linux/include/crypto/hash.h
<<
>>
Prefs
   1/*
   2 * Hash: Hash algorithms under the crypto API
   3 * 
   4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_HASH_H
  14#define _CRYPTO_HASH_H
  15
  16#include <linux/crypto.h>
  17#include <linux/string.h>
  18
  19struct crypto_ahash;
  20
  21/**
  22 * DOC: Message Digest Algorithm Definitions
  23 *
  24 * These data structures define modular message digest algorithm
  25 * implementations, managed via crypto_register_ahash(),
  26 * crypto_register_shash(), crypto_unregister_ahash() and
  27 * crypto_unregister_shash().
  28 */
  29
  30/**
  31 * struct hash_alg_common - define properties of message digest
  32 * @digestsize: Size of the result of the transformation. A buffer of this size
  33 *              must be available to the @final and @finup calls, so they can
  34 *              store the resulting hash into it. For various predefined sizes,
  35 *              search include/crypto/ using
  36 *              git grep _DIGEST_SIZE include/crypto.
  37 * @statesize: Size of the block for partial state of the transformation. A
  38 *             buffer of this size must be passed to the @export function as it
  39 *             will save the partial state of the transformation into it. On the
  40 *             other side, the @import function will load the state from a
  41 *             buffer of this size as well.
  42 * @base: Start of data structure of cipher algorithm. The common data
  43 *        structure of crypto_alg contains information common to all ciphers.
  44 *        The hash_alg_common data structure now adds the hash-specific
  45 *        information.
  46 */
  47struct hash_alg_common {
  48        unsigned int digestsize;
  49        unsigned int statesize;
  50
  51        struct crypto_alg base;
  52};
  53
  54struct ahash_request {
  55        struct crypto_async_request base;
  56
  57        unsigned int nbytes;
  58        struct scatterlist *src;
  59        u8 *result;
  60
  61        /* This field may only be used by the ahash API code. */
  62        void *priv;
  63
  64        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  65};
  66
  67#define AHASH_REQUEST_ON_STACK(name, ahash) \
  68        char __##name##_desc[sizeof(struct ahash_request) + \
  69                crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
  70        struct ahash_request *name = (void *)__##name##_desc
  71
  72/**
  73 * struct ahash_alg - asynchronous message digest definition
  74 * @init: Initialize the transformation context. Intended only to initialize the
  75 *        state of the HASH transformation at the beginning. This shall fill in
  76 *        the internal structures used during the entire duration of the whole
  77 *        transformation. No data processing happens at this point.
  78 * @update: Push a chunk of data into the driver for transformation. This
  79 *         function actually pushes blocks of data from upper layers into the
  80 *         driver, which then passes those to the hardware as seen fit. This
  81 *         function must not finalize the HASH transformation by calculating the
  82 *         final message digest as this only adds more data into the
  83 *         transformation. This function shall not modify the transformation
  84 *         context, as this function may be called in parallel with the same
  85 *         transformation object. Data processing can happen synchronously
  86 *         [SHASH] or asynchronously [AHASH] at this point.
  87 * @final: Retrieve result from the driver. This function finalizes the
  88 *         transformation and retrieves the resulting hash from the driver and
  89 *         pushes it back to upper layers. No data processing happens at this
  90 *         point.
  91 * @finup: Combination of @update and @final. This function is effectively a
  92 *         combination of @update and @final calls issued in sequence. As some
  93 *         hardware cannot do @update and @final separately, this callback was
  94 *         added to allow such hardware to be used at least by IPsec. Data
  95 *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
  96 *         at this point.
  97 * @digest: Combination of @init and @update and @final. This function
  98 *          effectively behaves as the entire chain of operations, @init,
  99 *          @update and @final issued in sequence. Just like @finup, this was
 100 *          added for hardware which cannot do even the @finup, but can only do
 101 *          the whole transformation in one run. Data processing can happen
 102 *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 103 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 104 *          optional key used by the hashing algorithm from upper layers into
 105 *          the driver. This function can store the key in the transformation
 106 *          context or can outright program it into the hardware. In the former
 107 *          case, one must be careful to program the key into the hardware at
 108 *          appropriate time and one must be careful that .setkey() can be
 109 *          called multiple times during the existence of the transformation
 110 *          object. Not  all hashing algorithms do implement this function as it
 111 *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 112 *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 113 *          this function. This function must be called before any other of the
 114 *          @init, @update, @final, @finup, @digest is called. No data
 115 *          processing happens at this point.
