linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <asm/page.h>
  22
  23/* Free memory management - zoned buddy allocator.  */
  24#ifndef CONFIG_FORCE_MAX_ZONEORDER
  25#define MAX_ORDER 11
  26#else
  27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  28#endif
  29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  30
  31/*
  32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  33 * costly to service.  That is between allocation orders which should
  34 * coalesce naturally under reasonable reclaim pressure and those which
  35 * will not.
  36 */
  37#define PAGE_ALLOC_COSTLY_ORDER 3
  38
  39enum migratetype {
  40        MIGRATE_UNMOVABLE,
  41        MIGRATE_MOVABLE,
  42        MIGRATE_RECLAIMABLE,
  43        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  44        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  45#ifdef CONFIG_CMA
  46        /*
  47         * MIGRATE_CMA migration type is designed to mimic the way
  48         * ZONE_MOVABLE works.  Only movable pages can be allocated
  49         * from MIGRATE_CMA pageblocks and page allocator never
  50         * implicitly change migration type of MIGRATE_CMA pageblock.
  51         *
  52         * The way to use it is to change migratetype of a range of
  53         * pageblocks to MIGRATE_CMA which can be done by
  54         * __free_pageblock_cma() function.  What is important though
  55         * is that a range of pageblocks must be aligned to
  56         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  57         * a single pageblock.
  58         */
  59        MIGRATE_CMA,
  60#endif
  61#ifdef CONFIG_MEMORY_ISOLATION
  62        MIGRATE_ISOLATE,        /* can't allocate from here */
  63#endif
  64        MIGRATE_TYPES
  65};
  66
  67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  68extern char * const migratetype_names[MIGRATE_TYPES];
  69
  70#ifdef CONFIG_CMA
  71#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  72#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  73#else
  74#  define is_migrate_cma(migratetype) false
  75#  define is_migrate_cma_page(_page) false
  76#endif
  77
  78static inline bool is_migrate_movable(int mt)
  79{
  80        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  81}
  82
  83#define for_each_migratetype_order(order, type) \
  84        for (order = 0; order < MAX_ORDER; order++) \
  85                for (type = 0; type < MIGRATE_TYPES; type++)
  86
  87extern int page_group_by_mobility_disabled;
  88
  89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  91
  92#define get_pageblock_migratetype(page)                                 \
  93        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  94                        PB_migrate_end, MIGRATETYPE_MASK)
  95
  96struct free_area {
  97        struct list_head        free_list[MIGRATE_TYPES];
  98        unsigned long           nr_free;
  99};
 100
 101struct pglist_data;
 102
 103/*
 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 105 * So add a wild amount of padding here to ensure that they fall into separate
 106 * cachelines.  There are very few zone structures in the machine, so space
 107 * consumption is not a concern here.
 108 */
 109#if defined(CONFIG_SMP)
 110struct zone_padding {
 111        char x[0];
 112} ____cacheline_internodealigned_in_smp;
 113#define ZONE_PADDING(name)      struct zone_padding name;
 114#else
 115#define ZONE_PADDING(name)
 116#endif
 117
 118#ifdef CONFIG_NUMA
 119enum numa_stat_item {
 120        NUMA_HIT,               /* allocated in intended node */
 121        NUMA_MISS,              /* allocated in non intended node */
 122        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 123        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 124        NUMA_LOCAL,             /* allocation from local node */
 125        NUMA_OTHER,             /* allocation from other node */
 126        NR_VM_NUMA_STAT_ITEMS
 127};
 128#else
 129#define NR_VM_NUMA_STAT_ITEMS 0
 130#endif
 131
 132enum zone_stat_item {
 133        /* First 128 byte cacheline (assuming 64 bit words) */
 134        NR_FREE_PAGES,
 135        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 136        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 137        NR_ZONE_ACTIVE_ANON,
 138        NR_ZONE_INACTIVE_FILE,
 139        NR_ZONE_ACTIVE_FILE,
 140        NR_ZONE_UNEVICTABLE,
 141        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 142        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 143        NR_PAGETABLE,           /* used for pagetables */
 144        NR_KERNEL_STACK_KB,     /* measured in KiB */
 145        /* Second 128 byte cacheline */
 146        NR_BOUNCE,
 147#if IS_ENABLED(CONFIG_ZSMALLOC)
 148        NR_ZSPAGES,             /* allocated in zsmalloc */
 149#endif
 150        NR_FREE_CMA_PAGES,
 151        NR_VM_ZONE_STAT_ITEMS };
 152
 153enum node_stat_item {
 154        NR_LRU_BASE,
 155        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 156        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 157        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 158        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 159        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 160        NR_SLAB_RECLAIMABLE,
 161        NR_SLAB_UNRECLAIMABLE,
 162        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 163        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 164        WORKINGSET_REFAULT,
 165        WORKINGSET_ACTIVATE,
 166        WORKINGSET_NODERECLAIM,
 167        NR_ANON_MAPPED, /* Mapped anonymous pages */
 168        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 169                           only modified from process context */
 170        NR_FILE_PAGES,
 171        NR_FILE_DIRTY,
 172        NR_WRITEBACK,
