linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28#include "compression.h"
  29
  30static struct kmem_cache *btrfs_ordered_extent_cache;
  31
  32static u64 entry_end(struct btrfs_ordered_extent *entry)
  33{
  34        if (entry->file_offset + entry->len < entry->file_offset)
  35                return (u64)-1;
  36        return entry->file_offset + entry->len;
  37}
  38
  39/* returns NULL if the insertion worked, or it returns the node it did find
  40 * in the tree
  41 */
  42static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  43                                   struct rb_node *node)
  44{
  45        struct rb_node **p = &root->rb_node;
  46        struct rb_node *parent = NULL;
  47        struct btrfs_ordered_extent *entry;
  48
  49        while (*p) {
  50                parent = *p;
  51                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  52
  53                if (file_offset < entry->file_offset)
  54                        p = &(*p)->rb_left;
  55                else if (file_offset >= entry_end(entry))
  56                        p = &(*p)->rb_right;
  57                else
  58                        return parent;
  59        }
  60
  61        rb_link_node(node, parent, p);
  62        rb_insert_color(node, root);
  63        return NULL;
  64}
  65
  66static void ordered_data_tree_panic(struct inode *inode, int errno,
  67                                               u64 offset)
  68{
  69        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  70        btrfs_panic(fs_info, errno,
  71                    "Inconsistency in ordered tree at offset %llu", offset);
  72}
  73
  74/*
  75 * look for a given offset in the tree, and if it can't be found return the
  76 * first lesser offset
  77 */
  78static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  79                                     struct rb_node **prev_ret)
  80{
  81        struct rb_node *n = root->rb_node;
  82        struct rb_node *prev = NULL;
  83        struct rb_node *test;
  84        struct btrfs_ordered_extent *entry;
  85        struct btrfs_ordered_extent *prev_entry = NULL;
  86
  87        while (n) {
  88                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  89                prev = n;
  90                prev_entry = entry;
  91
  92                if (file_offset < entry->file_offset)
  93                        n = n->rb_left;
  94                else if (file_offset >= entry_end(entry))
  95                        n = n->rb_right;
  96                else
  97                        return n;
  98        }
  99        if (!prev_ret)
 100                return NULL;
 101
 102        while (prev && file_offset >= entry_end(prev_entry)) {
 103                test = rb_next(prev);
 104                if (!test)
 105                        break;
 106                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107                                      rb_node);
 108                if (file_offset < entry_end(prev_entry))
 109                        break;
 110
 111                prev = test;
 112        }
 113        if (prev)
 114                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 115                                      rb_node);
 116        while (prev && file_offset < entry_end(prev_entry)) {
 117                test = rb_prev(prev);
 118                if (!test)
 119                        break;
 120                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 121                                      rb_node);
 122                prev = test;
 123        }
 124        *prev_ret = prev;
 125        return NULL;
 126}
 127
 128/*
 129 * helper to check if a given offset is inside a given entry
 130 */
 131static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 132{
 133        if (file_offset < entry->file_offset ||
 134            entry->file_offset + entry->len <= file_offset)
 135                return 0;
 136        return 1;
 137}
 138
 139static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 140                          u64 len)
 141{
 142        if (file_offset + len <= entry->file_offset ||
 143            entry->file_offset + entry->len <= file_offset)
 144                return 0;
 145        return 1;
 146}
 147
 148/*
 149 * look find the first ordered struct that has this offset, otherwise
 150 * the first one less than this offset
 151 */
 152static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 153                                          u64 file_offset)
 154{
 155        struct rb_root *root = &tree->tree;
 156        struct rb_node *prev = NULL;
 157        struct rb_node *ret;
 158        struct btrfs_ordered_extent *entry;
 159
 160        if (tree->last) {
 161                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 162                                 rb_node);
 163                if (offset_in_entry(entry, file_offset))
 164                        return tree->last;
 165        }
 166        ret = __tree_search(root, file_offset, &prev);
 167        if (!ret)
 168                ret = prev;
 169        if (ret)
 170                tree->last = ret;
 171        return ret;
 172}
 173
 174/* allocate and add a new ordered_extent into the per-inode tree.
 175 * file_offset is the logical offset in the file
 176 *
 177 * start is the disk block number of an extent already reserved in the
 178 * extent allocation tree
 179 *
 180 * len is the length of the extent
 181 *
 182 * The tree is given a single reference on the ordered extent that was
 183 * inserted.
