linux/drivers/staging/comedi/drivers/icp_multi.c
<<
>>
Prefs
   1/*
   2 * icp_multi.c
   3 * Comedi driver for Inova ICP_MULTI board
   4 *
   5 * COMEDI - Linux Control and Measurement Device Interface
   6 * Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 */
  18
  19/*
  20 * Driver: icp_multi
  21 * Description: Inova ICP_MULTI
  22 * Devices: [Inova] ICP_MULTI (icp_multi)
  23 * Author: Anne Smorthit <anne.smorthit@sfwte.ch>
  24 * Status: works
  25 *
  26 * Configuration options: not applicable, uses PCI auto config
  27 *
  28 * The driver works for analog input and output and digital input and
  29 * output. It does not work with interrupts or with the counters. Currently
  30 * no support for DMA.
  31 *
  32 * It has 16 single-ended or 8 differential Analogue Input channels with
  33 * 12-bit resolution.  Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA.
  34 * Input ranges can be individually programmed for each channel.  Voltage or
  35 * current measurement is selected by jumper.
  36 *
  37 * There are 4 x 12-bit Analogue Outputs.  Ranges : 5V, 10V, +/-5V, +/-10V
  38 *
  39 * 16 x Digital Inputs, 24V
  40 *
  41 * 8 x Digital Outputs, 24V, 1A
  42 *
  43 * 4 x 16-bit counters - not implemented
  44 */
  45
  46#include <linux/module.h>
  47#include <linux/delay.h>
  48
  49#include "../comedi_pci.h"
  50
  51#define ICP_MULTI_ADC_CSR       0x00    /* R/W: ADC command/status register */
  52#define ICP_MULTI_ADC_CSR_ST    BIT(0)  /* Start ADC */
  53#define ICP_MULTI_ADC_CSR_BSY   BIT(0)  /* ADC busy */
  54#define ICP_MULTI_ADC_CSR_BI    BIT(4)  /* Bipolar input range */
  55#define ICP_MULTI_ADC_CSR_RA    BIT(5)  /* Input range 0 = 5V, 1 = 10V */
  56#define ICP_MULTI_ADC_CSR_DI    BIT(6)  /* Input mode 1 = differential */
  57#define ICP_MULTI_ADC_CSR_DI_CHAN(x) (((x) & 0x7) << 9)
  58#define ICP_MULTI_ADC_CSR_SE_CHAN(x) (((x) & 0xf) << 8)
  59#define ICP_MULTI_AI            2       /* R:   Analogue input data */
  60#define ICP_MULTI_DAC_CSR       0x04    /* R/W: DAC command/status register */
  61#define ICP_MULTI_DAC_CSR_ST    BIT(0)  /* Start DAC */
  62#define ICP_MULTI_DAC_CSR_BSY   BIT(0)  /* DAC busy */
  63#define ICP_MULTI_DAC_CSR_BI    BIT(4)  /* Bipolar output range */
  64#define ICP_MULTI_DAC_CSR_RA    BIT(5)  /* Output range 0 = 5V, 1 = 10V */
  65#define ICP_MULTI_DAC_CSR_CHAN(x) (((x) & 0x3) << 8)
  66#define ICP_MULTI_AO            6       /* R/W: Analogue output data */
  67#define ICP_MULTI_DI            8       /* R/W: Digital inputs */
  68#define ICP_MULTI_DO            0x0A    /* R/W: Digital outputs */
  69#define ICP_MULTI_INT_EN        0x0c    /* R/W: Interrupt enable register */
  70#define ICP_MULTI_INT_STAT      0x0e    /* R/W: Interrupt status register */
  71#define ICP_MULTI_INT_ADC_RDY   BIT(0)  /* A/D conversion ready interrupt */
  72#define ICP_MULTI_INT_DAC_RDY   BIT(1)  /* D/A conversion ready interrupt */
  73#define ICP_MULTI_INT_DOUT_ERR  BIT(2)  /* Digital output error interrupt */
  74#define ICP_MULTI_INT_DIN_STAT  BIT(3)  /* Digital input status change int. */
  75#define ICP_MULTI_INT_CIE0      BIT(4)  /* Counter 0 overrun interrupt */
  76#define ICP_MULTI_INT_CIE1      BIT(5)  /* Counter 1 overrun interrupt */
  77#define ICP_MULTI_INT_CIE2      BIT(6)  /* Counter 2 overrun interrupt */
  78#define ICP_MULTI_INT_CIE3      BIT(7)  /* Counter 3 overrun interrupt */
  79#define ICP_MULTI_INT_MASK      0xff    /* All interrupts */
  80#define ICP_MULTI_CNTR0         0x10    /* R/W: Counter 0 */
  81#define ICP_MULTI_CNTR1         0x12    /* R/W: counter 1 */
  82#define ICP_MULTI_CNTR2         0x14    /* R/W: Counter 2 */
  83#define ICP_MULTI_CNTR3         0x16    /* R/W: Counter 3 */
  84
  85/* analog input and output have the same range options */
  86static const struct comedi_lrange icp_multi_ranges = {
  87        4, {
  88                UNI_RANGE(5),
  89                UNI_RANGE(10),
  90                BIP_RANGE(5),
  91                BIP_RANGE(10)
  92        }
  93};
  94
  95static const char range_codes_analog[] = { 0x00, 0x20, 0x10, 0x30 };
  96
  97static int icp_multi_ai_eoc(struct comedi_device *dev,
  98                            struct comedi_subdevice *s,
  99                            struct comedi_insn *insn,
 100                            unsigned long context)
 101{
 102        unsigned int status;
 103
 104        status = readw(dev->mmio + ICP_MULTI_ADC_CSR);