 173        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 174        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 175        NR_SHMEM_THPS,
 176        NR_SHMEM_PMDMAPPED,
 177        NR_ANON_THPS,
 178        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 179        NR_VMSCAN_WRITE,
 180        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 181        NR_DIRTIED,             /* page dirtyings since bootup */
 182        NR_WRITTEN,             /* page writings since bootup */
 183        NR_VM_NODE_STAT_ITEMS
 184};
 185
 186/*
 187 * We do arithmetic on the LRU lists in various places in the code,
 188 * so it is important to keep the active lists LRU_ACTIVE higher in
 189 * the array than the corresponding inactive lists, and to keep
 190 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 191 *
 192 * This has to be kept in sync with the statistics in zone_stat_item
 193 * above and the descriptions in vmstat_text in mm/vmstat.c
 194 */
 195#define LRU_BASE 0
 196#define LRU_ACTIVE 1
 197#define LRU_FILE 2
 198
 199enum lru_list {
 200        LRU_INACTIVE_ANON = LRU_BASE,
 201        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 202        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 203        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 204        LRU_UNEVICTABLE,
 205        NR_LRU_LISTS
 206};
 207
 208#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 209
 210#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 211
 212static inline int is_file_lru(enum lru_list lru)
 213{
 214        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 215}
 216
 217static inline int is_active_lru(enum lru_list lru)
 218{
 219        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 220}
 221
 222struct zone_reclaim_stat {
 223        /*
 224         * The pageout code in vmscan.c keeps track of how many of the
 225         * mem/swap backed and file backed pages are referenced.
 226         * The higher the rotated/scanned ratio, the more valuable
 227         * that cache is.
 228         *
 229         * The anon LRU stats live in [0], file LRU stats in [1]
 230         */
 231        unsigned long           recent_rotated[2];
 232        unsigned long           recent_scanned[2];
 233};
 234
 235struct lruvec {
 236        struct list_head                lists[NR_LRU_LISTS];
 237        struct zone_reclaim_stat        reclaim_stat;
 238        /* Evictions & activations on the inactive file list */
 239        atomic_long_t                   inactive_age;
 240        /* Refaults at the time of last reclaim cycle */
 241        unsigned long                   refaults;
 242#ifdef CONFIG_MEMCG
 243        struct pglist_data *pgdat;
 244#endif
 245};
 246
 247/* Mask used at gathering information at once (see memcontrol.c) */
 248#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 249#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 250#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 251
 252/* Isolate unmapped file */
 253#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 254/* Isolate for asynchronous migration */
 255#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 256/* Isolate unevictable pages */
 257#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 258
 259/* LRU Isolation modes. */
 260typedef unsigned __bitwise isolate_mode_t;
 261
 262enum zone_watermarks {
 263        WMARK_MIN,
 264        WMARK_LOW,
 265        WMARK_HIGH,
 266        NR_WMARK
 267};
 268
 269#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 270#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 271#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 272
 273struct per_cpu_pages {
 274        int count;              /* number of pages in the list */
 275        int high;               /* high watermark, emptying needed */
 276        int batch;              /* chunk size for buddy add/remove */
 277
 278        /* Lists of pages, one per migrate type stored on the pcp-lists */
 279        struct list_head lists[MIGRATE_PCPTYPES];
 280};
 281
 282struct per_cpu_pageset {
 283        struct per_cpu_pages pcp;
 284#ifdef CONFIG_NUMA
 285        s8 expire;
 286        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 287#endif
 288#ifdef CONFIG_SMP
 289        s8 stat_threshold;
 290        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 291#endif
 292};
 293
 294struct per_cpu_nodestat {
 295        s8 stat_threshold;
 296        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 297};
 298
 299#endif /* !__GENERATING_BOUNDS.H */
 300
 301enum zone_type {
 302#ifdef CONFIG_ZONE_DMA
 303        /*
 304         * ZONE_DMA is used when there are devices that are not able
 305         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 306         * carve out the portion of memory that is needed for these devices.
 307         * The range is arch specific.
 308         *
 309         * Some examples
 310         *
 311         * Architecture         Limit
 312         * ---------------------------
 313         * parisc, ia64, sparc  <4G
 314         * s390                 <2G
 315         * arm                  Various
 316         * alpha                Unlimited or 0-16MB.
 317         *
 318         * i386, x86_64 and multiple other arches
 319         *                      <16M.
 320         */
 321        ZONE_DMA,
 322#endif
 323#ifdef CONFIG_ZONE_DMA32
 324        /*
 325         * x86_64 needs two ZONE_DMAs because it supports devices that are
 326         * only able to do DMA to the lower 16M but also 32 bit devices that
 327         * can only do DMA areas below 4G.
 328         */
 329        ZONE_DMA32,
 330#endif
 331        /*
 332         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 333         * performed on pages in ZONE_NORMAL if the DMA devices support
 334         * transfers to all addressable memory.