 184 */
 185static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 186                                      u64 start, u64 len, u64 disk_len,
 187                                      int type, int dio, int compress_type)
 188{
 189        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 190        struct btrfs_root *root = BTRFS_I(inode)->root;
 191        struct btrfs_ordered_inode_tree *tree;
 192        struct rb_node *node;
 193        struct btrfs_ordered_extent *entry;
 194
 195        tree = &BTRFS_I(inode)->ordered_tree;
 196        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 197        if (!entry)
 198                return -ENOMEM;
 199
 200        entry->file_offset = file_offset;
 201        entry->start = start;
 202        entry->len = len;
 203        entry->disk_len = disk_len;
 204        entry->bytes_left = len;
 205        entry->inode = igrab(inode);
 206        entry->compress_type = compress_type;
 207        entry->truncated_len = (u64)-1;
 208        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 209                set_bit(type, &entry->flags);
 210
 211        if (dio)
 212                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 213
 214        /* one ref for the tree */
 215        refcount_set(&entry->refs, 1);
 216        init_waitqueue_head(&entry->wait);
 217        INIT_LIST_HEAD(&entry->list);
 218        INIT_LIST_HEAD(&entry->root_extent_list);
 219        INIT_LIST_HEAD(&entry->work_list);
 220        init_completion(&entry->completion);
 221        INIT_LIST_HEAD(&entry->log_list);
 222        INIT_LIST_HEAD(&entry->trans_list);
 223
 224        trace_btrfs_ordered_extent_add(inode, entry);
 225
 226        spin_lock_irq(&tree->lock);
 227        node = tree_insert(&tree->tree, file_offset,
 228                           &entry->rb_node);
 229        if (node)
 230                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231        spin_unlock_irq(&tree->lock);
 232
 233        spin_lock(&root->ordered_extent_lock);
 234        list_add_tail(&entry->root_extent_list,
 235                      &root->ordered_extents);
 236        root->nr_ordered_extents++;
 237        if (root->nr_ordered_extents == 1) {
 238                spin_lock(&fs_info->ordered_root_lock);
 239                BUG_ON(!list_empty(&root->ordered_root));
 240                list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 241                spin_unlock(&fs_info->ordered_root_lock);
 242        }
 243        spin_unlock(&root->ordered_extent_lock);
 244
 245        return 0;
 246}
 247
 248int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 249                             u64 start, u64 len, u64 disk_len, int type)
 250{
 251        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 252                                          disk_len, type, 0,
 253                                          BTRFS_COMPRESS_NONE);
 254}
 255
 256int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 257                                 u64 start, u64 len, u64 disk_len, int type)
 258{
 259        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 260                                          disk_len, type, 1,
 261                                          BTRFS_COMPRESS_NONE);
 262}
 263
 264int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 265                                      u64 start, u64 len, u64 disk_len,
 266                                      int type, int compress_type)
 267{
 268        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 269                                          disk_len, type, 0,
 270                                          compress_type);
 271}
 272
 273/*
 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 275 * when an ordered extent is finished.  If the list covers more than one
 276 * ordered extent, it is split across multiples.
 277 */
 278void btrfs_add_ordered_sum(struct inode *inode,
 279                           struct btrfs_ordered_extent *entry,
 280                           struct btrfs_ordered_sum *sum)
 281{
 282        struct btrfs_ordered_inode_tree *tree;
 283
 284        tree = &BTRFS_I(inode)->ordered_tree;
 285        spin_lock_irq(&tree->lock);
 286        list_add_tail(&sum->list, &entry->list);
 287        spin_unlock_irq(&tree->lock);
 288}
 289
 290/*
 291 * this is used to account for finished IO across a given range
 292 * of the file.  The IO may span ordered extents.  If
 293 * a given ordered_extent is completely done, 1 is returned, otherwise
 294 * 0.
 295 *
 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 297 * to make sure this function only returns 1 once for a given ordered extent.
 298 *
 299 * file_offset is updated to one byte past the range that is recorded as
 300 * complete.  This allows you to walk forward in the file.
