linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/uaccess.h>
  24#include <linux/proc_ns.h>
  25#include <linux/magic.h>
  26#include <linux/bootmem.h>
  27#include <linux/task_work.h>
  28#include <linux/sched/task.h>
  29
  30#include "pnode.h"
  31#include "internal.h"
  32
  33/* Maximum number of mounts in a mount namespace */
  34unsigned int sysctl_mount_max __read_mostly = 100000;
  35
  36static unsigned int m_hash_mask __read_mostly;
  37static unsigned int m_hash_shift __read_mostly;
  38static unsigned int mp_hash_mask __read_mostly;
  39static unsigned int mp_hash_shift __read_mostly;
  40
  41static __initdata unsigned long mhash_entries;
  42static int __init set_mhash_entries(char *str)
  43{
  44        if (!str)
  45                return 0;
  46        mhash_entries = simple_strtoul(str, &str, 0);
  47        return 1;
  48}
  49__setup("mhash_entries=", set_mhash_entries);
  50
  51static __initdata unsigned long mphash_entries;
  52static int __init set_mphash_entries(char *str)
  53{
  54        if (!str)
  55                return 0;
  56        mphash_entries = simple_strtoul(str, &str, 0);
  57        return 1;
  58}
  59__setup("mphash_entries=", set_mphash_entries);
  60
  61static u64 event;
  62static DEFINE_IDA(mnt_id_ida);
  63static DEFINE_IDA(mnt_group_ida);
  64static DEFINE_SPINLOCK(mnt_id_lock);
  65static int mnt_id_start = 0;
  66static int mnt_group_start = 1;
  67
  68static struct hlist_head *mount_hashtable __read_mostly;
  69static struct hlist_head *mountpoint_hashtable __read_mostly;
  70static struct kmem_cache *mnt_cache __read_mostly;
  71static DECLARE_RWSEM(namespace_sem);
  72
  73/* /sys/fs */
  74struct kobject *fs_kobj;
  75EXPORT_SYMBOL_GPL(fs_kobj);
  76
  77/*
  78 * vfsmount lock may be taken for read to prevent changes to the
  79 * vfsmount hash, ie. during mountpoint lookups or walking back
  80 * up the tree.
  81 *
  82 * It should be taken for write in all cases where the vfsmount
  83 * tree or hash is modified or when a vfsmount structure is modified.
  84 */
  85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  86
  87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  88{
  89        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  90        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  91        tmp = tmp + (tmp >> m_hash_shift);
  92        return &mount_hashtable[tmp & m_hash_mask];
  93}
  94
  95static inline struct hlist_head *mp_hash(struct dentry *dentry)
  96{
  97        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  98        tmp = tmp + (tmp >> mp_hash_shift);
  99        return &mountpoint_hashtable[tmp & mp_hash_mask];
 100}
 101
 102static int mnt_alloc_id(struct mount *mnt)
 103{
 104        int res;
 105
 106retry:
 107        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 108        spin_lock(&mnt_id_lock);
 109        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 110        if (!res)
 111                mnt_id_start = mnt->mnt_id + 1;
 112        spin_unlock(&mnt_id_lock);
 113        if (res == -EAGAIN)
 114                goto retry;
 115
 116        return res;
 117}
 118
 119static void mnt_free_id(struct mount *mnt)
 120{
 121        int id = mnt->mnt_id;
 122        spin_lock(&mnt_id_lock);
 123        ida_remove(&mnt_id_ida, id);
 124        if (mnt_id_start > id)
 125                mnt_id_start = id;
 126        spin_unlock(&mnt_id_lock);
 127}
 128
 129/*
 130 * Allocate a new peer group ID
 131 *
 132 * mnt_group_ida is protected by namespace_sem
 133 */
 134static int mnt_alloc_group_id(struct mount *mnt)
 135{
 136        int res;
 137
 138        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 139                return -ENOMEM;
 140
 141        res = ida_get_new_above(&mnt_group_ida,
 142                                mnt_group_start,
 143                                &mnt->mnt_group_id);
 144        if (!res)
 145                mnt_group_start = mnt->mnt_group_id + 1;
 146
 147        return res;
 148}
 149
 150/*
 151 * Release a peer group ID
 152 */
 153void mnt_release_group_id(struct mount *mnt)
 154{
 155        int id = mnt->mnt_group_id;
 156        ida_remove(&mnt_group_ida, id);
 157        if (mnt_group_start > id)
 158                mnt_group_start = id;
 159        mnt->mnt_group_id = 0;
 160}
 161
 162/*
 163 * vfsmount lock must be held for read
 164 */
 165static inline void mnt_add_count(struct mount *mnt, int n)
 166{
 167#ifdef CONFIG_SMP
 168        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 169#else
 170        preempt_disable();
 171        mnt->mnt_count += n;
 172        preempt_enable();
 173#endif
 174}
 175
 176/*
 177 * vfsmount lock must be held for write
 178 */
 179unsigned int mnt_get_count(struct mount *mnt)
 180{
 181#ifdef CONFIG_SMP
 182        unsigned int count = 0;
 183        int cpu;
 184
 185        for_each_possible_cpu(cpu) {
 186                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 187        }
 188
 189        return count;
 190#else
 191        return mnt->mnt_count;
 192#endif
 193}
 194
 195static void drop_mountpoint(struct fs_pin *p)
 196{
 197        struct mount *m = container_of(p, struct mount, mnt_umount);
 198        dput(m->mnt_ex_mountpoint);
 199        pin_remove(p);
 200        mntput(&m->mnt);
 201}
 202
 203static struct mount *alloc_vfsmnt(const char *name)
 204{
 205        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 206        if (mnt) {
 207                int err;
 208
 209                err = mnt_alloc_id(mnt);
 210                if (err)
 211                        goto out_free_cache;
 212
 213                if (name) {
 214                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 215                        if (!mnt->mnt_devname)
 216                                goto out_free_id;
 217                }
 218
 219#ifdef CONFIG_SMP
 220                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 221                if (!mnt->mnt_pcp)
 222                        goto out_free_devname;
 223
 224                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 225#else
 226                mnt->mnt_count = 1;
 227                mnt->mnt_writers = 0;
 228#endif
 229
 230                INIT_HLIST_NODE(&mnt->mnt_hash);
 231                INIT_LIST_HEAD(&mnt->mnt_child);
 232                INIT_LIST_HEAD(&mnt->mnt_mounts);
 233                INIT_LIST_HEAD(&mnt->mnt_list);
 234                INIT_LIST_HEAD(&mnt->mnt_expire);
 235                INIT_LIST_HEAD(&mnt->mnt_share);
 236                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 237                INIT_LIST_HEAD(&mnt->mnt_slave);
 238                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 239                INIT_LIST_HEAD(&mnt->mnt_umounting);
 240                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 241        }
 242        return mnt;
 243
 244#ifdef CONFIG_SMP
 245out_free_devname:
 246        kfree_const(mnt->mnt_devname);
 247#endif
 248out_free_id:
 249        mnt_free_id(mnt);
 250out_free_cache:
 251        kmem_cache_free(mnt_cache, mnt);
 252        return NULL;
 253}
 254
 255/*
 256 * Most r/o checks on a fs are for operations that take
 257 * discrete amounts of time, like a write() or unlink().
 258 * We must keep track of when those operations start
 259 * (for permission checks) and when they end, so that
 260 * we can determine when writes are able to occur to
 261 * a filesystem.
 262 */
 263/*
 264 * __mnt_is_readonly: check whether a mount is read-only
 265 * @mnt: the mount to check for its write status
 266 *
 267 * This shouldn't be used directly ouside of the VFS.
 268 * It does not guarantee that the filesystem will stay
 269 * r/w, just that it is right *now*.  This can not and
 270 * should not be used in place of IS_RDONLY(inode).
 271 * mnt_want/drop_write() will _keep_ the filesystem
 272 * r/w.
 273 */
 274int __mnt_is_readonly(struct vfsmount *mnt)
 275{
 276        if (mnt->mnt_flags & MNT_READONLY)
 277                return 1;
 278        if (sb_rdonly(mnt->mnt_sb))
 279                return 1;
 280        return 0;
 281}
 282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 283
 284static inline void mnt_inc_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers++;
 290#endif
 291}
 292
 293static inline void mnt_dec_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 297#else
 298        mnt->mnt_writers--;
 299#endif
 300}
 301
 302static unsigned int mnt_get_writers(struct mount *mnt)
 303{
 304#ifdef CONFIG_SMP
 305        unsigned int count = 0;
 306        int cpu;
 307
 308        for_each_possible_cpu(cpu) {
 309                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 310        }
 311
 312        return count;
 313#else
 314        return mnt->mnt_writers;
 315#endif
 316}
 317
 318static int mnt_is_readonly(struct vfsmount *mnt)
 319{
 320        if (mnt->mnt_sb->s_readonly_remount)
 321                return 1;
 322        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 323        smp_rmb();
 324        return __mnt_is_readonly(mnt);
 325}
 326
 327/*
 328 * Most r/o & frozen checks on a fs are for operations that take discrete
 329 * amounts of time, like a write() or unlink().  We must keep track of when
 330 * those operations start (for permission checks) and when they end, so that we
 331 * can determine when writes are able to occur to a filesystem.
 332 */
 333/**
 334 * __mnt_want_write - get write access to a mount without freeze protection
 335 * @m: the mount on which to take a write
 336 *
 337 * This tells the low-level filesystem that a write is about to be performed to
 338 * it, and makes sure that writes are allowed (mnt it read-write) before
 339 * returning success. This operation does not protect against filesystem being
 340 * frozen. When the write operation is finished, __mnt_drop_write() must be
 341 * called. This is effectively a refcount.
 342 */
 343int __mnt_want_write(struct vfsmount *m)
 344{
 345        struct mount *mnt = real_mount(m);
 346        int ret = 0;
 347
 348        preempt_disable();
 349        mnt_inc_writers(mnt);
 350        /*
 351         * The store to mnt_inc_writers must be visible before we pass
 352         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 353         * incremented count after it has set MNT_WRITE_HOLD.
 354         */
 355        smp_mb();
 356        while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 357                cpu_relax();
 358        /*
 359         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 360         * be set to match its requirements. So we must not load that until
 361         * MNT_WRITE_HOLD is cleared.
 362         */
 363        smp_rmb();
 364        if (mnt_is_readonly(m)) {
 365                mnt_dec_writers(mnt);
 366                ret = -EROFS;
 367        }
 368        preempt_enable();
 369
 370        return ret;
 371}
 372
 373/**
 374 * mnt_want_write - get write access to a mount
 375 * @m: the mount on which to take a write
 376 *
 377 * This tells the low-level filesystem that a write is about to be performed to
 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 379 * is not frozen) before returning success.  When the write operation is
 380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 381 */
 382int mnt_want_write(struct vfsmount *m)
 383{
 384        int ret;
 385
 386        sb_start_write(m->mnt_sb);
 387        ret = __mnt_want_write(m);
 388        if (ret)
 389                sb_end_write(m->mnt_sb);
 390        return ret;
 391}
 392EXPORT_SYMBOL_GPL(mnt_want_write);
 393
 394/**
 395 * mnt_clone_write - get write access to a mount
 396 * @mnt: the mount on which to take a write
 397 *
 398 * This is effectively like mnt_want_write, except
 399 * it must only be used to take an extra write reference
 400 * on a mountpoint that we already know has a write reference
 401 * on it. This allows some optimisation.
 402 *
 403 * After finished, mnt_drop_write must be called as usual to
 404 * drop the reference.
 405 */
 406int mnt_clone_write(struct vfsmount *mnt)
 407{
 408        /* superblock may be r/o */
 409        if (__mnt_is_readonly(mnt))
 410                return -EROFS;
 411        preempt_disable();
 412        mnt_inc_writers(real_mount(mnt));
 413        preempt_enable();
 414        return 0;
 415}
 416EXPORT_SYMBOL_GPL(mnt_clone_write);
 417
 418/**
 419 * __mnt_want_write_file - get write access to a file's mount
 420 * @file: the file who's mount on which to take a write
 421 *
 422 * This is like __mnt_want_write, but it takes a file and can
 423 * do some optimisations if the file is open for write already
 424 */
 425int __mnt_want_write_file(struct file *file)
 426{
 427        if (!(file->f_mode & FMODE_WRITER))
 428                return __mnt_want_write(file->f_path.mnt);
 429        else
 430                return mnt_clone_write(file->f_path.mnt);
 431}
 432
 433/**
 434 * mnt_want_write_file_path - get write access to a file's mount
 435 * @file: the file who's mount on which to take a write
 436 *
 437 * This is like mnt_want_write, but it takes a file and can
 438 * do some optimisations if the file is open for write already
 439 *
 440 * Called by the vfs for cases when we have an open file at hand, but will do an
 441 * inode operation on it (important distinction for files opened on overlayfs,
 442 * since the file operations will come from the real underlying file, while
 443 * inode operations come from the overlay).
