linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched/signal.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <linux/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;   /* Written to by userland or under ring_lock
  56                                 * mutex by aio_read_events_ring(). */
  57        unsigned        tail;
  58
  59        unsigned        magic;
  60        unsigned        compat_features;
  61        unsigned        incompat_features;
  62        unsigned        header_length;  /* size of aio_ring */
  63
  64
  65        struct io_event         io_events[0];
  66}; /* 128 bytes + ring size */
  67
  68#define AIO_RING_PAGES  8
  69
  70struct kioctx_table {
  71        struct rcu_head rcu;
  72        unsigned        nr;
  73        struct kioctx   *table[];
  74};
  75
  76struct kioctx_cpu {
  77        unsigned                reqs_available;
  78};
  79
  80struct ctx_rq_wait {
  81        struct completion comp;
  82        atomic_t count;
  83};
  84
  85struct kioctx {
  86        struct percpu_ref       users;
  87        atomic_t                dead;
  88
  89        struct percpu_ref       reqs;
  90
  91        unsigned long           user_id;
  92
  93        struct __percpu kioctx_cpu *cpu;
  94
  95        /*
  96         * For percpu reqs_available, number of slots we move to/from global
  97         * counter at a time:
  98         */
  99        unsigned                req_batch;
 100        /*
 101         * This is what userspace passed to io_setup(), it's not used for
 102         * anything but counting against the global max_reqs quota.
 103         *
 104         * The real limit is nr_events - 1, which will be larger (see
 105         * aio_setup_ring())
 106         */
 107        unsigned                max_reqs;
 108
 109        /* Size of ringbuffer, in units of struct io_event */
 110        unsigned                nr_events;
 111
 112        unsigned long           mmap_base;
 113        unsigned long           mmap_size;
 114
 115        struct page             **ring_pages;
 116        long                    nr_pages;
 117
 118        struct work_struct      free_work;
 119
 120        /*
 121         * signals when all in-flight requests are done
 122         */
 123        struct ctx_rq_wait      *rq_wait;
 124
 125        struct {
 126                /*
 127                 * This counts the number of available slots in the ringbuffer,
 128                 * so we avoid overflowing it: it's decremented (if positive)
 129                 * when allocating a kiocb and incremented when the resulting
 130                 * io_event is pulled off the ringbuffer.
 131                 *
 132                 * We batch accesses to it with a percpu version.
 133                 */
 134                atomic_t        reqs_available;
 135        } ____cacheline_aligned_in_smp;
 136
 137        struct {
 138                spinlock_t      ctx_lock;
 139                struct list_head active_reqs;   /* used for cancellation */
 140        } ____cacheline_aligned_in_smp;
 141
 142        struct {
 143                struct mutex    ring_lock;
 144                wait_queue_head_t wait;
 145        } ____cacheline_aligned_in_smp;
 146
 147        struct {
 148                unsigned        tail;
 149                unsigned        completed_events;
 150                spinlock_t      completion_lock;
 151        } ____cacheline_aligned_in_smp;
 152
 153        struct page             *internal_pages[AIO_RING_PAGES];
 154        struct file             *aio_ring_file;
 155
 156        unsigned                id;
 157};
 158
 159/*
 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
 161 * cancelled or completed (this makes a certain amount of sense because
 162 * successful cancellation - io_cancel() - does deliver the completion to
 163 * userspace).
 164 *
 165 * And since most things don't implement kiocb cancellation and we'd really like
 166 * kiocb completion to be lockless when possible, we use ki_cancel to
 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
 169 */
 170#define KIOCB_CANCELLED         ((void *) (~0ULL))
 171
 172struct aio_kiocb {
 173        struct kiocb            common;
 174
 175        struct kioctx           *ki_ctx;
 176        kiocb_cancel_fn         *ki_cancel;
 177
 178        struct iocb __user      *ki_user_iocb;  /* user's aiocb */
 179        __u64                   ki_user_data;   /* user's data for completion */
 180
 181        struct list_head        ki_list;        /* the aio core uses this
 182                                                 * for cancellation */
 183
 184        /*
 185         * If the aio_resfd field of the userspace iocb is not zero,
 186         * this is the underlying eventfd context to deliver events to.
 187         */
 188        struct eventfd_ctx      *ki_eventfd;
 189};
 190
 191/*------ sysctl variables----*/
 192static DEFINE_SPINLOCK(aio_nr_lock);
 193unsigned long aio_nr;           /* current system wide number of aio requests */
 194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 195/*----end sysctl variables---*/
 196
 197static struct kmem_cache        *kiocb_cachep;
 198static struct kmem_cache        *kioctx_cachep;
 199
 200static struct vfsmount *aio_mnt;
 201
 202static const struct file_operations aio_ring_fops;
 203static const struct address_space_operations aio_ctx_aops;
 204
 205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 206{
 207        struct qstr this = QSTR_INIT("[aio]", 5);
 208        struct file *file;
 209        struct path path;
 210        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 211        if (IS_ERR(inode))
 212                return ERR_CAST(inode);
 213
 214        inode->i_mapping->a_ops = &aio_ctx_aops;
 215        inode->i_mapping->private_data = ctx;
 216        inode->i_size = PAGE_SIZE * nr_pages;
 217
 218        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 219        if (!path.dentry) {
 220                iput(inode);
 221                return ERR_PTR(-ENOMEM);
 222        }
 223        path.mnt = mntget(aio_mnt);
 224
 225        d_instantiate(path.dentry, inode);
 226        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 227        if (IS_ERR(file)) {
 228                path_put(&path);
 229                return file;
 230        }
 231
 232        file->f_flags = O_RDWR;
 233        return file;
 234}
 235
 236static struct dentry *aio_mount(struct file_system_type *fs_type,
 237                                int flags, const char *dev_name, void *data)
 238{
 239        static const struct dentry_operations ops = {
 240                .d_dname        = simple_dname,
 241        };
 242        struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
 243                                           AIO_RING_MAGIC);
 244
 245        if (!IS_ERR(root))
 246                root->d_sb->s_iflags |= SB_I_NOEXEC;
 247        return root;
 248}
 249
 250/* aio_setup
 251 *      Creates the slab caches used by the aio routines, panic on
 252 *      failure as this is done early during the boot sequence.
 253 */
 254static int __init aio_setup(void)
 255{
 256        static struct file_system_type aio_fs = {
 257                .name           = "aio",
 258                .mount          = aio_mount,
 259                .kill_sb        = kill_anon_super,
 260        };
 261        aio_mnt = kern_mount(&aio_fs);
 262        if (IS_ERR(aio_mnt))
 263                panic("Failed to create aio fs mount.");
 264
 265        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 266        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 267
 268        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 269
 270        return 0;
 271}
 272__initcall(aio_setup);
 273
 274static void put_aio_ring_file(struct kioctx *ctx)
 275{
 276        struct file *aio_ring_file = ctx->aio_ring_file;
 277        struct address_space *i_mapping;
 278
 279        if (aio_ring_file) {
 280                truncate_setsize(file_inode(aio_ring_file), 0);
 281
 282                /* Prevent further access to the kioctx from migratepages */
 283                i_mapping = aio_ring_file->f_mapping;
 284                spin_lock(&i_mapping->private_lock);
 285                i_mapping->private_data = NULL;
 286                ctx->aio_ring_file = NULL;
 287                spin_unlock(&i_mapping->private_lock);
 288
 289                fput(aio_ring_file);
 290        }
 291}
 292
 293static void aio_free_ring(struct kioctx *ctx)
 294{
 295        int i;
 296
 297        /* Disconnect the kiotx from the ring file.  This prevents future
 298         * accesses to the kioctx from page migration.
