linux/fs/pnode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/pnode.c
   3 *
   4 * (C) Copyright IBM Corporation 2005.
   5 *      Released under GPL v2.
   6 *      Author : Ram Pai (linuxram@us.ibm.com)
   7 *
   8 */
   9#include <linux/mnt_namespace.h>
  10#include <linux/mount.h>
  11#include <linux/fs.h>
  12#include <linux/nsproxy.h>
  13#include "internal.h"
  14#include "pnode.h"
  15
  16/* return the next shared peer mount of @p */
  17static inline struct mount *next_peer(struct mount *p)
  18{
  19        return list_entry(p->mnt_share.next, struct mount, mnt_share);
  20}
  21
  22static inline struct mount *first_slave(struct mount *p)
  23{
  24        return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
  25}
  26
  27static inline struct mount *last_slave(struct mount *p)
  28{
  29        return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
  30}
  31
  32static inline struct mount *next_slave(struct mount *p)
  33{
  34        return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
  35}
  36
  37static struct mount *get_peer_under_root(struct mount *mnt,
  38                                         struct mnt_namespace *ns,
  39                                         const struct path *root)
  40{
  41        struct mount *m = mnt;
  42
  43        do {
  44                /* Check the namespace first for optimization */
  45                if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
  46                        return m;
  47
  48                m = next_peer(m);
  49        } while (m != mnt);
  50
  51        return NULL;
  52}
  53
  54/*
  55 * Get ID of closest dominating peer group having a representative
  56 * under the given root.
  57 *
  58 * Caller must hold namespace_sem
  59 */
  60int get_dominating_id(struct mount *mnt, const struct path *root)
  61{
  62        struct mount *m;
  63
  64        for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
  65                struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
  66                if (d)
  67                        return d->mnt_group_id;
  68        }
  69
  70        return 0;
  71}
  72
  73static int do_make_slave(struct mount *mnt)
  74{
  75        struct mount *master, *slave_mnt;
  76
  77        if (list_empty(&mnt->mnt_share)) {
  78                if (IS_MNT_SHARED(mnt)) {
  79                        mnt_release_group_id(mnt);
  80                        CLEAR_MNT_SHARED(mnt);
  81                }
  82                master = mnt->mnt_master;
  83                if (!master) {
  84                        struct list_head *p = &mnt->mnt_slave_list;
  85                        while (!list_empty(p)) {
  86                                slave_mnt = list_first_entry(p,
  87                                                struct mount, mnt_slave);
  88                                list_del_init(&slave_mnt->mnt_slave);
  89                                slave_mnt->mnt_master = NULL;
  90                        }
  91                        return 0;
  92                }
  93        } else {
  94                struct mount *m;
  95                /*
  96                 * slave 'mnt' to a peer mount that has the
  97                 * same root dentry. If none is available then
  98                 * slave it to anything that is available.
  99                 */
 100                for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
 101                        if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
 102                                master = m;
 103                                break;
 104                        }
 105                }
 106                list_del_init(&mnt->mnt_share);
 107                mnt->mnt_group_id = 0;
 108                CLEAR_MNT_SHARED(mnt);
 109        }
 110        list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 111                slave_mnt->mnt_master = master;
 112        list_move(&mnt->mnt_slave, &master->mnt_slave_list);
 113        list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
 114        INIT_LIST_HEAD(&mnt->mnt_slave_list);
 115        mnt->mnt_master = master;
 116        return 0;
 117}
 118
 119/*
 120 * vfsmount lock must be held for write
 121 */
 122void change_mnt_propagation(struct mount *mnt, int type)
 123{
 124        if (type == MS_SHARED) {
 125                set_mnt_shared(mnt);
 126                return;
 127        }
 128        do_make_slave(mnt);
 129        if (type != MS_SLAVE) {
 130                list_del_init(&mnt->mnt_slave);
 131                mnt->mnt_master = NULL;
 132                if (type == MS_UNBINDABLE)
 133                        mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
 134                else
 135                        mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
 136        }
 137}
 138
 139/*
 140 * get the next mount in the propagation tree.