 301 */
 302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 303                                   struct btrfs_ordered_extent **cached,
 304                                   u64 *file_offset, u64 io_size, int uptodate)
 305{
 306        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 307        struct btrfs_ordered_inode_tree *tree;
 308        struct rb_node *node;
 309        struct btrfs_ordered_extent *entry = NULL;
 310        int ret;
 311        unsigned long flags;
 312        u64 dec_end;
 313        u64 dec_start;
 314        u64 to_dec;
 315
 316        tree = &BTRFS_I(inode)->ordered_tree;
 317        spin_lock_irqsave(&tree->lock, flags);
 318        node = tree_search(tree, *file_offset);
 319        if (!node) {
 320                ret = 1;
 321                goto out;
 322        }
 323
 324        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 325        if (!offset_in_entry(entry, *file_offset)) {
 326                ret = 1;
 327                goto out;
 328        }
 329
 330        dec_start = max(*file_offset, entry->file_offset);
 331        dec_end = min(*file_offset + io_size, entry->file_offset +
 332                      entry->len);
 333        *file_offset = dec_end;
 334        if (dec_start > dec_end) {
 335                btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 336                           dec_start, dec_end);
 337        }
 338        to_dec = dec_end - dec_start;
 339        if (to_dec > entry->bytes_left) {
 340                btrfs_crit(fs_info,
 341                           "bad ordered accounting left %llu size %llu",
 342                           entry->bytes_left, to_dec);
 343        }
 344        entry->bytes_left -= to_dec;
 345        if (!uptodate)
 346                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 347
 348        if (entry->bytes_left == 0) {
 349                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 350                /*
 351                 * Implicit memory barrier after test_and_set_bit
 352                 */
 353                if (waitqueue_active(&entry->wait))
 354                        wake_up(&entry->wait);
 355        } else {
 356                ret = 1;
 357        }
 358out:
 359        if (!ret && cached && entry) {
 360                *cached = entry;
 361                refcount_inc(&entry->refs);
 362        }
 363        spin_unlock_irqrestore(&tree->lock, flags);
 364        return ret == 0;
 365}
 366
 367/*
 368 * this is used to account for finished IO across a given range
 369 * of the file.  The IO should not span ordered extents.  If
 370 * a given ordered_extent is completely done, 1 is returned, otherwise
 371 * 0.
 372 *
 373 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 374 * to make sure this function only returns 1 once for a given ordered extent.
 375 */
 376int btrfs_dec_test_ordered_pending(struct inode *inode,
 377                                   struct btrfs_ordered_extent **cached,
 378                                   u64 file_offset, u64 io_size, int uptodate)
 379{
 380        struct btrfs_ordered_inode_tree *tree;
 381        struct rb_node *node;
 382        struct btrfs_ordered_extent *entry = NULL;
 383        unsigned long flags;
 384        int ret;
 385
 386        tree = &BTRFS_I(inode)->ordered_tree;
 387        spin_lock_irqsave(&tree->lock, flags);
 388        if (cached && *cached) {
 389                entry = *cached;
 390                goto have_entry;
 391        }
 392
 393        node = tree_search(tree, file_offset);
 394        if (!node) {
 395                ret = 1;
 396                goto out;
 397        }
 398
 399        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 400have_entry:
 401        if (!offset_in_entry(entry, file_offset)) {
 402                ret = 1;
 403                goto out;
 404        }
 405
 406        if (io_size > entry->bytes_left) {
 407                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 408                           "bad ordered accounting left %llu size %llu",
 409                       entry->bytes_left, io_size);
 410        }
 411        entry->bytes_left -= io_size;
 412        if (!uptodate)
 413                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 414
 415        if (entry->bytes_left == 0) {
 416                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 417                /*
 418                 * Implicit memory barrier after test_and_set_bit
 419                 */
 420                if (waitqueue_active(&entry->wait))
 421                        wake_up(&entry->wait);
 422        } else {
 423                ret = 1;
 424        }
 425out:
 426        if (!ret && cached && entry) {
 427                *cached = entry;
 428                refcount_inc(&entry->refs);
 429        }
 430        spin_unlock_irqrestore(&tree->lock, flags);
 431        return ret == 0;
 432}
 433
 434/* Needs to either be called under a log transaction or the log_mutex */
 435void btrfs_get_logged_extents(struct btrfs_inode *inode,
 436                              struct list_head *logged_list,
 437                              const loff_t start,
 438                              const loff_t end)
 439{
 440        struct btrfs_ordered_inode_tree *tree;
 441        struct btrfs_ordered_extent *ordered;
 442        struct rb_node *n;
 443        struct rb_node *prev;
 444
 445        tree = &inode->ordered_tree;
 446        spin_lock_irq(&tree->lock);
 447        n = __tree_search(&tree->tree, end, &prev);
 448        if (!n)
 449                n = prev;
 450        for (; n; n = rb_prev(n)) {
 451                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 452                if (ordered->file_offset > end)
 453                        continue;
 454                if (entry_end(ordered) <= start)
 455                        break;