 444 */
 445int mnt_want_write_file_path(struct file *file)
 446{
 447        int ret;
 448
 449        sb_start_write(file->f_path.mnt->mnt_sb);
 450        ret = __mnt_want_write_file(file);
 451        if (ret)
 452                sb_end_write(file->f_path.mnt->mnt_sb);
 453        return ret;
 454}
 455
 456static inline int may_write_real(struct file *file)
 457{
 458        struct dentry *dentry = file->f_path.dentry;
 459        struct dentry *upperdentry;
 460
 461        /* Writable file? */
 462        if (file->f_mode & FMODE_WRITER)
 463                return 0;
 464
 465        /* Not overlayfs? */
 466        if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
 467                return 0;
 468
 469        /* File refers to upper, writable layer? */
 470        upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
 471        if (upperdentry &&
 472            (file_inode(file) == d_inode(upperdentry) ||
 473             file_inode(file) == d_inode(dentry)))
 474                return 0;
 475
 476        /* Lower layer: can't write to real file, sorry... */
 477        return -EPERM;
 478}
 479
 480/**
 481 * mnt_want_write_file - get write access to a file's mount
 482 * @file: the file who's mount on which to take a write
 483 *
 484 * This is like mnt_want_write, but it takes a file and can
 485 * do some optimisations if the file is open for write already
 486 *
 487 * Mostly called by filesystems from their ioctl operation before performing
 488 * modification.  On overlayfs this needs to check if the file is on a read-only
 489 * lower layer and deny access in that case.
 490 */
 491int mnt_want_write_file(struct file *file)
 492{
 493        int ret;
 494
 495        ret = may_write_real(file);
 496        if (!ret) {
 497                sb_start_write(file_inode(file)->i_sb);
 498                ret = __mnt_want_write_file(file);
 499                if (ret)
 500                        sb_end_write(file_inode(file)->i_sb);
 501        }
 502        return ret;
 503}
 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
 505
 506/**
 507 * __mnt_drop_write - give up write access to a mount
 508 * @mnt: the mount on which to give up write access
 509 *
 510 * Tells the low-level filesystem that we are done
 511 * performing writes to it.  Must be matched with
 512 * __mnt_want_write() call above.
 513 */
 514void __mnt_drop_write(struct vfsmount *mnt)
 515{
 516        preempt_disable();
 517        mnt_dec_writers(real_mount(mnt));
 518        preempt_enable();
 519}
 520
 521/**
 522 * mnt_drop_write - give up write access to a mount
 523 * @mnt: the mount on which to give up write access
 524 *
 525 * Tells the low-level filesystem that we are done performing writes to it and
 526 * also allows filesystem to be frozen again.  Must be matched with
 527 * mnt_want_write() call above.
 528 */
 529void mnt_drop_write(struct vfsmount *mnt)
 530{
 531        __mnt_drop_write(mnt);
 532        sb_end_write(mnt->mnt_sb);
 533}
 534EXPORT_SYMBOL_GPL(mnt_drop_write);
 535
 536void __mnt_drop_write_file(struct file *file)
 537{
 538        __mnt_drop_write(file->f_path.mnt);
 539}
 540
 541void mnt_drop_write_file_path(struct file *file)
 542{
 543        mnt_drop_write(file->f_path.mnt);
 544}
 545
 546void mnt_drop_write_file(struct file *file)
 547{
 548        __mnt_drop_write(file->f_path.mnt);
 549        sb_end_write(file_inode(file)->i_sb);
 550}
 551EXPORT_SYMBOL(mnt_drop_write_file);
 552
 553static int mnt_make_readonly(struct mount *mnt)
 554{
 555        int ret = 0;
 556
 557        lock_mount_hash();
 558        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 559        /*
 560         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 561         * should be visible before we do.
 562         */
 563        smp_mb();
 564
 565        /*
 566         * With writers on hold, if this value is zero, then there are
 567         * definitely no active writers (although held writers may subsequently
 568         * increment the count, they'll have to wait, and decrement it after
 569         * seeing MNT_READONLY).
 570         *
 571         * It is OK to have counter incremented on one CPU and decremented on
 572         * another: the sum will add up correctly. The danger would be when we
 573         * sum up each counter, if we read a counter before it is incremented,
 574         * but then read another CPU's count which it has been subsequently
 575         * decremented from -- we would see more decrements than we should.
 576         * MNT_WRITE_HOLD protects against this scenario, because
 577         * mnt_want_write first increments count, then smp_mb, then spins on
 578         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 579         * we're counting up here.
 580         */
 581        if (mnt_get_writers(mnt) > 0)
 582                ret = -EBUSY;
 583        else
 584                mnt->mnt.mnt_flags |= MNT_READONLY;
 585        /*
 586         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 587         * that become unheld will see MNT_READONLY.
 588         */
 589        smp_wmb();
 590        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 591        unlock_mount_hash();
 592        return ret;
 593}
 594
 595static void __mnt_unmake_readonly(struct mount *mnt)
 596{
 597        lock_mount_hash();
 598        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 599        unlock_mount_hash();
 600}
 601
 602int sb_prepare_remount_readonly(struct super_block *sb)
 603{
 604        struct mount *mnt;
 605        int err = 0;
 606
 607        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 608        if (atomic_long_read(&sb->s_remove_count))
 609                return -EBUSY;
 610
 611        lock_mount_hash();
 612        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 613                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 614                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 615                        smp_mb();
 616                        if (mnt_get_writers(mnt) > 0) {
 617                                err = -EBUSY;
 618                                break;
 619                        }
 620                }
 621        }
 622        if (!err && atomic_long_read(&sb->s_remove_count))
 623                err = -EBUSY;
 624
 625        if (!err) {
 626                sb->s_readonly_remount = 1;
 627                smp_wmb();
 628        }
 629        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 630                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 631                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 632        }
 633        unlock_mount_hash();
 634
 635        return err;
 636}
 637
 638static void free_vfsmnt(struct mount *mnt)
 639{
 640        kfree_const(mnt->mnt_devname);
 641#ifdef CONFIG_SMP
 642        free_percpu(mnt->mnt_pcp);
 643#endif
 644        kmem_cache_free(mnt_cache, mnt);
 645}
 646
 647static void delayed_free_vfsmnt(struct rcu_head *head)
 648{
 649        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 650}
 651
 652/* call under rcu_read_lock */
 653int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 654{
 655        struct mount *mnt;
 656        if (read_seqretry(&mount_lock, seq))
 657                return 1;
 658        if (bastard == NULL)
 659                return 0;
 660        mnt = real_mount(bastard);
 661        mnt_add_count(mnt, 1);
 662        if (likely(!read_seqretry(&mount_lock, seq)))
 663                return 0;
 664        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 665                mnt_add_count(mnt, -1);
 666                return 1;
 667        }
 668        return -1;
 669}
 670
 671/* call under rcu_read_lock */
 672bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 673{
 674        int res = __legitimize_mnt(bastard, seq);
 675        if (likely(!res))
 676                return true;
 677        if (unlikely(res < 0)) {
 678                rcu_read_unlock();
 679                mntput(bastard);
 680                rcu_read_lock();
 681        }
 682        return false;
 683}
 684
 685/*
 686 * find the first mount at @dentry on vfsmount @mnt.
 687 * call under rcu_read_lock()
 688 */
 689struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 690{
 691        struct hlist_head *head = m_hash(mnt, dentry);
 692        struct mount *p;
 693
 694        hlist_for_each_entry_rcu(p, head, mnt_hash)
 695                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 696                        return p;
 697        return NULL;
 698}
 699
 700/*
 701 * lookup_mnt - Return the first child mount mounted at path
 702 *
 703 * "First" means first mounted chronologically.  If you create the
 704 * following mounts:
 705 *
 706 * mount /dev/sda1 /mnt
 707 * mount /dev/sda2 /mnt
 708 * mount /dev/sda3 /mnt
 709 *
 710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 711 * return successively the root dentry and vfsmount of /dev/sda1, then
 712 * /dev/sda2, then /dev/sda3, then NULL.
 713 *
 714 * lookup_mnt takes a reference to the found vfsmount.
 715 */
 716struct vfsmount *lookup_mnt(const struct path *path)
 717{
 718        struct mount *child_mnt;
 719        struct vfsmount *m;
 720        unsigned seq;
 721
 722        rcu_read_lock();
 723        do {
 724                seq = read_seqbegin(&mount_lock);
 725                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 726                m = child_mnt ? &child_mnt->mnt : NULL;
 727        } while (!legitimize_mnt(m, seq));
 728        rcu_read_unlock();
 729        return m;
 730}
 731
 732/*
 733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 734 *                         current mount namespace.
 735 *
 736 * The common case is dentries are not mountpoints at all and that
 737 * test is handled inline.  For the slow case when we are actually
 738 * dealing with a mountpoint of some kind, walk through all of the
 739 * mounts in the current mount namespace and test to see if the dentry
 740 * is a mountpoint.
 741 *
 742 * The mount_hashtable is not usable in the context because we
 743 * need to identify all mounts that may be in the current mount
 744 * namespace not just a mount that happens to have some specified
 745 * parent mount.
 746 */
 747bool __is_local_mountpoint(struct dentry *dentry)
 748{
 749        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 750        struct mount *mnt;
 751        bool is_covered = false;
 752
 753        if (!d_mountpoint(dentry))
 754                goto out;
 755
 756        down_read(&namespace_sem);
 757        list_for_each_entry(mnt, &ns->list, mnt_list) {
 758                is_covered = (mnt->mnt_mountpoint == dentry);
 759                if (is_covered)
 760                        break;
 761        }
 762        up_read(&namespace_sem);
 763out:
 764        return is_covered;
 765}
 766
 767static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 768{
 769        struct hlist_head *chain = mp_hash(dentry);
 770        struct mountpoint *mp;
 771
 772        hlist_for_each_entry(mp, chain, m_hash) {
 773                if (mp->m_dentry == dentry) {
 774                        /* might be worth a WARN_ON() */
 775                        if (d_unlinked(dentry))
 776                                return ERR_PTR(-ENOENT);
 777                        mp->m_count++;
 778                        return mp;
 779                }
 780        }
 781        return NULL;
 782}
 783
 784static struct mountpoint *get_mountpoint(struct dentry *dentry)
 785{
 786        struct mountpoint *mp, *new = NULL;
 787        int ret;
 788
 789        if (d_mountpoint(dentry)) {
 790mountpoint:
 791                read_seqlock_excl(&mount_lock);
 792                mp = lookup_mountpoint(dentry);
 793                read_sequnlock_excl(&mount_lock);
 794                if (mp)
 795                        goto done;
 796        }
 797
 798        if (!new)
 799                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 800        if (!new)
 801                return ERR_PTR(-ENOMEM);
 802
 803
 804        /* Exactly one processes may set d_mounted */
 805        ret = d_set_mounted(dentry);
 806
 807        /* Someone else set d_mounted? */
 808        if (ret == -EBUSY)
 809                goto mountpoint;
 810
 811        /* The dentry is not available as a mountpoint? */
 812        mp = ERR_PTR(ret);
 813        if (ret)
 814                goto done;
 815
 816        /* Add the new mountpoint to the hash table */
 817        read_seqlock_excl(&mount_lock);
 818        new->m_dentry = dentry;
 819        new->m_count = 1;
 820        hlist_add_head(&new->m_hash, mp_hash(dentry));
 821        INIT_HLIST_HEAD(&new->m_list);
 822        read_sequnlock_excl(&mount_lock);
 823
 824        mp = new;
 825        new = NULL;
 826done:
 827        kfree(new);
 828        return mp;
 829}
 830
 831static void put_mountpoint(struct mountpoint *mp)
 832{
 833        if (!--mp->m_count) {
 834                struct dentry *dentry = mp->m_dentry;
 835                BUG_ON(!hlist_empty(&mp->m_list));
 836                spin_lock(&dentry->d_lock);
 837                dentry->d_flags &= ~DCACHE_MOUNTED;
 838                spin_unlock(&dentry->d_lock);
 839                hlist_del(&mp->m_hash);
 840                kfree(mp);
 841        }
 842}
 843
 844static inline int check_mnt(struct mount *mnt)
 845{
 846        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 847}
 848
 849/*
 850 * vfsmount lock must be held for write
 851 */
 852static void touch_mnt_namespace(struct mnt_namespace *ns)
 853{
 854        if (ns) {
 855                ns->event = ++event;
 856                wake_up_interruptible(&ns->poll);
 857        }
 858}
 859
 860/*
 861 * vfsmount lock must be held for write
 862 */
 863static void __touch_mnt_namespace(struct mnt_namespace *ns)
 864{
 865        if (ns && ns->event != event) {
 866                ns->event = event;
 867                wake_up_interruptible(&ns->poll);
 868        }
 869}
 870
 871/*
 872 * vfsmount lock must be held for write
 873 */
 874static void unhash_mnt(struct mount *mnt)
 875{
 876        mnt->mnt_parent = mnt;
 877        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 878        list_del_init(&mnt->mnt_child);
 879        hlist_del_init_rcu(&mnt->mnt_hash);
 880        hlist_del_init(&mnt->mnt_mp_list);
 881        put_mountpoint(mnt->mnt_mp);
 882        mnt->mnt_mp = NULL;
 883}
 884
 885/*
 886 * vfsmount lock must be held for write
 887 */
 888static void detach_mnt(struct mount *mnt, struct path *old_path)
 889{
 890        old_path->dentry = mnt->mnt_mountpoint;
 891        old_path->mnt = &mnt->mnt_parent->mnt;
 892        unhash_mnt(mnt);
 893}
 894
 895/*
 896 * vfsmount lock must be held for write
 897 */
 898static void umount_mnt(struct mount *mnt)
 899{
 900        /* old mountpoint will be dropped when we can do that */
 901        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 902        unhash_mnt(mnt);
 903}
 904
 905/*
 906 * vfsmount lock must be held for write
 907 */
 908void mnt_set_mountpoint(struct mount *mnt,
 909                        struct mountpoint *mp,
 910                        struct mount *child_mnt)
 911{
 912        mp->m_count++;
 913        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 914        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 915        child_mnt->mnt_parent = mnt;
 916        child_mnt->mnt_mp = mp;
 917        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 918}
 919
 920static void __attach_mnt(struct mount *mnt, struct mount *parent)
 921{
 922        hlist_add_head_rcu(&mnt->mnt_hash,
 923                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 924        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 925}
 926
 927/*
 928 * vfsmount lock must be held for write
 929 */
 930static void attach_mnt(struct mount *mnt,
 931                        struct mount *parent,
 932                        struct mountpoint *mp)
 933{
 934        mnt_set_mountpoint(parent, mp, mnt);
 935        __attach_mnt(mnt, parent);
 936}
 937
 938void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 939{
 940        struct mountpoint *old_mp = mnt->mnt_mp;
 941        struct dentry *old_mountpoint = mnt->mnt_mountpoint;
 942        struct mount *old_parent = mnt->mnt_parent;
 943
 944        list_del_init(&mnt->mnt_child);
 945        hlist_del_init(&mnt->mnt_mp_list);
 946        hlist_del_init_rcu(&mnt->mnt_hash);
 947
 948        attach_mnt(mnt, parent, mp);
 949
 950        put_mountpoint(old_mp);
 951
 952        /*
 953         * Safely avoid even the suggestion this code might sleep or
 954         * lock the mount hash by taking advantage of the knowledge that
 955         * mnt_change_mountpoint will not release the final reference
 956         * to a mountpoint.