 335         */
 336        ZONE_NORMAL,
 337#ifdef CONFIG_HIGHMEM
 338        /*
 339         * A memory area that is only addressable by the kernel through
 340         * mapping portions into its own address space. This is for example
 341         * used by i386 to allow the kernel to address the memory beyond
 342         * 900MB. The kernel will set up special mappings (page
 343         * table entries on i386) for each page that the kernel needs to
 344         * access.
 345         */
 346        ZONE_HIGHMEM,
 347#endif
 348        ZONE_MOVABLE,
 349#ifdef CONFIG_ZONE_DEVICE
 350        ZONE_DEVICE,
 351#endif
 352        __MAX_NR_ZONES
 353
 354};
 355
 356#ifndef __GENERATING_BOUNDS_H
 357
 358struct zone {
 359        /* Read-mostly fields */
 360
 361        /* zone watermarks, access with *_wmark_pages(zone) macros */
 362        unsigned long watermark[NR_WMARK];
 363
 364        unsigned long nr_reserved_highatomic;
 365
 366        /*
 367         * We don't know if the memory that we're going to allocate will be
 368         * freeable or/and it will be released eventually, so to avoid totally
 369         * wasting several GB of ram we must reserve some of the lower zone
 370         * memory (otherwise we risk to run OOM on the lower zones despite
 371         * there being tons of freeable ram on the higher zones).  This array is
 372         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 373         * changes.
 374         */
 375        long lowmem_reserve[MAX_NR_ZONES];
 376
 377#ifdef CONFIG_NUMA
 378        int node;
 379#endif
 380        struct pglist_data      *zone_pgdat;
 381        struct per_cpu_pageset __percpu *pageset;
 382
 383#ifndef CONFIG_SPARSEMEM
 384        /*
 385         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 386         * In SPARSEMEM, this map is stored in struct mem_section
 387         */
 388        unsigned long           *pageblock_flags;
 389#endif /* CONFIG_SPARSEMEM */
 390
 391        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 392        unsigned long           zone_start_pfn;
 393
 394        /*
 395         * spanned_pages is the total pages spanned by the zone, including
 396         * holes, which is calculated as:
 397         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 398         *
 399         * present_pages is physical pages existing within the zone, which
 400         * is calculated as:
 401         *      present_pages = spanned_pages - absent_pages(pages in holes);
 402         *
 403         * managed_pages is present pages managed by the buddy system, which
 404         * is calculated as (reserved_pages includes pages allocated by the
 405         * bootmem allocator):
 406         *      managed_pages = present_pages - reserved_pages;
 407         *
 408         * So present_pages may be used by memory hotplug or memory power
 409         * management logic to figure out unmanaged pages by checking
 410         * (present_pages - managed_pages). And managed_pages should be used
 411         * by page allocator and vm scanner to calculate all kinds of watermarks
 412         * and thresholds.
 413         *
 414         * Locking rules:
 415         *
 416         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 417         * It is a seqlock because it has to be read outside of zone->lock,
 418         * and it is done in the main allocator path.  But, it is written
 419         * quite infrequently.
 420         *
 421         * The span_seq lock is declared along with zone->lock because it is
 422         * frequently read in proximity to zone->lock.  It's good to
 423         * give them a chance of being in the same cacheline.
 424         *
 425         * Write access to present_pages at runtime should be protected by
 426         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 427         * present_pages should get_online_mems() to get a stable value.
 428         *
 429         * Read access to managed_pages should be safe because it's unsigned
 430         * long. Write access to zone->managed_pages and totalram_pages are
 431         * protected by managed_page_count_lock at runtime. Idealy only
 432         * adjust_managed_page_count() should be used instead of directly
 433         * touching zone->managed_pages and totalram_pages.
 434         */
 435        unsigned long           managed_pages;
 436        unsigned long           spanned_pages;
 437        unsigned long           present_pages;
 438
 439        const char              *name;
 440
 441#ifdef CONFIG_MEMORY_ISOLATION
 442        /*
 443         * Number of isolated pageblock. It is used to solve incorrect
 444         * freepage counting problem due to racy retrieving migratetype
 445         * of pageblock. Protected by zone->lock.
 446         */
 447        unsigned long           nr_isolate_pageblock;
 448#endif
 449
 450#ifdef CONFIG_MEMORY_HOTPLUG
 451        /* see spanned/present_pages for more description */
 452        seqlock_t               span_seqlock;
 453#endif
 454
 455        int initialized;
 456
 457        /* Write-intensive fields used from the page allocator */
 458        ZONE_PADDING(_pad1_)
 459
 460        /* free areas of different sizes */
 461        struct free_area        free_area[MAX_ORDER];
 462
 463        /* zone flags, see below */
 464        unsigned long           flags;
 465
 466        /* Primarily protects free_area */
 467        spinlock_t              lock;
 468
 469        /* Write-intensive fields used by compaction and vmstats. */
 470        ZONE_PADDING(_pad2_)
 471
 472        /*
 473         * When free pages are below this point, additional steps are taken
 474         * when reading the number of free pages to avoid per-cpu counter
 475         * drift allowing watermarks to be breached
 476         */
 477        unsigned long percpu_drift_mark;
 478
 479#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 480        /* pfn where compaction free scanner should start */
 481        unsigned long           compact_cached_free_pfn;
 482        /* pfn where async and sync compaction migration scanner should start */
 483        unsigned long           compact_cached_migrate_pfn[2];
 484#endif
 485
 486#ifdef CONFIG_COMPACTION
 487        /*
 488         * On compaction failure, 1<<compact_defer_shift compactions
 489         * are skipped before trying again. The number attempted since
 490         * last failure is tracked with compact_considered.