 456                if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 457                        continue;
 458                list_add(&ordered->log_list, logged_list);
 459                refcount_inc(&ordered->refs);
 460        }
 461        spin_unlock_irq(&tree->lock);
 462}
 463
 464void btrfs_put_logged_extents(struct list_head *logged_list)
 465{
 466        struct btrfs_ordered_extent *ordered;
 467
 468        while (!list_empty(logged_list)) {
 469                ordered = list_first_entry(logged_list,
 470                                           struct btrfs_ordered_extent,
 471                                           log_list);
 472                list_del_init(&ordered->log_list);
 473                btrfs_put_ordered_extent(ordered);
 474        }
 475}
 476
 477void btrfs_submit_logged_extents(struct list_head *logged_list,
 478                                 struct btrfs_root *log)
 479{
 480        int index = log->log_transid % 2;
 481
 482        spin_lock_irq(&log->log_extents_lock[index]);
 483        list_splice_tail(logged_list, &log->logged_list[index]);
 484        spin_unlock_irq(&log->log_extents_lock[index]);
 485}
 486
 487void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 488                               struct btrfs_root *log, u64 transid)
 489{
 490        struct btrfs_ordered_extent *ordered;
 491        int index = transid % 2;
 492
 493        spin_lock_irq(&log->log_extents_lock[index]);
 494        while (!list_empty(&log->logged_list[index])) {
 495                struct inode *inode;
 496                ordered = list_first_entry(&log->logged_list[index],
 497                                           struct btrfs_ordered_extent,
 498                                           log_list);
 499                list_del_init(&ordered->log_list);
 500                inode = ordered->inode;
 501                spin_unlock_irq(&log->log_extents_lock[index]);
 502
 503                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 504                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 505                        u64 start = ordered->file_offset;
 506                        u64 end = ordered->file_offset + ordered->len - 1;
 507
 508                        WARN_ON(!inode);
 509                        filemap_fdatawrite_range(inode->i_mapping, start, end);
 510                }
 511                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 512                                                   &ordered->flags));
 513
 514                /*
 515                 * In order to keep us from losing our ordered extent
 516                 * information when committing the transaction we have to make
 517                 * sure that any logged extents are completed when we go to
 518                 * commit the transaction.  To do this we simply increase the
 519                 * current transactions pending_ordered counter and decrement it
 520                 * when the ordered extent completes.
 521                 */
 522                if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 523                        struct btrfs_ordered_inode_tree *tree;
 524
 525                        tree = &BTRFS_I(inode)->ordered_tree;
 526                        spin_lock_irq(&tree->lock);
 527                        if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 528                                set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 529                                atomic_inc(&trans->transaction->pending_ordered);
 530                        }
 531                        spin_unlock_irq(&tree->lock);
 532                }
 533                btrfs_put_ordered_extent(ordered);
 534                spin_lock_irq(&log->log_extents_lock[index]);
 535        }
 536        spin_unlock_irq(&log->log_extents_lock[index]);
 537}
 538
 539void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 540{
 541        struct btrfs_ordered_extent *ordered;
 542        int index = transid % 2;
 543
 544        spin_lock_irq(&log->log_extents_lock[index]);
 545        while (!list_empty(&log->logged_list[index])) {
 546                ordered = list_first_entry(&log->logged_list[index],
 547                                           struct btrfs_ordered_extent,
 548                                           log_list);
 549                list_del_init(&ordered->log_list);
 550                spin_unlock_irq(&log->log_extents_lock[index]);
 551                btrfs_put_ordered_extent(ordered);
 552                spin_lock_irq(&log->log_extents_lock[index]);
 553        }
 554        spin_unlock_irq(&log->log_extents_lock[index]);
 555}
 556
 557/*
 558 * used to drop a reference on an ordered extent.  This will free
 559 * the extent if the last reference is dropped
 560 */
 561void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 562{
 563        struct list_head *cur;
 564        struct btrfs_ordered_sum *sum;
 565
 566        trace_btrfs_ordered_extent_put(entry->inode, entry);
 567
 568        if (refcount_dec_and_test(&entry->refs)) {
 569                ASSERT(list_empty(&entry->log_list));
 570                ASSERT(list_empty(&entry->trans_list));
 571                ASSERT(list_empty(&entry->root_extent_list));
 572                ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 573                if (entry->inode)
 574                        btrfs_add_delayed_iput(entry->inode);
 575                while (!list_empty(&entry->list)) {
 576                        cur = entry->list.next;
 577                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 578                        list_del(&sum->list);
 579                        kfree(sum);
 580                }
 581                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 582        }
 583}
 584
 585/*
 586 * remove an ordered extent from the tree.  No references are dropped
 587 * and waiters are woken up.