 957         *
 958         * During mounting, the mount passed in as the parent mount will
 959         * continue to use the old mountpoint and during unmounting, the
 960         * old mountpoint will continue to exist until namespace_unlock,
 961         * which happens well after mnt_change_mountpoint.
 962         */
 963        spin_lock(&old_mountpoint->d_lock);
 964        old_mountpoint->d_lockref.count--;
 965        spin_unlock(&old_mountpoint->d_lock);
 966
 967        mnt_add_count(old_parent, -1);
 968}
 969
 970/*
 971 * vfsmount lock must be held for write
 972 */
 973static void commit_tree(struct mount *mnt)
 974{
 975        struct mount *parent = mnt->mnt_parent;
 976        struct mount *m;
 977        LIST_HEAD(head);
 978        struct mnt_namespace *n = parent->mnt_ns;
 979
 980        BUG_ON(parent == mnt);
 981
 982        list_add_tail(&head, &mnt->mnt_list);
 983        list_for_each_entry(m, &head, mnt_list)
 984                m->mnt_ns = n;
 985
 986        list_splice(&head, n->list.prev);
 987
 988        n->mounts += n->pending_mounts;
 989        n->pending_mounts = 0;
 990
 991        __attach_mnt(mnt, parent);
 992        touch_mnt_namespace(n);
 993}
 994
 995static struct mount *next_mnt(struct mount *p, struct mount *root)
 996{
 997        struct list_head *next = p->mnt_mounts.next;
 998        if (next == &p->mnt_mounts) {
 999                while (1) {
1000                        if (p == root)
1001                                return NULL;
1002                        next = p->mnt_child.next;
1003                        if (next != &p->mnt_parent->mnt_mounts)
1004                                break;
1005                        p = p->mnt_parent;
1006                }
1007        }
1008        return list_entry(next, struct mount, mnt_child);
1009}
1010
1011static struct mount *skip_mnt_tree(struct mount *p)
1012{
1013        struct list_head *prev = p->mnt_mounts.prev;
1014        while (prev != &p->mnt_mounts) {
1015                p = list_entry(prev, struct mount, mnt_child);
1016                prev = p->mnt_mounts.prev;
1017        }
1018        return p;
1019}
1020
1021struct vfsmount *
1022vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023{
1024        struct mount *mnt;
1025        struct dentry *root;
1026
1027        if (!type)
1028                return ERR_PTR(-ENODEV);
1029
1030        mnt = alloc_vfsmnt(name);
1031        if (!mnt)
1032                return ERR_PTR(-ENOMEM);
1033
1034        if (flags & SB_KERNMOUNT)
1035                mnt->mnt.mnt_flags = MNT_INTERNAL;
1036
1037        root = mount_fs(type, flags, name, data);
1038        if (IS_ERR(root)) {
1039                mnt_free_id(mnt);
1040                free_vfsmnt(mnt);
1041                return ERR_CAST(root);
1042        }
1043
1044        mnt->mnt.mnt_root = root;
1045        mnt->mnt.mnt_sb = root->d_sb;
1046        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047        mnt->mnt_parent = mnt;
1048        lock_mount_hash();
1049        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050        unlock_mount_hash();
1051        return &mnt->mnt;
1052}
1053EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
1055struct vfsmount *
1056vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057             const char *name, void *data)
1058{
1059        /* Until it is worked out how to pass the user namespace
1060         * through from the parent mount to the submount don't support
1061         * unprivileged mounts with submounts.
1062         */
1063        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064                return ERR_PTR(-EPERM);
1065
1066        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067}
1068EXPORT_SYMBOL_GPL(vfs_submount);
1069
1070static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071                                        int flag)
1072{
1073        struct super_block *sb = old->mnt.mnt_sb;
1074        struct mount *mnt;
1075        int err;
1076
1077        mnt = alloc_vfsmnt(old->mnt_devname);
1078        if (!mnt)
1079                return ERR_PTR(-ENOMEM);
1080
1081        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082                mnt->mnt_group_id = 0; /* not a peer of original */
1083        else
1084                mnt->mnt_group_id = old->mnt_group_id;
1085
1086        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087                err = mnt_alloc_group_id(mnt);
1088                if (err)
1089                        goto out_free;
1090        }
1091
1092        mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1093        /* Don't allow unprivileged users to change mount flags */
1094        if (flag & CL_UNPRIVILEGED) {
1095                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1096
1097                if (mnt->mnt.mnt_flags & MNT_READONLY)
1098                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1099
1100                if (mnt->mnt.mnt_flags & MNT_NODEV)
1101                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1102
1103                if (mnt->mnt.mnt_flags & MNT_NOSUID)
1104                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1105
1106                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1107                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1108        }
1109
1110        /* Don't allow unprivileged users to reveal what is under a mount */
1111        if ((flag & CL_UNPRIVILEGED) &&
1112            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1113                mnt->mnt.mnt_flags |= MNT_LOCKED;
1114
1115        atomic_inc(&sb->s_active);
1116        mnt->mnt.mnt_sb = sb;
1117        mnt->mnt.mnt_root = dget(root);
1118        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1119        mnt->mnt_parent = mnt;
1120        lock_mount_hash();
1121        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1122        unlock_mount_hash();
1123
1124        if ((flag & CL_SLAVE) ||
1125            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1126                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1127                mnt->mnt_master = old;
1128                CLEAR_MNT_SHARED(mnt);
1129        } else if (!(flag & CL_PRIVATE)) {
1130                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1131                        list_add(&mnt->mnt_share, &old->mnt_share);
1132                if (IS_MNT_SLAVE(old))
1133                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1134                mnt->mnt_master = old->mnt_master;
1135        } else {
1136                CLEAR_MNT_SHARED(mnt);
1137        }
1138        if (flag & CL_MAKE_SHARED)
1139                set_mnt_shared(mnt);
1140
1141        /* stick the duplicate mount on the same expiry list
1142         * as the original if that was on one */
1143        if (flag & CL_EXPIRE) {
1144                if (!list_empty(&old->mnt_expire))
1145                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1146        }
1147
1148        return mnt;
1149
1150 out_free:
1151        mnt_free_id(mnt);
1152        free_vfsmnt(mnt);
1153        return ERR_PTR(err);
1154}
1155
1156static void cleanup_mnt(struct mount *mnt)
1157{
1158        /*
1159         * This probably indicates that somebody messed
1160         * up a mnt_want/drop_write() pair.  If this
1161         * happens, the filesystem was probably unable
1162         * to make r/w->r/o transitions.
1163         */
1164        /*
1165         * The locking used to deal with mnt_count decrement provides barriers,
1166         * so mnt_get_writers() below is safe.
1167         */
1168        WARN_ON(mnt_get_writers(mnt));
1169        if (unlikely(mnt->mnt_pins.first))
1170                mnt_pin_kill(mnt);
1171        fsnotify_vfsmount_delete(&mnt->mnt);
1172        dput(mnt->mnt.mnt_root);
1173        deactivate_super(mnt->mnt.mnt_sb);
1174        mnt_free_id(mnt);
1175        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1176}
1177
1178static void __cleanup_mnt(struct rcu_head *head)
1179{
1180        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1181}
1182
1183static LLIST_HEAD(delayed_mntput_list);
1184static void delayed_mntput(struct work_struct *unused)
1185{
1186        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1187        struct mount *m, *t;
1188
1189        llist_for_each_entry_safe(m, t, node, mnt_llist)
1190                cleanup_mnt(m);
1191}
1192static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1193
1194static void mntput_no_expire(struct mount *mnt)
1195{
1196        rcu_read_lock();
1197        mnt_add_count(mnt, -1);
1198        if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1199                rcu_read_unlock();
1200                return;
1201        }
1202        lock_mount_hash();
1203        if (mnt_get_count(mnt)) {
1204                rcu_read_unlock();
1205                unlock_mount_hash();
1206                return;
1207        }
1208        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1209                rcu_read_unlock();
1210                unlock_mount_hash();
1211                return;
1212        }
1213        mnt->mnt.mnt_flags |= MNT_DOOMED;
1214        rcu_read_unlock();
1215
1216        list_del(&mnt->mnt_instance);
1217
1218        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1219                struct mount *p, *tmp;
1220                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1221                        umount_mnt(p);
1222                }
1223        }
1224        unlock_mount_hash();
1225
1226        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1227                struct task_struct *task = current;
1228                if (likely(!(task->flags & PF_KTHREAD))) {
1229                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1230                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1231                                return;
1232                }
1233                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1234                        schedule_delayed_work(&delayed_mntput_work, 1);
1235                return;
1236        }
1237        cleanup_mnt(mnt);
1238}
1239
1240void mntput(struct vfsmount *mnt)
1241{
1242        if (mnt) {
1243                struct mount *m = real_mount(mnt);
1244                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1245                if (unlikely(m->mnt_expiry_mark))
1246                        m->mnt_expiry_mark = 0;
1247                mntput_no_expire(m);
1248        }
1249}
1250EXPORT_SYMBOL(mntput);
1251
1252struct vfsmount *mntget(struct vfsmount *mnt)
1253{
1254        if (mnt)
1255                mnt_add_count(real_mount(mnt), 1);
1256        return mnt;
1257}
1258EXPORT_SYMBOL(mntget);
1259
1260/* path_is_mountpoint() - Check if path is a mount in the current
1261 *                          namespace.
1262 *
1263 *  d_mountpoint() can only be used reliably to establish if a dentry is
1264 *  not mounted in any namespace and that common case is handled inline.
1265 *  d_mountpoint() isn't aware of the possibility there may be multiple
1266 *  mounts using a given dentry in a different namespace. This function
1267 *  checks if the passed in path is a mountpoint rather than the dentry
1268 *  alone.
1269 */
1270bool path_is_mountpoint(const struct path *path)
1271{
1272        unsigned seq;
1273        bool res;
1274
1275        if (!d_mountpoint(path->dentry))
1276                return false;
1277
1278        rcu_read_lock();
1279        do {
1280                seq = read_seqbegin(&mount_lock);
1281                res = __path_is_mountpoint(path);
1282        } while (read_seqretry(&mount_lock, seq));
1283        rcu_read_unlock();
1284
1285        return res;
1286}
1287EXPORT_SYMBOL(path_is_mountpoint);
1288
1289struct vfsmount *mnt_clone_internal(const struct path *path)
1290{
1291        struct mount *p;
1292        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1293        if (IS_ERR(p))
1294                return ERR_CAST(p);
1295        p->mnt.mnt_flags |= MNT_INTERNAL;
1296        return &p->mnt;
1297}
1298
1299#ifdef CONFIG_PROC_FS
1300/* iterator; we want it to have access to namespace_sem, thus here... */
1301static void *m_start(struct seq_file *m, loff_t *pos)
1302{
1303        struct proc_mounts *p = m->private;
1304
1305        down_read(&namespace_sem);
1306        if (p->cached_event == p->ns->event) {
1307                void *v = p->cached_mount;
1308                if (*pos == p->cached_index)
1309                        return v;
1310                if (*pos == p->cached_index + 1) {
1311                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1312                        return p->cached_mount = v;
1313                }
1314        }
1315
1316        p->cached_event = p->ns->event;
1317        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1318        p->cached_index = *pos;
1319        return p->cached_mount;
1320}
1321
1322static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1323{
1324        struct proc_mounts *p = m->private;
1325
1326        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1327        p->cached_index = *pos;
1328        return p->cached_mount;
1329}
1330
1331static void m_stop(struct seq_file *m, void *v)
1332{
1333        up_read(&namespace_sem);
1334}
1335
1336static int m_show(struct seq_file *m, void *v)
1337{
1338        struct proc_mounts *p = m->private;
1339        struct mount *r = list_entry(v, struct mount, mnt_list);
1340        return p->show(m, &r->mnt);
1341}
1342
1343const struct seq_operations mounts_op = {
1344        .start  = m_start,
1345        .next   = m_next,
1346        .stop   = m_stop,
1347        .show   = m_show,
1348};
1349#endif  /* CONFIG_PROC_FS */
1350
1351/**
1352 * may_umount_tree - check if a mount tree is busy
1353 * @mnt: root of mount tree
1354 *
1355 * This is called to check if a tree of mounts has any
1356 * open files, pwds, chroots or sub mounts that are
1357 * busy.