 491         */
 492        unsigned int            compact_considered;
 493        unsigned int            compact_defer_shift;
 494        int                     compact_order_failed;
 495#endif
 496
 497#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 498        /* Set to true when the PG_migrate_skip bits should be cleared */
 499        bool                    compact_blockskip_flush;
 500#endif
 501
 502        bool                    contiguous;
 503
 504        ZONE_PADDING(_pad3_)
 505        /* Zone statistics */
 506        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 507        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 508} ____cacheline_internodealigned_in_smp;
 509
 510enum pgdat_flags {
 511        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 512                                         * a congested BDI
 513                                         */
 514        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 515                                         * many dirty file pages at the tail
 516                                         * of the LRU.
 517                                         */
 518        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 519                                         * many pages under writeback
 520                                         */
 521        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 522};
 523
 524static inline unsigned long zone_end_pfn(const struct zone *zone)
 525{
 526        return zone->zone_start_pfn + zone->spanned_pages;
 527}
 528
 529static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 530{
 531        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 532}
 533
 534static inline bool zone_is_initialized(struct zone *zone)
 535{
 536        return zone->initialized;
 537}
 538
 539static inline bool zone_is_empty(struct zone *zone)
 540{
 541        return zone->spanned_pages == 0;
 542}
 543
 544/*
 545 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 546 * intersection with the given zone
 547 */
 548static inline bool zone_intersects(struct zone *zone,
 549                unsigned long start_pfn, unsigned long nr_pages)
 550{
 551        if (zone_is_empty(zone))
 552                return false;
 553        if (start_pfn >= zone_end_pfn(zone) ||
 554            start_pfn + nr_pages <= zone->zone_start_pfn)
 555                return false;
 556
 557        return true;
 558}
 559
 560/*
 561 * The "priority" of VM scanning is how much of the queues we will scan in one
 562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 563 * queues ("queue_length >> 12") during an aging round.
 564 */
 565#define DEF_PRIORITY 12
 566
 567/* Maximum number of zones on a zonelist */
 568#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 569
 570enum {
 571        ZONELIST_FALLBACK,      /* zonelist with fallback */
 572#ifdef CONFIG_NUMA
 573        /*
 574         * The NUMA zonelists are doubled because we need zonelists that
 575         * restrict the allocations to a single node for __GFP_THISNODE.
 576         */
 577        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 578#endif
 579        MAX_ZONELISTS
 580};
 581
 582/*
 583 * This struct contains information about a zone in a zonelist. It is stored
 584 * here to avoid dereferences into large structures and lookups of tables
 585 */
 586struct zoneref {
 587        struct zone *zone;      /* Pointer to actual zone */
 588        int zone_idx;           /* zone_idx(zoneref->zone) */
 589};
 590
 591/*
 592 * One allocation request operates on a zonelist. A zonelist
 593 * is a list of zones, the first one is the 'goal' of the
 594 * allocation, the other zones are fallback zones, in decreasing
 595 * priority.
 596 *
 597 * To speed the reading of the zonelist, the zonerefs contain the zone index
 598 * of the entry being read. Helper functions to access information given
 599 * a struct zoneref are
 600 *
 601 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 602 * zonelist_zone_idx()  - Return the index of the zone for an entry
 603 * zonelist_node_idx()  - Return the index of the node for an entry
 604 */
 605struct zonelist {
 606        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 607};
 608
 609#ifndef CONFIG_DISCONTIGMEM
 610/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 611extern struct page *mem_map;
 612#endif
 613
 614/*
 615 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 616 * it's memory layout. On UMA machines there is a single pglist_data which
 617 * describes the whole memory.
 618 *
 619 * Memory statistics and page replacement data structures are maintained on a
 620 * per-zone basis.
 621 */
 622struct bootmem_data;
 623typedef struct pglist_data {
 624        struct zone node_zones[MAX_NR_ZONES];
 625        struct zonelist node_zonelists[MAX_ZONELISTS];
 626        int nr_zones;
 627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 628        struct page *node_mem_map;
 629#ifdef CONFIG_PAGE_EXTENSION
 630        struct page_ext *node_page_ext;
 631#endif
 632#endif
 633#ifndef CONFIG_NO_BOOTMEM
 634        struct bootmem_data *bdata;
 635#endif
 636#ifdef CONFIG_MEMORY_HOTPLUG
 637        /*
 638         * Must be held any time you expect node_start_pfn, node_present_pages
 639         * or node_spanned_pages stay constant.  Holding this will also
 640         * guarantee that any pfn_valid() stays that way.