 141 * @m: the mount seen last
 142 * @origin: the original mount from where the tree walk initiated
 143 *
 144 * Note that peer groups form contiguous segments of slave lists.
 145 * We rely on that in get_source() to be able to find out if
 146 * vfsmount found while iterating with propagation_next() is
 147 * a peer of one we'd found earlier.
 148 */
 149static struct mount *propagation_next(struct mount *m,
 150                                         struct mount *origin)
 151{
 152        /* are there any slaves of this mount? */
 153        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 154                return first_slave(m);
 155
 156        while (1) {
 157                struct mount *master = m->mnt_master;
 158
 159                if (master == origin->mnt_master) {
 160                        struct mount *next = next_peer(m);
 161                        return (next == origin) ? NULL : next;
 162                } else if (m->mnt_slave.next != &master->mnt_slave_list)
 163                        return next_slave(m);
 164
 165                /* back at master */
 166                m = master;
 167        }
 168}
 169
 170static struct mount *skip_propagation_subtree(struct mount *m,
 171                                                struct mount *origin)
 172{
 173        /*
 174         * Advance m such that propagation_next will not return
 175         * the slaves of m.
 176         */
 177        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 178                m = last_slave(m);
 179
 180        return m;
 181}
 182
 183static struct mount *next_group(struct mount *m, struct mount *origin)
 184{
 185        while (1) {
 186                while (1) {
 187                        struct mount *next;
 188                        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 189                                return first_slave(m);
 190                        next = next_peer(m);
 191                        if (m->mnt_group_id == origin->mnt_group_id) {
 192                                if (next == origin)
 193                                        return NULL;
 194                        } else if (m->mnt_slave.next != &next->mnt_slave)
 195                                break;
 196                        m = next;
 197                }
 198                /* m is the last peer */
 199                while (1) {
 200                        struct mount *master = m->mnt_master;
 201                        if (m->mnt_slave.next != &master->mnt_slave_list)
 202                                return next_slave(m);
 203                        m = next_peer(master);
 204                        if (master->mnt_group_id == origin->mnt_group_id)
 205                                break;
 206                        if (master->mnt_slave.next == &m->mnt_slave)
 207                                break;
 208                        m = master;
 209                }
 210                if (m == origin)
 211                        return NULL;
 212        }
 213}
 214
 215/* all accesses are serialized by namespace_sem */
 216static struct user_namespace *user_ns;
 217static struct mount *last_dest, *first_source, *last_source, *dest_master;
 218static struct mountpoint *mp;
 219static struct hlist_head *list;
 220
 221static inline bool peers(struct mount *m1, struct mount *m2)
 222{
 223        return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
 224}
 225
 226static int propagate_one(struct mount *m)
 227{
 228        struct mount *child;
 229        int type;
 230        /* skip ones added by this propagate_mnt() */
 231        if (IS_MNT_NEW(m))
 232                return 0;
 233        /* skip if mountpoint isn't covered by it */
 234        if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
 235                return 0;
 236        if (peers(m, last_dest)) {
 237                type = CL_MAKE_SHARED;
 238        } else {
 239                struct mount *n, *p;
 240                bool done;
 241                for (n = m; ; n = p) {
 242                        p = n->mnt_master;
 243                        if (p == dest_master || IS_MNT_MARKED(p))
 244                                break;
 245                }
 246                do {
 247                        struct mount *parent = last_source->mnt_parent;
 248                        if (last_source == first_source)
 249                                break;
 250                        done = parent->mnt_master == p;
 251                        if (done && peers(n, parent))
 252                                break;
 253                        last_source = last_source->mnt_master;
 254                } while (!done);
 255
 256                type = CL_SLAVE;
 257                /* beginning of peer group among the slaves? */
 258                if (IS_MNT_SHARED(m))
 259                        type |= CL_MAKE_SHARED;
 260        }
 261                
 262        /* Notice when we are propagating across user namespaces */
 263        if (m->mnt_ns->user_ns != user_ns)
 264                type |= CL_UNPRIVILEGED;
 265        child = copy_tree(last_source, last_source->mnt.mnt_root, type);
 266        if (IS_ERR(child))
 267                return PTR_ERR(child);
 268        child->mnt.mnt_flags &= ~MNT_LOCKED;
 269        mnt_set_mountpoint(m, mp, child);
 270        last_dest = m;
 271        last_source = child;
 272        if (m->mnt_master != dest_master) {
 273                read_seqlock_excl(&mount_lock);
 274                SET_MNT_MARK(m->mnt_master);
 275                read_sequnlock_excl(&mount_lock);
 276        }
 277        hlist_add_head(&child->mnt_hash, list);
 278        return count_mounts(m->mnt_ns, child);
 279}
 280
 281/*
 282 * mount 'source_mnt' under the destination 'dest_mnt' at
 283 * dentry 'dest_dentry'. And propagate that mount to
 284 * all the peer and slave mounts of 'dest_mnt'.