1358 */
1359int may_umount_tree(struct vfsmount *m)
1360{
1361        struct mount *mnt = real_mount(m);
1362        int actual_refs = 0;
1363        int minimum_refs = 0;
1364        struct mount *p;
1365        BUG_ON(!m);
1366
1367        /* write lock needed for mnt_get_count */
1368        lock_mount_hash();
1369        for (p = mnt; p; p = next_mnt(p, mnt)) {
1370                actual_refs += mnt_get_count(p);
1371                minimum_refs += 2;
1372        }
1373        unlock_mount_hash();
1374
1375        if (actual_refs > minimum_refs)
1376                return 0;
1377
1378        return 1;
1379}
1380
1381EXPORT_SYMBOL(may_umount_tree);
1382
1383/**
1384 * may_umount - check if a mount point is busy
1385 * @mnt: root of mount
1386 *
1387 * This is called to check if a mount point has any
1388 * open files, pwds, chroots or sub mounts. If the
1389 * mount has sub mounts this will return busy
1390 * regardless of whether the sub mounts are busy.
1391 *
1392 * Doesn't take quota and stuff into account. IOW, in some cases it will
1393 * give false negatives. The main reason why it's here is that we need
1394 * a non-destructive way to look for easily umountable filesystems.
1395 */
1396int may_umount(struct vfsmount *mnt)
1397{
1398        int ret = 1;
1399        down_read(&namespace_sem);
1400        lock_mount_hash();
1401        if (propagate_mount_busy(real_mount(mnt), 2))
1402                ret = 0;
1403        unlock_mount_hash();
1404        up_read(&namespace_sem);
1405        return ret;
1406}
1407
1408EXPORT_SYMBOL(may_umount);
1409
1410static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1411
1412static void namespace_unlock(void)
1413{
1414        struct hlist_head head;
1415
1416        hlist_move_list(&unmounted, &head);
1417
1418        up_write(&namespace_sem);
1419
1420        if (likely(hlist_empty(&head)))
1421                return;
1422
1423        synchronize_rcu();
1424
1425        group_pin_kill(&head);
1426}
1427
1428static inline void namespace_lock(void)
1429{
1430        down_write(&namespace_sem);
1431}
1432
1433enum umount_tree_flags {
1434        UMOUNT_SYNC = 1,
1435        UMOUNT_PROPAGATE = 2,
1436        UMOUNT_CONNECTED = 4,
1437};
1438
1439static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1440{
1441        /* Leaving mounts connected is only valid for lazy umounts */
1442        if (how & UMOUNT_SYNC)
1443                return true;
1444
1445        /* A mount without a parent has nothing to be connected to */
1446        if (!mnt_has_parent(mnt))
1447                return true;
1448
1449        /* Because the reference counting rules change when mounts are
1450         * unmounted and connected, umounted mounts may not be
1451         * connected to mounted mounts.
1452         */
1453        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1454                return true;
1455
1456        /* Has it been requested that the mount remain connected? */
1457        if (how & UMOUNT_CONNECTED)
1458                return false;
1459
1460        /* Is the mount locked such that it needs to remain connected? */
1461        if (IS_MNT_LOCKED(mnt))
1462                return false;
1463
1464        /* By default disconnect the mount */
1465        return true;
1466}
1467
1468/*
1469 * mount_lock must be held
1470 * namespace_sem must be held for write
1471 */
1472static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1473{
1474        LIST_HEAD(tmp_list);
1475        struct mount *p;
1476
1477        if (how & UMOUNT_PROPAGATE)
1478                propagate_mount_unlock(mnt);
1479
1480        /* Gather the mounts to umount */
1481        for (p = mnt; p; p = next_mnt(p, mnt)) {
1482                p->mnt.mnt_flags |= MNT_UMOUNT;
1483                list_move(&p->mnt_list, &tmp_list);
1484        }
1485
1486        /* Hide the mounts from mnt_mounts */
1487        list_for_each_entry(p, &tmp_list, mnt_list) {
1488                list_del_init(&p->mnt_child);
1489        }
1490
1491        /* Add propogated mounts to the tmp_list */
1492        if (how & UMOUNT_PROPAGATE)
1493                propagate_umount(&tmp_list);
1494
1495        while (!list_empty(&tmp_list)) {
1496                struct mnt_namespace *ns;
1497                bool disconnect;
1498                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1499                list_del_init(&p->mnt_expire);
1500                list_del_init(&p->mnt_list);
1501                ns = p->mnt_ns;
1502                if (ns) {
1503                        ns->mounts--;
1504                        __touch_mnt_namespace(ns);
1505                }
1506                p->mnt_ns = NULL;
1507                if (how & UMOUNT_SYNC)
1508                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1509
1510                disconnect = disconnect_mount(p, how);
1511
1512                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1513                                 disconnect ? &unmounted : NULL);
1514                if (mnt_has_parent(p)) {
1515                        mnt_add_count(p->mnt_parent, -1);
1516                        if (!disconnect) {
1517                                /* Don't forget about p */
1518                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1519                        } else {
1520                                umount_mnt(p);
1521                        }
1522                }
1523                change_mnt_propagation(p, MS_PRIVATE);
1524        }
1525}
1526
1527static void shrink_submounts(struct mount *mnt);
1528
1529static int do_umount(struct mount *mnt, int flags)
1530{
1531        struct super_block *sb = mnt->mnt.mnt_sb;
1532        int retval;
1533
1534        retval = security_sb_umount(&mnt->mnt, flags);
1535        if (retval)
1536                return retval;
1537
1538        /*
1539         * Allow userspace to request a mountpoint be expired rather than
1540         * unmounting unconditionally. Unmount only happens if:
1541         *  (1) the mark is already set (the mark is cleared by mntput())
1542         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1543         */
1544        if (flags & MNT_EXPIRE) {
1545                if (&mnt->mnt == current->fs->root.mnt ||
1546                    flags & (MNT_FORCE | MNT_DETACH))
1547                        return -EINVAL;
1548
1549                /*
1550                 * probably don't strictly need the lock here if we examined
1551                 * all race cases, but it's a slowpath.
1552                 */
1553                lock_mount_hash();
1554                if (mnt_get_count(mnt) != 2) {
1555                        unlock_mount_hash();
1556                        return -EBUSY;
1557                }
1558                unlock_mount_hash();
1559
1560                if (!xchg(&mnt->mnt_expiry_mark, 1))
1561                        return -EAGAIN;
1562        }
1563
1564        /*
1565         * If we may have to abort operations to get out of this
1566         * mount, and they will themselves hold resources we must
1567         * allow the fs to do things. In the Unix tradition of
1568         * 'Gee thats tricky lets do it in userspace' the umount_begin
1569         * might fail to complete on the first run through as other tasks
1570         * must return, and the like. Thats for the mount program to worry
1571         * about for the moment.
1572         */
1573
1574        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1575                sb->s_op->umount_begin(sb);
1576        }
1577
1578        /*
1579         * No sense to grab the lock for this test, but test itself looks
1580         * somewhat bogus. Suggestions for better replacement?
1581         * Ho-hum... In principle, we might treat that as umount + switch
1582         * to rootfs. GC would eventually take care of the old vfsmount.
1583         * Actually it makes sense, especially if rootfs would contain a
1584         * /reboot - static binary that would close all descriptors and
1585         * call reboot(9). Then init(8) could umount root and exec /reboot.
1586         */
1587        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1588                /*
1589                 * Special case for "unmounting" root ...
1590                 * we just try to remount it readonly.
1591                 */
1592                if (!capable(CAP_SYS_ADMIN))
1593                        return -EPERM;
1594                down_write(&sb->s_umount);
1595                if (!sb_rdonly(sb))
1596                        retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1597                up_write(&sb->s_umount);
1598                return retval;
1599        }
1600
1601        namespace_lock();
1602        lock_mount_hash();
1603        event++;
1604
1605        if (flags & MNT_DETACH) {
1606                if (!list_empty(&mnt->mnt_list))
1607                        umount_tree(mnt, UMOUNT_PROPAGATE);
1608                retval = 0;
1609        } else {
1610                shrink_submounts(mnt);
1611                retval = -EBUSY;
1612                if (!propagate_mount_busy(mnt, 2)) {
1613                        if (!list_empty(&mnt->mnt_list))
1614                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1615                        retval = 0;
1616                }
1617        }
1618        unlock_mount_hash();
1619        namespace_unlock();
1620        return retval;
1621}
1622
1623/*
1624 * __detach_mounts - lazily unmount all mounts on the specified dentry
1625 *
1626 * During unlink, rmdir, and d_drop it is possible to loose the path
1627 * to an existing mountpoint, and wind up leaking the mount.
1628 * detach_mounts allows lazily unmounting those mounts instead of
1629 * leaking them.
1630 *
1631 * The caller may hold dentry->d_inode->i_mutex.
1632 */
1633void __detach_mounts(struct dentry *dentry)
1634{
1635        struct mountpoint *mp;
1636        struct mount *mnt;
1637
1638        namespace_lock();
1639        lock_mount_hash();
1640        mp = lookup_mountpoint(dentry);
1641        if (IS_ERR_OR_NULL(mp))
1642                goto out_unlock;
1643
1644        event++;
1645        while (!hlist_empty(&mp->m_list)) {
1646                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1647                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1648                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1649                        umount_mnt(mnt);
1650                }
1651                else umount_tree(mnt, UMOUNT_CONNECTED);
1652        }
1653        put_mountpoint(mp);
1654out_unlock:
1655        unlock_mount_hash();
1656        namespace_unlock();
1657}
1658
1659/*
1660 * Is the caller allowed to modify his namespace?
1661 */
1662static inline bool may_mount(void)
1663{
1664        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1665}
1666
1667static inline bool may_mandlock(void)
1668{
1669#ifndef CONFIG_MANDATORY_FILE_LOCKING
1670        return false;
1671#endif
1672        return capable(CAP_SYS_ADMIN);
1673}
1674
1675/*
1676 * Now umount can handle mount points as well as block devices.
1677 * This is important for filesystems which use unnamed block devices.
1678 *
1679 * We now support a flag for forced unmount like the other 'big iron'
1680 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681 */
1682
1683SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1684{
1685        struct path path;
1686        struct mount *mnt;
1687        int retval;
1688        int lookup_flags = 0;
1689
1690        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1691                return -EINVAL;
1692
1693        if (!may_mount())
1694                return -EPERM;
1695
1696        if (!(flags & UMOUNT_NOFOLLOW))
1697                lookup_flags |= LOOKUP_FOLLOW;
1698
1699        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1700        if (retval)
1701                goto out;
1702        mnt = real_mount(path.mnt);
1703        retval = -EINVAL;
1704        if (path.dentry != path.mnt->mnt_root)
1705                goto dput_and_out;
1706        if (!check_mnt(mnt))
1707                goto dput_and_out;
1708        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1709                goto dput_and_out;
1710        retval = -EPERM;
1711        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1712                goto dput_and_out;
1713
1714        retval = do_umount(mnt, flags);
1715dput_and_out:
1716        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1717        dput(path.dentry);
1718        mntput_no_expire(mnt);
1719out:
1720        return retval;
1721}
1722
1723#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724
1725/*
1726 *      The 2.0 compatible umount. No flags.
1727 */
1728SYSCALL_DEFINE1(oldumount, char __user *, name)
1729{
1730        return sys_umount(name, 0);
1731}
1732
1733#endif
1734
1735static bool is_mnt_ns_file(struct dentry *dentry)
1736{
1737        /* Is this a proxy for a mount namespace? */
1738        return dentry->d_op == &ns_dentry_operations &&
1739               dentry->d_fsdata == &mntns_operations;
1740}
1741
1742struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1743{
1744        return container_of(ns, struct mnt_namespace, ns);
1745}
1746
1747static bool mnt_ns_loop(struct dentry *dentry)
1748{
1749        /* Could bind mounting the mount namespace inode cause a
1750         * mount namespace loop?
