linux/include/asm-generic/div64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_DIV64_H
   3#define _ASM_GENERIC_DIV64_H
   4/*
   5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
   6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
   7 *
   8 * Optimization for constant divisors on 32-bit machines:
   9 * Copyright (C) 2006-2015 Nicolas Pitre
  10 *
  11 * The semantics of do_div() are:
  12 *
  13 * uint32_t do_div(uint64_t *n, uint32_t base)
  14 * {
  15 *      uint32_t remainder = *n % base;
  16 *      *n = *n / base;
  17 *      return remainder;
  18 * }
  19 *
  20 * NOTE: macro parameter n is evaluated multiple times,
  21 *       beware of side effects!
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/compiler.h>
  26
  27#if BITS_PER_LONG == 64
  28
  29# define do_div(n,base) ({                                      \
  30        uint32_t __base = (base);                               \
  31        uint32_t __rem;                                         \
  32        __rem = ((uint64_t)(n)) % __base;                       \
  33        (n) = ((uint64_t)(n)) / __base;                         \
  34        __rem;                                                  \
  35 })
  36
  37#elif BITS_PER_LONG == 32
  38
  39#include <linux/log2.h>
  40
  41/*
  42 * If the divisor happens to be constant, we determine the appropriate
  43 * inverse at compile time to turn the division into a few inline
  44 * multiplications which ought to be much faster. And yet only if compiling
  45 * with a sufficiently recent gcc version to perform proper 64-bit constant
  46 * propagation.
  47 *
  48 * (It is unfortunate that gcc doesn't perform all this internally.)
  49 */
  50
  51#ifndef __div64_const32_is_OK
  52#define __div64_const32_is_OK (__GNUC__ >= 4)
  53#endif
  54
  55#define __div64_const32(n, ___b)                                        \
  56({                                                                      \
  57        /*                                                              \
  58         * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
  59         *                                                              \
  60         * We rely on the fact that most of this code gets optimized    \
  61         * away at compile time due to constant propagation and only    \
  62         * a few multiplication instructions should remain.             \
  63         * Hence this monstrous macro (static inline doesn't always     \
  64         * do the trick here).                                          \
  65         */                                                             \
  66        uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
  67        uint32_t ___p, ___bias;                                         \
  68                                                                        \
  69        /* determine MSB of b */                                        \
  70        ___p = 1 << ilog2(___b);                                        \
  71                                                                        \
  72        /* compute m = ((p << 64) + b - 1) / b */                       \
  73        ___m = (~0ULL / ___b) * ___p;                                   \
  74        ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
  75                                                                        \
  76        /* one less than the dividend with highest result */            \
  77        ___x = ~0ULL / ___b * ___b - 1;                                 \
  78                                                                        \
  79        /* test our ___m with res = m * x / (p << 64) */                \
  80        ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
  81        ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
  82        ___res += (___x & 0xffffffff) * (___m >> 32);                   \
  83        ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
  84        ___res = (___res >> 32) + ___t;                                 \
  85        ___res += (___m >> 32) * (___x >> 32);                          \
  86        ___res /= ___p;                                                 \
  87                                                                        \
  88        /* Now sanitize and optimize what we've got. */                 \
  89        if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
  90                /* special case, can be simplified to ... */            \
  91                ___n /= (___b & -___b);                                 \
  92                ___m = ~0ULL / (___b / (___b & -___b));                 \
  93                ___p = 1;                                               \
  94                ___bias = 1;                                            \
  95        } else if (___res != ___x / ___b) {                             \
  96                /*                                                      \
  97                 * We can't get away without a bias to compensate       \
  98                 * for bit truncation errors.  To avoid it we'd need an \
  99                 * additional bit to represent m which would overflow   \
 100                 * a 64-bit variable.                                   \
 101                 *                                                      \
 102                 * Instead we do m = p / b and n / b = (n * m + m) / p. \
 103                 */                                                     \
 104                ___bias = 1;                                            \
 105                /* Compute m = (p << 64) / b */                         \
 106                ___m = (~0ULL / ___b) * ___p;                           \
 107                ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
 108        } else {                                                        \
 109                /*                                                      \
 110                 * Reduce m / p, and try to clear bit 31 of m when      \
 111                 * possible, otherwise that'll need extra overflow      \
 112                 * handling later.                                      \