 285 * Link all the new mounts into a propagation tree headed at
 286 * source_mnt. Also link all the new mounts using ->mnt_list
 287 * headed at source_mnt's ->mnt_list
 288 *
 289 * @dest_mnt: destination mount.
 290 * @dest_dentry: destination dentry.
 291 * @source_mnt: source mount.
 292 * @tree_list : list of heads of trees to be attached.
 293 */
 294int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
 295                    struct mount *source_mnt, struct hlist_head *tree_list)
 296{
 297        struct mount *m, *n;
 298        int ret = 0;
 299
 300        /*
 301         * we don't want to bother passing tons of arguments to
 302         * propagate_one(); everything is serialized by namespace_sem,
 303         * so globals will do just fine.
 304         */
 305        user_ns = current->nsproxy->mnt_ns->user_ns;
 306        last_dest = dest_mnt;
 307        first_source = source_mnt;
 308        last_source = source_mnt;
 309        mp = dest_mp;
 310        list = tree_list;
 311        dest_master = dest_mnt->mnt_master;
 312
 313        /* all peers of dest_mnt, except dest_mnt itself */
 314        for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
 315                ret = propagate_one(n);
 316                if (ret)
 317                        goto out;
 318        }
 319
 320        /* all slave groups */
 321        for (m = next_group(dest_mnt, dest_mnt); m;
 322                        m = next_group(m, dest_mnt)) {
 323                /* everything in that slave group */
 324                n = m;
 325                do {
 326                        ret = propagate_one(n);
 327                        if (ret)
 328                                goto out;
 329                        n = next_peer(n);
 330                } while (n != m);
 331        }
 332out:
 333        read_seqlock_excl(&mount_lock);
 334        hlist_for_each_entry(n, tree_list, mnt_hash) {
 335                m = n->mnt_parent;
 336                if (m->mnt_master != dest_mnt->mnt_master)
 337                        CLEAR_MNT_MARK(m->mnt_master);
 338        }
 339        read_sequnlock_excl(&mount_lock);
 340        return ret;
 341}
 342
 343static struct mount *find_topper(struct mount *mnt)
 344{
 345        /* If there is exactly one mount covering mnt completely return it. */
 346        struct mount *child;
 347
 348        if (!list_is_singular(&mnt->mnt_mounts))
 349                return NULL;
 350
 351        child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
 352        if (child->mnt_mountpoint != mnt->mnt.mnt_root)
 353                return NULL;
 354
 355        return child;
 356}
 357
 358/*
 359 * return true if the refcount is greater than count
 360 */
 361static inline int do_refcount_check(struct mount *mnt, int count)
 362{
 363        return mnt_get_count(mnt) > count;
 364}
 365
 366/*
 367 * check if the mount 'mnt' can be unmounted successfully.
 368 * @mnt: the mount to be checked for unmount
 369 * NOTE: unmounting 'mnt' would naturally propagate to all
 370 * other mounts its parent propagates to.