 116 * @export: Export partial state of the transformation. This function dumps the
 117 *          entire state of the ongoing transformation into a provided block of
 118 *          data so it can be @import 'ed back later on. This is useful in case
 119 *          you want to save partial result of the transformation after
 120 *          processing certain amount of data and reload this partial result
 121 *          multiple times later on for multiple re-use. No data processing
 122 *          happens at this point.
 123 * @import: Import partial state of the transformation. This function loads the
 124 *          entire state of the ongoing transformation from a provided block of
 125 *          data so the transformation can continue from this point onward. No
 126 *          data processing happens at this point.
 127 * @halg: see struct hash_alg_common
 128 */
 129struct ahash_alg {
 130        int (*init)(struct ahash_request *req);
 131        int (*update)(struct ahash_request *req);
 132        int (*final)(struct ahash_request *req);
 133        int (*finup)(struct ahash_request *req);
 134        int (*digest)(struct ahash_request *req);
 135        int (*export)(struct ahash_request *req, void *out);
 136        int (*import)(struct ahash_request *req, const void *in);
 137        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 138                      unsigned int keylen);
 139
 140        struct hash_alg_common halg;
 141};
 142
 143struct shash_desc {
 144        struct crypto_shash *tfm;
 145        u32 flags;
 146
 147        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 148};
 149
 150#define SHASH_DESC_ON_STACK(shash, ctx)                           \
 151        char __##shash##_desc[sizeof(struct shash_desc) +         \
 152                crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
 153        struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
 154
 155/**
 156 * struct shash_alg - synchronous message digest definition
 157 * @init: see struct ahash_alg
 158 * @update: see struct ahash_alg
 159 * @final: see struct ahash_alg
 160 * @finup: see struct ahash_alg
 161 * @digest: see struct ahash_alg
 162 * @export: see struct ahash_alg
 163 * @import: see struct ahash_alg
 164 * @setkey: see struct ahash_alg
 165 * @digestsize: see struct ahash_alg
 166 * @statesize: see struct ahash_alg
 167 * @descsize: Size of the operational state for the message digest. This state
 168 *            size is the memory size that needs to be allocated for
 169 *            shash_desc.__ctx
 170 * @base: internally used
 171 */
 172struct shash_alg {
 173        int (*init)(struct shash_desc *desc);
 174        int (*update)(struct shash_desc *desc, const u8 *data,
 175                      unsigned int len);
 176        int (*final)(struct shash_desc *desc, u8 *out);
 177        int (*finup)(struct shash_desc *desc, const u8 *data,
 178                     unsigned int len, u8 *out);
 179        int (*digest)(struct shash_desc *desc, const u8 *data,
 180                      unsigned int len, u8 *out);
 181        int (*export)(struct shash_desc *desc, void *out);
 182        int (*import)(struct shash_desc *desc, const void *in);
 183        int (*setkey)(struct crypto_shash *tfm, const u8 *key,
 184                      unsigned int keylen);
 185
 186        unsigned int descsize;
 187
 188        /* These fields must match hash_alg_common. */
 189        unsigned int digestsize
 190                __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
 191        unsigned int statesize;
 192
 193        struct crypto_alg base;
 194};
 195
 196struct crypto_ahash {
 197        int (*init)(struct ahash_request *req);
 198        int (*update)(struct ahash_request *req);
 199        int (*final)(struct ahash_request *req);
 200        int (*finup)(struct ahash_request *req);
 201        int (*digest)(struct ahash_request *req);
 202        int (*export)(struct ahash_request *req, void *out);
 203        int (*import)(struct ahash_request *req, const void *in);
 204        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 205                      unsigned int keylen);
 206
 207        unsigned int reqsize;
 208        bool has_setkey;
 209        struct crypto_tfm base;
 210};
 211
 212struct crypto_shash {
 213        unsigned int descsize;
 214        struct crypto_tfm base;
 215};
 216
 217/**
 218 * DOC: Asynchronous Message Digest API
 219 *
 220 * The asynchronous message digest API is used with the ciphers of type
 221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 222 *
 223 * The asynchronous cipher operation discussion provided for the
 224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
 225 */
 226
 227static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
 228{
 229        return container_of(tfm, struct crypto_ahash, base);
 230}
 231
 232/**
 233 * crypto_alloc_ahash() - allocate ahash cipher handle
 234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 235 *            ahash cipher
 236 * @type: specifies the type of the cipher
 237 * @mask: specifies the mask for the cipher
 238 *
 239 * Allocate a cipher handle for an ahash. The returned struct
 240 * crypto_ahash is the cipher handle that is required for any subsequent
 241 * API invocation for that ahash.
