linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        struct list_head        extctl;
  70        int                     refcnt;
  71        spinlock_t              lock;
  72        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  73        int                     nzones;
  74        int                     scheduled;
  75};
  76
  77struct reada_zone {
  78        u64                     start;
  79        u64                     end;
  80        u64                     elems;
  81        struct list_head        list;
  82        spinlock_t              lock;
  83        int                     locked;
  84        struct btrfs_device     *device;
  85        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  86                                                           * self */
  87        int                     ndevs;
  88        struct kref             refcnt;
  89};
  90
  91struct reada_machine_work {
  92        struct btrfs_work       work;
  93        struct btrfs_fs_info    *fs_info;
  94};
  95
  96static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  97static void reada_control_release(struct kref *kref);
  98static void reada_zone_release(struct kref *kref);
  99static void reada_start_machine(struct btrfs_fs_info *fs_info);
 100static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 101
 102static int reada_add_block(struct reada_control *rc, u64 logical,
 103                           struct btrfs_key *top, u64 generation);
 104
 105/* recurses */
 106/* in case of err, eb might be NULL */
 107static void __readahead_hook(struct btrfs_fs_info *fs_info,
 108                             struct reada_extent *re, struct extent_buffer *eb,
 109                             int err)
 110{
 111        int nritems;
 112        int i;
 113        u64 bytenr;
 114        u64 generation;
 115        struct list_head list;
 116
 117        spin_lock(&re->lock);
 118        /*
 119         * just take the full list from the extent. afterwards we
 120         * don't need the lock anymore
 121         */
 122        list_replace_init(&re->extctl, &list);
 123        re->scheduled = 0;
 124        spin_unlock(&re->lock);
 125
 126        /*
 127         * this is the error case, the extent buffer has not been
 128         * read correctly. We won't access anything from it and
 129         * just cleanup our data structures. Effectively this will
 130         * cut the branch below this node from read ahead.
 131         */
 132        if (err)
 133                goto cleanup;
 134
 135        /*
 136         * FIXME: currently we just set nritems to 0 if this is a leaf,
 137         * effectively ignoring the content. In a next step we could
 138         * trigger more readahead depending from the content, e.g.
 139         * fetch the checksums for the extents in the leaf.
 140         */
 141        if (!btrfs_header_level(eb))
 142                goto cleanup;
 143
 144        nritems = btrfs_header_nritems(eb);
 145        generation = btrfs_header_generation(eb);
 146        for (i = 0; i < nritems; i++) {
 147                struct reada_extctl *rec;
 148                u64 n_gen;
 149                struct btrfs_key key;
 150                struct btrfs_key next_key;
 151
 152                btrfs_node_key_to_cpu(eb, &key, i);
 153                if (i + 1 < nritems)
 154                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 155                else
 156                        next_key = re->top;
 157                bytenr = btrfs_node_blockptr(eb, i);
 158                n_gen = btrfs_node_ptr_generation(eb, i);
 159
 160                list_for_each_entry(rec, &list, list) {
 161                        struct reada_control *rc = rec->rc;
 162
 163                        /*
 164                         * if the generation doesn't match, just ignore this
 165                         * extctl. This will probably cut off a branch from
 166                         * prefetch. Alternatively one could start a new (sub-)
 167                         * prefetch for this branch, starting again from root.