 299         */
 300        put_aio_ring_file(ctx);
 301
 302        for (i = 0; i < ctx->nr_pages; i++) {
 303                struct page *page;
 304                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 305                                page_count(ctx->ring_pages[i]));
 306                page = ctx->ring_pages[i];
 307                if (!page)
 308                        continue;
 309                ctx->ring_pages[i] = NULL;
 310                put_page(page);
 311        }
 312
 313        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 314                kfree(ctx->ring_pages);
 315                ctx->ring_pages = NULL;
 316        }
 317}
 318
 319static int aio_ring_mremap(struct vm_area_struct *vma)
 320{
 321        struct file *file = vma->vm_file;
 322        struct mm_struct *mm = vma->vm_mm;
 323        struct kioctx_table *table;
 324        int i, res = -EINVAL;
 325
 326        spin_lock(&mm->ioctx_lock);
 327        rcu_read_lock();
 328        table = rcu_dereference(mm->ioctx_table);
 329        for (i = 0; i < table->nr; i++) {
 330                struct kioctx *ctx;
 331
 332                ctx = table->table[i];
 333                if (ctx && ctx->aio_ring_file == file) {
 334                        if (!atomic_read(&ctx->dead)) {
 335                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 336                                res = 0;
 337                        }
 338                        break;
 339                }
 340        }
 341
 342        rcu_read_unlock();
 343        spin_unlock(&mm->ioctx_lock);
 344        return res;
 345}
 346
 347static const struct vm_operations_struct aio_ring_vm_ops = {
 348        .mremap         = aio_ring_mremap,
 349#if IS_ENABLED(CONFIG_MMU)
 350        .fault          = filemap_fault,
 351        .map_pages      = filemap_map_pages,
 352        .page_mkwrite   = filemap_page_mkwrite,
 353#endif
 354};
 355
 356static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 357{
 358        vma->vm_flags |= VM_DONTEXPAND;
 359        vma->vm_ops = &aio_ring_vm_ops;
 360        return 0;
 361}
 362
 363static const struct file_operations aio_ring_fops = {
 364        .mmap = aio_ring_mmap,
 365};
 366
 367#if IS_ENABLED(CONFIG_MIGRATION)
 368static int aio_migratepage(struct address_space *mapping, struct page *new,
 369                        struct page *old, enum migrate_mode mode)
 370{
 371        struct kioctx *ctx;
 372        unsigned long flags;
 373        pgoff_t idx;
 374        int rc;
 375
 376        /*
 377         * We cannot support the _NO_COPY case here, because copy needs to
 378         * happen under the ctx->completion_lock. That does not work with the
 379         * migration workflow of MIGRATE_SYNC_NO_COPY.
 380         */
 381        if (mode == MIGRATE_SYNC_NO_COPY)
 382                return -EINVAL;
 383
 384        rc = 0;
 385
 386        /* mapping->private_lock here protects against the kioctx teardown.  */
 387        spin_lock(&mapping->private_lock);
 388        ctx = mapping->private_data;
 389        if (!ctx) {
 390                rc = -EINVAL;
 391                goto out;
 392        }
 393
 394        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 395         * to the ring's head, and prevents page migration from mucking in
 396         * a partially initialized kiotx.
 397         */
 398        if (!mutex_trylock(&ctx->ring_lock)) {
 399                rc = -EAGAIN;
 400                goto out;
 401        }
 402
 403        idx = old->index;
 404        if (idx < (pgoff_t)ctx->nr_pages) {
 405                /* Make sure the old page hasn't already been changed */
 406                if (ctx->ring_pages[idx] != old)
 407                        rc = -EAGAIN;
 408        } else
 409                rc = -EINVAL;
 410
 411        if (rc != 0)
 412                goto out_unlock;
 413
 414        /* Writeback must be complete */
 415        BUG_ON(PageWriteback(old));
 416        get_page(new);
 417
 418        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 419        if (rc != MIGRATEPAGE_SUCCESS) {
 420                put_page(new);
 421                goto out_unlock;
 422        }
 423
 424        /* Take completion_lock to prevent other writes to the ring buffer
 425         * while the old page is copied to the new.  This prevents new
 426         * events from being lost.
 427         */
 428        spin_lock_irqsave(&ctx->completion_lock, flags);
 429        migrate_page_copy(new, old);
 430        BUG_ON(ctx->ring_pages[idx] != old);
 431        ctx->ring_pages[idx] = new;
 432        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 433
 434        /* The old page is no longer accessible. */
 435        put_page(old);
 436
 437out_unlock:
 438        mutex_unlock(&ctx->ring_lock);
 439out:
 440        spin_unlock(&mapping->private_lock);
 441        return rc;
 442}
 443#endif
 444
 445static const struct address_space_operations aio_ctx_aops = {
 446        .set_page_dirty = __set_page_dirty_no_writeback,
 447#if IS_ENABLED(CONFIG_MIGRATION)
 448        .migratepage    = aio_migratepage,
 449#endif
 450};
 451
 452static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 453{
 454        struct aio_ring *ring;
 455        struct mm_struct *mm = current->mm;
 456        unsigned long size, unused;
 457        int nr_pages;
 458        int i;
 459        struct file *file;
 460
 461        /* Compensate for the ring buffer's head/tail overlap entry */
 462        nr_events += 2; /* 1 is required, 2 for good luck */
 463
 464        size = sizeof(struct aio_ring);
 465        size += sizeof(struct io_event) * nr_events;
 466
 467        nr_pages = PFN_UP(size);
 468        if (nr_pages < 0)
 469                return -EINVAL;
 470
 471        file = aio_private_file(ctx, nr_pages);
 472        if (IS_ERR(file)) {
 473                ctx->aio_ring_file = NULL;
 474                return -ENOMEM;
 475        }
 476
 477        ctx->aio_ring_file = file;
 478        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 479                        / sizeof(struct io_event);
 480
 481        ctx->ring_pages = ctx->internal_pages;
 482        if (nr_pages > AIO_RING_PAGES) {
 483                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 484                                          GFP_KERNEL);
 485                if (!ctx->ring_pages) {
 486                        put_aio_ring_file(ctx);
 487                        return -ENOMEM;
 488                }
 489        }
 490
 491        for (i = 0; i < nr_pages; i++) {
 492                struct page *page;
 493                page = find_or_create_page(file->f_mapping,
 494                                           i, GFP_HIGHUSER | __GFP_ZERO);
 495                if (!page)
 496                        break;
 497                pr_debug("pid(%d) page[%d]->count=%d\n",
 498                         current->pid, i, page_count(page));
 499                SetPageUptodate(page);
 500                unlock_page(page);
 501
 502                ctx->ring_pages[i] = page;
 503        }
 504        ctx->nr_pages = i;
 505
 506        if (unlikely(i != nr_pages)) {
 507                aio_free_ring(ctx);
 508                return -ENOMEM;
 509        }
 510
 511        ctx->mmap_size = nr_pages * PAGE_SIZE;
 512        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 513
 514        if (down_write_killable(&mm->mmap_sem)) {
 515                ctx->mmap_size = 0;
 516                aio_free_ring(ctx);
