dma-safe buffers.
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267int spi_write_then_read(struct spi_device *spi,
3268                const void *txbuf, unsigned n_tx,
3269                void *rxbuf, unsigned n_rx)
3270{
3271        static DEFINE_MUTEX(lock);
3272
3273        int                     status;
3274        struct spi_message      message;
3275        struct spi_transfer     x[2];
3276        u8                      *local_buf;
3277
3278        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3279         * copying here, (as a pure convenience thing), but we can
3280         * keep heap costs out of the hot path unless someone else is
3281         * using the pre-allocated buffer or the transfer is too large.
3282         */
3283        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3284                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3285                                    GFP_KERNEL | GFP_DMA);
3286                if (!local_buf)
3287                        return -ENOMEM;
3288        } else {
3289                local_buf = buf;
3290        }
3291
3292        spi_message_init(&message);
3293        memset(x, 0, sizeof(x));
3294        if (n_tx) {
3295                x[0].len = n_tx;
3296                spi_message_add_tail(&x[0], &message);
3297        }
3298        if (n_rx) {
3299                x[1].len = n_rx;
3300                spi_message_add_tail(&x[1], &message);
3301        }
3302
3303        memcpy(local_buf, txbuf, n_tx);
3304        x[0].tx_buf = local_buf;
3305        x[1].rx_buf = local_buf + n_tx;
3306
3307        /* do the i/o */
3308        status = spi_sync(spi, &message);
3309        if (status == 0)
3310                memcpy(rxbuf, x[1].rx_buf, n_rx);
3311
3312        if (x[0].tx_buf == buf)
3313                mutex_unlock(&lock);
3314        else
3315                kfree(local_buf);
3316
3317        return status;
3318}
3319EXPORT_SYMBOL_GPL(spi_write_then_read);
3320
3321/*-------------------------------------------------------------------------*/
3322
3323#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3324static int __spi_of_device_match(struct device *dev, void *data)
3325{
3326        return dev->of_node == data;
3327}
3328
3329/* must call put_device() when done with returned spi_device device */
3330static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3331{
3332        struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3333                                                __spi_of_device_match);
3334        return dev ? to_spi_device(dev) : NULL;
3335}
3336
3337static int __spi_of_controller_match(struct device *dev, const void *data)
3338{
3339        return dev->of_node == data;
3340}
3341
3342/* the spi controllers are not using spi_bus, so we find it with another way */
3343static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3344{
3345        struct device *dev;
3346
3347        dev = class_find_device(&spi_master_class, NULL, node,
3348                                __spi_of_controller_match);
3349        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3350                dev = class_find_device(&spi_slave_class, NULL, node,
3351                                        __spi_of_controller_match);
3352        if (!dev)
3353                return NULL;
3354
3355        /* reference got in class_find_device */
3356        return container_of(dev, struct spi_controller, dev);
3357}
3358
3359static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3360                         void *arg)
3361{
3362        struct of_reconfig_data *rd = arg;
3363        struct spi_controller *ctlr;
3364        struct spi_device *spi;
3365
3366        switch (of_reconfig_get_state_change(action, arg)) {
3367        case OF_RECONFIG_CHANGE_ADD:
3368                ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3369                if (ctlr == NULL)
3370                        return NOTIFY_OK;       /* not for us */
3371
3372                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3373                        put_device(&ctlr->dev);
3374                        return NOTIFY_OK;
3375                }
3376
3377                spi = of_register_spi_device(ctlr, rd->dn);
3378                put_device(&ctlr->dev);
3379
3380                if (IS_ERR(spi)) {
3381                        pr_err("%s: failed to create for '%pOF'\n",
3382                                        __func__, rd->dn);
3383                        of_node_clear_flag(rd->dn, OF_POPULATED);
3384                        return notifier_from_errno(PTR_ERR(spi));
3385                }
3386                break;
3387
3388        case OF_RECONFIG_CHANGE_REMOVE:
3389                /* already depopulated? */
3390                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3391                        return NOTIFY_OK;