 242 *
 243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 244 *         of an error, PTR_ERR() returns the error code.
 245 */
 246struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
 247                                        u32 mask);
 248
 249static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
 250{
 251        return &tfm->base;
 252}
 253
 254/**
 255 * crypto_free_ahash() - zeroize and free the ahash handle
 256 * @tfm: cipher handle to be freed
 257 */
 258static inline void crypto_free_ahash(struct crypto_ahash *tfm)
 259{
 260        crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
 261}
 262
 263/**
 264 * crypto_has_ahash() - Search for the availability of an ahash.
 265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 266 *            ahash
 267 * @type: specifies the type of the ahash
 268 * @mask: specifies the mask for the ahash
 269 *
 270 * Return: true when the ahash is known to the kernel crypto API; false
 271 *         otherwise
 272 */
 273int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
 274
 275static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
 276{
 277        return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
 278}
 279
 280static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
 281{
 282        return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
 283}
 284
 285static inline unsigned int crypto_ahash_alignmask(
 286        struct crypto_ahash *tfm)
 287{
 288        return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
 289}
 290
 291/**
 292 * crypto_ahash_blocksize() - obtain block size for cipher
 293 * @tfm: cipher handle
 294 *
 295 * The block size for the message digest cipher referenced with the cipher
 296 * handle is returned.
 297 *
 298 * Return: block size of cipher
 299 */
 300static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
 301{
 302        return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 303}
 304
 305static inline struct hash_alg_common *__crypto_hash_alg_common(
 306        struct crypto_alg *alg)
 307{
 308        return container_of(alg, struct hash_alg_common, base);
 309}
 310
 311static inline struct hash_alg_common *crypto_hash_alg_common(
 312        struct crypto_ahash *tfm)
 313{
 314        return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
 315}
 316
 317/**
 318 * crypto_ahash_digestsize() - obtain message digest size
 319 * @tfm: cipher handle
 320 *
 321 * The size for the message digest created by the message digest cipher
 322 * referenced with the cipher handle is returned.
 323 *
 324 *
 325 * Return: message digest size of cipher
 326 */
 327static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
 328{
 329        return crypto_hash_alg_common(tfm)->digestsize;
 330}
 331
 332/**
 333 * crypto_ahash_statesize() - obtain size of the ahash state
 334 * @tfm: cipher handle
 335 *
 336 * Return the size of the ahash state. With the crypto_ahash_export()
 337 * function, the caller can export the state into a buffer whose size is
 338 * defined with this function.
 339 *
 340 * Return: size of the ahash state
 341 */
 342static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
 343{
 344        return crypto_hash_alg_common(tfm)->statesize;
 345}
 346
 347static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
 348{
 349        return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
 350}
 351
 352static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
 353{
 354        crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
 355}
 356
 357static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
 358{
 359        crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
 360}
 361
 362/**
 363 * crypto_ahash_reqtfm() - obtain cipher handle from request
 364 * @req: asynchronous request handle that contains the reference to the ahash
 365 *       cipher handle
 366 *
 367 * Return the ahash cipher handle that is registered with the asynchronous
 368 * request handle ahash_request.
 369 *
 370 * Return: ahash cipher handle
 371 */
 372static inline struct crypto_ahash *crypto_ahash_reqtfm(
 373        struct ahash_request *req)
 374{
 375        return __crypto_ahash_cast(req->base.tfm);
 376}
 377
 378/**
 379 * crypto_ahash_reqsize() - obtain size of the request data structure
 380 * @tfm: cipher handle
 381 *
 382 * Return: size of the request data
 383 */
 384static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
 385{
 386        return tfm->reqsize;
 387}
 388
 389static inline void *ahash_request_ctx(struct ahash_request *req)
 390{
 391        return req->__ctx;
 392}
 393
 394/**
 395 * crypto_ahash_setkey - set key for cipher handle
 396 * @tfm: cipher handle
 397 * @key: buffer holding the key
 398 * @keylen: length of the key in bytes
 399 *
 400 * The caller provided key is set for the ahash cipher. The cipher
 401 * handle must point to a keyed hash in order for this function to succeed.