 588 */
 589void btrfs_remove_ordered_extent(struct inode *inode,
 590                                 struct btrfs_ordered_extent *entry)
 591{
 592        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 593        struct btrfs_ordered_inode_tree *tree;
 594        struct btrfs_root *root = BTRFS_I(inode)->root;
 595        struct rb_node *node;
 596        bool dec_pending_ordered = false;
 597
 598        tree = &BTRFS_I(inode)->ordered_tree;
 599        spin_lock_irq(&tree->lock);
 600        node = &entry->rb_node;
 601        rb_erase(node, &tree->tree);
 602        RB_CLEAR_NODE(node);
 603        if (tree->last == node)
 604                tree->last = NULL;
 605        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 606        if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 607                dec_pending_ordered = true;
 608        spin_unlock_irq(&tree->lock);
 609
 610        /*
 611         * The current running transaction is waiting on us, we need to let it
 612         * know that we're complete and wake it up.
 613         */
 614        if (dec_pending_ordered) {
 615                struct btrfs_transaction *trans;
 616
 617                /*
 618                 * The checks for trans are just a formality, it should be set,
 619                 * but if it isn't we don't want to deref/assert under the spin
 620                 * lock, so be nice and check if trans is set, but ASSERT() so
 621                 * if it isn't set a developer will notice.
 622                 */
 623                spin_lock(&fs_info->trans_lock);
 624                trans = fs_info->running_transaction;
 625                if (trans)
 626                        refcount_inc(&trans->use_count);
 627                spin_unlock(&fs_info->trans_lock);
 628
 629                ASSERT(trans);
 630                if (trans) {
 631                        if (atomic_dec_and_test(&trans->pending_ordered))
 632                                wake_up(&trans->pending_wait);
 633                        btrfs_put_transaction(trans);
 634                }
 635        }
 636
 637        spin_lock(&root->ordered_extent_lock);
 638        list_del_init(&entry->root_extent_list);
 639        root->nr_ordered_extents--;
 640
 641        trace_btrfs_ordered_extent_remove(inode, entry);
 642
 643        if (!root->nr_ordered_extents) {
 644                spin_lock(&fs_info->ordered_root_lock);
 645                BUG_ON(list_empty(&root->ordered_root));
 646                list_del_init(&root->ordered_root);
 647                spin_unlock(&fs_info->ordered_root_lock);
 648        }
 649        spin_unlock(&root->ordered_extent_lock);
 650        wake_up(&entry->wait);
 651}
 652
 653static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 654{
 655        struct btrfs_ordered_extent *ordered;
 656
 657        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 658        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 659        complete(&ordered->completion);
 660}
 661
 662/*
 663 * wait for all the ordered extents in a root.  This is done when balancing
 664 * space between drives.
 665 */
 666u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 667                               const u64 range_start, const u64 range_len)
 668{
 669        struct btrfs_fs_info *fs_info = root->fs_info;
 670        LIST_HEAD(splice);
 671        LIST_HEAD(skipped);
 672        LIST_HEAD(works);
 673        struct btrfs_ordered_extent *ordered, *next;
 674        u64 count = 0;
 675        const u64 range_end = range_start + range_len;
 676
 677        mutex_lock(&root->ordered_extent_mutex);
 678        spin_lock(&root->ordered_extent_lock);
 679        list_splice_init(&root->ordered_extents, &splice);
 680        while (!list_empty(&splice) && nr) {
 681                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 682                                           root_extent_list);
 683
 684                if (range_end <= ordered->start ||
 685                    ordered->start + ordered->disk_len <= range_start) {
 686                        list_move_tail(&ordered->root_extent_list, &skipped);
 687                        cond_resched_lock(&root->ordered_extent_lock);
 688                        continue;
 689                }
 690
 691                list_move_tail(&ordered->root_extent_list,
 692                               &root->ordered_extents);
 693                refcount_inc(&ordered->refs);
 694                spin_unlock(&root->ordered_extent_lock);
 695
 696                btrfs_init_work(&ordered->flush_work,
 697                                btrfs_flush_delalloc_helper,
 698                                btrfs_run_ordered_extent_work, NULL, NULL);
 699                list_add_tail(&ordered->work_list, &works);
 700                btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 701
 702                cond_resched();
 703                spin_lock(&root->ordered_extent_lock);
 704                if (nr != U64_MAX)
 705                        nr--;
 706                count++;
 707        }
 708        list_splice_tail(&skipped, &root->ordered_extents);
 709        list_splice_tail(&splice, &root->ordered_extents);
 710        spin_unlock(&root->ordered_extent_lock);
 711
 712        list_for_each_entry_safe(ordered, next, &works, work_list) {
 713                list_del_init(&ordered->work_list);
 714                wait_for_completion(&ordered->completion);
 715                btrfs_put_ordered_extent(ordered);
 716                cond_resched();
 717        }
 718        mutex_unlock(&root->ordered_extent_mutex);
 719
 720        return count;
 721}
 722
 723u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 724                             const u64 range_start, const u64 range_len)
 725{
 726        struct btrfs_root *root;
 727        struct list_head splice;
 728        u64 total_done = 0;
 729        u64 done;
 730
 731        INIT_LIST_HEAD(&splice);