 517                return -EINTR;
 518        }
 519
 520        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 521                                       PROT_READ | PROT_WRITE,
 522                                       MAP_SHARED, 0, &unused, NULL);
 523        up_write(&mm->mmap_sem);
 524        if (IS_ERR((void *)ctx->mmap_base)) {
 525                ctx->mmap_size = 0;
 526                aio_free_ring(ctx);
 527                return -ENOMEM;
 528        }
 529
 530        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 531
 532        ctx->user_id = ctx->mmap_base;
 533        ctx->nr_events = nr_events; /* trusted copy */
 534
 535        ring = kmap_atomic(ctx->ring_pages[0]);
 536        ring->nr = nr_events;   /* user copy */
 537        ring->id = ~0U;
 538        ring->head = ring->tail = 0;
 539        ring->magic = AIO_RING_MAGIC;
 540        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 541        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 542        ring->header_length = sizeof(struct aio_ring);
 543        kunmap_atomic(ring);
 544        flush_dcache_page(ctx->ring_pages[0]);
 545
 546        return 0;
 547}
 548
 549#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 550#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 551#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 552
 553void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 554{
 555        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
 556        struct kioctx *ctx = req->ki_ctx;
 557        unsigned long flags;
 558
 559        spin_lock_irqsave(&ctx->ctx_lock, flags);
 560
 561        if (!req->ki_list.next)
 562                list_add(&req->ki_list, &ctx->active_reqs);
 563
 564        req->ki_cancel = cancel;
 565
 566        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 567}
 568EXPORT_SYMBOL(kiocb_set_cancel_fn);
 569
 570static int kiocb_cancel(struct aio_kiocb *kiocb)
 571{
 572        kiocb_cancel_fn *old, *cancel;
 573
 574        /*
 575         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 576         * actually has a cancel function, hence the cmpxchg()
 577         */
 578
 579        cancel = ACCESS_ONCE(kiocb->ki_cancel);
 580        do {
 581                if (!cancel || cancel == KIOCB_CANCELLED)
 582                        return -EINVAL;
 583
 584                old = cancel;
 585                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 586        } while (cancel != old);
 587
 588        return cancel(&kiocb->common);
 589}
 590
 591static void free_ioctx(struct work_struct *work)
 592{
 593        struct kioctx *ctx = container_of(work, struct kioctx, free_work);
 594
 595        pr_debug("freeing %p\n", ctx);
 596
 597        aio_free_ring(ctx);
 598        free_percpu(ctx->cpu);
 599        percpu_ref_exit(&ctx->reqs);
 600        percpu_ref_exit(&ctx->users);
 601        kmem_cache_free(kioctx_cachep, ctx);
 602}
 603
 604static void free_ioctx_reqs(struct percpu_ref *ref)
 605{
 606        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 607
 608        /* At this point we know that there are no any in-flight requests */
 609        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 610                complete(&ctx->rq_wait->comp);
 611
 612        INIT_WORK(&ctx->free_work, free_ioctx);
 613        schedule_work(&ctx->free_work);
 614}
 615
 616/*
 617 * When this function runs, the kioctx has been removed from the "hash table"
 618 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 619 * now it's safe to cancel any that need to be.
 620 */
 621static void free_ioctx_users(struct percpu_ref *ref)
 622{
 623        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 624        struct aio_kiocb *req;
 625
 626        spin_lock_irq(&ctx->ctx_lock);
 627
 628        while (!list_empty(&ctx->active_reqs)) {
 629                req = list_first_entry(&ctx->active_reqs,
 630                                       struct aio_kiocb, ki_list);
 631
 632                list_del_init(&req->ki_list);
 633                kiocb_cancel(req);
 634        }
 635
 636        spin_unlock_irq(&ctx->ctx_lock);
 637
 638        percpu_ref_kill(&ctx->reqs);
 639        percpu_ref_put(&ctx->reqs);
 640}
 641
 642static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 643{
 644        unsigned i, new_nr;
 645        struct kioctx_table *table, *old;
 646        struct aio_ring *ring;
 647
 648        spin_lock(&mm->ioctx_lock);
 649        table = rcu_dereference_raw(mm->ioctx_table);
 650
 651        while (1) {
 652                if (table)
 653                        for (i = 0; i < table->nr; i++)
 654                                if (!table->table[i]) {
 655                                        ctx->id = i;
 656                                        table->table[i] = ctx;
 657                                        spin_unlock(&mm->ioctx_lock);
 658
 659                                        /* While kioctx setup is in progress,
 660                                         * we are protected from page migration
 661                                         * changes ring_pages by ->ring_lock.
 662                                         */
 663                                        ring = kmap_atomic(ctx->ring_pages[0]);
 664                                        ring->id = ctx->id;
 665                                        kunmap_atomic(ring);
 666                                        return 0;
 667                                }
 668
 669                new_nr = (table ? table->nr : 1) * 4;
 670                spin_unlock(&mm->ioctx_lock);
 671
 672                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 673                                new_nr, GFP_KERNEL);
 674                if (!table)
 675                        return -ENOMEM;
 676
 677                table->nr = new_nr;
 678
 679                spin_lock(&mm->ioctx_lock);
 680                old = rcu_dereference_raw(mm->ioctx_table);
 681
 682                if (!old) {
 683                        rcu_assign_pointer(mm->ioctx_table, table);
 684                } else if (table->nr > old->nr) {
 685                        memcpy(table->table, old->table,
 686                               old->nr * sizeof(struct kioctx *));
 687
 688                        rcu_assign_pointer(mm->ioctx_table, table);
 689                        kfree_rcu(old, rcu);
 690                } else {
 691                        kfree(table);
 692                        table = old;
 693                }
 694        }
 695}
 696
 697static void aio_nr_sub(unsigned nr)
 698{
 699        spin_lock(&aio_nr_lock);
 700        if (WARN_ON(aio_nr - nr > aio_nr))
 701                aio_nr = 0;
 702        else
 703                aio_nr -= nr;
 704        spin_unlock(&aio_nr_lock);
 705}
 706
 707/* ioctx_alloc
 708 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 709 */
 710static struct kioctx *ioctx_alloc(unsigned nr_events)
 711{
 712        struct mm_struct *mm = current->mm;
 713        struct kioctx *ctx;
 714        int err = -ENOMEM;
 715
 716        /*
 717         * Store the original nr_events -- what userspace passed to io_setup(),
 718         * for counting against the global limit -- before it changes.
 719         */
 720        unsigned int max_reqs = nr_events;
 721
 722        /*
 723         * We keep track of the number of available ringbuffer slots, to prevent
 724         * overflow (reqs_available), and we also use percpu counters for this.