 402 *
 403 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 404 */
 405int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
 406                        unsigned int keylen);
 407
 408static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
 409{
 410        return tfm->has_setkey;
 411}
 412
 413/**
 414 * crypto_ahash_finup() - update and finalize message digest
 415 * @req: reference to the ahash_request handle that holds all information
 416 *       needed to perform the cipher operation
 417 *
 418 * This function is a "short-hand" for the function calls of
 419 * crypto_ahash_update and crypto_shash_final. The parameters have the same
 420 * meaning as discussed for those separate functions.
 421 *
 422 * Return: 0 if the message digest creation was successful; < 0 if an error
 423 *         occurred
 424 */
 425int crypto_ahash_finup(struct ahash_request *req);
 426
 427/**
 428 * crypto_ahash_final() - calculate message digest
 429 * @req: reference to the ahash_request handle that holds all information
 430 *       needed to perform the cipher operation
 431 *
 432 * Finalize the message digest operation and create the message digest
 433 * based on all data added to the cipher handle. The message digest is placed
 434 * into the output buffer registered with the ahash_request handle.
 435 *
 436 * Return: 0 if the message digest creation was successful; < 0 if an error
 437 *         occurred
 438 */
 439int crypto_ahash_final(struct ahash_request *req);
 440
 441/**
 442 * crypto_ahash_digest() - calculate message digest for a buffer
 443 * @req: reference to the ahash_request handle that holds all information
 444 *       needed to perform the cipher operation
 445 *
 446 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 447 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 448 * meaning as discussed for those separate three functions.
 449 *
 450 * Return: 0 if the message digest creation was successful; < 0 if an error
 451 *         occurred
 452 */
 453int crypto_ahash_digest(struct ahash_request *req);
 454
 455/**
 456 * crypto_ahash_export() - extract current message digest state
 457 * @req: reference to the ahash_request handle whose state is exported
 458 * @out: output buffer of sufficient size that can hold the hash state
 459 *
 460 * This function exports the hash state of the ahash_request handle into the
 461 * caller-allocated output buffer out which must have sufficient size (e.g. by
 462 * calling crypto_ahash_statesize()).
 463 *
 464 * Return: 0 if the export was successful; < 0 if an error occurred
 465 */
 466static inline int crypto_ahash_export(struct ahash_request *req, void *out)
 467{
 468        return crypto_ahash_reqtfm(req)->export(req, out);
 469}
 470
 471/**
 472 * crypto_ahash_import() - import message digest state
 473 * @req: reference to ahash_request handle the state is imported into
 474 * @in: buffer holding the state
 475 *
 476 * This function imports the hash state into the ahash_request handle from the
 477 * input buffer. That buffer should have been generated with the
 478 * crypto_ahash_export function.
 479 *
 480 * Return: 0 if the import was successful; < 0 if an error occurred
 481 */
 482static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
 483{
 484        return crypto_ahash_reqtfm(req)->import(req, in);
 485}
 486
 487/**
 488 * crypto_ahash_init() - (re)initialize message digest handle
 489 * @req: ahash_request handle that already is initialized with all necessary
 490 *       data using the ahash_request_* API functions
 491 *
 492 * The call (re-)initializes the message digest referenced by the ahash_request
 493 * handle. Any potentially existing state created by previous operations is
 494 * discarded.
 495 *
 496 * Return: 0 if the message digest initialization was successful; < 0 if an
 497 *         error occurred
 498 */
 499static inline int crypto_ahash_init(struct ahash_request *req)
 500{
 501        return crypto_ahash_reqtfm(req)->init(req);
 502}
 503
 504/**
 505 * crypto_ahash_update() - add data to message digest for processing
 506 * @req: ahash_request handle that was previously initialized with the
 507 *       crypto_ahash_init call.