 168                         * FIXME: move the generation check out of this loop
 169                         */
 170#ifdef DEBUG
 171                        if (rec->generation != generation) {
 172                                btrfs_debug(fs_info,
 173                                            "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 174                                            key.objectid, key.type, key.offset,
 175                                            rec->generation, generation);
 176                        }
 177#endif
 178                        if (rec->generation == generation &&
 179                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 180                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 181                                reada_add_block(rc, bytenr, &next_key, n_gen);
 182                }
 183        }
 184
 185cleanup:
 186        /*
 187         * free extctl records
 188         */
 189        while (!list_empty(&list)) {
 190                struct reada_control *rc;
 191                struct reada_extctl *rec;
 192
 193                rec = list_first_entry(&list, struct reada_extctl, list);
 194                list_del(&rec->list);
 195                rc = rec->rc;
 196                kfree(rec);
 197
 198                kref_get(&rc->refcnt);
 199                if (atomic_dec_and_test(&rc->elems)) {
 200                        kref_put(&rc->refcnt, reada_control_release);
 201                        wake_up(&rc->wait);
 202                }
 203                kref_put(&rc->refcnt, reada_control_release);
 204
 205                reada_extent_put(fs_info, re);  /* one ref for each entry */
 206        }
 207
 208        return;
 209}
 210
 211int btree_readahead_hook(struct extent_buffer *eb, int err)
 212{
 213        struct btrfs_fs_info *fs_info = eb->fs_info;
 214        int ret = 0;
 215        struct reada_extent *re;
 216
 217        /* find extent */
 218        spin_lock(&fs_info->reada_lock);
 219        re = radix_tree_lookup(&fs_info->reada_tree,
 220                               eb->start >> PAGE_SHIFT);
 221        if (re)
 222                re->refcnt++;
 223        spin_unlock(&fs_info->reada_lock);
 224        if (!re) {
 225                ret = -1;
 226                goto start_machine;
 227        }
 228
 229        __readahead_hook(fs_info, re, eb, err);
 230        reada_extent_put(fs_info, re);  /* our ref */
 231
 232start_machine:
 233        reada_start_machine(fs_info);
 234        return ret;
 235}
 236
 237static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
 238                                          struct btrfs_bio *bbio)
 239{
 240        struct btrfs_fs_info *fs_info = dev->fs_info;
 241        int ret;
 242        struct reada_zone *zone;
 243        struct btrfs_block_group_cache *cache = NULL;
 244        u64 start;
 245        u64 end;
 246        int i;
 247
 248        zone = NULL;
 249        spin_lock(&fs_info->reada_lock);
 250        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 251                                     logical >> PAGE_SHIFT, 1);
 252        if (ret == 1 && logical >= zone->start && logical <= zone->end) {
 253                kref_get(&zone->refcnt);
 254                spin_unlock(&fs_info->reada_lock);
 255                return zone;
 256        }
 257
 258        spin_unlock(&fs_info->reada_lock);
 259
 260        cache = btrfs_lookup_block_group(fs_info, logical);
 261        if (!cache)
 262                return NULL;
 263
 264        start = cache->key.objectid;
 265        end = start + cache->key.offset - 1;
 266        btrfs_put_block_group(cache);
 267
 268        zone = kzalloc(sizeof(*zone), GFP_KERNEL);
 269        if (!zone)
 270                return NULL;
 271
 272        ret = radix_tree_preload(GFP_KERNEL);
 273        if (ret) {
 274                kfree(zone);
 275                return NULL;
 276        }
 277
 278        zone->start = start;
 279        zone->end = end;
 280        INIT_LIST_HEAD(&zone->list);
 281        spin_lock_init(&zone->lock);
 282        zone->locked = 0;
 283        kref_init(&zone->refcnt);
 284        zone->elems = 0;
 285        zone->device = dev; /* our device always sits at index 0 */
 286        for (i = 0; i < bbio->num_stripes; ++i) {
 287                /* bounds have already been checked */
 288                zone->devs[i] = bbio->stripes[i].dev;
 289        }
 290        zone->ndevs = bbio->num_stripes;
 291
 292        spin_lock(&fs_info->reada_lock);
 293        ret = radix_tree_insert(&dev->reada_zones,
 294                                (unsigned long)(zone->end >> PAGE_SHIFT),
 295                                zone);
 296
 297        if (ret == -EEXIST) {
 298                kfree(zone);
 299                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 300                                             logical >> PAGE_SHIFT, 1);
 301                if (ret == 1 && logical >= zone->start && logical <= zone->end)
 302                        kref_get(&zone->refcnt);
 303                else
 304                        zone = NULL;
 305        }
 306        spin_unlock(&fs_info->reada_lock);