 725         *
 726         * So since up to half the slots might be on other cpu's percpu counters
 727         * and unavailable, double nr_events so userspace sees what they
 728         * expected: additionally, we move req_batch slots to/from percpu
 729         * counters at a time, so make sure that isn't 0:
 730         */
 731        nr_events = max(nr_events, num_possible_cpus() * 4);
 732        nr_events *= 2;
 733
 734        /* Prevent overflows */
 735        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 736                pr_debug("ENOMEM: nr_events too high\n");
 737                return ERR_PTR(-EINVAL);
 738        }
 739
 740        if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 741                return ERR_PTR(-EAGAIN);
 742
 743        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 744        if (!ctx)
 745                return ERR_PTR(-ENOMEM);
 746
 747        ctx->max_reqs = max_reqs;
 748
 749        spin_lock_init(&ctx->ctx_lock);
 750        spin_lock_init(&ctx->completion_lock);
 751        mutex_init(&ctx->ring_lock);
 752        /* Protect against page migration throughout kiotx setup by keeping
 753         * the ring_lock mutex held until setup is complete. */
 754        mutex_lock(&ctx->ring_lock);
 755        init_waitqueue_head(&ctx->wait);
 756
 757        INIT_LIST_HEAD(&ctx->active_reqs);
 758
 759        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 760                goto err;
 761
 762        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 763                goto err;
 764
 765        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 766        if (!ctx->cpu)
 767                goto err;
 768
 769        err = aio_setup_ring(ctx, nr_events);
 770        if (err < 0)
 771                goto err;
 772
 773        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 774        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 775        if (ctx->req_batch < 1)
 776                ctx->req_batch = 1;
 777
 778        /* limit the number of system wide aios */
 779        spin_lock(&aio_nr_lock);
 780        if (aio_nr + ctx->max_reqs > aio_max_nr ||
 781            aio_nr + ctx->max_reqs < aio_nr) {
 782                spin_unlock(&aio_nr_lock);
 783                err = -EAGAIN;
 784                goto err_ctx;
 785        }
 786        aio_nr += ctx->max_reqs;
 787        spin_unlock(&aio_nr_lock);
 788
 789        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 790        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 791
 792        err = ioctx_add_table(ctx, mm);
 793        if (err)
 794                goto err_cleanup;
 795
 796        /* Release the ring_lock mutex now that all setup is complete. */
 797        mutex_unlock(&ctx->ring_lock);
 798
 799        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 800                 ctx, ctx->user_id, mm, ctx->nr_events);
 801        return ctx;
 802
 803err_cleanup:
 804        aio_nr_sub(ctx->max_reqs);
 805err_ctx:
 806        atomic_set(&ctx->dead, 1);
 807        if (ctx->mmap_size)
 808                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 809        aio_free_ring(ctx);
 810err:
 811        mutex_unlock(&ctx->ring_lock);
 812        free_percpu(ctx->cpu);
 813        percpu_ref_exit(&ctx->reqs);
 814        percpu_ref_exit(&ctx->users);
 815        kmem_cache_free(kioctx_cachep, ctx);
 816        pr_debug("error allocating ioctx %d\n", err);
 817        return ERR_PTR(err);
 818}
 819
 820/* kill_ioctx
 821 *      Cancels all outstanding aio requests on an aio context.  Used
 822 *      when the processes owning a context have all exited to encourage
 823 *      the rapid destruction of the kioctx.
 824 */
 825static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 826                      struct ctx_rq_wait *wait)
 827{
 828        struct kioctx_table *table;
 829
 830        spin_lock(&mm->ioctx_lock);
 831        if (atomic_xchg(&ctx->dead, 1)) {
 832                spin_unlock(&mm->ioctx_lock);
 833                return -EINVAL;
 834        }
 835
 836        table = rcu_dereference_raw(mm->ioctx_table);
 837        WARN_ON(ctx != table->table[ctx->id]);
 838        table->table[ctx->id] = NULL;
 839        spin_unlock(&mm->ioctx_lock);
 840
 841        /* percpu_ref_kill() will do the necessary call_rcu() */
 842        wake_up_all(&ctx->wait);
 843
 844        /*
 845         * It'd be more correct to do this in free_ioctx(), after all
 846         * the outstanding kiocbs have finished - but by then io_destroy
 847         * has already returned, so io_setup() could potentially return
 848         * -EAGAIN with no ioctxs actually in use (as far as userspace
 849         *  could tell).
 850         */
 851        aio_nr_sub(ctx->max_reqs);
 852
 853        if (ctx->mmap_size)
 854                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 855
 856        ctx->rq_wait = wait;
 857        percpu_ref_kill(&ctx->users);
 858        return 0;
 859}
 860
 861/*
 862 * exit_aio: called when the last user of mm goes away.  At this point, there is
 863 * no way for any new requests to be submited or any of the io_* syscalls to be
 864 * called on the context.
 865 *
 866 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 867 * them.
 868 */
 869void exit_aio(struct mm_struct *mm)
 870{
 871        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 872        struct ctx_rq_wait wait;
 873        int i, skipped;
 874
 875        if (!table)
 876                return;
 877
 878        atomic_set(&wait.count, table->nr);
 879        init_completion(&wait.comp);
 880
 881        skipped = 0;
 882        for (i = 0; i < table->nr; ++i) {
 883                struct kioctx *ctx = table->table[i];
 884
 885                if (!ctx) {
 886                        skipped++;
 887                        continue;
 888                }
 889
 890                /*
 891                 * We don't need to bother with munmap() here - exit_mmap(mm)
 892                 * is coming and it'll unmap everything. And we simply can't,
 893                 * this is not necessarily our ->mm.
 894                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 895                 * that it needs to unmap the area, just set it to 0.
 896                 */
 897                ctx->mmap_size = 0;
 898                kill_ioctx(mm, ctx, &wait);
 899        }
 900
 901        if (!atomic_sub_and_test(skipped, &wait.count)) {
 902                /* Wait until all IO for the context are done. */
 903                wait_for_completion(&wait.comp);
 904        }
 905
 906        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 907        kfree(table);
 908}
 909
 910static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 911{
 912        struct kioctx_cpu *kcpu;
 913        unsigned long flags;
 914
 915        local_irq_save(flags);
 916        kcpu = this_cpu_ptr(ctx->cpu);
 917        kcpu->reqs_available += nr;
 918
 919        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 920                kcpu->reqs_available -= ctx->req_batch;
 921                atomic_add(ctx->req_batch, &ctx->reqs_available);
 922        }
 923
 924        local_irq_restore(flags);
 925}
 926
 927static bool get_reqs_available(struct kioctx *ctx)
 928{
 929        struct kioctx_cpu *kcpu;
 930        bool ret = false;
 931        unsigned long flags;
 932
 933        local_irq_save(flags);
 934        kcpu = this_cpu_ptr(ctx->cpu);
 935        if (!kcpu->reqs_available) {
 936                int old, avail = atomic_read(&ctx->reqs_available);
 937
 938                do {
 939                        if (avail < ctx->req_batch)
 940                                goto out;
 941
 942                        old = avail;
 943                        avail = atomic_cmpxchg(&ctx->reqs_available,
 944                                               avail, avail - ctx->req_batch);
 945                } while (avail != old);
 946
 947                kcpu->reqs_available += ctx->req_batch;
 948        }
 949
 950        ret = true;
 951        kcpu->reqs_available--;
 952out:
 953        local_irq_restore(flags);
 954        return ret;
 955}
 956
 957/* refill_reqs_available
 958 *      Updates the reqs_available reference counts used for tracking the
 959 *      number of free slots in the completion ring.  This can be called
 960 *      from aio_complete() (to optimistically update reqs_available) or
 961 *      from aio_get_req() (the we're out of events case).  It must be
 962 *      called holding ctx->completion_lock.