 641         *
 642         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 643         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 644         *
 645         * Nests above zone->lock and zone->span_seqlock
 646         */
 647        spinlock_t node_size_lock;
 648#endif
 649        unsigned long node_start_pfn;
 650        unsigned long node_present_pages; /* total number of physical pages */
 651        unsigned long node_spanned_pages; /* total size of physical page
 652                                             range, including holes */
 653        int node_id;
 654        wait_queue_head_t kswapd_wait;
 655        wait_queue_head_t pfmemalloc_wait;
 656        struct task_struct *kswapd;     /* Protected by
 657                                           mem_hotplug_begin/end() */
 658        int kswapd_order;
 659        enum zone_type kswapd_classzone_idx;
 660
 661        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 662
 663#ifdef CONFIG_COMPACTION
 664        int kcompactd_max_order;
 665        enum zone_type kcompactd_classzone_idx;
 666        wait_queue_head_t kcompactd_wait;
 667        struct task_struct *kcompactd;
 668#endif
 669#ifdef CONFIG_NUMA_BALANCING
 670        /* Lock serializing the migrate rate limiting window */
 671        spinlock_t numabalancing_migrate_lock;
 672
 673        /* Rate limiting time interval */
 674        unsigned long numabalancing_migrate_next_window;
 675
 676        /* Number of pages migrated during the rate limiting time interval */
 677        unsigned long numabalancing_migrate_nr_pages;
 678#endif
 679        /*
 680         * This is a per-node reserve of pages that are not available
 681         * to userspace allocations.
 682         */
 683        unsigned long           totalreserve_pages;
 684
 685#ifdef CONFIG_NUMA
 686        /*
 687         * zone reclaim becomes active if more unmapped pages exist.
 688         */
 689        unsigned long           min_unmapped_pages;
 690        unsigned long           min_slab_pages;
 691#endif /* CONFIG_NUMA */
 692
 693        /* Write-intensive fields used by page reclaim */
 694        ZONE_PADDING(_pad1_)
 695        spinlock_t              lru_lock;
 696
 697#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 698        /*
 699         * If memory initialisation on large machines is deferred then this
 700         * is the first PFN that needs to be initialised.
 701         */
 702        unsigned long first_deferred_pfn;
 703        unsigned long static_init_size;
 704#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 705
 706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 707        spinlock_t split_queue_lock;
 708        struct list_head split_queue;
 709        unsigned long split_queue_len;
 710#endif
 711
 712        /* Fields commonly accessed by the page reclaim scanner */
 713        struct lruvec           lruvec;
 714
 715        /*
 716         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 717         * this node's LRU.  Maintained by the pageout code.
 718         */
 719        unsigned int inactive_ratio;
 720
 721        unsigned long           flags;
 722
 723        ZONE_PADDING(_pad2_)
 724
 725        /* Per-node vmstats */
 726        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 727        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 728} pg_data_t;
 729
 730#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 731#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 732#ifdef CONFIG_FLAT_NODE_MEM_MAP
 733#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 734#else
 735#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 736#endif
 737#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 738
 739#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 740#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 741static inline spinlock_t *zone_lru_lock(struct zone *zone)
 742{
 743        return &zone->zone_pgdat->lru_lock;
 744}
 745
 746static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 747{
 748        return &pgdat->lruvec;
 749}
 750
 751static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 752{
 753        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 754}
 755
 756static inline bool pgdat_is_empty(pg_data_t *pgdat)
 757{
 758        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 759}
 760
 761static inline int zone_id(const struct zone *zone)
 762{
 763        struct pglist_data *pgdat = zone->zone_pgdat;
 764
 765        return zone - pgdat->node_zones;
 766}
 767
 768#ifdef CONFIG_ZONE_DEVICE
 769static inline bool is_dev_zone(const struct zone *zone)
 770{
 771        return zone_id(zone) == ZONE_DEVICE;
 772}
 773#else
 774static inline bool is_dev_zone(const struct zone *zone)
 775{
 776        return false;
 777}
 778#endif
 779
 780#include <linux/memory_hotplug.h>
 781
 782void build_all_zonelists(pg_data_t *pgdat);
 783void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 784bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 785                         int classzone_idx, unsigned int alloc_flags,
 786                         long free_pages);
 787bool zone_watermark_ok(struct zone *z, unsigned int order,
 788                unsigned long mark, int classzone_idx,
 789                unsigned int alloc_flags);
 790bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 791                unsigned long mark, int classzone_idx);
 792enum memmap_context {
 793        MEMMAP_EARLY,
 794        MEMMAP_HOTPLUG,
 795};
 796extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 797                                     unsigned long size);
 798
 799extern void lruvec_init(struct lruvec *lruvec);
 800
 801static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 802{
 803#ifdef CONFIG_MEMCG
 804        return lruvec->pgdat;
 805#else
 806        return container_of(lruvec, struct pglist_data, lruvec);
 807#endif
 808}
 809
 810extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 811
 812#ifdef CONFIG_HAVE_MEMORY_PRESENT
 813void memory_present(int nid, unsigned long start, unsigned long end);
 814#else
 815static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 816#endif
 817
 818#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 819int local_memory_node(int node_id);
 820#else
 821static inline int local_memory_node(int node_id) { return node_id; };
 822#endif
 823
 824#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 825unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 826#endif
 827
 828/*
 829 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 830 */
 831#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 832
 833/*
 834 * Returns true if a zone has pages managed by the buddy allocator.
