linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/workqueue.h>
  39#include <linux/dynamic_queue_limits.h>
  40
  41#include <linux/ethtool.h>
  42#include <net/net_namespace.h>
  43#ifdef CONFIG_DCB
  44#include <net/dcbnl.h>
  45#endif
  46#include <net/netprio_cgroup.h>
  47
  48#include <linux/netdev_features.h>
  49#include <linux/neighbour.h>
  50#include <uapi/linux/netdevice.h>
  51#include <uapi/linux/if_bonding.h>
  52#include <uapi/linux/pkt_cls.h>
  53#include <linux/hashtable.h>
  54
  55struct netpoll_info;
  56struct device;
  57struct phy_device;
  58struct dsa_switch_tree;
  59
  60/* 802.11 specific */
  61struct wireless_dev;
  62/* 802.15.4 specific */
  63struct wpan_dev;
  64struct mpls_dev;
  65/* UDP Tunnel offloads */
  66struct udp_tunnel_info;
  67struct bpf_prog;
  68struct xdp_buff;
  69
  70void netdev_set_default_ethtool_ops(struct net_device *dev,
  71                                    const struct ethtool_ops *ops);
  72
  73/* Backlog congestion levels */
  74#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  75#define NET_RX_DROP             1       /* packet dropped */
  76
  77/*
  78 * Transmit return codes: transmit return codes originate from three different
  79 * namespaces:
  80 *
  81 * - qdisc return codes
  82 * - driver transmit return codes
  83 * - errno values
  84 *
  85 * Drivers are allowed to return any one of those in their hard_start_xmit()
  86 * function. Real network devices commonly used with qdiscs should only return
  87 * the driver transmit return codes though - when qdiscs are used, the actual
  88 * transmission happens asynchronously, so the value is not propagated to
  89 * higher layers. Virtual network devices transmit synchronously; in this case
  90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  91 * others are propagated to higher layers.
  92 */
  93
  94/* qdisc ->enqueue() return codes. */
  95#define NET_XMIT_SUCCESS        0x00
  96#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  97#define NET_XMIT_CN             0x02    /* congestion notification      */
  98#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  99
 100/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 101 * indicates that the device will soon be dropping packets, or already drops
 102 * some packets of the same priority; prompting us to send less aggressively. */
 103#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 104#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 105
 106/* Driver transmit return codes */
 107#define NETDEV_TX_MASK          0xf0
 108
 109enum netdev_tx {
 110        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 111        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 112        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 113};
 114typedef enum netdev_tx netdev_tx_t;
 115
 116/*
 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 119 */
 120static inline bool dev_xmit_complete(int rc)
 121{
 122        /*
 123         * Positive cases with an skb consumed by a driver:
 124         * - successful transmission (rc == NETDEV_TX_OK)
 125         * - error while transmitting (rc < 0)
 126         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 127         */
 128        if (likely(rc < NET_XMIT_MASK))
 129                return true;
 130
 131        return false;
 132}
 133
 134/*
 135 *      Compute the worst-case header length according to the protocols
 136 *      used.
 137 */
 138
 139#if defined(CONFIG_HYPERV_NET)
 140# define LL_MAX_HEADER 128
 141#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 142# if defined(CONFIG_MAC80211_MESH)
 143#  define LL_MAX_HEADER 128
 144# else
 145#  define LL_MAX_HEADER 96
 146# endif
 147#else
 148# define LL_MAX_HEADER 32
 149#endif
 150
 151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 152    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 153#define MAX_HEADER LL_MAX_HEADER
 154#else
 155#define MAX_HEADER (LL_MAX_HEADER + 48)
 156#endif
 157
 158/*
 159 *      Old network device statistics. Fields are native words
 160 *      (unsigned long) so they can be read and written atomically.