3392
3393                /* find our device by node */
3394                spi = of_find_spi_device_by_node(rd->dn);
3395                if (spi == NULL)
3396                        return NOTIFY_OK;       /* no? not meant for us */
3397
3398                /* unregister takes one ref away */
3399                spi_unregister_device(spi);
3400
3401                /* and put the reference of the find */
3402                put_device(&spi->dev);
3403                break;
3404        }
3405
3406        return NOTIFY_OK;
3407}
3408
3409static struct notifier_block spi_of_notifier = {
3410        .notifier_call = of_spi_notify,
3411};
3412#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3413extern struct notifier_block spi_of_notifier;
3414#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3415
3416#if IS_ENABLED(CONFIG_ACPI)
3417static int spi_acpi_controller_match(struct device *dev, const void *data)
3418{
3419        return ACPI_COMPANION(dev->parent) == data;
3420}
3421
3422static int spi_acpi_device_match(struct device *dev, void *data)
3423{
3424        return ACPI_COMPANION(dev) == data;
3425}
3426
3427static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3428{
3429        struct device *dev;
3430
3431        dev = class_find_device(&spi_master_class, NULL, adev,
3432                                spi_acpi_controller_match);
3433        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3434                dev = class_find_device(&spi_slave_class, NULL, adev,
3435                                        spi_acpi_controller_match);
3436        if (!dev)
3437                return NULL;
3438
3439        return container_of(dev, struct spi_controller, dev);
3440}
3441
3442static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3443{
3444        struct device *dev;
3445
3446        dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3447
3448        return dev ? to_spi_device(dev) : NULL;
3449}
3450
3451static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3452                           void *arg)
3453{
3454        struct acpi_device *adev = arg;
3455        struct spi_controller *ctlr;
3456        struct spi_device *spi;
3457
3458        switch (value) {
3459        case ACPI_RECONFIG_DEVICE_ADD:
3460                ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3461                if (!ctlr)
3462                        break;
3463
3464                acpi_register_spi_device(ctlr, adev);
3465                put_device(&ctlr->dev);
3466                break;
3467        case ACPI_RECONFIG_DEVICE_REMOVE:
3468                if (!acpi_device_enumerated(adev))
3469                        break;
3470
3471                spi = acpi_spi_find_device_by_adev(adev);
3472                if (!spi)
3473                        break;
3474
3475                spi_unregister_device(spi);
3476                put_device(&spi->dev);
3477                break;
3478        }
3479
3480        return NOTIFY_OK;
3481}
3482
3483static struct notifier_block spi_acpi_notifier = {
3484        .notifier_call = acpi_spi_notify,
3485};
3486#else
3487extern struct notifier_block spi_acpi_notifier;
3488#endif
3489
3490static int __init spi_init(void)
3491{
3492        int     status;
3493
3494        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3495        if (!buf) {
3496                status = -ENOMEM;
3497                goto err0;
3498        }
3499
3500        status = bus_register(&spi_bus_type);
3501        if (status < 0)
3502                goto err1;
3503
3504        status = class_register(&spi_master_class);
3505        if (status < 0)
3506                goto err2;
3507
3508        if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3509                status = class_register(&spi_slave_class);
3510                if (status < 0)
3511                        goto err3;
3512        }
3513
3514        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3515                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3516        if (IS_ENABLED(CONFIG_ACPI))
3517                WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3518
3519        return 0;
3520
3521err3:
3522        class_unregister(&spi_master_class);
3523err2:
3524        bus_unregister(&spi_bus_type);
3525err1:
3526        kfree(buf);
3527        buf = NULL;
3528err0:
3529        return status;
3530}
3531
3532/* board_info is normally registered in arch_initcall(),
3533 * but even essential drivers wait till later
3534 *
3535 * REVISIT only boardinfo really needs static linking. the rest (device and
3536 * driver registration) _could_ be dynamically linked (modular) ... costs
3537 * include needing to have boardinfo data structures be much more public.
3538 */
3539postcore_initcall(spi_init);
3540
3541