1751         */
1752        struct mnt_namespace *mnt_ns;
1753        if (!is_mnt_ns_file(dentry))
1754                return false;
1755
1756        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1757        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1758}
1759
1760struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1761                                        int flag)
1762{
1763        struct mount *res, *p, *q, *r, *parent;
1764
1765        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1766                return ERR_PTR(-EINVAL);
1767
1768        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1769                return ERR_PTR(-EINVAL);
1770
1771        res = q = clone_mnt(mnt, dentry, flag);
1772        if (IS_ERR(q))
1773                return q;
1774
1775        q->mnt_mountpoint = mnt->mnt_mountpoint;
1776
1777        p = mnt;
1778        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1779                struct mount *s;
1780                if (!is_subdir(r->mnt_mountpoint, dentry))
1781                        continue;
1782
1783                for (s = r; s; s = next_mnt(s, r)) {
1784                        if (!(flag & CL_COPY_UNBINDABLE) &&
1785                            IS_MNT_UNBINDABLE(s)) {
1786                                s = skip_mnt_tree(s);
1787                                continue;
1788                        }
1789                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790                            is_mnt_ns_file(s->mnt.mnt_root)) {
1791                                s = skip_mnt_tree(s);
1792                                continue;
1793                        }
1794                        while (p != s->mnt_parent) {
1795                                p = p->mnt_parent;
1796                                q = q->mnt_parent;
1797                        }
1798                        p = s;
1799                        parent = q;
1800                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1801                        if (IS_ERR(q))
1802                                goto out;
1803                        lock_mount_hash();
1804                        list_add_tail(&q->mnt_list, &res->mnt_list);
1805                        attach_mnt(q, parent, p->mnt_mp);
1806                        unlock_mount_hash();
1807                }
1808        }
1809        return res;
1810out:
1811        if (res) {
1812                lock_mount_hash();
1813                umount_tree(res, UMOUNT_SYNC);
1814                unlock_mount_hash();
1815        }
1816        return q;
1817}
1818
1819/* Caller should check returned pointer for errors */
1820
1821struct vfsmount *collect_mounts(const struct path *path)
1822{
1823        struct mount *tree;
1824        namespace_lock();
1825        if (!check_mnt(real_mount(path->mnt)))
1826                tree = ERR_PTR(-EINVAL);
1827        else
1828                tree = copy_tree(real_mount(path->mnt), path->dentry,
1829                                 CL_COPY_ALL | CL_PRIVATE);
1830        namespace_unlock();
1831        if (IS_ERR(tree))
1832                return ERR_CAST(tree);
1833        return &tree->mnt;
1834}
1835
1836void drop_collected_mounts(struct vfsmount *mnt)
1837{
1838        namespace_lock();
1839        lock_mount_hash();
1840        umount_tree(real_mount(mnt), UMOUNT_SYNC);
1841        unlock_mount_hash();
1842        namespace_unlock();
1843}
1844
1845/**
1846 * clone_private_mount - create a private clone of a path
1847 *
1848 * This creates a new vfsmount, which will be the clone of @path.  The new will
1849 * not be attached anywhere in the namespace and will be private (i.e. changes
1850 * to the originating mount won't be propagated into this).
1851 *
1852 * Release with mntput().
1853 */
1854struct vfsmount *clone_private_mount(const struct path *path)
1855{
1856        struct mount *old_mnt = real_mount(path->mnt);
1857        struct mount *new_mnt;
1858
1859        if (IS_MNT_UNBINDABLE(old_mnt))
1860                return ERR_PTR(-EINVAL);
1861
1862        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1863        if (IS_ERR(new_mnt))
1864                return ERR_CAST(new_mnt);
1865
1866        return &new_mnt->mnt;
1867}
1868EXPORT_SYMBOL_GPL(clone_private_mount);
1869
1870int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1871                   struct vfsmount *root)
1872{
1873        struct mount *mnt;
1874        int res = f(root, arg);
1875        if (res)
1876                return res;
1877        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1878                res = f(&mnt->mnt, arg);
1879                if (res)
1880                        return res;
1881        }
1882        return 0;
1883}
1884
1885static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1886{
1887        struct mount *p;
1888
1889        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1890                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1891                        mnt_release_group_id(p);
1892        }
1893}
1894
1895static int invent_group_ids(struct mount *mnt, bool recurse)
1896{
1897        struct mount *p;
1898
1899        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1900                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1901                        int err = mnt_alloc_group_id(p);
1902                        if (err) {
1903                                cleanup_group_ids(mnt, p);
1904                                return err;
1905                        }
1906                }
1907        }
1908
1909        return 0;
1910}
1911
1912int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1913{
1914        unsigned int max = READ_ONCE(sysctl_mount_max);
1915        unsigned int mounts = 0, old, pending, sum;
1916        struct mount *p;
1917
1918        for (p = mnt; p; p = next_mnt(p, mnt))
1919                mounts++;
1920
1921        old = ns->mounts;
1922        pending = ns->pending_mounts;
1923        sum = old + pending;
1924        if ((old > sum) ||
1925            (pending > sum) ||
1926            (max < sum) ||
1927            (mounts > (max - sum)))
1928                return -ENOSPC;
1929
1930        ns->pending_mounts = pending + mounts;
1931        return 0;
1932}
1933
1934/*
1935 *  @source_mnt : mount tree to be attached
1936 *  @nd         : place the mount tree @source_mnt is attached
1937 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1938 *                 store the parent mount and mountpoint dentry.
1939 *                 (done when source_mnt is moved)
1940 *
1941 *  NOTE: in the table below explains the semantics when a source mount
1942 *  of a given type is attached to a destination mount of a given type.
1943 * ---------------------------------------------------------------------------
1944 * |         BIND MOUNT OPERATION                                            |
1945 * |**************************************************************************
1946 * | source-->| shared        |       private  |       slave    | unbindable |
1947 * | dest     |               |                |                |            |
1948 * |   |      |               |                |                |            |
1949 * |   v      |               |                |                |            |
1950 * |**************************************************************************
1951 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1952 * |          |               |                |                |            |
1953 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1954 * ***************************************************************************
1955 * A bind operation clones the source mount and mounts the clone on the
1956 * destination mount.
1957 *
1958 * (++)  the cloned mount is propagated to all the mounts in the propagation
1959 *       tree of the destination mount and the cloned mount is added to
1960 *       the peer group of the source mount.
1961 * (+)   the cloned mount is created under the destination mount and is marked
1962 *       as shared. The cloned mount is added to the peer group of the source
1963 *       mount.
1964 * (+++) the mount is propagated to all the mounts in the propagation tree
1965 *       of the destination mount and the cloned mount is made slave
1966 *       of the same master as that of the source mount. The cloned mount
1967 *       is marked as 'shared and slave'.
1968 * (*)   the cloned mount is made a slave of the same master as that of the
1969 *       source mount.
1970 *
1971 * ---------------------------------------------------------------------------
1972 * |                    MOVE MOUNT OPERATION                                 |
1973 * |**************************************************************************
1974 * | source-->| shared        |       private  |       slave    | unbindable |
1975 * | dest     |               |                |                |            |
1976 * |   |      |               |                |                |            |
1977 * |   v      |               |                |                |            |
1978 * |**************************************************************************
1979 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1980 * |          |               |                |                |            |
1981 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1982 * ***************************************************************************
1983 *
1984 * (+)  the mount is moved to the destination. And is then propagated to
1985 *      all the mounts in the propagation tree of the destination mount.
1986 * (+*)  the mount is moved to the destination.
1987 * (+++)  the mount is moved to the destination and is then propagated to
1988 *      all the mounts belonging to the destination mount's propagation tree.
1989 *      the mount is marked as 'shared and slave'.
1990 * (*)  the mount continues to be a slave at the new location.
1991 *
1992 * if the source mount is a tree, the operations explained above is
1993 * applied to each mount in the tree.
1994 * Must be called without spinlocks held, since this function can sleep
1995 * in allocations.
1996 */
1997static int attach_recursive_mnt(struct mount *source_mnt,
1998                        struct mount *dest_mnt,
1999                        struct mountpoint *dest_mp,
2000                        struct path *parent_path)
2001{
2002        HLIST_HEAD(tree_list);
2003        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2004        struct mountpoint *smp;
2005        struct mount *child, *p;
2006        struct hlist_node *n;
2007        int err;
2008
2009        /* Preallocate a mountpoint in case the new mounts need
2010         * to be tucked under other mounts.
2011         */
2012        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2013        if (IS_ERR(smp))
2014                return PTR_ERR(smp);
2015
2016        /* Is there space to add these mounts to the mount namespace? */
2017        if (!parent_path) {
2018                err = count_mounts(ns, source_mnt);
2019                if (err)
2020                        goto out;
2021        }
2022
2023        if (IS_MNT_SHARED(dest_mnt)) {
2024                err = invent_group_ids(source_mnt, true);
2025                if (err)
2026                        goto out;
2027                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2028                lock_mount_hash();
2029                if (err)
2030                        goto out_cleanup_ids;
2031                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2032                        set_mnt_shared(p);
2033        } else {
2034                lock_mount_hash();
2035        }
2036        if (parent_path) {
2037                detach_mnt(source_mnt, parent_path);
2038                attach_mnt(source_mnt, dest_mnt, dest_mp);
2039                touch_mnt_namespace(source_mnt->mnt_ns);
2040        } else {
2041                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2042                commit_tree(source_mnt);
2043        }
2044
2045        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2046                struct mount *q;
2047                hlist_del_init(&child->mnt_hash);
2048                q = __lookup_mnt(&child->mnt_parent->mnt,
2049                                 child->mnt_mountpoint);
2050                if (q)
2051                        mnt_change_mountpoint(child, smp, q);
2052                commit_tree(child);
2053        }
2054        put_mountpoint(smp);
2055        unlock_mount_hash();
2056
2057        return 0;
2058
2059 out_cleanup_ids:
2060        while (!hlist_empty(&tree_list)) {
2061                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2062                child->mnt_parent->mnt_ns->pending_mounts = 0;
2063                umount_tree(child, UMOUNT_SYNC);
2064        }
2065        unlock_mount_hash();
2066        cleanup_group_ids(source_mnt, NULL);
2067 out:
2068        ns->pending_mounts = 0;
2069
2070        read_seqlock_excl(&mount_lock);
2071        put_mountpoint(smp);
2072        read_sequnlock_excl(&mount_lock);
2073
2074        return err;
2075}
2076
2077static struct mountpoint *lock_mount(struct path *path)
2078{
2079        struct vfsmount *mnt;
2080        struct dentry *dentry = path->dentry;
2081retry:
2082        inode_lock(dentry->d_inode);
2083        if (unlikely(cant_mount(dentry))) {
2084                inode_unlock(dentry->d_inode);
2085                return ERR_PTR(-ENOENT);
2086        }
2087        namespace_lock();
2088        mnt = lookup_mnt(path);
2089        if (likely(!mnt)) {
2090                struct mountpoint *mp = get_mountpoint(dentry);
2091                if (IS_ERR(mp)) {
2092                        namespace_unlock();
2093                        inode_unlock(dentry->d_inode);
2094                        return mp;
2095                }
2096                return mp;
2097        }
2098        namespace_unlock();
2099        inode_unlock(path->dentry->d_inode);
2100        path_put(path);
2101        path->mnt = mnt;
2102        dentry = path->dentry = dget(mnt->mnt_root);
2103        goto retry;
2104}
2105
2106static void unlock_mount(struct mountpoint *where)
2107{
2108        struct dentry *dentry = where->m_dentry;
2109
2110        read_seqlock_excl(&mount_lock);
2111        put_mountpoint(where);
2112        read_sequnlock_excl(&mount_lock);
2113
2114        namespace_unlock();
2115        inode_unlock(dentry->d_inode);
2116}
2117
2118static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2119{
2120        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2121                return -EINVAL;
2122
2123        if (d_is_dir(mp->m_dentry) !=
2124              d_is_dir(mnt->mnt.mnt_root))
2125                return -ENOTDIR;
2126
2127        return attach_recursive_mnt(mnt, p, mp, NULL);
2128}
2129
2130/*
2131 * Sanity check the flags to change_mnt_propagation.
2132 */
2133
2134static int flags_to_propagation_type(int ms_flags)
2135{
2136        int type = ms_flags & ~(MS_REC | MS_SILENT);
2137
2138        /* Fail if any non-propagation flags are set */
2139        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2140                return 0;
2141        /* Only one propagation flag should be set */
2142        if (!is_power_of_2(type))
2143                return 0;
2144        return type;
2145}
2146
2147/*
2148 * recursively change the type of the mountpoint.