 307        radix_tree_preload_end();
 308
 309        return zone;
 310}
 311
 312static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
 313                                              u64 logical,
 314                                              struct btrfs_key *top)
 315{
 316        int ret;
 317        struct reada_extent *re = NULL;
 318        struct reada_extent *re_exist = NULL;
 319        struct btrfs_bio *bbio = NULL;
 320        struct btrfs_device *dev;
 321        struct btrfs_device *prev_dev;
 322        u64 length;
 323        int real_stripes;
 324        int nzones = 0;
 325        unsigned long index = logical >> PAGE_SHIFT;
 326        int dev_replace_is_ongoing;
 327        int have_zone = 0;
 328
 329        spin_lock(&fs_info->reada_lock);
 330        re = radix_tree_lookup(&fs_info->reada_tree, index);
 331        if (re)
 332                re->refcnt++;
 333        spin_unlock(&fs_info->reada_lock);
 334
 335        if (re)
 336                return re;
 337
 338        re = kzalloc(sizeof(*re), GFP_KERNEL);
 339        if (!re)
 340                return NULL;
 341
 342        re->logical = logical;
 343        re->top = *top;
 344        INIT_LIST_HEAD(&re->extctl);
 345        spin_lock_init(&re->lock);
 346        re->refcnt = 1;
 347
 348        /*
 349         * map block
 350         */
 351        length = fs_info->nodesize;
 352        ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 353                        &length, &bbio, 0);
 354        if (ret || !bbio || length < fs_info->nodesize)
 355                goto error;
 356
 357        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 358                btrfs_err(fs_info,
 359                           "readahead: more than %d copies not supported",
 360                           BTRFS_MAX_MIRRORS);
 361                goto error;
 362        }
 363
 364        real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 365        for (nzones = 0; nzones < real_stripes; ++nzones) {
 366                struct reada_zone *zone;
 367
 368                dev = bbio->stripes[nzones].dev;
 369
 370                /* cannot read ahead on missing device. */
 371                 if (!dev->bdev)
 372                        continue;
 373
 374                zone = reada_find_zone(dev, logical, bbio);
 375                if (!zone)
 376                        continue;
 377
 378                re->zones[re->nzones++] = zone;
 379                spin_lock(&zone->lock);
 380                if (!zone->elems)
 381                        kref_get(&zone->refcnt);
 382                ++zone->elems;
 383                spin_unlock(&zone->lock);
 384                spin_lock(&fs_info->reada_lock);
 385                kref_put(&zone->refcnt, reada_zone_release);
 386                spin_unlock(&fs_info->reada_lock);
 387        }
 388        if (re->nzones == 0) {
 389                /* not a single zone found, error and out */
 390                goto error;
 391        }
 392
 393        ret = radix_tree_preload(GFP_KERNEL);
 394        if (ret)
 395                goto error;
 396
 397        /* insert extent in reada_tree + all per-device trees, all or nothing */
 398        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
 399        spin_lock(&fs_info->reada_lock);
 400        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 401        if (ret == -EEXIST) {
 402                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 403                re_exist->refcnt++;
 404                spin_unlock(&fs_info->reada_lock);
 405                btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 406                radix_tree_preload_end();
 407                goto error;
 408        }
 409        if (ret) {
 410                spin_unlock(&fs_info->reada_lock);
 411                btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 412                radix_tree_preload_end();
 413                goto error;
 414        }
 415        radix_tree_preload_end();
 416        prev_dev = NULL;
 417        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 418                        &fs_info->dev_replace);
 419        for (nzones = 0; nzones < re->nzones; ++nzones) {
 420                dev = re->zones[nzones]->device;
 421
 422                if (dev == prev_dev) {
 423                        /*
 424                         * in case of DUP, just add the first zone. As both
 425                         * are on the same device, there's nothing to gain
 426                         * from adding both.
 427                         * Also, it wouldn't work, as the tree is per device
 428                         * and adding would fail with EEXIST
 429                         */
 430                        continue;
 431                }
 432                if (!dev->bdev)
 433                        continue;
 434
 435                if (dev_replace_is_ongoing &&
 436                    dev == fs_info->dev_replace.tgtdev) {
 437                        /*
 438                         * as this device is selected for reading only as
 439                         * a last resort, skip it for read ahead.