 105        if ((status & ICP_MULTI_ADC_CSR_BSY) == 0)
 106                return 0;
 107        return -EBUSY;
 108}
 109
 110static int icp_multi_ai_insn_read(struct comedi_device *dev,
 111                                  struct comedi_subdevice *s,
 112                                  struct comedi_insn *insn,
 113                                  unsigned int *data)
 114{
 115        unsigned int chan = CR_CHAN(insn->chanspec);
 116        unsigned int range = CR_RANGE(insn->chanspec);
 117        unsigned int aref = CR_AREF(insn->chanspec);
 118        unsigned int adc_csr;
 119        int ret = 0;
 120        int n;
 121
 122        /* Set mode and range data for specified channel */
 123        if (aref == AREF_DIFF) {
 124                adc_csr = ICP_MULTI_ADC_CSR_DI_CHAN(chan) |
 125                          ICP_MULTI_ADC_CSR_DI;
 126        } else {
 127                adc_csr = ICP_MULTI_ADC_CSR_SE_CHAN(chan);
 128        }
 129        adc_csr |= range_codes_analog[range];
 130        writew(adc_csr, dev->mmio + ICP_MULTI_ADC_CSR);
 131
 132        for (n = 0; n < insn->n; n++) {
 133                /*  Set start ADC bit */
 134                writew(adc_csr | ICP_MULTI_ADC_CSR_ST,
 135                       dev->mmio + ICP_MULTI_ADC_CSR);
 136
 137                udelay(1);
 138
 139                /*  Wait for conversion to complete, or get fed up waiting */
 140                ret = comedi_timeout(dev, s, insn, icp_multi_ai_eoc, 0);
 141                if (ret)
 142                        break;
 143
 144                data[n] = (readw(dev->mmio + ICP_MULTI_AI) >> 4) & 0x0fff;
 145        }
 146
 147        return ret ? ret : n;
 148}
 149
 150static int icp_multi_ao_ready(struct comedi_device *dev,
 151                              struct comedi_subdevice *s,
 152                              struct comedi_insn *insn,
 153                              unsigned long context)
 154{
 155        unsigned int status;
 156
 157        status = readw(dev->mmio + ICP_MULTI_DAC_CSR);
 158        if ((status & ICP_MULTI_DAC_CSR_BSY) == 0)
 159                return 0;
 160        return -EBUSY;
 161}
 162
 163static int icp_multi_ao_insn_write(struct comedi_device *dev,
 164                                   struct comedi_subdevice *s,
 165                                   struct comedi_insn *insn,
 166                                   unsigned int *data)
 167{
 168        unsigned int chan = CR_CHAN(insn->chanspec);
 169        unsigned int range = CR_RANGE(insn->chanspec);
 170        unsigned int dac_csr;
 171        int i;
 172
 173        /* Select channel and range */
 174        dac_csr = ICP_MULTI_DAC_CSR_CHAN(chan);
 175        dac_csr |= range_codes_analog[range];
 176        writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
 177
 178        for (i = 0; i < insn->n; i++) {
 179                unsigned int val = data[i];
 180                int ret;
 181
 182                /* Wait for analog output to be ready for new data */
 183                ret = comedi_timeout(dev, s, insn, icp_multi_ao_ready, 0);
 184                if (ret)
 185                        return ret;
 186
 187                writew(val, dev->mmio + ICP_MULTI_AO);
 188
 189                /* Set start conversion bit to write data to channel */
 190                writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
 191                       dev->mmio + ICP_MULTI_DAC_CSR);
 192
 193                s->readback[chan] = val;
 194        }
 195
 196        return insn->n;
 197}
 198
 199static int icp_multi_di_insn_bits(struct comedi_device *dev,
 200                                  struct comedi_subdevice *s,
 201                                  struct comedi_insn *insn,
 202                                  unsigned int *data)
 203{
 204        data[1] = readw(dev->mmio + ICP_MULTI_DI);
 205
 206        return insn->n;
 207}
 208
 209static int icp_multi_do_insn_bits(struct comedi_device *dev,
 210                                  struct comedi_subdevice *s,
 211                                  struct comedi_insn *insn,
 212                                  unsigned int *data)
 213{
 214        if (comedi_dio_update_state(s, data))
 215                writew(s->state, dev->mmio + ICP_MULTI_DO);
 216
 217        data[1] = s->state;
 218
 219        return insn->n;
 220}
 221
 222static int icp_multi_reset(struct comedi_device *dev)