 963 */
 964static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 965                                  unsigned tail)
 966{
 967        unsigned events_in_ring, completed;
 968
 969        /* Clamp head since userland can write to it. */
 970        head %= ctx->nr_events;
 971        if (head <= tail)
 972                events_in_ring = tail - head;
 973        else
 974                events_in_ring = ctx->nr_events - (head - tail);
 975
 976        completed = ctx->completed_events;
 977        if (events_in_ring < completed)
 978                completed -= events_in_ring;
 979        else
 980                completed = 0;
 981
 982        if (!completed)
 983                return;
 984
 985        ctx->completed_events -= completed;
 986        put_reqs_available(ctx, completed);
 987}
 988
 989/* user_refill_reqs_available
 990 *      Called to refill reqs_available when aio_get_req() encounters an
 991 *      out of space in the completion ring.
 992 */
 993static void user_refill_reqs_available(struct kioctx *ctx)
 994{
 995        spin_lock_irq(&ctx->completion_lock);
 996        if (ctx->completed_events) {
 997                struct aio_ring *ring;
 998                unsigned head;
 999
1000                /* Access of ring->head may race with aio_read_events_ring()
1001                 * here, but that's okay since whether we read the old version
1002                 * or the new version, and either will be valid.  The important
1003                 * part is that head cannot pass tail since we prevent
1004                 * aio_complete() from updating tail by holding
1005                 * ctx->completion_lock.  Even if head is invalid, the check
1006                 * against ctx->completed_events below will make sure we do the
1007                 * safe/right thing.
1008                 */
1009                ring = kmap_atomic(ctx->ring_pages[0]);
1010                head = ring->head;
1011                kunmap_atomic(ring);
1012
1013                refill_reqs_available(ctx, head, ctx->tail);
1014        }
1015
1016        spin_unlock_irq(&ctx->completion_lock);
1017}
1018
1019/* aio_get_req
1020 *      Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1022 */
1023static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1024{
1025        struct aio_kiocb *req;
1026
1027        if (!get_reqs_available(ctx)) {
1028                user_refill_reqs_available(ctx);
1029                if (!get_reqs_available(ctx))
1030                        return NULL;
1031        }
1032
1033        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1034        if (unlikely(!req))
1035                goto out_put;
1036
1037        percpu_ref_get(&ctx->reqs);
1038
1039        req->ki_ctx = ctx;
1040        return req;
1041out_put:
1042        put_reqs_available(ctx, 1);
1043        return NULL;
1044}
1045
1046static void kiocb_free(struct aio_kiocb *req)
1047{
1048        if (req->common.ki_filp)
1049                fput(req->common.ki_filp);
1050        if (req->ki_eventfd != NULL)
1051                eventfd_ctx_put(req->ki_eventfd);
1052        kmem_cache_free(kiocb_cachep, req);
1053}
1054
1055static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1056{
1057        struct aio_ring __user *ring  = (void __user *)ctx_id;
1058        struct mm_struct *mm = current->mm;
1059        struct kioctx *ctx, *ret = NULL;
1060        struct kioctx_table *table;
1061        unsigned id;
1062
1063        if (get_user(id, &ring->id))
1064                return NULL;
1065
1066        rcu_read_lock();
1067        table = rcu_dereference(mm->ioctx_table);
1068
1069        if (!table || id >= table->nr)
1070                goto out;
1071
1072        ctx = table->table[id];
1073        if (ctx && ctx->user_id == ctx_id) {
1074                percpu_ref_get(&ctx->users);
1075                ret = ctx;
1076        }
1077out:
1078        rcu_read_unlock();
1079        return ret;
1080}
1081
1082/* aio_complete
1083 *      Called when the io request on the given iocb is complete.
1084 */
1085static void aio_complete(struct kiocb *kiocb, long res, long res2)
1086{
1087        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1088        struct kioctx   *ctx = iocb->ki_ctx;
1089        struct aio_ring *ring;
1090        struct io_event *ev_page, *event;
1091        unsigned tail, pos, head;
1092        unsigned long   flags;
1093
1094        if (kiocb->ki_flags & IOCB_WRITE) {
1095                struct file *file = kiocb->ki_filp;
1096
1097                /*
1098                 * Tell lockdep we inherited freeze protection from submission
1099                 * thread.
1100                 */
1101                if (S_ISREG(file_inode(file)->i_mode))
1102                        __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1103                file_end_write(file);
1104        }
1105
1106        /*
1107         * Special case handling for sync iocbs:
1108         *  - events go directly into the iocb for fast handling
1109         *  - the sync task with the iocb in its stack holds the single iocb
1110         *    ref, no other paths have a way to get another ref
1111         *  - the sync task helpfully left a reference to itself in the iocb
1112         */
1113        BUG_ON(is_sync_kiocb(kiocb));
1114
1115        if (iocb->ki_list.next) {
1116                unsigned long flags;
1117
1118                spin_lock_irqsave(&ctx->ctx_lock, flags);
1119                list_del(&iocb->ki_list);
1120                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1121        }
1122
1123        /*
1124         * Add a completion event to the ring buffer. Must be done holding
1125         * ctx->completion_lock to prevent other code from messing with the tail
1126         * pointer since we might be called from irq context.
1127         */
1128        spin_lock_irqsave(&ctx->completion_lock, flags);
1129
1130        tail = ctx->tail;
1131        pos = tail + AIO_EVENTS_OFFSET;
1132
1133        if (++tail >= ctx->nr_events)
1134                tail = 0;
1135
1136        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1137        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1138
1139        event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1140        event->data = iocb->ki_user_data;
1141        event->res = res;
1142        event->res2 = res2;
1143
1144        kunmap_atomic(ev_page);
1145        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1146
1147        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1148                 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1149                 res, res2);
1150
1151        /* after flagging the request as done, we
1152         * must never even look at it again
1153         */
1154        smp_wmb();      /* make event visible before updating tail */
1155
1156        ctx->tail = tail;
1157
1158        ring = kmap_atomic(ctx->ring_pages[0]);
1159        head = ring->head;
1160        ring->tail = tail;
1161        kunmap_atomic(ring);
1162        flush_dcache_page(ctx->ring_pages[0]);
1163
1164        ctx->completed_events++;
1165        if (ctx->completed_events > 1)
1166                refill_reqs_available(ctx, head, tail);
1167        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1168
1169        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1170
1171        /*
1172         * Check if the user asked us to deliver the result through an
1173         * eventfd. The eventfd_signal() function is safe to be called
1174         * from IRQ context.