2149 */
2150static int do_change_type(struct path *path, int ms_flags)
2151{
2152        struct mount *m;
2153        struct mount *mnt = real_mount(path->mnt);
2154        int recurse = ms_flags & MS_REC;
2155        int type;
2156        int err = 0;
2157
2158        if (path->dentry != path->mnt->mnt_root)
2159                return -EINVAL;
2160
2161        type = flags_to_propagation_type(ms_flags);
2162        if (!type)
2163                return -EINVAL;
2164
2165        namespace_lock();
2166        if (type == MS_SHARED) {
2167                err = invent_group_ids(mnt, recurse);
2168                if (err)
2169                        goto out_unlock;
2170        }
2171
2172        lock_mount_hash();
2173        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2174                change_mnt_propagation(m, type);
2175        unlock_mount_hash();
2176
2177 out_unlock:
2178        namespace_unlock();
2179        return err;
2180}
2181
2182static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2183{
2184        struct mount *child;
2185        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2186                if (!is_subdir(child->mnt_mountpoint, dentry))
2187                        continue;
2188
2189                if (child->mnt.mnt_flags & MNT_LOCKED)
2190                        return true;
2191        }
2192        return false;
2193}
2194
2195/*
2196 * do loopback mount.
2197 */
2198static int do_loopback(struct path *path, const char *old_name,
2199                                int recurse)
2200{
2201        struct path old_path;
2202        struct mount *mnt = NULL, *old, *parent;
2203        struct mountpoint *mp;
2204        int err;
2205        if (!old_name || !*old_name)
2206                return -EINVAL;
2207        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2208        if (err)
2209                return err;
2210
2211        err = -EINVAL;
2212        if (mnt_ns_loop(old_path.dentry))
2213                goto out;
2214
2215        mp = lock_mount(path);
2216        err = PTR_ERR(mp);
2217        if (IS_ERR(mp))
2218                goto out;
2219
2220        old = real_mount(old_path.mnt);
2221        parent = real_mount(path->mnt);
2222
2223        err = -EINVAL;
2224        if (IS_MNT_UNBINDABLE(old))
2225                goto out2;
2226
2227        if (!check_mnt(parent))
2228                goto out2;
2229
2230        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2231                goto out2;
2232
2233        if (!recurse && has_locked_children(old, old_path.dentry))
2234                goto out2;
2235
2236        if (recurse)
2237                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2238        else
2239                mnt = clone_mnt(old, old_path.dentry, 0);
2240
2241        if (IS_ERR(mnt)) {
2242                err = PTR_ERR(mnt);
2243                goto out2;
2244        }
2245
2246        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2247
2248        err = graft_tree(mnt, parent, mp);
2249        if (err) {
2250                lock_mount_hash();
2251                umount_tree(mnt, UMOUNT_SYNC);
2252                unlock_mount_hash();
2253        }
2254out2:
2255        unlock_mount(mp);
2256out:
2257        path_put(&old_path);
2258        return err;
2259}
2260
2261static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2262{
2263        int error = 0;
2264        int readonly_request = 0;
2265
2266        if (ms_flags & MS_RDONLY)
2267                readonly_request = 1;
2268        if (readonly_request == __mnt_is_readonly(mnt))
2269                return 0;
2270
2271        if (readonly_request)
2272                error = mnt_make_readonly(real_mount(mnt));
2273        else
2274                __mnt_unmake_readonly(real_mount(mnt));
2275        return error;
2276}
2277
2278/*
2279 * change filesystem flags. dir should be a physical root of filesystem.
2280 * If you've mounted a non-root directory somewhere and want to do remount
2281 * on it - tough luck.
2282 */
2283static int do_remount(struct path *path, int ms_flags, int sb_flags,
2284                      int mnt_flags, void *data)
2285{
2286        int err;
2287        struct super_block *sb = path->mnt->mnt_sb;
2288        struct mount *mnt = real_mount(path->mnt);
2289
2290        if (!check_mnt(mnt))
2291                return -EINVAL;
2292
2293        if (path->dentry != path->mnt->mnt_root)
2294                return -EINVAL;
2295
2296        /* Don't allow changing of locked mnt flags.
2297         *
2298         * No locks need to be held here while testing the various
2299         * MNT_LOCK flags because those flags can never be cleared
2300         * once they are set.
2301         */
2302        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2303            !(mnt_flags & MNT_READONLY)) {
2304                return -EPERM;
2305        }
2306        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2307            !(mnt_flags & MNT_NODEV)) {
2308                return -EPERM;
2309        }
2310        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2311            !(mnt_flags & MNT_NOSUID)) {
2312                return -EPERM;
2313        }
2314        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2315            !(mnt_flags & MNT_NOEXEC)) {
2316                return -EPERM;
2317        }
2318        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2319            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2320                return -EPERM;
2321        }
2322
2323        err = security_sb_remount(sb, data);
2324        if (err)
2325                return err;
2326
2327        down_write(&sb->s_umount);
2328        if (ms_flags & MS_BIND)
2329                err = change_mount_flags(path->mnt, ms_flags);
2330        else if (!capable(CAP_SYS_ADMIN))
2331                err = -EPERM;
2332        else
2333                err = do_remount_sb(sb, sb_flags, data, 0);
2334        if (!err) {
2335                lock_mount_hash();
2336                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2337                mnt->mnt.mnt_flags = mnt_flags;
2338                touch_mnt_namespace(mnt->mnt_ns);
2339                unlock_mount_hash();
2340        }
2341        up_write(&sb->s_umount);
2342        return err;
2343}
2344
2345static inline int tree_contains_unbindable(struct mount *mnt)
2346{
2347        struct mount *p;
2348        for (p = mnt; p; p = next_mnt(p, mnt)) {
2349                if (IS_MNT_UNBINDABLE(p))
2350                        return 1;
2351        }
2352        return 0;
2353}
2354
2355static int do_move_mount(struct path *path, const char *old_name)
2356{
2357        struct path old_path, parent_path;
2358        struct mount *p;
2359        struct mount *old;
2360        struct mountpoint *mp;
2361        int err;
2362        if (!old_name || !*old_name)
2363                return -EINVAL;
2364        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2365        if (err)
2366                return err;
2367
2368        mp = lock_mount(path);
2369        err = PTR_ERR(mp);
2370        if (IS_ERR(mp))
2371                goto out;
2372
2373        old = real_mount(old_path.mnt);
2374        p = real_mount(path->mnt);
2375
2376        err = -EINVAL;
2377        if (!check_mnt(p) || !check_mnt(old))
2378                goto out1;
2379
2380        if (old->mnt.mnt_flags & MNT_LOCKED)
2381                goto out1;
2382
2383        err = -EINVAL;
2384        if (old_path.dentry != old_path.mnt->mnt_root)
2385                goto out1;
2386
2387        if (!mnt_has_parent(old))
2388                goto out1;
2389
2390        if (d_is_dir(path->dentry) !=
2391              d_is_dir(old_path.dentry))
2392                goto out1;
2393        /*
2394         * Don't move a mount residing in a shared parent.
2395         */
2396        if (IS_MNT_SHARED(old->mnt_parent))
2397                goto out1;
2398        /*
2399         * Don't move a mount tree containing unbindable mounts to a destination
2400         * mount which is shared.
2401         */
2402        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2403                goto out1;
2404        err = -ELOOP;
2405        for (; mnt_has_parent(p); p = p->mnt_parent)
2406                if (p == old)
2407                        goto out1;
2408
2409        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2410        if (err)
2411                goto out1;
2412
2413        /* if the mount is moved, it should no longer be expire
2414         * automatically */
2415        list_del_init(&old->mnt_expire);
2416out1:
2417        unlock_mount(mp);
2418out:
2419        if (!err)
2420                path_put(&parent_path);
2421        path_put(&old_path);
2422        return err;
2423}
2424
2425static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2426{
2427        int err;
2428        const char *subtype = strchr(fstype, '.');
2429        if (subtype) {
2430                subtype++;
2431                err = -EINVAL;
2432                if (!subtype[0])
2433                        goto err;
2434        } else
2435                subtype = "";
2436
2437        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2438        err = -ENOMEM;
2439        if (!mnt->mnt_sb->s_subtype)
2440                goto err;
2441        return mnt;
2442
2443 err:
2444        mntput(mnt);
2445        return ERR_PTR(err);
2446}
2447
2448/*
2449 * add a mount into a namespace's mount tree
2450 */
2451static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2452{
2453        struct mountpoint *mp;
2454        struct mount *parent;
2455        int err;
2456
2457        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2458
2459        mp = lock_mount(path);
2460        if (IS_ERR(mp))
2461                return PTR_ERR(mp);
2462
2463        parent = real_mount(path->mnt);
2464        err = -EINVAL;
2465        if (unlikely(!check_mnt(parent))) {
2466                /* that's acceptable only for automounts done in private ns */
2467                if (!(mnt_flags & MNT_SHRINKABLE))
2468                        goto unlock;
2469                /* ... and for those we'd better have mountpoint still alive */
2470                if (!parent->mnt_ns)
2471                        goto unlock;
2472        }
2473
2474        /* Refuse the same filesystem on the same mount point */
2475        err = -EBUSY;
2476        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2477            path->mnt->mnt_root == path->dentry)
2478                goto unlock;
2479
2480        err = -EINVAL;
2481        if (d_is_symlink(newmnt->mnt.mnt_root))
2482                goto unlock;
2483
2484        newmnt->mnt.mnt_flags = mnt_flags;
2485        err = graft_tree(newmnt, parent, mp);
2486
2487unlock:
2488        unlock_mount(mp);
2489        return err;
2490}
2491
2492static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2493
2494/*
2495 * create a new mount for userspace and request it to be added into the
2496 * namespace's tree
2497 */
2498static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2499                        int mnt_flags, const char *name, void *data)
2500{
2501        struct file_system_type *type;
2502        struct vfsmount *mnt;
2503        int err;
2504
2505        if (!fstype)
2506                return -EINVAL;
2507
2508        type = get_fs_type(fstype);
2509        if (!type)
2510                return -ENODEV;
2511
2512        mnt = vfs_kern_mount(type, sb_flags, name, data);
2513        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2514            !mnt->mnt_sb->s_subtype)
2515                mnt = fs_set_subtype(mnt, fstype);
2516
2517        put_filesystem(type);
2518        if (IS_ERR(mnt))
2519                return PTR_ERR(mnt);
2520
2521        if (mount_too_revealing(mnt, &mnt_flags)) {
2522                mntput(mnt);
2523                return -EPERM;
2524        }
2525
2526        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2527        if (err)
2528                mntput(mnt);
2529        return err;
2530}
2531
2532int finish_automount(struct vfsmount *m, struct path *path)
2533{
2534        struct mount *mnt = real_mount(m);
2535        int err;
2536        /* The new mount record should have at least 2 refs to prevent it being
2537         * expired before we get a chance to add it
2538         */
2539        BUG_ON(mnt_get_count(mnt) < 2);
2540
2541        if (m->mnt_sb == path->mnt->mnt_sb &&
2542            m->mnt_root == path->dentry) {
2543                err = -ELOOP;
2544                goto fail;
2545        }
2546
2547        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2548        if (!err)
2549                return 0;
2550fail:
2551        /* remove m from any expiration list it may be on */
2552        if (!list_empty(&mnt->mnt_expire)) {
2553                namespace_lock();
2554                list_del_init(&mnt->mnt_expire);
2555                namespace_unlock();
2556        }
2557        mntput(m);
2558        mntput(m);
2559        return err;
2560}
2561
2562/**
2563 * mnt_set_expiry - Put a mount on an expiration list
2564 * @mnt: The mount to list.
2565 * @expiry_list: The list to add the mount to.
2566 */
2567void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2568{
2569        namespace_lock();
2570
2571        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2572
2573        namespace_unlock();
2574}
2575EXPORT_SYMBOL(mnt_set_expiry);
2576
2577/*
2578 * process a list of expirable mountpoints with the intent of discarding any
2579 * mountpoints that aren't in use and haven't been touched since last we came
2580 * here
2581 */
2582void mark_mounts_for_expiry(struct list_head *mounts)
2583{
2584        struct mount *mnt, *next;
2585        LIST_HEAD(graveyard);
2586
2587        if (list_empty(mounts))
2588                return;
2589
2590        namespace_lock();
2591        lock_mount_hash();
2592
2593        /* extract from the expiration list every vfsmount that matches the
2594         * following criteria:
2595         * - only referenced by its parent vfsmount
2596         * - still marked for expiry (marked on the last call here; marks are
2597         *   cleared by mntput())
2598         */
2599        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2600                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2601                        propagate_mount_busy(mnt, 1))
2602                        continue;
2603                list_move(&mnt->mnt_expire, &graveyard);
2604        }
2605        while (!list_empty(&graveyard)) {
2606                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2607                touch_mnt_namespace(mnt->mnt_ns);
2608                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2609        }
2610        unlock_mount_hash();
2611        namespace_unlock();
2612}
2613
2614EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2615
2616/*
2617 * Ripoff of 'select_parent()'
2618 *
2619 * search the list of submounts for a given mountpoint, and move any
2620 * shrinkable submounts to the 'graveyard' list.
2621 */
2622static int select_submounts(struct mount *parent, struct list_head *graveyard)
2623{
2624        struct mount *this_parent = parent;
2625        struct list_head *next;
2626        int found = 0;
2627
2628repeat:
2629        next = this_parent->mnt_mounts.next;
2630resume:
2631        while (next != &this_parent->mnt_mounts) {
2632                struct list_head *tmp = next;
2633                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2634
2635                next = tmp->next;
2636                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2637                        continue;
2638                /*
2639                 * Descend a level if the d_mounts list is non-empty.