 223{
 224        int i;
 225
 226        /* Disable all interrupts and clear any requests */
 227        writew(0, dev->mmio + ICP_MULTI_INT_EN);
 228        writew(ICP_MULTI_INT_MASK, dev->mmio + ICP_MULTI_INT_STAT);
 229
 230        /* Reset the analog output channels to 0V */
 231        for (i = 0; i < 4; i++) {
 232                unsigned int dac_csr = ICP_MULTI_DAC_CSR_CHAN(i);
 233
 234                /* Select channel and 0..5V range */
 235                writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
 236
 237                /* Output 0V */
 238                writew(0, dev->mmio + ICP_MULTI_AO);
 239
 240                /* Set start conversion bit to write data to channel */
 241                writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
 242                       dev->mmio + ICP_MULTI_DAC_CSR);
 243                udelay(1);
 244        }
 245
 246        /* Digital outputs to 0 */
 247        writew(0, dev->mmio + ICP_MULTI_DO);
 248
 249        return 0;
 250}
 251
 252static int icp_multi_auto_attach(struct comedi_device *dev,
 253                                 unsigned long context_unused)
 254{
 255        struct pci_dev *pcidev = comedi_to_pci_dev(dev);
 256        struct comedi_subdevice *s;
 257        int ret;
 258
 259        ret = comedi_pci_enable(dev);
 260        if (ret)
 261                return ret;
 262
 263        dev->mmio = pci_ioremap_bar(pcidev, 2);
 264        if (!dev->mmio)
 265                return -ENOMEM;
 266
 267        ret = comedi_alloc_subdevices(dev, 4);
 268        if (ret)
 269                return ret;
 270
 271        icp_multi_reset(dev);
 272
 273        /* Analog Input subdevice */
 274        s = &dev->subdevices[0];
 275        s->type         = COMEDI_SUBD_AI;
 276        s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_GROUND | SDF_DIFF;
 277        s->n_chan       = 16;
 278        s->maxdata      = 0x0fff;
 279        s->range_table  = &icp_multi_ranges;
 280        s->insn_read    = icp_multi_ai_insn_read;
 281
 282        /* Analog Output subdevice */
 283        s = &dev->subdevices[1];
 284        s->type         = COMEDI_SUBD_AO;
 285        s->subdev_flags = SDF_WRITABLE | SDF_GROUND | SDF_COMMON;
 286        s->n_chan       = 4;
 287        s->maxdata      = 0x0fff;
 288        s->range_table  = &icp_multi_ranges;
 289        s->insn_write   = icp_multi_ao_insn_write;
 290
 291        ret = comedi_alloc_subdev_readback(s);
 292        if (ret)
 293                return ret;
 294
 295        /* Digital Input subdevice */
 296        s = &dev->subdevices[2];
 297        s->type         = COMEDI_SUBD_DI;
 298        s->subdev_flags = SDF_READABLE;
 299        s->n_chan       = 16;
 300        s->maxdata      = 1;
 301        s->range_table  = &range_digital;
 302        s->insn_bits    = icp_multi_di_insn_bits;
 303
 304        /* Digital Output subdevice */
 305        s = &dev->subdevices[3];
 306        s->type         = COMEDI_SUBD_DO;
 307        s->subdev_flags = SDF_WRITABLE;
 308        s->n_chan       = 8;
 309        s->maxdata      = 1;
 310        s->range_table  = &range_digital;
 311        s->insn_bits    = icp_multi_do_insn_bits;
 312
 313        return 0;
 314}
 315
 316static struct comedi_driver icp_multi_driver = {
 317        .driver_name    = "icp_multi",
 318        .module         = THIS_MODULE,
 319        .auto_attach    = icp_multi_auto_attach,
 320        .detach         = comedi_pci_detach,
 321};
 322
 323static int icp_multi_pci_probe(struct pci_dev *dev,
 324                               const struct pci_device_id *id)
 325{
 326        return comedi_pci_auto_config(dev, &icp_multi_driver, id->driver_data);
 327}
 328
 329static const struct pci_device_id icp_multi_pci_table[] = {
 330        { PCI_DEVICE(PCI_VENDOR_ID_ICP, 0x8000) },
 331        { 0 }
 332};
 333MODULE_DEVICE_TABLE(pci, icp_multi_pci_table);
 334
 335static struct pci_driver icp_multi_pci_driver = {
 336        .name           = "icp_multi",
 337        .id_table       = icp_multi_pci_table,
 338        .probe          = icp_multi_pci_probe,
 339        .remove         = comedi_pci_auto_unconfig,
 340};
 341module_comedi_pci_driver(icp_multi_driver, icp_multi_pci_driver);
 342
 343MODULE_AUTHOR("Comedi http://www.comedi.org");
 344MODULE_DESCRIPTION("Comedi driver for Inova ICP_MULTI board");
 345MODULE_LICENSE("GPL");
 346