 508 *
 509 * Updates the message digest state of the &ahash_request handle. The input data
 510 * is pointed to by the scatter/gather list registered in the &ahash_request
 511 * handle
 512 *
 513 * Return: 0 if the message digest update was successful; < 0 if an error
 514 *         occurred
 515 */
 516static inline int crypto_ahash_update(struct ahash_request *req)
 517{
 518        return crypto_ahash_reqtfm(req)->update(req);
 519}
 520
 521/**
 522 * DOC: Asynchronous Hash Request Handle
 523 *
 524 * The &ahash_request data structure contains all pointers to data
 525 * required for the asynchronous cipher operation. This includes the cipher
 526 * handle (which can be used by multiple &ahash_request instances), pointer
 527 * to plaintext and the message digest output buffer, asynchronous callback
 528 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 529 * similar way as ahash handle to the crypto_ahash_* API calls.
 530 */
 531
 532/**
 533 * ahash_request_set_tfm() - update cipher handle reference in request
 534 * @req: request handle to be modified
 535 * @tfm: cipher handle that shall be added to the request handle
 536 *
 537 * Allow the caller to replace the existing ahash handle in the request
 538 * data structure with a different one.
 539 */
 540static inline void ahash_request_set_tfm(struct ahash_request *req,
 541                                         struct crypto_ahash *tfm)
 542{
 543        req->base.tfm = crypto_ahash_tfm(tfm);
 544}
 545
 546/**
 547 * ahash_request_alloc() - allocate request data structure
 548 * @tfm: cipher handle to be registered with the request
 549 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 550 *
 551 * Allocate the request data structure that must be used with the ahash
 552 * message digest API calls. During
 553 * the allocation, the provided ahash handle
 554 * is registered in the request data structure.
 555 *
 556 * Return: allocated request handle in case of success, or NULL if out of memory
 557 */
 558static inline struct ahash_request *ahash_request_alloc(
 559        struct crypto_ahash *tfm, gfp_t gfp)
 560{
 561        struct ahash_request *req;
 562
 563        req = kmalloc(sizeof(struct ahash_request) +
 564                      crypto_ahash_reqsize(tfm), gfp);
 565
 566        if (likely(req))
 567                ahash_request_set_tfm(req, tfm);
 568
 569        return req;
 570}
 571
 572/**
 573 * ahash_request_free() - zeroize and free the request data structure
 574 * @req: request data structure cipher handle to be freed
 575 */
 576static inline void ahash_request_free(struct ahash_request *req)
 577{
 578        kzfree(req);
 579}
 580
 581static inline void ahash_request_zero(struct ahash_request *req)
 582{
 583        memzero_explicit(req, sizeof(*req) +
 584                              crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
 585}
 586
 587static inline struct ahash_request *ahash_request_cast(
 588        struct crypto_async_request *req)
 589{
 590        return container_of(req, struct ahash_request, base);
 591}
 592
 593/**
 594 * ahash_request_set_callback() - set asynchronous callback function
 595 * @req: request handle
 596 * @flags: specify zero or an ORing of the flags
 597 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 598 *         increase the wait queue beyond the initial maximum size;
 599 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 600 * @compl: callback function pointer to be registered with the request handle
 601 * @data: The data pointer refers to memory that is not used by the kernel
 602 *        crypto API, but provided to the callback function for it to use. Here,
 603 *        the caller can provide a reference to memory the callback function can
 604 *        operate on. As the callback function is invoked asynchronously to the
 605 *        related functionality, it may need to access data structures of the
 606 *        related functionality which can be referenced using this pointer. The
 607 *        callback function can access the memory via the "data" field in the
 608 *        &crypto_async_request data structure provided to the callback function.
 609 *
 610 * This function allows setting the callback function that is triggered once
 611 * the cipher operation completes.
 612 *
 613 * The callback function is registered with the &ahash_request handle and
 614 * must comply with the following template::
 615 *
 616 *      void callback_function(struct crypto_async_request *req, int error)
 617 */
 618static inline void ahash_request_set_callback(struct ahash_request *req,
 619                                              u32 flags,
 620                                              crypto_completion_t compl,
 621                                              void *data)
 622{
 623        req->base.complete = compl;
 624        req->base.data = data;
 625        req->base.flags = flags;
 626}
 627
 628/**
 629 * ahash_request_set_crypt() - set data buffers
 630 * @req: ahash_request handle to be updated
 631 * @src: source scatter/gather list
 632 * @result: buffer that is filled with the message digest -- the caller must
 633 *          ensure that the buffer has sufficient space by, for example, calling
 634 *          crypto_ahash_digestsize()
 635 * @nbytes: number of bytes to process from the source scatter/gather list
 636 *
 637 * By using this call, the caller references the source scatter/gather list.