 732
 733        mutex_lock(&fs_info->ordered_operations_mutex);
 734        spin_lock(&fs_info->ordered_root_lock);
 735        list_splice_init(&fs_info->ordered_roots, &splice);
 736        while (!list_empty(&splice) && nr) {
 737                root = list_first_entry(&splice, struct btrfs_root,
 738                                        ordered_root);
 739                root = btrfs_grab_fs_root(root);
 740                BUG_ON(!root);
 741                list_move_tail(&root->ordered_root,
 742                               &fs_info->ordered_roots);
 743                spin_unlock(&fs_info->ordered_root_lock);
 744
 745                done = btrfs_wait_ordered_extents(root, nr,
 746                                                  range_start, range_len);
 747                btrfs_put_fs_root(root);
 748                total_done += done;
 749
 750                spin_lock(&fs_info->ordered_root_lock);
 751                if (nr != U64_MAX) {
 752                        nr -= done;
 753                }
 754        }
 755        list_splice_tail(&splice, &fs_info->ordered_roots);
 756        spin_unlock(&fs_info->ordered_root_lock);
 757        mutex_unlock(&fs_info->ordered_operations_mutex);
 758
 759        return total_done;
 760}
 761
 762/*
 763 * Used to start IO or wait for a given ordered extent to finish.
 764 *
 765 * If wait is one, this effectively waits on page writeback for all the pages
 766 * in the extent, and it waits on the io completion code to insert
 767 * metadata into the btree corresponding to the extent
 768 */
 769void btrfs_start_ordered_extent(struct inode *inode,
 770                                       struct btrfs_ordered_extent *entry,
 771                                       int wait)
 772{
 773        u64 start = entry->file_offset;
 774        u64 end = start + entry->len - 1;
 775
 776        trace_btrfs_ordered_extent_start(inode, entry);
 777
 778        /*
 779         * pages in the range can be dirty, clean or writeback.  We
 780         * start IO on any dirty ones so the wait doesn't stall waiting
 781         * for the flusher thread to find them
 782         */
 783        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 784                filemap_fdatawrite_range(inode->i_mapping, start, end);
 785        if (wait) {
 786                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 787                                                 &entry->flags));
 788        }
 789}
 790
 791/*
 792 * Used to wait on ordered extents across a large range of bytes.
 793 */
 794int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 795{
 796        int ret = 0;
 797        int ret_wb = 0;
 798        u64 end;
 799        u64 orig_end;
 800        struct btrfs_ordered_extent *ordered;
 801
 802        if (start + len < start) {
 803                orig_end = INT_LIMIT(loff_t);
 804        } else {
 805                orig_end = start + len - 1;
 806                if (orig_end > INT_LIMIT(loff_t))
 807                        orig_end = INT_LIMIT(loff_t);
 808        }
 809
 810        /* start IO across the range first to instantiate any delalloc
 811         * extents
 812         */
 813        ret = btrfs_fdatawrite_range(inode, start, orig_end);
 814        if (ret)
 815                return ret;
 816
 817        /*
 818         * If we have a writeback error don't return immediately. Wait first
 819         * for any ordered extents that haven't completed yet. This is to make
 820         * sure no one can dirty the same page ranges and call writepages()
 821         * before the ordered extents complete - to avoid failures (-EEXIST)
 822         * when adding the new ordered extents to the ordered tree.
 823         */
 824        ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 825
 826        end = orig_end;
 827        while (1) {
 828                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 829                if (!ordered)
 830                        break;
 831                if (ordered->file_offset > orig_end) {
 832                        btrfs_put_ordered_extent(ordered);
 833                        break;
 834                }
 835                if (ordered->file_offset + ordered->len <= start) {
 836                        btrfs_put_ordered_extent(ordered);
 837                        break;
 838                }
 839                btrfs_start_ordered_extent(inode, ordered, 1);
 840                end = ordered->file_offset;
 841                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 842                        ret = -EIO;
 843                btrfs_put_ordered_extent(ordered);
 844                if (ret || end == 0 || end == start)
 845                        break;
 846                end--;
 847        }
 848        return ret_wb ? ret_wb : ret;
 849}
 850
 851/*
 852 * find an ordered extent corresponding to file_offset.  return NULL if
 853 * nothing is found, otherwise take a reference on the extent and return it
 854 */
 855struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 856                                                         u64 file_offset)
 857{
 858        struct btrfs_ordered_inode_tree *tree;
 859        struct rb_node *node;
 860        struct btrfs_ordered_extent *entry = NULL;
 861
 862        tree = &BTRFS_I(inode)->ordered_tree;
 863        spin_lock_irq(&tree->lock);
 864        node = tree_search(tree, file_offset);
 865        if (!node)
 866                goto out;
 867
 868        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 869        if (!offset_in_entry(entry, file_offset))
 870                entry = NULL;
 871        if (entry)
 872                refcount_inc(&entry->refs);
 873out:
 874        spin_unlock_irq(&tree->lock);
 875        return entry;
 876}
 877
 878/* Since the DIO code tries to lock a wide area we need to look for any ordered
 879 * extents that exist in the range, rather than just the start of the range.