 371 * Check if any of these mounts that **do not have submounts**
 372 * have more references than 'refcnt'. If so return busy.
 373 *
 374 * vfsmount lock must be held for write
 375 */
 376int propagate_mount_busy(struct mount *mnt, int refcnt)
 377{
 378        struct mount *m, *child, *topper;
 379        struct mount *parent = mnt->mnt_parent;
 380
 381        if (mnt == parent)
 382                return do_refcount_check(mnt, refcnt);
 383
 384        /*
 385         * quickly check if the current mount can be unmounted.
 386         * If not, we don't have to go checking for all other
 387         * mounts
 388         */
 389        if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
 390                return 1;
 391
 392        for (m = propagation_next(parent, parent); m;
 393                        m = propagation_next(m, parent)) {
 394                int count = 1;
 395                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 396                if (!child)
 397                        continue;
 398
 399                /* Is there exactly one mount on the child that covers
 400                 * it completely whose reference should be ignored?
 401                 */
 402                topper = find_topper(child);
 403                if (topper)
 404                        count += 1;
 405                else if (!list_empty(&child->mnt_mounts))
 406                        continue;
 407
 408                if (do_refcount_check(child, count))
 409                        return 1;
 410        }
 411        return 0;
 412}
 413
 414/*
 415 * Clear MNT_LOCKED when it can be shown to be safe.
 416 *
 417 * mount_lock lock must be held for write
 418 */
 419void propagate_mount_unlock(struct mount *mnt)
 420{
 421        struct mount *parent = mnt->mnt_parent;
 422        struct mount *m, *child;
 423
 424        BUG_ON(parent == mnt);
 425
 426        for (m = propagation_next(parent, parent); m;
 427                        m = propagation_next(m, parent)) {
 428                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 429                if (child)
 430                        child->mnt.mnt_flags &= ~MNT_LOCKED;
 431        }
 432}
 433
 434static void umount_one(struct mount *mnt, struct list_head *to_umount)
 435{
 436        CLEAR_MNT_MARK(mnt);
 437        mnt->mnt.mnt_flags |= MNT_UMOUNT;
 438        list_del_init(&mnt->mnt_child);
 439        list_del_init(&mnt->mnt_umounting);
 440        list_move_tail(&mnt->mnt_list, to_umount);
 441}
 442
 443/*
 444 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
 445 * parent propagates to.
 446 */
 447static bool __propagate_umount(struct mount *mnt,
 448                               struct list_head *to_umount,
 449                               struct list_head *to_restore)
 450{
 451        bool progress = false;
 452        struct mount *child;
 453
 454        /*
 455         * The state of the parent won't change if this mount is
 456         * already unmounted or marked as without children.
 457         */
 458        if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
 459                goto out;
 460
 461        /* Verify topper is the only grandchild that has not been
 462         * speculatively unmounted.