1175         */
1176        if (iocb->ki_eventfd != NULL)
1177                eventfd_signal(iocb->ki_eventfd, 1);
1178
1179        /* everything turned out well, dispose of the aiocb. */
1180        kiocb_free(iocb);
1181
1182        /*
1183         * We have to order our ring_info tail store above and test
1184         * of the wait list below outside the wait lock.  This is
1185         * like in wake_up_bit() where clearing a bit has to be
1186         * ordered with the unlocked test.
1187         */
1188        smp_mb();
1189
1190        if (waitqueue_active(&ctx->wait))
1191                wake_up(&ctx->wait);
1192
1193        percpu_ref_put(&ctx->reqs);
1194}
1195
1196/* aio_read_events_ring
1197 *      Pull an event off of the ioctx's event ring.  Returns the number of
1198 *      events fetched
1199 */
1200static long aio_read_events_ring(struct kioctx *ctx,
1201                                 struct io_event __user *event, long nr)
1202{
1203        struct aio_ring *ring;
1204        unsigned head, tail, pos;
1205        long ret = 0;
1206        int copy_ret;
1207
1208        /*
1209         * The mutex can block and wake us up and that will cause
1210         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211         * and repeat. This should be rare enough that it doesn't cause
1212         * peformance issues. See the comment in read_events() for more detail.
1213         */
1214        sched_annotate_sleep();
1215        mutex_lock(&ctx->ring_lock);
1216
1217        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1218        ring = kmap_atomic(ctx->ring_pages[0]);
1219        head = ring->head;
1220        tail = ring->tail;
1221        kunmap_atomic(ring);
1222
1223        /*
1224         * Ensure that once we've read the current tail pointer, that
1225         * we also see the events that were stored up to the tail.
1226         */
1227        smp_rmb();
1228
1229        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1230
1231        if (head == tail)
1232                goto out;
1233
1234        head %= ctx->nr_events;
1235        tail %= ctx->nr_events;
1236
1237        while (ret < nr) {
1238                long avail;
1239                struct io_event *ev;
1240                struct page *page;
1241
1242                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1243                if (head == tail)
1244                        break;
1245
1246                avail = min(avail, nr - ret);
1247                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1248                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1249
1250                pos = head + AIO_EVENTS_OFFSET;
1251                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1252                pos %= AIO_EVENTS_PER_PAGE;
1253
1254                ev = kmap(page);
1255                copy_ret = copy_to_user(event + ret, ev + pos,
1256                                        sizeof(*ev) * avail);
1257                kunmap(page);
1258
1259                if (unlikely(copy_ret)) {
1260                        ret = -EFAULT;
1261                        goto out;
1262                }
1263
1264                ret += avail;
1265                head += avail;
1266                head %= ctx->nr_events;
1267        }
1268
1269        ring = kmap_atomic(ctx->ring_pages[0]);
1270        ring->head = head;
1271        kunmap_atomic(ring);
1272        flush_dcache_page(ctx->ring_pages[0]);
1273
1274        pr_debug("%li  h%u t%u\n", ret, head, tail);
1275out:
1276        mutex_unlock(&ctx->ring_lock);
1277
1278        return ret;
1279}
1280
1281static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1282                            struct io_event __user *event, long *i)
1283{
1284        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1285
1286        if (ret > 0)
1287                *i += ret;
1288
1289        if (unlikely(atomic_read(&ctx->dead)))
1290                ret = -EINVAL;
1291
1292        if (!*i)
1293                *i = ret;
1294
1295        return ret < 0 || *i >= min_nr;
1296}
1297
1298static long read_events(struct kioctx *ctx, long min_nr, long nr,
1299                        struct io_event __user *event,
1300                        struct timespec __user *timeout)
1301{
1302        ktime_t until = KTIME_MAX;
1303        long ret = 0;
1304
1305        if (timeout) {
1306                struct timespec ts;
1307
1308                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1309                        return -EFAULT;
1310
1311                until = timespec_to_ktime(ts);
1312        }
1313
1314        /*
1315         * Note that aio_read_events() is being called as the conditional - i.e.
1316         * we're calling it after prepare_to_wait() has set task state to
1317         * TASK_INTERRUPTIBLE.
1318         *
1319         * But aio_read_events() can block, and if it blocks it's going to flip
1320         * the task state back to TASK_RUNNING.
1321         *
1322         * This should be ok, provided it doesn't flip the state back to
1323         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1324         * will only happen if the mutex_lock() call blocks, and we then find
1325         * the ringbuffer empty. So in practice we should be ok, but it's
1326         * something to be aware of when touching this code.
1327         */
1328        if (until == 0)
1329                aio_read_events(ctx, min_nr, nr, event, &ret);
1330        else
1331                wait_event_interruptible_hrtimeout(ctx->wait,
1332                                aio_read_events(ctx, min_nr, nr, event, &ret),
1333                                until);
1334
1335        if (!ret && signal_pending(current))
1336                ret = -EINTR;
1337
1338        return ret;
1339}
1340
1341/* sys_io_setup:
1342 *      Create an aio_context capable of receiving at least nr_events.
1343 *      ctxp must not point to an aio_context that already exists, and
1344 *      must be initialized to 0 prior to the call.  On successful
1345 *      creation of the aio_context, *ctxp is filled in with the resulting 
1346 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1347 *      if the specified nr_events exceeds internal limits.  May fail 
1348 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1349 *      of available events.  May fail with -ENOMEM if insufficient kernel
1350 *      resources are available.  May fail with -EFAULT if an invalid
1351 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1352 *      implemented.
1353 */
1354SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1355{
1356        struct kioctx *ioctx = NULL;
1357        unsigned long ctx;
1358        long ret;
1359
1360        ret = get_user(ctx, ctxp);
1361        if (unlikely(ret))
1362                goto out;
1363
1364        ret = -EINVAL;
1365        if (unlikely(ctx || nr_events == 0)) {
1366                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1367                         ctx, nr_events);
1368                goto out;
1369        }
1370
1371        ioctx = ioctx_alloc(nr_events);
1372        ret = PTR_ERR(ioctx);
1373        if (!IS_ERR(ioctx)) {
1374                ret = put_user(ioctx->user_id, ctxp);
1375                if (ret)
1376                        kill_ioctx(current->mm, ioctx, NULL);
1377                percpu_ref_put(&ioctx->users);
1378        }
1379
1380out:
1381        return ret;
1382}
1383
1384#ifdef CONFIG_COMPAT
1385COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1386{
1387        struct kioctx *ioctx = NULL;
1388        unsigned long ctx;
1389        long ret;
1390
1391        ret = get_user(ctx, ctx32p);
1392        if (unlikely(ret))
1393                goto out;
1394
1395        ret = -EINVAL;
1396        if (unlikely(ctx || nr_events == 0)) {
1397                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1398                         ctx, nr_events);
1399                goto out;
1400        }
1401
1402        ioctx = ioctx_alloc(nr_events);
1403        ret = PTR_ERR(ioctx);
1404        if (!IS_ERR(ioctx)) {
1405                /* truncating is ok because it's a user address */
1406                ret = put_user((u32)ioctx->user_id, ctx32p);
1407                if (ret)
1408                        kill_ioctx(current->mm, ioctx, NULL);
1409                percpu_ref_put(&ioctx->users);
1410        }
1411
1412out:
1413        return ret;
1414}
1415#endif
1416
1417/* sys_io_destroy:
1418 *      Destroy the aio_context specified.  May cancel any outstanding 
1419 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1420 *      implemented.  May fail with -EINVAL if the context pointed to
1421 *      is invalid.