 880 */
 881struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 882                struct btrfs_inode *inode, u64 file_offset, u64 len)
 883{
 884        struct btrfs_ordered_inode_tree *tree;
 885        struct rb_node *node;
 886        struct btrfs_ordered_extent *entry = NULL;
 887
 888        tree = &inode->ordered_tree;
 889        spin_lock_irq(&tree->lock);
 890        node = tree_search(tree, file_offset);
 891        if (!node) {
 892                node = tree_search(tree, file_offset + len);
 893                if (!node)
 894                        goto out;
 895        }
 896
 897        while (1) {
 898                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 899                if (range_overlaps(entry, file_offset, len))
 900                        break;
 901
 902                if (entry->file_offset >= file_offset + len) {
 903                        entry = NULL;
 904                        break;
 905                }
 906                entry = NULL;
 907                node = rb_next(node);
 908                if (!node)
 909                        break;
 910        }
 911out:
 912        if (entry)
 913                refcount_inc(&entry->refs);
 914        spin_unlock_irq(&tree->lock);
 915        return entry;
 916}
 917
 918bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 919                                         u64 file_offset,
 920                                         u64 len)
 921{
 922        struct btrfs_ordered_extent *oe;
 923
 924        oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
 925        if (oe) {
 926                btrfs_put_ordered_extent(oe);
 927                return true;
 928        }
 929        return false;
 930}
 931
 932/*
 933 * lookup and return any extent before 'file_offset'.  NULL is returned
 934 * if none is found
 935 */
 936struct btrfs_ordered_extent *
 937btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 938{
 939        struct btrfs_ordered_inode_tree *tree;
 940        struct rb_node *node;
 941        struct btrfs_ordered_extent *entry = NULL;
 942
 943        tree = &BTRFS_I(inode)->ordered_tree;
 944        spin_lock_irq(&tree->lock);
 945        node = tree_search(tree, file_offset);
 946        if (!node)
 947                goto out;
 948
 949        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 950        refcount_inc(&entry->refs);
 951out:
 952        spin_unlock_irq(&tree->lock);
 953        return entry;
 954}
 955
 956/*
 957 * After an extent is done, call this to conditionally update the on disk
 958 * i_size.  i_size is updated to cover any fully written part of the file.
 959 */
 960int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 961                                struct btrfs_ordered_extent *ordered)
 962{
 963        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 964        u64 disk_i_size;
 965        u64 new_i_size;
 966        u64 i_size = i_size_read(inode);
 967        struct rb_node *node;
 968        struct rb_node *prev = NULL;
 969        struct btrfs_ordered_extent *test;
 970        int ret = 1;
 971        u64 orig_offset = offset;
 972
 973        spin_lock_irq(&tree->lock);
 974        if (ordered) {
 975                offset = entry_end(ordered);
 976                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 977                        offset = min(offset,
 978                                     ordered->file_offset +
 979                                     ordered->truncated_len);
 980        } else {
 981                offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 982        }
 983        disk_i_size = BTRFS_I(inode)->disk_i_size;
 984
 985        /*
 986         * truncate file.
 987         * If ordered is not NULL, then this is called from endio and
 988         * disk_i_size will be updated by either truncate itself or any
 989         * in-flight IOs which are inside the disk_i_size.
 990         *
 991         * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 992         * fails somehow, we need to make sure we have a precise disk_i_size by
 993         * updating it as usual.
 994         *
 995         */
 996        if (!ordered && disk_i_size > i_size) {
 997                BTRFS_I(inode)->disk_i_size = orig_offset;
 998                ret = 0;
 999                goto out;
1000        }
1001
1002        /*
1003         * if the disk i_size is already at the inode->i_size, or
1004         * this ordered extent is inside the disk i_size, we're done
1005         */
1006        if (disk_i_size == i_size)
1007                goto out;
1008
1009        /*
1010         * We still need to update disk_i_size if outstanding_isize is greater
1011         * than disk_i_size.