2640                 */
2641                if (!list_empty(&mnt->mnt_mounts)) {
2642                        this_parent = mnt;
2643                        goto repeat;
2644                }
2645
2646                if (!propagate_mount_busy(mnt, 1)) {
2647                        list_move_tail(&mnt->mnt_expire, graveyard);
2648                        found++;
2649                }
2650        }
2651        /*
2652         * All done at this level ... ascend and resume the search
2653         */
2654        if (this_parent != parent) {
2655                next = this_parent->mnt_child.next;
2656                this_parent = this_parent->mnt_parent;
2657                goto resume;
2658        }
2659        return found;
2660}
2661
2662/*
2663 * process a list of expirable mountpoints with the intent of discarding any
2664 * submounts of a specific parent mountpoint
2665 *
2666 * mount_lock must be held for write
2667 */
2668static void shrink_submounts(struct mount *mnt)
2669{
2670        LIST_HEAD(graveyard);
2671        struct mount *m;
2672
2673        /* extract submounts of 'mountpoint' from the expiration list */
2674        while (select_submounts(mnt, &graveyard)) {
2675                while (!list_empty(&graveyard)) {
2676                        m = list_first_entry(&graveyard, struct mount,
2677                                                mnt_expire);
2678                        touch_mnt_namespace(m->mnt_ns);
2679                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2680                }
2681        }
2682}
2683
2684/*
2685 * Some copy_from_user() implementations do not return the exact number of
2686 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2687 * Note that this function differs from copy_from_user() in that it will oops
2688 * on bad values of `to', rather than returning a short copy.
2689 */
2690static long exact_copy_from_user(void *to, const void __user * from,
2691                                 unsigned long n)
2692{
2693        char *t = to;
2694        const char __user *f = from;
2695        char c;
2696
2697        if (!access_ok(VERIFY_READ, from, n))
2698                return n;
2699
2700        while (n) {
2701                if (__get_user(c, f)) {
2702                        memset(t, 0, n);
2703                        break;
2704                }
2705                *t++ = c;
2706                f++;
2707                n--;
2708        }
2709        return n;
2710}
2711
2712void *copy_mount_options(const void __user * data)
2713{
2714        int i;
2715        unsigned long size;
2716        char *copy;
2717
2718        if (!data)
2719                return NULL;
2720
2721        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2722        if (!copy)
2723                return ERR_PTR(-ENOMEM);
2724
2725        /* We only care that *some* data at the address the user
2726         * gave us is valid.  Just in case, we'll zero
2727         * the remainder of the page.
2728         */
2729        /* copy_from_user cannot cross TASK_SIZE ! */
2730        size = TASK_SIZE - (unsigned long)data;
2731        if (size > PAGE_SIZE)
2732                size = PAGE_SIZE;
2733
2734        i = size - exact_copy_from_user(copy, data, size);
2735        if (!i) {
2736                kfree(copy);
2737                return ERR_PTR(-EFAULT);
2738        }
2739        if (i != PAGE_SIZE)
2740                memset(copy + i, 0, PAGE_SIZE - i);
2741        return copy;
2742}
2743
2744char *copy_mount_string(const void __user *data)
2745{
2746        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2747}
2748
2749/*
2750 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2751 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2752 *
2753 * data is a (void *) that can point to any structure up to
2754 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2755 * information (or be NULL).
2756 *
2757 * Pre-0.97 versions of mount() didn't have a flags word.
2758 * When the flags word was introduced its top half was required
2759 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2760 * Therefore, if this magic number is present, it carries no information
2761 * and must be discarded.
2762 */
2763long do_mount(const char *dev_name, const char __user *dir_name,
2764                const char *type_page, unsigned long flags, void *data_page)
2765{
2766        struct path path;
2767        unsigned int mnt_flags = 0, sb_flags;
2768        int retval = 0;
2769
2770        /* Discard magic */
2771        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2772                flags &= ~MS_MGC_MSK;
2773
2774        /* Basic sanity checks */
2775        if (data_page)
2776                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2777
2778        if (flags & MS_NOUSER)
2779                return -EINVAL;
2780
2781        /* ... and get the mountpoint */
2782        retval = user_path(dir_name, &path);
2783        if (retval)
2784                return retval;
2785
2786        retval = security_sb_mount(dev_name, &path,
2787                                   type_page, flags, data_page);
2788        if (!retval && !may_mount())
2789                retval = -EPERM;
2790        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2791                retval = -EPERM;
2792        if (retval)
2793                goto dput_out;
2794
2795        /* Default to relatime unless overriden */
2796        if (!(flags & MS_NOATIME))
2797                mnt_flags |= MNT_RELATIME;
2798
2799        /* Separate the per-mountpoint flags */
2800        if (flags & MS_NOSUID)
2801                mnt_flags |= MNT_NOSUID;
2802        if (flags & MS_NODEV)
2803                mnt_flags |= MNT_NODEV;
2804        if (flags & MS_NOEXEC)
2805                mnt_flags |= MNT_NOEXEC;
2806        if (flags & MS_NOATIME)
2807                mnt_flags |= MNT_NOATIME;
2808        if (flags & MS_NODIRATIME)
2809                mnt_flags |= MNT_NODIRATIME;
2810        if (flags & MS_STRICTATIME)
2811                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2812        if (flags & SB_RDONLY)
2813                mnt_flags |= MNT_READONLY;
2814
2815        /* The default atime for remount is preservation */
2816        if ((flags & MS_REMOUNT) &&
2817            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2818                       MS_STRICTATIME)) == 0)) {
2819                mnt_flags &= ~MNT_ATIME_MASK;
2820                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2821        }
2822
2823        sb_flags = flags & (SB_RDONLY |
2824                            SB_SYNCHRONOUS |
2825                            SB_MANDLOCK |
2826                            SB_DIRSYNC |
2827                            SB_SILENT |
2828                            SB_POSIXACL |
2829                            SB_I_VERSION);
2830
2831        if (flags & MS_REMOUNT)
2832                retval = do_remount(&path, flags, sb_flags, mnt_flags,
2833                                    data_page);
2834        else if (flags & MS_BIND)
2835                retval = do_loopback(&path, dev_name, flags & MS_REC);
2836        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2837                retval = do_change_type(&path, flags);
2838        else if (flags & MS_MOVE)
2839                retval = do_move_mount(&path, dev_name);
2840        else
2841                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2842                                      dev_name, data_page);
2843dput_out:
2844        path_put(&path);
2845        return retval;
2846}
2847
2848static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2849{
2850        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2851}
2852
2853static void dec_mnt_namespaces(struct ucounts *ucounts)
2854{
2855        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2856}
2857
2858static void free_mnt_ns(struct mnt_namespace *ns)
2859{
2860        ns_free_inum(&ns->ns);
2861        dec_mnt_namespaces(ns->ucounts);
2862        put_user_ns(ns->user_ns);
2863        kfree(ns);
2864}
2865
2866/*
2867 * Assign a sequence number so we can detect when we attempt to bind
2868 * mount a reference to an older mount namespace into the current
2869 * mount namespace, preventing reference counting loops.  A 64bit
2870 * number incrementing at 10Ghz will take 12,427 years to wrap which
2871 * is effectively never, so we can ignore the possibility.
2872 */
2873static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2874
2875static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2876{
2877        struct mnt_namespace *new_ns;
2878        struct ucounts *ucounts;
2879        int ret;
2880
2881        ucounts = inc_mnt_namespaces(user_ns);
2882        if (!ucounts)
2883                return ERR_PTR(-ENOSPC);
2884
2885        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2886        if (!new_ns) {
2887                dec_mnt_namespaces(ucounts);
2888                return ERR_PTR(-ENOMEM);
2889        }
2890        ret = ns_alloc_inum(&new_ns->ns);
2891        if (ret) {
2892                kfree(new_ns);
2893                dec_mnt_namespaces(ucounts);
2894                return ERR_PTR(ret);
2895        }
2896        new_ns->ns.ops = &mntns_operations;
2897        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2898        atomic_set(&new_ns->count, 1);
2899        new_ns->root = NULL;
2900        INIT_LIST_HEAD(&new_ns->list);
2901        init_waitqueue_head(&new_ns->poll);
2902        new_ns->event = 0;
2903        new_ns->user_ns = get_user_ns(user_ns);
2904        new_ns->ucounts = ucounts;
2905        new_ns->mounts = 0;
2906        new_ns->pending_mounts = 0;
2907        return new_ns;
2908}
2909
2910__latent_entropy
2911struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2912                struct user_namespace *user_ns, struct fs_struct *new_fs)
2913{
2914        struct mnt_namespace *new_ns;
2915        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2916        struct mount *p, *q;
2917        struct mount *old;
2918        struct mount *new;
2919        int copy_flags;
2920
2921        BUG_ON(!ns);
2922
2923        if (likely(!(flags & CLONE_NEWNS))) {
2924                get_mnt_ns(ns);
2925                return ns;
2926        }
2927
2928        old = ns->root;
2929
2930        new_ns = alloc_mnt_ns(user_ns);
2931        if (IS_ERR(new_ns))
2932                return new_ns;
2933
2934        namespace_lock();
2935        /* First pass: copy the tree topology */
2936        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2937        if (user_ns != ns->user_ns)
2938                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2939        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2940        if (IS_ERR(new)) {
2941                namespace_unlock();
2942                free_mnt_ns(new_ns);
2943                return ERR_CAST(new);
2944        }
2945        new_ns->root = new;
2946        list_add_tail(&new_ns->list, &new->mnt_list);
2947
2948        /*
2949         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2950         * as belonging to new namespace.  We have already acquired a private
2951         * fs_struct, so tsk->fs->lock is not needed.
2952         */
2953        p = old;
2954        q = new;
2955        while (p) {
2956                q->mnt_ns = new_ns;
2957                new_ns->mounts++;
2958                if (new_fs) {
2959                        if (&p->mnt == new_fs->root.mnt) {
2960                                new_fs->root.mnt = mntget(&q->mnt);
2961                                rootmnt = &p->mnt;
2962                        }
2963                        if (&p->mnt == new_fs->pwd.mnt) {
2964                                new_fs->pwd.mnt = mntget(&q->mnt);
2965                                pwdmnt = &p->mnt;
2966                        }
2967                }
2968                p = next_mnt(p, old);
2969                q = next_mnt(q, new);
2970                if (!q)
2971                        break;
2972                while (p->mnt.mnt_root != q->mnt.mnt_root)
2973                        p = next_mnt(p, old);
2974        }
2975        namespace_unlock();
2976
2977        if (rootmnt)
2978                mntput(rootmnt);
2979        if (pwdmnt)
2980                mntput(pwdmnt);
2981
2982        return new_ns;
2983}
2984
2985/**
2986 * create_mnt_ns - creates a private namespace and adds a root filesystem
2987 * @mnt: pointer to the new root filesystem mountpoint
2988 */
2989static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2990{
2991        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2992        if (!IS_ERR(new_ns)) {
2993                struct mount *mnt = real_mount(m);
2994                mnt->mnt_ns = new_ns;
2995                new_ns->root = mnt;
2996                new_ns->mounts++;
2997                list_add(&mnt->mnt_list, &new_ns->list);
2998        } else {
2999                mntput(m);
3000        }
3001        return new_ns;
3002}
3003
3004struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3005{
3006        struct mnt_namespace *ns;
3007        struct super_block *s;
3008        struct path path;
3009        int err;
3010
3011        ns = create_mnt_ns(mnt);
3012        if (IS_ERR(ns))
3013                return ERR_CAST(ns);
3014
3015        err = vfs_path_lookup(mnt->mnt_root, mnt,
3016                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3017
3018        put_mnt_ns(ns);
3019
3020        if (err)
3021                return ERR_PTR(err);
3022
3023        /* trade a vfsmount reference for active sb one */
3024        s = path.mnt->mnt_sb;
3025        atomic_inc(&s->s_active);
3026        mntput(path.mnt);
3027        /* lock the sucker */
3028        down_write(&s->s_umount);
3029        /* ... and return the root of (sub)tree on it */
3030        return path.dentry;
3031}
3032EXPORT_SYMBOL(mount_subtree);
3033
3034SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3035                char __user *, type, unsigned long, flags, void __user *, data)
3036{
3037        int ret;
3038        char *kernel_type;
3039        char *kernel_dev;
3040        void *options;
3041
3042        kernel_type = copy_mount_string(type);
3043        ret = PTR_ERR(kernel_type);
3044        if (IS_ERR(kernel_type))
3045                goto out_type;
3046
3047        kernel_dev = copy_mount_string(dev_name);
3048        ret = PTR_ERR(kernel_dev);
3049        if (IS_ERR(kernel_dev))
3050                goto out_dev;
3051
3052        options = copy_mount_options(data);
3053        ret = PTR_ERR(options);
3054        if (IS_ERR(options))
3055                goto out_data;
3056
3057        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3058
3059        kfree(options);
3060out_data:
3061        kfree(kernel_dev);
3062out_dev:
3063        kfree(kernel_type);
3064out_type:
3065        return ret;
3066}
3067
3068/*
3069 * Return true if path is reachable from root
3070 *
3071 * namespace_sem or mount_lock is held
3072 */
3073bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3074                         const struct path *root)
3075{
3076        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3077                dentry = mnt->mnt_mountpoint;
3078                mnt = mnt->mnt_parent;
3079        }
3080        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3081}
3082
3083bool path_is_under(const struct path *path1, const struct path *path2)
3084{
3085        bool res;
3086        read_seqlock_excl(&mount_lock);
3087        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3088        read_sequnlock_excl(&mount_lock);
3089        return res;
3090}
3091EXPORT_SYMBOL(path_is_under);
3092
3093/*
3094 * pivot_root Semantics:
3095 * Moves the root file system of the current process to the directory put_old,
3096 * makes new_root as the new root file system of the current process, and sets
3097 * root/cwd of all processes which had them on the current root to new_root.