 638 * The source scatter/gather list points to the data the message digest is to
 639 * be calculated for.
 640 */
 641static inline void ahash_request_set_crypt(struct ahash_request *req,
 642                                           struct scatterlist *src, u8 *result,
 643                                           unsigned int nbytes)
 644{
 645        req->src = src;
 646        req->nbytes = nbytes;
 647        req->result = result;
 648}
 649
 650/**
 651 * DOC: Synchronous Message Digest API
 652 *
 653 * The synchronous message digest API is used with the ciphers of type
 654 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 655 *
 656 * The message digest API is able to maintain state information for the
 657 * caller.
 658 *
 659 * The synchronous message digest API can store user-related context in in its
 660 * shash_desc request data structure.
 661 */
 662
 663/**
 664 * crypto_alloc_shash() - allocate message digest handle
 665 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 666 *            message digest cipher
 667 * @type: specifies the type of the cipher
 668 * @mask: specifies the mask for the cipher
 669 *
 670 * Allocate a cipher handle for a message digest. The returned &struct
 671 * crypto_shash is the cipher handle that is required for any subsequent
 672 * API invocation for that message digest.
 673 *
 674 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 675 *         of an error, PTR_ERR() returns the error code.
 676 */
 677struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
 678                                        u32 mask);
 679
 680static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
 681{
 682        return &tfm->base;
 683}
 684
 685/**
 686 * crypto_free_shash() - zeroize and free the message digest handle
 687 * @tfm: cipher handle to be freed
 688 */
 689static inline void crypto_free_shash(struct crypto_shash *tfm)
 690{
 691        crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
 692}
 693
 694static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
 695{
 696        return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
 697}
 698
 699static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
 700{
 701        return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
 702}
 703
 704static inline unsigned int crypto_shash_alignmask(
 705        struct crypto_shash *tfm)
 706{
 707        return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
 708}
 709
 710/**
 711 * crypto_shash_blocksize() - obtain block size for cipher
 712 * @tfm: cipher handle
 713 *
 714 * The block size for the message digest cipher referenced with the cipher
 715 * handle is returned.
 716 *
 717 * Return: block size of cipher
 718 */
 719static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
 720{
 721        return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
 722}
 723
 724static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
 725{
 726        return container_of(alg, struct shash_alg, base);
 727}
 728
 729static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
 730{
 731        return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
 732}
 733
 734/**
 735 * crypto_shash_digestsize() - obtain message digest size
 736 * @tfm: cipher handle
 737 *
 738 * The size for the message digest created by the message digest cipher
 739 * referenced with the cipher handle is returned.
 740 *
 741 * Return: digest size of cipher
 742 */
 743static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
 744{
 745        return crypto_shash_alg(tfm)->digestsize;
 746}
 747
 748static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
 749{
 750        return crypto_shash_alg(tfm)->statesize;
 751}
 752
 753static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
 754{
 755        return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
 756}
 757
 758static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
 759{
 760        crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
 761}
 762
 763static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
 764{
 765        crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
 766}
 767
 768/**
 769 * crypto_shash_descsize() - obtain the operational state size
 770 * @tfm: cipher handle
 771 *
 772 * The size of the operational state the cipher needs during operation is
 773 * returned for the hash referenced with the cipher handle. This size is
 774 * required to calculate the memory requirements to allow the caller allocating
 775 * sufficient memory for operational state.
 776 *
 777 * The operational state is defined with struct shash_desc where the size of
 778 * that data structure is to be calculated as
 779 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 780 *
 781 * Return: size of the operational state
 782 */
 783static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
 784{
 785        return tfm->descsize;
 786}
 787
 788static inline void *shash_desc_ctx(struct shash_desc *desc)
 789{
 790        return desc->__ctx;
 791}
 792
 793/**
 794 * crypto_shash_setkey() - set key for message digest
 795 * @tfm: cipher handle
 796 * @key: buffer holding the key
 797 * @keylen: length of the key in bytes
 798 *
 799 * The caller provided key is set for the keyed message digest cipher. The
 800 * cipher handle must point to a keyed message digest cipher in order for this
 801 * function to succeed.