 440                         */
 441                        continue;
 442                }
 443                prev_dev = dev;
 444                ret = radix_tree_insert(&dev->reada_extents, index, re);
 445                if (ret) {
 446                        while (--nzones >= 0) {
 447                                dev = re->zones[nzones]->device;
 448                                BUG_ON(dev == NULL);
 449                                /* ignore whether the entry was inserted */
 450                                radix_tree_delete(&dev->reada_extents, index);
 451                        }
 452                        radix_tree_delete(&fs_info->reada_tree, index);
 453                        spin_unlock(&fs_info->reada_lock);
 454                        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 455                        goto error;
 456                }
 457                have_zone = 1;
 458        }
 459        spin_unlock(&fs_info->reada_lock);
 460        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 461
 462        if (!have_zone)
 463                goto error;
 464
 465        btrfs_put_bbio(bbio);
 466        return re;
 467
 468error:
 469        for (nzones = 0; nzones < re->nzones; ++nzones) {
 470                struct reada_zone *zone;
 471
 472                zone = re->zones[nzones];
 473                kref_get(&zone->refcnt);
 474                spin_lock(&zone->lock);
 475                --zone->elems;
 476                if (zone->elems == 0) {
 477                        /*
 478                         * no fs_info->reada_lock needed, as this can't be
 479                         * the last ref
 480                         */
 481                        kref_put(&zone->refcnt, reada_zone_release);
 482                }
 483                spin_unlock(&zone->lock);
 484
 485                spin_lock(&fs_info->reada_lock);
 486                kref_put(&zone->refcnt, reada_zone_release);
 487                spin_unlock(&fs_info->reada_lock);
 488        }
 489        btrfs_put_bbio(bbio);
 490        kfree(re);
 491        return re_exist;
 492}
 493
 494static void reada_extent_put(struct btrfs_fs_info *fs_info,
 495                             struct reada_extent *re)
 496{
 497        int i;
 498        unsigned long index = re->logical >> PAGE_SHIFT;
 499
 500        spin_lock(&fs_info->reada_lock);
 501        if (--re->refcnt) {
 502                spin_unlock(&fs_info->reada_lock);
 503                return;
 504        }
 505
 506        radix_tree_delete(&fs_info->reada_tree, index);
 507        for (i = 0; i < re->nzones; ++i) {
 508                struct reada_zone *zone = re->zones[i];
 509
 510                radix_tree_delete(&zone->device->reada_extents, index);
 511        }
 512
 513        spin_unlock(&fs_info->reada_lock);
 514
 515        for (i = 0; i < re->nzones; ++i) {
 516                struct reada_zone *zone = re->zones[i];
 517
 518                kref_get(&zone->refcnt);
 519                spin_lock(&zone->lock);
 520                --zone->elems;
 521                if (zone->elems == 0) {
 522                        /* no fs_info->reada_lock needed, as this can't be
 523                         * the last ref */
 524                        kref_put(&zone->refcnt, reada_zone_release);
 525                }
 526                spin_unlock(&zone->lock);
 527
 528                spin_lock(&fs_info->reada_lock);
 529                kref_put(&zone->refcnt, reada_zone_release);
 530                spin_unlock(&fs_info->reada_lock);
 531        }
 532
 533        kfree(re);
 534}
 535
 536static void reada_zone_release(struct kref *kref)
 537{
 538        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 539
 540        radix_tree_delete(&zone->device->reada_zones,
 541                          zone->end >> PAGE_SHIFT);
 542
 543        kfree(zone);
 544}
 545
 546static void reada_control_release(struct kref *kref)
 547{
 548        struct reada_control *rc = container_of(kref, struct reada_control,
 549                                                refcnt);
 550
 551        kfree(rc);
 552}
 553
 554static int reada_add_block(struct reada_control *rc, u64 logical,
 555                           struct btrfs_key *top, u64 generation)
 556{
 557        struct btrfs_fs_info *fs_info = rc->fs_info;
 558        struct reada_extent *re;
 559        struct reada_extctl *rec;
 560
 561        /* takes one ref */
 562        re = reada_find_extent(fs_info, logical, top);
 563        if (!re)
 564                return -1;
 565
 566        rec = kzalloc(sizeof(*rec), GFP_KERNEL);
 567        if (!rec) {
 568                reada_extent_put(fs_info, re);
 569                return -ENOMEM;
 570        }
 571
 572        rec->rc = rc;
 573        rec->generation = generation;
 574        atomic_inc(&rc->elems);
 575
 576        spin_lock(&re->lock);
 577        list_add_tail(&rec->list, &re->extctl);
 578        spin_unlock(&re->lock);
 579
 580        /* leave the ref on the extent */
 581
 582        return 0;
 583}
 584
 585/*
 586 * called with fs_info->reada_lock held
 587 */