3098 *
3099 * Restrictions:
3100 * The new_root and put_old must be directories, and  must not be on the
3101 * same file  system as the current process root. The put_old  must  be
3102 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3103 * pointed to by put_old must yield the same directory as new_root. No other
3104 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3105 *
3106 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3107 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3108 * in this situation.
3109 *
3110 * Notes:
3111 *  - we don't move root/cwd if they are not at the root (reason: if something
3112 *    cared enough to change them, it's probably wrong to force them elsewhere)
3113 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3114 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3115 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3116 *    first.
3117 */
3118SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3119                const char __user *, put_old)
3120{
3121        struct path new, old, parent_path, root_parent, root;
3122        struct mount *new_mnt, *root_mnt, *old_mnt;
3123        struct mountpoint *old_mp, *root_mp;
3124        int error;
3125
3126        if (!may_mount())
3127                return -EPERM;
3128
3129        error = user_path_dir(new_root, &new);
3130        if (error)
3131                goto out0;
3132
3133        error = user_path_dir(put_old, &old);
3134        if (error)
3135                goto out1;
3136
3137        error = security_sb_pivotroot(&old, &new);
3138        if (error)
3139                goto out2;
3140
3141        get_fs_root(current->fs, &root);
3142        old_mp = lock_mount(&old);
3143        error = PTR_ERR(old_mp);
3144        if (IS_ERR(old_mp))
3145                goto out3;
3146
3147        error = -EINVAL;
3148        new_mnt = real_mount(new.mnt);
3149        root_mnt = real_mount(root.mnt);
3150        old_mnt = real_mount(old.mnt);
3151        if (IS_MNT_SHARED(old_mnt) ||
3152                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3153                IS_MNT_SHARED(root_mnt->mnt_parent))
3154                goto out4;
3155        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3156                goto out4;
3157        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3158                goto out4;
3159        error = -ENOENT;
3160        if (d_unlinked(new.dentry))
3161                goto out4;
3162        error = -EBUSY;
3163        if (new_mnt == root_mnt || old_mnt == root_mnt)
3164                goto out4; /* loop, on the same file system  */
3165        error = -EINVAL;
3166        if (root.mnt->mnt_root != root.dentry)
3167                goto out4; /* not a mountpoint */
3168        if (!mnt_has_parent(root_mnt))
3169                goto out4; /* not attached */
3170        root_mp = root_mnt->mnt_mp;
3171        if (new.mnt->mnt_root != new.dentry)
3172                goto out4; /* not a mountpoint */
3173        if (!mnt_has_parent(new_mnt))
3174                goto out4; /* not attached */
3175        /* make sure we can reach put_old from new_root */
3176        if (!is_path_reachable(old_mnt, old.dentry, &new))
3177                goto out4;
3178        /* make certain new is below the root */
3179        if (!is_path_reachable(new_mnt, new.dentry, &root))
3180                goto out4;
3181        root_mp->m_count++; /* pin it so it won't go away */
3182        lock_mount_hash();
3183        detach_mnt(new_mnt, &parent_path);
3184        detach_mnt(root_mnt, &root_parent);
3185        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3186                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3187                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3188        }
3189        /* mount old root on put_old */
3190        attach_mnt(root_mnt, old_mnt, old_mp);
3191        /* mount new_root on / */
3192        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3193        touch_mnt_namespace(current->nsproxy->mnt_ns);
3194        /* A moved mount should not expire automatically */
3195        list_del_init(&new_mnt->mnt_expire);
3196        put_mountpoint(root_mp);
3197        unlock_mount_hash();
3198        chroot_fs_refs(&root, &new);
3199        error = 0;
3200out4:
3201        unlock_mount(old_mp);
3202        if (!error) {
3203                path_put(&root_parent);
3204                path_put(&parent_path);
3205        }
3206out3:
3207        path_put(&root);
3208out2:
3209        path_put(&old);
3210out1:
3211        path_put(&new);
3212out0:
3213        return error;
3214}
3215
3216static void __init init_mount_tree(void)
3217{
3218        struct vfsmount *mnt;
3219        struct mnt_namespace *ns;
3220        struct path root;
3221        struct file_system_type *type;
3222
3223        type = get_fs_type("rootfs");
3224        if (!type)
3225                panic("Can't find rootfs type");
3226        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3227        put_filesystem(type);
3228        if (IS_ERR(mnt))
3229                panic("Can't create rootfs");
3230
3231        ns = create_mnt_ns(mnt);
3232        if (IS_ERR(ns))
3233                panic("Can't allocate initial namespace");
3234
3235        init_task.nsproxy->mnt_ns = ns;
3236        get_mnt_ns(ns);
3237
3238        root.mnt = mnt;
3239        root.dentry = mnt->mnt_root;
3240        mnt->mnt_flags |= MNT_LOCKED;
3241
3242        set_fs_pwd(current->fs, &root);
3243        set_fs_root(current->fs, &root);
3244}
3245
3246void __init mnt_init(void)
3247{
3248        int err;
3249
3250        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3251                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3252
3253        mount_hashtable = alloc_large_system_hash("Mount-cache",
3254                                sizeof(struct hlist_head),
3255                                mhash_entries, 19,
3256                                HASH_ZERO,
3257                                &m_hash_shift, &m_hash_mask, 0, 0);
3258        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3259                                sizeof(struct hlist_head),
3260                                mphash_entries, 19,
3261                                HASH_ZERO,
3262                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3263
3264        if (!mount_hashtable || !mountpoint_hashtable)
3265                panic("Failed to allocate mount hash table\n");
3266
3267        kernfs_init();
3268
3269        err = sysfs_init();
3270        if (err)
3271                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3272                        __func__, err);
3273        fs_kobj = kobject_create_and_add("fs", NULL);
3274        if (!fs_kobj)
3275                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3276        init_rootfs();
3277        init_mount_tree();
3278}
3279
3280void put_mnt_ns(struct mnt_namespace *ns)
3281{
3282        if (!atomic_dec_and_test(&ns->count))
3283                return;
3284        drop_collected_mounts(&ns->root->mnt);
3285        free_mnt_ns(ns);
3286}
3287
3288struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289{
3290        struct vfsmount *mnt;
3291        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3292        if (!IS_ERR(mnt)) {
3293                /*
3294                 * it is a longterm mount, don't release mnt until
3295                 * we unmount before file sys is unregistered
3296                */
3297                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3298        }
3299        return mnt;
3300}
3301EXPORT_SYMBOL_GPL(kern_mount_data);
3302
3303void kern_unmount(struct vfsmount *mnt)
3304{
3305        /* release long term mount so mount point can be released */
3306        if (!IS_ERR_OR_NULL(mnt)) {
3307                real_mount(mnt)->mnt_ns = NULL;
3308                synchronize_rcu();      /* yecchhh... */
3309                mntput(mnt);
3310        }
3311}
3312EXPORT_SYMBOL(kern_unmount);
3313
3314bool our_mnt(struct vfsmount *mnt)
3315{
3316        return check_mnt(real_mount(mnt));
3317}
3318
3319bool current_chrooted(void)
3320{
3321        /* Does the current process have a non-standard root */
3322        struct path ns_root;
3323        struct path fs_root;
3324        bool chrooted;
3325
3326        /* Find the namespace root */
3327        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3328        ns_root.dentry = ns_root.mnt->mnt_root;
3329        path_get(&ns_root);
3330        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331                ;
3332
3333        get_fs_root(current->fs, &fs_root);
3334
3335        chrooted = !path_equal(&fs_root, &ns_root);
3336
3337        path_put(&fs_root);
3338        path_put(&ns_root);
3339
3340        return chrooted;
3341}
3342
3343static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344                                int *new_mnt_flags)
3345{
3346        int new_flags = *new_mnt_flags;
3347        struct mount *mnt;
3348        bool visible = false;
3349
3350        down_read(&namespace_sem);
3351        list_for_each_entry(mnt, &ns->list, mnt_list) {
3352                struct mount *child;
3353                int mnt_flags;
3354
3355                if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3356                        continue;
3357
3358                /* This mount is not fully visible if it's root directory
3359                 * is not the root directory of the filesystem.
3360                 */
3361                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362                        continue;
3363
3364                /* A local view of the mount flags */
3365                mnt_flags = mnt->mnt.mnt_flags;
3366
3367                /* Don't miss readonly hidden in the superblock flags */
3368                if (sb_rdonly(mnt->mnt.mnt_sb))
3369                        mnt_flags |= MNT_LOCK_READONLY;
3370
3371                /* Verify the mount flags are equal to or more permissive
3372                 * than the proposed new mount.
3373                 */
3374                if ((mnt_flags & MNT_LOCK_READONLY) &&
3375                    !(new_flags & MNT_READONLY))
3376                        continue;
3377                if ((mnt_flags & MNT_LOCK_ATIME) &&
3378                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3379                        continue;
3380
3381                /* This mount is not fully visible if there are any
3382                 * locked child mounts that cover anything except for
3383                 * empty directories.
3384                 */
3385                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386                        struct inode *inode = child->mnt_mountpoint->d_inode;
3387                        /* Only worry about locked mounts */
3388                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3389                                continue;
3390                        /* Is the directory permanetly empty? */
3391                        if (!is_empty_dir_inode(inode))
3392                                goto next;
3393                }
3394                /* Preserve the locked attributes */
3395                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3396                                               MNT_LOCK_ATIME);
3397                visible = true;
3398                goto found;
3399        next:   ;
3400        }
3401found:
3402        up_read(&namespace_sem);
3403        return visible;
3404}
3405
3406static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407{
3408        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3409        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410        unsigned long s_iflags;
3411
3412        if (ns->user_ns == &init_user_ns)
3413                return false;
3414
3415        /* Can this filesystem be too revealing? */
3416        s_iflags = mnt->mnt_sb->s_iflags;
3417        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418                return false;
3419
3420        if ((s_iflags & required_iflags) != required_iflags) {
3421                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422                          required_iflags);
3423                return true;
3424        }
3425
3426        return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427}
3428
3429bool mnt_may_suid(struct vfsmount *mnt)
3430{
3431        /*
3432         * Foreign mounts (accessed via fchdir or through /proc
3433         * symlinks) are always treated as if they are nosuid.  This
3434         * prevents namespaces from trusting potentially unsafe
3435         * suid/sgid bits, file caps, or security labels that originate
3436         * in other namespaces.
3437         */
3438        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439               current_in_userns(mnt->mnt_sb->s_user_ns);
3440}
3441
3442static struct ns_common *mntns_get(struct task_struct *task)
3443{
3444        struct ns_common *ns = NULL;
3445        struct nsproxy *nsproxy;
3446
3447        task_lock(task);
3448        nsproxy = task->nsproxy;
3449        if (nsproxy) {
3450                ns = &nsproxy->mnt_ns->ns;
3451                get_mnt_ns(to_mnt_ns(ns));
3452        }
3453        task_unlock(task);
3454
3455        return ns;
3456}
3457
3458static void mntns_put(struct ns_common *ns)
3459{
3460        put_mnt_ns(to_mnt_ns(ns));
3461}
3462
3463static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3464{
3465        struct fs_struct *fs = current->fs;
3466        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3467        struct path root;
3468        int err;
3469
3470        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3471            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3472            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3473                return -EPERM;
3474
3475        if (fs->users != 1)
3476                return -EINVAL;
3477
3478        get_mnt_ns(mnt_ns);
3479        old_mnt_ns = nsproxy->mnt_ns;
3480        nsproxy->mnt_ns = mnt_ns;
3481
3482        /* Find the root */
3483        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3484                                "/", LOOKUP_DOWN, &root);
3485        if (err) {
3486                /* revert to old namespace */
3487                nsproxy->mnt_ns = old_mnt_ns;
3488                put_mnt_ns(mnt_ns);
3489                return err;
3490        }
3491
3492        put_mnt_ns(old_mnt_ns);
3493
3494        /* Update the pwd and root */
3495        set_fs_pwd(fs, &root);
3496        set_fs_root(fs, &root);
3497
3498        path_put(&root);
3499        return 0;
3500}
3501
3502static struct user_namespace *mntns_owner(struct ns_common *ns)
3503{
3504        return to_mnt_ns(ns)->user_ns;
3505}
3506
3507const struct proc_ns_operations mntns_operations = {
3508        .name           = "mnt",
3509        .type           = CLONE_NEWNS,
3510        .get            = mntns_get,
3511        .put            = mntns_put,
3512        .install        = mntns_install,
3513        .owner          = mntns_owner,
3514};
3515