 802 *
 803 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 804 */
 805int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
 806                        unsigned int keylen);
 807
 808/**
 809 * crypto_shash_digest() - calculate message digest for buffer
 810 * @desc: see crypto_shash_final()
 811 * @data: see crypto_shash_update()
 812 * @len: see crypto_shash_update()
 813 * @out: see crypto_shash_final()
 814 *
 815 * This function is a "short-hand" for the function calls of crypto_shash_init,
 816 * crypto_shash_update and crypto_shash_final. The parameters have the same
 817 * meaning as discussed for those separate three functions.
 818 *
 819 * Return: 0 if the message digest creation was successful; < 0 if an error
 820 *         occurred
 821 */
 822int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
 823                        unsigned int len, u8 *out);
 824
 825/**
 826 * crypto_shash_export() - extract operational state for message digest
 827 * @desc: reference to the operational state handle whose state is exported
 828 * @out: output buffer of sufficient size that can hold the hash state
 829 *
 830 * This function exports the hash state of the operational state handle into the
 831 * caller-allocated output buffer out which must have sufficient size (e.g. by
 832 * calling crypto_shash_descsize).
 833 *
 834 * Return: 0 if the export creation was successful; < 0 if an error occurred
 835 */
 836static inline int crypto_shash_export(struct shash_desc *desc, void *out)
 837{
 838        return crypto_shash_alg(desc->tfm)->export(desc, out);
 839}
 840
 841/**
 842 * crypto_shash_import() - import operational state
 843 * @desc: reference to the operational state handle the state imported into
 844 * @in: buffer holding the state
 845 *
 846 * This function imports the hash state into the operational state handle from
 847 * the input buffer. That buffer should have been generated with the
 848 * crypto_ahash_export function.
 849 *
 850 * Return: 0 if the import was successful; < 0 if an error occurred
 851 */
 852static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
 853{
 854        return crypto_shash_alg(desc->tfm)->import(desc, in);
 855}
 856
 857/**
 858 * crypto_shash_init() - (re)initialize message digest
 859 * @desc: operational state handle that is already filled
 860 *
 861 * The call (re-)initializes the message digest referenced by the
 862 * operational state handle. Any potentially existing state created by
 863 * previous operations is discarded.
 864 *
 865 * Return: 0 if the message digest initialization was successful; < 0 if an
 866 *         error occurred
 867 */
 868static inline int crypto_shash_init(struct shash_desc *desc)
 869{
 870        return crypto_shash_alg(desc->tfm)->init(desc);
 871}
 872
 873/**
 874 * crypto_shash_update() - add data to message digest for processing
 875 * @desc: operational state handle that is already initialized
 876 * @data: input data to be added to the message digest
 877 * @len: length of the input data
 878 *
 879 * Updates the message digest state of the operational state handle.
 880 *
 881 * Return: 0 if the message digest update was successful; < 0 if an error
 882 *         occurred
 883 */
 884int crypto_shash_update(struct shash_desc *desc, const u8 *data,
 885                        unsigned int len);
 886
 887/**
 888 * crypto_shash_final() - calculate message digest
 889 * @desc: operational state handle that is already filled with data
 890 * @out: output buffer filled with the message digest
 891 *
 892 * Finalize the message digest operation and create the message digest
 893 * based on all data added to the cipher handle. The message digest is placed
 894 * into the output buffer. The caller must ensure that the output buffer is
 895 * large enough by using crypto_shash_digestsize.
 896 *
 897 * Return: 0 if the message digest creation was successful; < 0 if an error
 898 *         occurred
 899 */
 900int crypto_shash_final(struct shash_desc *desc, u8 *out);
 901
 902/**
 903 * crypto_shash_finup() - calculate message digest of buffer
 904 * @desc: see crypto_shash_final()
 905 * @data: see crypto_shash_update()
 906 * @len: see crypto_shash_update()
 907 * @out: see crypto_shash_final()
 908 *
 909 * This function is a "short-hand" for the function calls of
 910 * crypto_shash_update and crypto_shash_final. The parameters have the same
 911 * meaning as discussed for those separate functions.
 912 *
 913 * Return: 0 if the message digest creation was successful; < 0 if an error
 914 *         occurred
 915 */
 916int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
 917                       unsigned int len, u8 *out);
 918
 919static inline void shash_desc_zero(struct shash_desc *desc)
 920{
 921        memzero_explicit(desc,
 922                         sizeof(*desc) + crypto_shash_descsize(desc->tfm));
 923}
 924
 925#endif  /* _CRYPTO_HASH_H */
 926