 588static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 589{
 590        int i;
 591        unsigned long index = zone->end >> PAGE_SHIFT;
 592
 593        for (i = 0; i < zone->ndevs; ++i) {
 594                struct reada_zone *peer;
 595                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 596                if (peer && peer->device != zone->device)
 597                        peer->locked = lock;
 598        }
 599}
 600
 601/*
 602 * called with fs_info->reada_lock held
 603 */
 604static int reada_pick_zone(struct btrfs_device *dev)
 605{
 606        struct reada_zone *top_zone = NULL;
 607        struct reada_zone *top_locked_zone = NULL;
 608        u64 top_elems = 0;
 609        u64 top_locked_elems = 0;
 610        unsigned long index = 0;
 611        int ret;
 612
 613        if (dev->reada_curr_zone) {
 614                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 615                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 616                dev->reada_curr_zone = NULL;
 617        }
 618        /* pick the zone with the most elements */
 619        while (1) {
 620                struct reada_zone *zone;
 621
 622                ret = radix_tree_gang_lookup(&dev->reada_zones,
 623                                             (void **)&zone, index, 1);
 624                if (ret == 0)
 625                        break;
 626                index = (zone->end >> PAGE_SHIFT) + 1;
 627                if (zone->locked) {
 628                        if (zone->elems > top_locked_elems) {
 629                                top_locked_elems = zone->elems;
 630                                top_locked_zone = zone;
 631                        }
 632                } else {
 633                        if (zone->elems > top_elems) {
 634                                top_elems = zone->elems;
 635                                top_zone = zone;
 636                        }
 637                }
 638        }
 639        if (top_zone)
 640                dev->reada_curr_zone = top_zone;
 641        else if (top_locked_zone)
 642                dev->reada_curr_zone = top_locked_zone;
 643        else
 644                return 0;
 645
 646        dev->reada_next = dev->reada_curr_zone->start;
 647        kref_get(&dev->reada_curr_zone->refcnt);
 648        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 649
 650        return 1;
 651}
 652
 653static int reada_start_machine_dev(struct btrfs_device *dev)
 654{
 655        struct btrfs_fs_info *fs_info = dev->fs_info;
 656        struct reada_extent *re = NULL;
 657        int mirror_num = 0;
 658        struct extent_buffer *eb = NULL;
 659        u64 logical;
 660        int ret;
 661        int i;
 662
 663        spin_lock(&fs_info->reada_lock);
 664        if (dev->reada_curr_zone == NULL) {
 665                ret = reada_pick_zone(dev);
 666                if (!ret) {
 667                        spin_unlock(&fs_info->reada_lock);
 668                        return 0;
 669                }
 670        }
 671        /*
 672         * FIXME currently we issue the reads one extent at a time. If we have
 673         * a contiguous block of extents, we could also coagulate them or use
 674         * plugging to speed things up
 675         */
 676        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 677                                     dev->reada_next >> PAGE_SHIFT, 1);
 678        if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
 679                ret = reada_pick_zone(dev);
 680                if (!ret) {
 681                        spin_unlock(&fs_info->reada_lock);
 682                        return 0;
 683                }
 684                re = NULL;
 685                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 686                                        dev->reada_next >> PAGE_SHIFT, 1);
 687        }
 688        if (ret == 0) {
 689                spin_unlock(&fs_info->reada_lock);
 690                return 0;
 691        }
 692        dev->reada_next = re->logical + fs_info->nodesize;
 693        re->refcnt++;
 694
 695        spin_unlock(&fs_info->reada_lock);
 696
 697        spin_lock(&re->lock);
 698        if (re->scheduled || list_empty(&re->extctl)) {
 699                spin_unlock(&re->lock);
 700                reada_extent_put(fs_info, re);
 701                return 0;
 702        }
 703        re->scheduled = 1;
 704        spin_unlock(&re->lock);
 705
 706        /*
 707         * find mirror num
 708         */
 709        for (i = 0; i < re->nzones; ++i) {
 710                if (re->zones[i]->device == dev) {
 711                        mirror_num = i + 1;
 712                        break;
 713                }
 714        }
 715        logical = re->logical;
 716
 717        atomic_inc(&dev->reada_in_flight);
 718        ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
 719        if (ret)
 720                __readahead_hook(fs_info, re, NULL, ret);
 721        else if (eb)
 722                __readahead_hook(fs_info, re, eb, ret);
 723
 724        if (eb)
 725                free_extent_buffer(eb);
 726