 835 * All the reclaim decisions have to use this function rather than
 836 * populated_zone(). If the whole zone is reserved then we can easily
 837 * end up with populated_zone() && !managed_zone().
 838 */
 839static inline bool managed_zone(struct zone *zone)
 840{
 841        return zone->managed_pages;
 842}
 843
 844/* Returns true if a zone has memory */
 845static inline bool populated_zone(struct zone *zone)
 846{
 847        return zone->present_pages;
 848}
 849
 850extern int movable_zone;
 851
 852#ifdef CONFIG_HIGHMEM
 853static inline int zone_movable_is_highmem(void)
 854{
 855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 856        return movable_zone == ZONE_HIGHMEM;
 857#else
 858        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 859#endif
 860}
 861#endif
 862
 863static inline int is_highmem_idx(enum zone_type idx)
 864{
 865#ifdef CONFIG_HIGHMEM
 866        return (idx == ZONE_HIGHMEM ||
 867                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 868#else
 869        return 0;
 870#endif
 871}
 872
 873/**
 874 * is_highmem - helper function to quickly check if a struct zone is a 
 875 *              highmem zone or not.  This is an attempt to keep references
 876 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 877 * @zone - pointer to struct zone variable
 878 */
 879static inline int is_highmem(struct zone *zone)
 880{
 881#ifdef CONFIG_HIGHMEM
 882        return is_highmem_idx(zone_idx(zone));
 883#else
 884        return 0;
 885#endif
 886}
 887
 888/* These two functions are used to setup the per zone pages min values */
 889struct ctl_table;
 890int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 891                                        void __user *, size_t *, loff_t *);
 892int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 893                                        void __user *, size_t *, loff_t *);
 894extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 895int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 896                                        void __user *, size_t *, loff_t *);
 897int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 898                                        void __user *, size_t *, loff_t *);
 899int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 900                        void __user *, size_t *, loff_t *);
 901int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 902                        void __user *, size_t *, loff_t *);
 903
 904extern int numa_zonelist_order_handler(struct ctl_table *, int,
 905                        void __user *, size_t *, loff_t *);
 906extern char numa_zonelist_order[];
 907#define NUMA_ZONELIST_ORDER_LEN 16
 908
 909#ifndef CONFIG_NEED_MULTIPLE_NODES
 910
 911extern struct pglist_data contig_page_data;
 912#define NODE_DATA(nid)          (&contig_page_data)
 913#define NODE_MEM_MAP(nid)       mem_map
 914
 915#else /* CONFIG_NEED_MULTIPLE_NODES */
 916
 917#include <asm/mmzone.h>
 918
 919#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 920
 921extern struct pglist_data *first_online_pgdat(void);
 922extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 923extern struct zone *next_zone(struct zone *zone);
 924
 925/**
 926 * for_each_online_pgdat - helper macro to iterate over all online nodes
 927 * @pgdat - pointer to a pg_data_t variable
 928 */
 929#define for_each_online_pgdat(pgdat)                    \
 930        for (pgdat = first_online_pgdat();              \
 931             pgdat;                                     \
 932             pgdat = next_online_pgdat(pgdat))
 933/**
 934 * for_each_zone - helper macro to iterate over all memory zones
 935 * @zone - pointer to struct zone variable
 936 *
 937 * The user only needs to declare the zone variable, for_each_zone
 938 * fills it in.
 939 */
 940#define for_each_zone(zone)                             \
 941        for (zone = (first_online_pgdat())->node_zones; \
 942             zone;                                      \
 943             zone = next_zone(zone))
 944
 945#define for_each_populated_zone(zone)                   \
 946        for (zone = (first_online_pgdat())->node_zones; \
 947             zone;                                      \
 948             zone = next_zone(zone))                    \
 949                if (!populated_zone(zone))              \
 950                        ; /* do nothing */              \
 951                else
 952
 953static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 954{
 955        return zoneref->zone;
 956}
 957
 958static inline int zonelist_zone_idx(struct zoneref *zoneref)
 959{
 960        return zoneref->zone_idx;
 961}
 962
 963static inline int zonelist_node_idx(struct zoneref *zoneref)
 964{
 965#ifdef CONFIG_NUMA
 966        /* zone_to_nid not available in this context */
 967        return zoneref->zone->node;
 968#else
 969        return 0;
 970#endif /* CONFIG_NUMA */
 971}
 972
 973struct zoneref *__next_zones_zonelist(struct zoneref *z,
 974                                        enum zone_type highest_zoneidx,
 975                                        nodemask_t *nodes);
 976
 977/**
 978 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 979 * @z - The cursor used as a starting point for the search
 980 * @highest_zoneidx - The zone index of the highest zone to return
 981 * @nodes - An optional nodemask to filter the zonelist with
 982 *
 983 * This function returns the next zone at or below a given zone index that is
 984 * within the allowed nodemask using a cursor as the starting point for the
 985 * search. The zoneref returned is a cursor that represents the current zone
 986 * being examined. It should be advanced by one before calling
 987 * next_zones_zonelist again.