1422 */
1423SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1424{
1425        struct kioctx *ioctx = lookup_ioctx(ctx);
1426        if (likely(NULL != ioctx)) {
1427                struct ctx_rq_wait wait;
1428                int ret;
1429
1430                init_completion(&wait.comp);
1431                atomic_set(&wait.count, 1);
1432
1433                /* Pass requests_done to kill_ioctx() where it can be set
1434                 * in a thread-safe way. If we try to set it here then we have
1435                 * a race condition if two io_destroy() called simultaneously.
1436                 */
1437                ret = kill_ioctx(current->mm, ioctx, &wait);
1438                percpu_ref_put(&ioctx->users);
1439
1440                /* Wait until all IO for the context are done. Otherwise kernel
1441                 * keep using user-space buffers even if user thinks the context
1442                 * is destroyed.
1443                 */
1444                if (!ret)
1445                        wait_for_completion(&wait.comp);
1446
1447                return ret;
1448        }
1449        pr_debug("EINVAL: invalid context id\n");
1450        return -EINVAL;
1451}
1452
1453static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1454                bool vectored, bool compat, struct iov_iter *iter)
1455{
1456        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1457        size_t len = iocb->aio_nbytes;
1458
1459        if (!vectored) {
1460                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1461                *iovec = NULL;
1462                return ret;
1463        }
1464#ifdef CONFIG_COMPAT
1465        if (compat)
1466                return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1467                                iter);
1468#endif
1469        return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1470}
1471
1472static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1473{
1474        switch (ret) {
1475        case -EIOCBQUEUED:
1476                return ret;
1477        case -ERESTARTSYS:
1478        case -ERESTARTNOINTR:
1479        case -ERESTARTNOHAND:
1480        case -ERESTART_RESTARTBLOCK:
1481                /*
1482                 * There's no easy way to restart the syscall since other AIO's
1483                 * may be already running. Just fail this IO with EINTR.
1484                 */
1485                ret = -EINTR;
1486                /*FALLTHRU*/
1487        default:
1488                aio_complete(req, ret, 0);
1489                return 0;
1490        }
1491}
1492
1493static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1494                bool compat)
1495{
1496        struct file *file = req->ki_filp;
1497        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1498        struct iov_iter iter;
1499        ssize_t ret;
1500
1501        if (unlikely(!(file->f_mode & FMODE_READ)))
1502                return -EBADF;
1503        if (unlikely(!file->f_op->read_iter))
1504                return -EINVAL;
1505
1506        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1507        if (ret)
1508                return ret;
1509        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1510        if (!ret)
1511                ret = aio_ret(req, call_read_iter(file, req, &iter));
1512        kfree(iovec);
1513        return ret;
1514}
1515
1516static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1517                bool compat)
1518{
1519        struct file *file = req->ki_filp;
1520        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1521        struct iov_iter iter;
1522        ssize_t ret;
1523
1524        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1525                return -EBADF;
1526        if (unlikely(!file->f_op->write_iter))
1527                return -EINVAL;
1528
1529        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1530        if (ret)
1531                return ret;
1532        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1533        if (!ret) {
1534                req->ki_flags |= IOCB_WRITE;
1535                file_start_write(file);
1536                ret = aio_ret(req, call_write_iter(file, req, &iter));
1537                /*
1538                 * We release freeze protection in aio_complete().  Fool lockdep
1539                 * by telling it the lock got released so that it doesn't
1540                 * complain about held lock when we return to userspace.
1541                 */
1542                if (S_ISREG(file_inode(file)->i_mode))
1543                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1544        }
1545        kfree(iovec);
1546        return ret;
1547}
1548
1549static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1550                         struct iocb *iocb, bool compat)
1551{
1552        struct aio_kiocb *req;
1553        struct file *file;
1554        ssize_t ret;
1555
1556        /* enforce forwards compatibility on users */
1557        if (unlikely(iocb->aio_reserved2)) {
1558                pr_debug("EINVAL: reserve field set\n");
1559                return -EINVAL;
1560        }
1561
1562        /* prevent overflows */
1563        if (unlikely(
1564            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1565            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1566            ((ssize_t)iocb->aio_nbytes < 0)
1567           )) {
1568                pr_debug("EINVAL: overflow check\n");
1569                return -EINVAL;
1570        }
1571
1572        req = aio_get_req(ctx);
1573        if (unlikely(!req))
1574                return -EAGAIN;
1575
1576        req->common.ki_filp = file = fget(iocb->aio_fildes);
1577        if (unlikely(!req->common.ki_filp)) {
1578                ret = -EBADF;
1579                goto out_put_req;
1580        }
1581        req->common.ki_pos = iocb->aio_offset;
1582        req->common.ki_complete = aio_complete;
1583        req->common.ki_flags = iocb_flags(req->common.ki_filp);
1584        req->common.ki_hint = file_write_hint(file);
1585
1586        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1587                /*
1588                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1589                 * instance of the file* now. The file descriptor must be
1590                 * an eventfd() fd, and will be signaled for each completed
1591                 * event using the eventfd_signal() function.
1592                 */
1593                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1594                if (IS_ERR(req->ki_eventfd)) {
1595                        ret = PTR_ERR(req->ki_eventfd);
1596                        req->ki_eventfd = NULL;
1597                        goto out_put_req;
1598                }
1599
1600                req->common.ki_flags |= IOCB_EVENTFD;
1601        }
1602
1603        ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1604        if (unlikely(ret)) {
1605                pr_debug("EINVAL: aio_rw_flags\n");
1606                goto out_put_req;
1607        }
1608
1609        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1610        if (unlikely(ret)) {
1611                pr_debug("EFAULT: aio_key\n");
1612                goto out_put_req;
1613        }
1614
1615        req->ki_user_iocb = user_iocb;
1616        req->ki_user_data = iocb->aio_data;
1617
1618        get_file(file);
1619        switch (iocb->aio_lio_opcode) {
1620        case IOCB_CMD_PREAD:
1621                ret = aio_read(&req->common, iocb, false, compat);
1622                break;
1623        case IOCB_CMD_PWRITE:
1624                ret = aio_write(&req->common, iocb, false, compat);
1625                break;
1626        case IOCB_CMD_PREADV:
1627                ret = aio_read(&req->common, iocb, true, compat);
1628                break;
1629        case IOCB_CMD_PWRITEV:
1630                ret = aio_write(&req->common, iocb, true, compat);
1631                break;
1632        default:
1633                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1634                ret = -EINVAL;
1635                break;
1636        }
1637        fput(file);
1638
1639        if (ret && ret != -EIOCBQUEUED)
1640                goto out_put_req;
1641        return 0;
1642out_put_req:
1643        put_reqs_available(ctx, 1);
1644        percpu_ref_put(&ctx->reqs);
1645        kiocb_free(req);
1646        return ret;
1647}
1648
1649static long do_io_submit(aio_context_t ctx_id, long nr,
1650                          struct iocb __user *__user *iocbpp, bool compat)
1651{
1652        struct kioctx *ctx;
1653        long ret = 0;
1654        int i = 0;
1655        struct blk_plug plug;
1656
1657        if (unlikely(nr < 0))
1658                return -EINVAL;
1659
1660        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1661                nr = LONG_MAX/sizeof(*iocbpp);
1662
1663        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1664                return -EFAULT;
1665
1666        ctx = lookup_ioctx(ctx_id);
1667        if (unlikely(!ctx)) {
1668                pr_debug("EINVAL: invalid context id\n");
1669                return -EINVAL;
1670        }
1671
1672        blk_start_plug(&plug);
1673
1674        /*
1675         * AKPM: should this return a partial result if some of the IOs were
1676         * successfully submitted?