 727        atomic_dec(&dev->reada_in_flight);
 728        reada_extent_put(fs_info, re);
 729
 730        return 1;
 731
 732}
 733
 734static void reada_start_machine_worker(struct btrfs_work *work)
 735{
 736        struct reada_machine_work *rmw;
 737        struct btrfs_fs_info *fs_info;
 738        int old_ioprio;
 739
 740        rmw = container_of(work, struct reada_machine_work, work);
 741        fs_info = rmw->fs_info;
 742
 743        kfree(rmw);
 744
 745        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 746                                       task_nice_ioprio(current));
 747        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 748        __reada_start_machine(fs_info);
 749        set_task_ioprio(current, old_ioprio);
 750
 751        atomic_dec(&fs_info->reada_works_cnt);
 752}
 753
 754static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 755{
 756        struct btrfs_device *device;
 757        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 758        u64 enqueued;
 759        u64 total = 0;
 760        int i;
 761
 762        do {
 763                enqueued = 0;
 764                mutex_lock(&fs_devices->device_list_mutex);
 765                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 766                        if (atomic_read(&device->reada_in_flight) <
 767                            MAX_IN_FLIGHT)
 768                                enqueued += reada_start_machine_dev(device);
 769                }
 770                mutex_unlock(&fs_devices->device_list_mutex);
 771                total += enqueued;
 772        } while (enqueued && total < 10000);
 773
 774        if (enqueued == 0)
 775                return;
 776
 777        /*
 778         * If everything is already in the cache, this is effectively single
 779         * threaded. To a) not hold the caller for too long and b) to utilize
 780         * more cores, we broke the loop above after 10000 iterations and now
 781         * enqueue to workers to finish it. This will distribute the load to
 782         * the cores.
 783         */
 784        for (i = 0; i < 2; ++i) {
 785                reada_start_machine(fs_info);
 786                if (atomic_read(&fs_info->reada_works_cnt) >
 787                    BTRFS_MAX_MIRRORS * 2)
 788                        break;
 789        }
 790}
 791
 792static void reada_start_machine(struct btrfs_fs_info *fs_info)
 793{
 794        struct reada_machine_work *rmw;
 795
 796        rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
 797        if (!rmw) {
 798                /* FIXME we cannot handle this properly right now */
 799                BUG();
 800        }
 801        btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 802                        reada_start_machine_worker, NULL, NULL);
 803        rmw->fs_info = fs_info;
 804
 805        btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 806        atomic_inc(&fs_info->reada_works_cnt);
 807}
 808
 809#ifdef DEBUG
 810static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 811{
 812        struct btrfs_device *device;
 813        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 814        unsigned long index;
 815        int ret;
 816        int i;
 817        int j;
 818        int cnt;
 819
 820        spin_lock(&fs_info->reada_lock);
 821        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 822                btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
 823                        atomic_read(&device->reada_in_flight));
 824                index = 0;
 825                while (1) {
 826                        struct reada_zone *zone;
 827                        ret = radix_tree_gang_lookup(&device->reada_zones,
 828                                                     (void **)&zone, index, 1);
 829                        if (ret == 0)
 830                                break;
 831                        pr_debug("  zone %llu-%llu elems %llu locked %d devs",
 832                                    zone->start, zone->end, zone->elems,
 833                                    zone->locked);
 834                        for (j = 0; j < zone->ndevs; ++j) {
 835                                pr_cont(" %lld",
 836                                        zone->devs[j]->devid);
 837                        }
 838                        if (device->reada_curr_zone == zone)
 839                                pr_cont(" curr off %llu",
 840                                        device->reada_next - zone->start);
 841                        pr_cont("\n");
 842                        index = (zone->end >> PAGE_SHIFT) + 1;
 843                }
 844                cnt = 0;
 845                index = 0;
 846                while (all) {
 847                        struct reada_extent *re = NULL;
 848
 849                        ret = radix_tree_gang_lookup(&device->reada_extents,
 850                                                     (void **)&re, index, 1);
 851                        if (ret == 0)
 852                                break;
 853                        pr_debug("  re: logical %llu size %u empty %d scheduled %d",