 113                 */                                                     \
 114                uint32_t ___bits = -(___m & -___m);                     \
 115                ___bits |= ___m >> 32;                                  \
 116                ___bits = (~___bits) << 1;                              \
 117                /*                                                      \
 118                 * If ___bits == 0 then setting bit 31 is  unavoidable. \
 119                 * Simply apply the maximum possible reduction in that  \
 120                 * case. Otherwise the MSB of ___bits indicates the     \
 121                 * best reduction we should apply.                      \
 122                 */                                                     \
 123                if (!___bits) {                                         \
 124                        ___p /= (___m & -___m);                         \
 125                        ___m /= (___m & -___m);                         \
 126                } else {                                                \
 127                        ___p >>= ilog2(___bits);                        \
 128                        ___m >>= ilog2(___bits);                        \
 129                }                                                       \
 130                /* No bias needed. */                                   \
 131                ___bias = 0;                                            \
 132        }                                                               \
 133                                                                        \
 134        /*                                                              \
 135         * Now we have a combination of 2 conditions:                   \
 136         *                                                              \
 137         * 1) whether or not we need to apply a bias, and               \
 138         *                                                              \
 139         * 2) whether or not there might be an overflow in the cross    \
 140         *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
 141         *                                                              \
 142         * Select the best way to do (m_bias + m * n) / (1 << 64).      \
 143         * From now on there will be actual runtime code generated.     \
 144         */                                                             \
 145        ___res = __arch_xprod_64(___m, ___n, ___bias);                  \
 146                                                                        \
 147        ___res /= ___p;                                                 \
 148})
 149
 150#ifndef __arch_xprod_64
 151/*
 152 * Default C implementation for __arch_xprod_64()
 153 *
 154 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 155 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
 156 *
 157 * The product is a 128-bit value, scaled down to 64 bits.
 158 * Assuming constant propagation to optimize away unused conditional code.
 159 * Architectures may provide their own optimized assembly implementation.
 160 */
 161static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
 162{
 163        uint32_t m_lo = m;
 164        uint32_t m_hi = m >> 32;
 165        uint32_t n_lo = n;
 166        uint32_t n_hi = n >> 32;
 167        uint64_t res, tmp;
 168
 169        if (!bias) {
 170                res = ((uint64_t)m_lo * n_lo) >> 32;
 171        } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 172                /* there can't be any overflow here */
 173                res = (m + (uint64_t)m_lo * n_lo) >> 32;
 174        } else {
 175                res = m + (uint64_t)m_lo * n_lo;
 176                tmp = (res < m) ? (1ULL << 32) : 0;
 177                res = (res >> 32) + tmp;
 178        }
 179
 180        if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
 181                /* there can't be any overflow here */
 182                res += (uint64_t)m_lo * n_hi;
 183                res += (uint64_t)m_hi * n_lo;
 184                res >>= 32;
 185        } else {
 186                tmp = res += (uint64_t)m_lo * n_hi;
 187                res += (uint64_t)m_hi * n_lo;
 188                tmp = (res < tmp) ? (1ULL << 32) : 0;
 189                res = (res >> 32) + tmp;
 190        }
 191
 192        res += (uint64_t)m_hi * n_hi;
 193
 194        return res;
 195}
 196#endif
 197
 198#ifndef __div64_32
 199extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 200#endif
 201
 202/* The unnecessary pointer compare is there
 203 * to check for type safety (n must be 64bit)
 204 */
 205# define do_div(n,base) ({                              \
 206        uint32_t __base = (base);                       \
 207        uint32_t __rem;                                 \
 208        (void)(((typeof((n)) *)0) == ((uint64_t *)0));  \
 209        if (__builtin_constant_p(__base) &&             \
 210            is_power_of_2(__base)) {                    \
 211                __rem = (n) & (__base - 1);             \
 212                (n) >>= ilog2(__base);                  \
 213        } else if (__div64_const32_is_OK &&             \
 214                   __builtin_constant_p(__base) &&      \
 215                   __base != 0) {                       \
 216                uint32_t __res_lo, __n_lo = (n);        \
 217                (n) = __div64_const32(n, __base);       \
 218                /* the remainder can be computed with 32-bit regs */ \
 219                __res_lo = (n);                         \
 220                __rem = __n_lo - __res_lo * __base;     \
 221        } else if (likely(((n) >> 32) == 0)) {          \
 222                __rem = (uint32_t)(n) % __base;         \
 223                (n) = (uint32_t)(n) / __base;           \
 224        } else                                          \
 225                __rem = __div64_32(&(n), __base);       \
 226        __rem;                                          \
 227 })
 228
 229#else /* BITS_PER_LONG == ?? */
 230
 231# error do_div() does not yet support the C64
 232
 233#endif /* BITS_PER_LONG */
 234
 235#endif /* _ASM_GENERIC_DIV64_H */
 236