1012         */
1013        if (offset <= disk_i_size &&
1014            (!ordered || ordered->outstanding_isize <= disk_i_size))
1015                goto out;
1016
1017        /*
1018         * walk backward from this ordered extent to disk_i_size.
1019         * if we find an ordered extent then we can't update disk i_size
1020         * yet
1021         */
1022        if (ordered) {
1023                node = rb_prev(&ordered->rb_node);
1024        } else {
1025                prev = tree_search(tree, offset);
1026                /*
1027                 * we insert file extents without involving ordered struct,
1028                 * so there should be no ordered struct cover this offset
1029                 */
1030                if (prev) {
1031                        test = rb_entry(prev, struct btrfs_ordered_extent,
1032                                        rb_node);
1033                        BUG_ON(offset_in_entry(test, offset));
1034                }
1035                node = prev;
1036        }
1037        for (; node; node = rb_prev(node)) {
1038                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1039
1040                /* We treat this entry as if it doesn't exist */
1041                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1042                        continue;
1043
1044                if (entry_end(test) <= disk_i_size)
1045                        break;
1046                if (test->file_offset >= i_size)
1047                        break;
1048
1049                /*
1050                 * We don't update disk_i_size now, so record this undealt
1051                 * i_size. Or we will not know the real i_size.
1052                 */
1053                if (test->outstanding_isize < offset)
1054                        test->outstanding_isize = offset;
1055                if (ordered &&
1056                    ordered->outstanding_isize > test->outstanding_isize)
1057                        test->outstanding_isize = ordered->outstanding_isize;
1058                goto out;
1059        }
1060        new_i_size = min_t(u64, offset, i_size);
1061
1062        /*
1063         * Some ordered extents may completed before the current one, and
1064         * we hold the real i_size in ->outstanding_isize.
1065         */
1066        if (ordered && ordered->outstanding_isize > new_i_size)
1067                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1068        BTRFS_I(inode)->disk_i_size = new_i_size;
1069        ret = 0;
1070out:
1071        /*
1072         * We need to do this because we can't remove ordered extents until
1073         * after the i_disk_size has been updated and then the inode has been
1074         * updated to reflect the change, so we need to tell anybody who finds
1075         * this ordered extent that we've already done all the real work, we
1076         * just haven't completed all the other work.
1077         */
1078        if (ordered)
1079                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1080        spin_unlock_irq(&tree->lock);
1081        return ret;
1082}
1083
1084/*
1085 * search the ordered extents for one corresponding to 'offset' and
1086 * try to find a checksum.  This is used because we allow pages to
1087 * be reclaimed before their checksum is actually put into the btree
1088 */
1089int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1090                           u32 *sum, int len)
1091{
1092        struct btrfs_ordered_sum *ordered_sum;
1093        struct btrfs_ordered_extent *ordered;
1094        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1095        unsigned long num_sectors;
1096        unsigned long i;
1097        u32 sectorsize = btrfs_inode_sectorsize(inode);
1098        int index = 0;
1099
1100        ordered = btrfs_lookup_ordered_extent(inode, offset);
1101        if (!ordered)
1102                return 0;
1103
1104        spin_lock_irq(&tree->lock);
1105        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1106                if (disk_bytenr >= ordered_sum->bytenr &&
1107                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1108                        i = (disk_bytenr - ordered_sum->bytenr) >>
1109                            inode->i_sb->s_blocksize_bits;
1110                        num_sectors = ordered_sum->len >>
1111                                      inode->i_sb->s_blocksize_bits;
1112                        num_sectors = min_t(int, len - index, num_sectors - i);
1113                        memcpy(sum + index, ordered_sum->sums + i,
1114                               num_sectors);
1115
1116                        index += (int)num_sectors;
1117                        if (index == len)
1118                                goto out;
1119                        disk_bytenr += num_sectors * sectorsize;
1120                }
1121        }
1122out:
1123        spin_unlock_irq(&tree->lock);
1124        btrfs_put_ordered_extent(ordered);
1125        return index;
1126}
1127
1128int __init ordered_data_init(void)
1129{
1130        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1131                                     sizeof(struct btrfs_ordered_extent), 0,
1132                                     SLAB_MEM_SPREAD,
1133                                     NULL);
1134        if (!btrfs_ordered_extent_cache)
1135                return -ENOMEM;
1136
1137        return 0;
1138}
1139
1140void ordered_data_exit(void)
1141{
1142        kmem_cache_destroy(btrfs_ordered_extent_cache);
1143}
1144