 854                                re->logical, fs_info->nodesize,
 855                                list_empty(&re->extctl), re->scheduled);
 856
 857                        for (i = 0; i < re->nzones; ++i) {
 858                                pr_cont(" zone %llu-%llu devs",
 859                                        re->zones[i]->start,
 860                                        re->zones[i]->end);
 861                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 862                                        pr_cont(" %lld",
 863                                                re->zones[i]->devs[j]->devid);
 864                                }
 865                        }
 866                        pr_cont("\n");
 867                        index = (re->logical >> PAGE_SHIFT) + 1;
 868                        if (++cnt > 15)
 869                                break;
 870                }
 871        }
 872
 873        index = 0;
 874        cnt = 0;
 875        while (all) {
 876                struct reada_extent *re = NULL;
 877
 878                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 879                                             index, 1);
 880                if (ret == 0)
 881                        break;
 882                if (!re->scheduled) {
 883                        index = (re->logical >> PAGE_SHIFT) + 1;
 884                        continue;
 885                }
 886                pr_debug("re: logical %llu size %u list empty %d scheduled %d",
 887                        re->logical, fs_info->nodesize,
 888                        list_empty(&re->extctl), re->scheduled);
 889                for (i = 0; i < re->nzones; ++i) {
 890                        pr_cont(" zone %llu-%llu devs",
 891                                re->zones[i]->start,
 892                                re->zones[i]->end);
 893                        for (j = 0; j < re->zones[i]->ndevs; ++j) {
 894                                pr_cont(" %lld",
 895                                       re->zones[i]->devs[j]->devid);
 896                        }
 897                }
 898                pr_cont("\n");
 899                index = (re->logical >> PAGE_SHIFT) + 1;
 900        }
 901        spin_unlock(&fs_info->reada_lock);
 902}
 903#endif
 904
 905/*
 906 * interface
 907 */
 908struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 909                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 910{
 911        struct reada_control *rc;
 912        u64 start;
 913        u64 generation;
 914        int ret;
 915        struct extent_buffer *node;
 916        static struct btrfs_key max_key = {
 917                .objectid = (u64)-1,
 918                .type = (u8)-1,
 919                .offset = (u64)-1
 920        };
 921
 922        rc = kzalloc(sizeof(*rc), GFP_KERNEL);
 923        if (!rc)
 924                return ERR_PTR(-ENOMEM);
 925
 926        rc->fs_info = root->fs_info;
 927        rc->key_start = *key_start;
 928        rc->key_end = *key_end;
 929        atomic_set(&rc->elems, 0);
 930        init_waitqueue_head(&rc->wait);
 931        kref_init(&rc->refcnt);
 932        kref_get(&rc->refcnt); /* one ref for having elements */
 933
 934        node = btrfs_root_node(root);
 935        start = node->start;
 936        generation = btrfs_header_generation(node);
 937        free_extent_buffer(node);
 938
 939        ret = reada_add_block(rc, start, &max_key, generation);
 940        if (ret) {
 941                kfree(rc);
 942                return ERR_PTR(ret);
 943        }
 944
 945        reada_start_machine(root->fs_info);
 946
 947        return rc;
 948}
 949
 950#ifdef DEBUG
 951int btrfs_reada_wait(void *handle)
 952{
 953        struct reada_control *rc = handle;
 954        struct btrfs_fs_info *fs_info = rc->fs_info;
 955
 956        while (atomic_read(&rc->elems)) {
 957                if (!atomic_read(&fs_info->reada_works_cnt))
 958                        reada_start_machine(fs_info);
 959                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 960                                   5 * HZ);
 961                dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 962        }
 963
 964        dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 965
 966        kref_put(&rc->refcnt, reada_control_release);
 967
 968        return 0;
 969}
 970#else
 971int btrfs_reada_wait(void *handle)
 972{
 973        struct reada_control *rc = handle;
 974        struct btrfs_fs_info *fs_info = rc->fs_info;
 975
 976        while (atomic_read(&rc->elems)) {
 977                if (!atomic_read(&fs_info->reada_works_cnt))
 978                        reada_start_machine(fs_info);
 979                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 980                                   (HZ + 9) / 10);
 981        }
 982
 983        kref_put(&rc->refcnt, reada_control_release);
 984
 985        return 0;
 986}
 987#endif
 988
 989void btrfs_reada_detach(void *handle)
 990{
 991        struct reada_control *rc = handle;
 992
 993        kref_put(&rc->refcnt, reada_control_release);
 994}
 995