 988 */
 989static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 990                                        enum zone_type highest_zoneidx,
 991                                        nodemask_t *nodes)
 992{
 993        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 994                return z;
 995        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 996}
 997
 998/**
 999 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1000 * @zonelist - The zonelist to search for a suitable zone
1001 * @highest_zoneidx - The zone index of the highest zone to return
1002 * @nodes - An optional nodemask to filter the zonelist with
1003 * @return - Zoneref pointer for the first suitable zone found (see below)
1004 *
1005 * This function returns the first zone at or below a given zone index that is
1006 * within the allowed nodemask. The zoneref returned is a cursor that can be
1007 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1008 * one before calling.
1009 *
1010 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1011 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1012 * update due to cpuset modification.
1013 */
1014static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1015                                        enum zone_type highest_zoneidx,
1016                                        nodemask_t *nodes)
1017{
1018        return next_zones_zonelist(zonelist->_zonerefs,
1019                                                        highest_zoneidx, nodes);
1020}
1021
1022/**
1023 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1024 * @zone - The current zone in the iterator
1025 * @z - The current pointer within zonelist->zones being iterated
1026 * @zlist - The zonelist being iterated
1027 * @highidx - The zone index of the highest zone to return
1028 * @nodemask - Nodemask allowed by the allocator
1029 *
1030 * This iterator iterates though all zones at or below a given zone index and
1031 * within a given nodemask
1032 */
1033#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1035                zone;                                                   \
1036                z = next_zones_zonelist(++z, highidx, nodemask),        \
1037                        zone = zonelist_zone(z))
1038
1039#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1040        for (zone = z->zone;    \
1041                zone;                                                   \
1042                z = next_zones_zonelist(++z, highidx, nodemask),        \
1043                        zone = zonelist_zone(z))
1044
1045
1046/**
1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1048 * @zone - The current zone in the iterator
1049 * @z - The current pointer within zonelist->zones being iterated
1050 * @zlist - The zonelist being iterated
1051 * @highidx - The zone index of the highest zone to return
1052 *
1053 * This iterator iterates though all zones at or below a given zone index.
1054 */
1055#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1056        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057
1058#ifdef CONFIG_SPARSEMEM
1059#include <asm/sparsemem.h>
1060#endif
1061
1062#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1063        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1064static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065{
1066        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1067        return 0;
1068}
1069#endif
1070
1071#ifdef CONFIG_FLATMEM
1072#define pfn_to_nid(pfn)         (0)
1073#endif
1074
1075#ifdef CONFIG_SPARSEMEM
1076
1077/*
1078 * SECTION_SHIFT                #bits space required to store a section #
1079 *
1080 * PA_SECTION_SHIFT             physical address to/from section number
1081 * PFN_SECTION_SHIFT            pfn to/from section number
1082 */
1083#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1084#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1085
1086#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1087
1088#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1089#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1090
1091#define SECTION_BLOCKFLAGS_BITS \
1092        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1093
1094#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1095#error Allocator MAX_ORDER exceeds SECTION_SIZE
1096#endif
1097
1098static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1099{
1100        return pfn >> PFN_SECTION_SHIFT;
1101}
1102static inline unsigned long section_nr_to_pfn(unsigned long sec)
1103{
1104        return sec << PFN_SECTION_SHIFT;
1105}
1106
1107#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1108#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1109
1110struct page;
1111struct page_ext;
1112struct mem_section {
1113        /*
1114         * This is, logically, a pointer to an array of struct
1115         * pages.  However, it is stored with some other magic.
1116         * (see sparse.c::sparse_init_one_section())
1117         *
1118         * Additionally during early boot we encode node id of
1119         * the location of the section here to guide allocation.
1120         * (see sparse.c::memory_present())
1121         *
1122         * Making it a UL at least makes someone do a cast
1123         * before using it wrong.
1124         */
1125        unsigned long section_mem_map;
1126
1127        /* See declaration of similar field in struct zone */
1128        unsigned long *pageblock_flags;
1129#ifdef CONFIG_PAGE_EXTENSION
1130        /*
1131         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1132         * section. (see page_ext.h about this.)
1133         */
1134        struct page_ext *page_ext;
1135        unsigned long pad;
1136#endif
1137        /*
1138         * WARNING: mem_section must be a power-of-2 in size for the
1139         * calculation and use of SECTION_ROOT_MASK to make sense.
1140         */
1141};
1142
1143#ifdef CONFIG_SPARSEMEM_EXTREME
1144#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1145#else
1146#define SECTIONS_PER_ROOT       1
1147#endif
1148
1149#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1150#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1151#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1152
1153#ifdef CONFIG_SPARSEMEM_EXTREME
1154extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1155#else
1156extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1157#endif
1158
1159static inline struct mem_section *__nr_to_section(unsigned long nr)
1160{
1161        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1162                return NULL;
1163        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1164}
1165extern int __section_nr(struct mem_section* ms);
1166extern unsigned long usemap_size(void);
1167
1168/*
1169 * We use the lower bits of the mem_map pointer to store
1170 * a little bit of information.  There should be at least
1171 * 3 bits here due to 32-bit alignment.