 463         */
 464        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
 465                if (child->mnt_mountpoint == mnt->mnt.mnt_root)
 466                        continue;
 467                if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
 468                        continue;
 469                /* Found a mounted child */
 470                goto children;
 471        }
 472
 473        /* Mark mounts that can be unmounted if not locked */
 474        SET_MNT_MARK(mnt);
 475        progress = true;
 476
 477        /* If a mount is without children and not locked umount it. */
 478        if (!IS_MNT_LOCKED(mnt)) {
 479                umount_one(mnt, to_umount);
 480        } else {
 481children:
 482                list_move_tail(&mnt->mnt_umounting, to_restore);
 483        }
 484out:
 485        return progress;
 486}
 487
 488static void umount_list(struct list_head *to_umount,
 489                        struct list_head *to_restore)
 490{
 491        struct mount *mnt, *child, *tmp;
 492        list_for_each_entry(mnt, to_umount, mnt_list) {
 493                list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
 494                        /* topper? */
 495                        if (child->mnt_mountpoint == mnt->mnt.mnt_root)
 496                                list_move_tail(&child->mnt_umounting, to_restore);
 497                        else
 498                                umount_one(child, to_umount);
 499                }
 500        }
 501}
 502
 503static void restore_mounts(struct list_head *to_restore)
 504{
 505        /* Restore mounts to a clean working state */
 506        while (!list_empty(to_restore)) {
 507                struct mount *mnt, *parent;
 508                struct mountpoint *mp;
 509
 510                mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
 511                CLEAR_MNT_MARK(mnt);
 512                list_del_init(&mnt->mnt_umounting);
 513
 514                /* Should this mount be reparented? */
 515                mp = mnt->mnt_mp;
 516                parent = mnt->mnt_parent;
 517                while (parent->mnt.mnt_flags & MNT_UMOUNT) {
 518                        mp = parent->mnt_mp;
 519                        parent = parent->mnt_parent;
 520                }
 521                if (parent != mnt->mnt_parent)
 522                        mnt_change_mountpoint(parent, mp, mnt);
 523        }
 524}
 525
 526static void cleanup_umount_visitations(struct list_head *visited)
 527{
 528        while (!list_empty(visited)) {
 529                struct mount *mnt =
 530                        list_first_entry(visited, struct mount, mnt_umounting);
 531                list_del_init(&mnt->mnt_umounting);
 532        }
 533}
 534
 535/*
 536 * collect all mounts that receive propagation from the mount in @list,
 537 * and return these additional mounts in the same list.
 538 * @list: the list of mounts to be unmounted.
 539 *
 540 * vfsmount lock must be held for write
 541 */
 542int propagate_umount(struct list_head *list)
 543{
 544        struct mount *mnt;
 545        LIST_HEAD(to_restore);
 546        LIST_HEAD(to_umount);
 547        LIST_HEAD(visited);
 548
 549        /* Find candidates for unmounting */
 550        list_for_each_entry_reverse(mnt, list, mnt_list) {
 551                struct mount *parent = mnt->mnt_parent;
 552                struct mount *m;
 553
 554                /*
 555                 * If this mount has already been visited it is known that it's
 556                 * entire peer group and all of their slaves in the propagation
 557                 * tree for the mountpoint has already been visited and there is
 558                 * no need to visit them again.
 559                 */
 560                if (!list_empty(&mnt->mnt_umounting))
 561                        continue;
 562
 563                list_add_tail(&mnt->mnt_umounting, &visited);
 564                for (m = propagation_next(parent, parent); m;
 565                     m = propagation_next(m, parent)) {
 566                        struct mount *child = __lookup_mnt(&m->mnt,
 567                                                           mnt->mnt_mountpoint);
 568                        if (!child)
 569                                continue;
 570
 571                        if (!list_empty(&child->mnt_umounting)) {
 572                                /*
 573                                 * If the child has already been visited it is
 574                                 * know that it's entire peer group and all of
 575                                 * their slaves in the propgation tree for the
 576                                 * mountpoint has already been visited and there
 577                                 * is no need to visit this subtree again.
 578                                 */
 579                                m = skip_propagation_subtree(m, parent);
 580                                continue;
 581                        } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
 582                                /*
 583                                 * We have come accross an partially unmounted
 584                                 * mount in list that has not been visited yet.
 585                                 * Remember it has been visited and continue
 586                                 * about our merry way.
 587                                 */
 588                                list_add_tail(&child->mnt_umounting, &visited);
 589                                continue;
 590                        }
 591
 592                        /* Check the child and parents while progress is made */
 593                        while (__propagate_umount(child,
 594                                                  &to_umount, &to_restore)) {
 595                                /* Is the parent a umount candidate? */
 596                                child = child->mnt_parent;
 597                                if (list_empty(&child->mnt_umounting))
 598                                        break;
 599                        }
 600                }
 601        }
 602
 603        umount_list(&to_umount, &to_restore);
 604        restore_mounts(&to_restore);
 605        cleanup_umount_visitations(&visited);
 606        list_splice_tail(&to_umount, list);
 607
 608        return 0;
 609}
 610