1677         */
1678        for (i=0; i<nr; i++) {
1679                struct iocb __user *user_iocb;
1680                struct iocb tmp;
1681
1682                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1683                        ret = -EFAULT;
1684                        break;
1685                }
1686
1687                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1688                        ret = -EFAULT;
1689                        break;
1690                }
1691
1692                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1693                if (ret)
1694                        break;
1695        }
1696        blk_finish_plug(&plug);
1697
1698        percpu_ref_put(&ctx->users);
1699        return i ? i : ret;
1700}
1701
1702/* sys_io_submit:
1703 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1704 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1705 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1706 *      *iocbpp[0] is not properly initialized, if the operation specified
1707 *      is invalid for the file descriptor in the iocb.  May fail with
1708 *      -EFAULT if any of the data structures point to invalid data.  May
1709 *      fail with -EBADF if the file descriptor specified in the first
1710 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1711 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1712 *      fail with -ENOSYS if not implemented.
1713 */
1714SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1715                struct iocb __user * __user *, iocbpp)
1716{
1717        return do_io_submit(ctx_id, nr, iocbpp, 0);
1718}
1719
1720#ifdef CONFIG_COMPAT
1721static inline long
1722copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1723{
1724        compat_uptr_t uptr;
1725        int i;
1726
1727        for (i = 0; i < nr; ++i) {
1728                if (get_user(uptr, ptr32 + i))
1729                        return -EFAULT;
1730                if (put_user(compat_ptr(uptr), ptr64 + i))
1731                        return -EFAULT;
1732        }
1733        return 0;
1734}
1735
1736#define MAX_AIO_SUBMITS         (PAGE_SIZE/sizeof(struct iocb *))
1737
1738COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1739                       int, nr, u32 __user *, iocb)
1740{
1741        struct iocb __user * __user *iocb64;
1742        long ret;
1743
1744        if (unlikely(nr < 0))
1745                return -EINVAL;
1746
1747        if (nr > MAX_AIO_SUBMITS)
1748                nr = MAX_AIO_SUBMITS;
1749
1750        iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1751        ret = copy_iocb(nr, iocb, iocb64);
1752        if (!ret)
1753                ret = do_io_submit(ctx_id, nr, iocb64, 1);
1754        return ret;
1755}
1756#endif
1757
1758/* lookup_kiocb
1759 *      Finds a given iocb for cancellation.
1760 */
1761static struct aio_kiocb *
1762lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1763{
1764        struct aio_kiocb *kiocb;
1765
1766        assert_spin_locked(&ctx->ctx_lock);
1767
1768        if (key != KIOCB_KEY)
1769                return NULL;
1770
1771        /* TODO: use a hash or array, this sucks. */
1772        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1773                if (kiocb->ki_user_iocb == iocb)
1774                        return kiocb;
1775        }
1776        return NULL;
1777}
1778
1779/* sys_io_cancel:
1780 *      Attempts to cancel an iocb previously passed to io_submit.  If
1781 *      the operation is successfully cancelled, the resulting event is
1782 *      copied into the memory pointed to by result without being placed
1783 *      into the completion queue and 0 is returned.  May fail with
1784 *      -EFAULT if any of the data structures pointed to are invalid.
1785 *      May fail with -EINVAL if aio_context specified by ctx_id is
1786 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1787 *      cancelled.  Will fail with -ENOSYS if not implemented.
1788 */
1789SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1790                struct io_event __user *, result)
1791{
1792        struct kioctx *ctx;
1793        struct aio_kiocb *kiocb;
1794        u32 key;
1795        int ret;
1796
1797        ret = get_user(key, &iocb->aio_key);
1798        if (unlikely(ret))
1799                return -EFAULT;
1800
1801        ctx = lookup_ioctx(ctx_id);
1802        if (unlikely(!ctx))
1803                return -EINVAL;
1804
1805        spin_lock_irq(&ctx->ctx_lock);
1806
1807        kiocb = lookup_kiocb(ctx, iocb, key);
1808        if (kiocb)
1809                ret = kiocb_cancel(kiocb);
1810        else
1811                ret = -EINVAL;
1812
1813        spin_unlock_irq(&ctx->ctx_lock);
1814
1815        if (!ret) {
1816                /*
1817                 * The result argument is no longer used - the io_event is
1818                 * always delivered via the ring buffer. -EINPROGRESS indicates
1819                 * cancellation is progress:
1820                 */
1821                ret = -EINPROGRESS;
1822        }
1823
1824        percpu_ref_put(&ctx->users);
1825
1826        return ret;
1827}
1828
1829/* io_getevents:
1830 *      Attempts to read at least min_nr events and up to nr events from
1831 *      the completion queue for the aio_context specified by ctx_id. If
1832 *      it succeeds, the number of read events is returned. May fail with
1833 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1834 *      out of range, if timeout is out of range.  May fail with -EFAULT
1835 *      if any of the memory specified is invalid.  May return 0 or
1836 *      < min_nr if the timeout specified by timeout has elapsed
1837 *      before sufficient events are available, where timeout == NULL
1838 *      specifies an infinite timeout. Note that the timeout pointed to by
1839 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1840 */
1841SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1842                long, min_nr,
1843                long, nr,
1844                struct io_event __user *, events,
1845                struct timespec __user *, timeout)
1846{
1847        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1848        long ret = -EINVAL;
1849
1850        if (likely(ioctx)) {
1851                if (likely(min_nr <= nr && min_nr >= 0))
1852                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1853                percpu_ref_put(&ioctx->users);
1854        }
1855        return ret;
1856}
1857
1858#ifdef CONFIG_COMPAT
1859COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1860                       compat_long_t, min_nr,
1861                       compat_long_t, nr,
1862                       struct io_event __user *, events,
1863                       struct compat_timespec __user *, timeout)
1864{
1865        struct timespec t;
1866        struct timespec __user *ut = NULL;
1867
1868        if (timeout) {
1869                if (compat_get_timespec(&t, timeout))
1870                        return -EFAULT;
1871
1872                ut = compat_alloc_user_space(sizeof(*ut));
1873                if (copy_to_user(ut, &t, sizeof(t)))
1874                        return -EFAULT;
1875        }
1876        return sys_io_getevents(ctx_id, min_nr, nr, events, ut);
1877}
1878#endif
1879