1172 */
1173#define SECTION_MARKED_PRESENT  (1UL<<0)
1174#define SECTION_HAS_MEM_MAP     (1UL<<1)
1175#define SECTION_IS_ONLINE       (1UL<<2)
1176#define SECTION_MAP_LAST_BIT    (1UL<<3)
1177#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1178#define SECTION_NID_SHIFT       3
1179
1180static inline struct page *__section_mem_map_addr(struct mem_section *section)
1181{
1182        unsigned long map = section->section_mem_map;
1183        map &= SECTION_MAP_MASK;
1184        return (struct page *)map;
1185}
1186
1187static inline int present_section(struct mem_section *section)
1188{
1189        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1190}
1191
1192static inline int present_section_nr(unsigned long nr)
1193{
1194        return present_section(__nr_to_section(nr));
1195}
1196
1197static inline int valid_section(struct mem_section *section)
1198{
1199        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1200}
1201
1202static inline int valid_section_nr(unsigned long nr)
1203{
1204        return valid_section(__nr_to_section(nr));
1205}
1206
1207static inline int online_section(struct mem_section *section)
1208{
1209        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1210}
1211
1212static inline int online_section_nr(unsigned long nr)
1213{
1214        return online_section(__nr_to_section(nr));
1215}
1216
1217#ifdef CONFIG_MEMORY_HOTPLUG
1218void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1219#ifdef CONFIG_MEMORY_HOTREMOVE
1220void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1221#endif
1222#endif
1223
1224static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1225{
1226        return __nr_to_section(pfn_to_section_nr(pfn));
1227}
1228
1229extern int __highest_present_section_nr;
1230
1231#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1232static inline int pfn_valid(unsigned long pfn)
1233{
1234        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1235                return 0;
1236        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1237}
1238#endif
1239
1240static inline int pfn_present(unsigned long pfn)
1241{
1242        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1243                return 0;
1244        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1245}
1246
1247/*
1248 * These are _only_ used during initialisation, therefore they
1249 * can use __initdata ...  They could have names to indicate
1250 * this restriction.
1251 */
1252#ifdef CONFIG_NUMA
1253#define pfn_to_nid(pfn)                                                 \
1254({                                                                      \
1255        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1256        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1257})
1258#else
1259#define pfn_to_nid(pfn)         (0)
1260#endif
1261
1262#define early_pfn_valid(pfn)    pfn_valid(pfn)
1263void sparse_init(void);
1264#else
1265#define sparse_init()   do {} while (0)
1266#define sparse_index_init(_sec, _nid)  do {} while (0)
1267#endif /* CONFIG_SPARSEMEM */
1268
1269/*
1270 * During memory init memblocks map pfns to nids. The search is expensive and
1271 * this caches recent lookups. The implementation of __early_pfn_to_nid
1272 * may treat start/end as pfns or sections.
1273 */
1274struct mminit_pfnnid_cache {
1275        unsigned long last_start;
1276        unsigned long last_end;
1277        int last_nid;
1278};
1279
1280#ifndef early_pfn_valid
1281#define early_pfn_valid(pfn)    (1)
1282#endif
1283
1284void memory_present(int nid, unsigned long start, unsigned long end);
1285unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1286
1287/*
1288 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1289 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1290 * pfn_valid_within() should be used in this case; we optimise this away
1291 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1292 */
1293#ifdef CONFIG_HOLES_IN_ZONE
1294#define pfn_valid_within(pfn) pfn_valid(pfn)
1295#else
1296#define pfn_valid_within(pfn) (1)
1297#endif
1298
1299#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1300/*
1301 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1302 * associated with it or not. This means that a struct page exists for this
1303 * pfn. The caller cannot assume the page is fully initialized in general.
1304 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1305 * will ensure the struct page is fully online and initialized. Special pages
1306 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1307 *
1308 * In FLATMEM, it is expected that holes always have valid memmap as long as
1309 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1310 * that a valid section has a memmap for the entire section.
1311 *
1312 * However, an ARM, and maybe other embedded architectures in the future
1313 * free memmap backing holes to save memory on the assumption the memmap is
1314 * never used. The page_zone linkages are then broken even though pfn_valid()
1315 * returns true. A walker of the full memmap must then do this additional
1316 * check to ensure the memmap they are looking at is sane by making sure
1317 * the zone and PFN linkages are still valid. This is expensive, but walkers
1318 * of the full memmap are extremely rare.
1319 */
1320bool memmap_valid_within(unsigned long pfn,
1321                                        struct page *page, struct zone *zone);
1322#else
1323static inline bool memmap_valid_within(unsigned long pfn,
1324                                        struct page *page, struct zone *zone)
1325{
1326        return true;
1327}
1328#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1329
1330#endif /* !__GENERATING_BOUNDS.H */
1331#endif /* !__ASSEMBLY__ */
1332#endif /* _LINUX_MMZONE_H */
1333