 161 */
 162
 163struct net_device_stats {
 164        unsigned long   rx_packets;
 165        unsigned long   tx_packets;
 166        unsigned long   rx_bytes;
 167        unsigned long   tx_bytes;
 168        unsigned long   rx_errors;
 169        unsigned long   tx_errors;
 170        unsigned long   rx_dropped;
 171        unsigned long   tx_dropped;
 172        unsigned long   multicast;
 173        unsigned long   collisions;
 174        unsigned long   rx_length_errors;
 175        unsigned long   rx_over_errors;
 176        unsigned long   rx_crc_errors;
 177        unsigned long   rx_frame_errors;
 178        unsigned long   rx_fifo_errors;
 179        unsigned long   rx_missed_errors;
 180        unsigned long   tx_aborted_errors;
 181        unsigned long   tx_carrier_errors;
 182        unsigned long   tx_fifo_errors;
 183        unsigned long   tx_heartbeat_errors;
 184        unsigned long   tx_window_errors;
 185        unsigned long   rx_compressed;
 186        unsigned long   tx_compressed;
 187};
 188
 189
 190#include <linux/cache.h>
 191#include <linux/skbuff.h>
 192
 193#ifdef CONFIG_RPS
 194#include <linux/static_key.h>
 195extern struct static_key rps_needed;
 196extern struct static_key rfs_needed;
 197#endif
 198
 199struct neighbour;
 200struct neigh_parms;
 201struct sk_buff;
 202
 203struct netdev_hw_addr {
 204        struct list_head        list;
 205        unsigned char           addr[MAX_ADDR_LEN];
 206        unsigned char           type;
 207#define NETDEV_HW_ADDR_T_LAN            1
 208#define NETDEV_HW_ADDR_T_SAN            2
 209#define NETDEV_HW_ADDR_T_SLAVE          3
 210#define NETDEV_HW_ADDR_T_UNICAST        4
 211#define NETDEV_HW_ADDR_T_MULTICAST      5
 212        bool                    global_use;
 213        int                     sync_cnt;
 214        int                     refcount;
 215        int                     synced;
 216        struct rcu_head         rcu_head;
 217};
 218
 219struct netdev_hw_addr_list {
 220        struct list_head        list;
 221        int                     count;
 222};
 223
 224#define netdev_hw_addr_list_count(l) ((l)->count)
 225#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 226#define netdev_hw_addr_list_for_each(ha, l) \
 227        list_for_each_entry(ha, &(l)->list, list)
 228
 229#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 230#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 231#define netdev_for_each_uc_addr(ha, dev) \
 232        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 233
 234#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 235#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 236#define netdev_for_each_mc_addr(ha, dev) \
 237        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 238
 239struct hh_cache {
 240        unsigned int    hh_len;
 241        seqlock_t       hh_lock;
 242
 243        /* cached hardware header; allow for machine alignment needs.        */
 244#define HH_DATA_MOD     16
 245#define HH_DATA_OFF(__len) \
 246        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 247#define HH_DATA_ALIGN(__len) \
 248        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 249        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 250};
 251
 252/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 253 * Alternative is:
 254 *   dev->hard_header_len ? (dev->hard_header_len +
 255 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 256 *
 257 * We could use other alignment values, but we must maintain the
 258 * relationship HH alignment <= LL alignment.
 259 */
 260#define LL_RESERVED_SPACE(dev) \
 261        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 263        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 264
 265struct header_ops {
 266        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 267                           unsigned short type, const void *daddr,
 268                           const void *saddr, unsigned int len);
 269        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 270        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 271        void    (*cache_update)(struct hh_cache *hh,
 272                                const struct net_device *dev,
 273                                const unsigned char *haddr);
 274        bool    (*validate)(const char *ll_header, unsigned int len);
 275};
 276
 277/* These flag bits are private to the generic network queueing
 278 * layer; they may not be explicitly referenced by any other
 279 * code.
 280 */
 281
 282enum netdev_state_t {
 283        __LINK_STATE_START,
 284        __LINK_STATE_PRESENT,
 285        __LINK_STATE_NOCARRIER,
 286        __LINK_STATE_LINKWATCH_PENDING,
 287        __LINK_STATE_DORMANT,
 288};
 289
 290
 291/*
 292 * This structure holds boot-time configured netdevice settings. They
 293 * are then used in the device probing.
 294 */
 295struct netdev_boot_setup {
 296        char name[IFNAMSIZ];
 297        struct ifmap map;
 298};
 299#define NETDEV_BOOT_SETUP_MAX 8
 300
 301int __init netdev_boot_setup(char *str);
 302
 303/*
 304 * Structure for NAPI scheduling similar to tasklet but with weighting
 305 */
 306struct napi_struct {
 307        /* The poll_list must only be managed by the entity which
 308         * changes the state of the NAPI_STATE_SCHED bit.  This means
 309         * whoever atomically sets that bit can add this napi_struct
 310         * to the per-CPU poll_list, and whoever clears that bit
 311         * can remove from the list right before clearing the bit.
 312         */
 313        struct list_head        poll_list;
 314
 315        unsigned long           state;
 316        int                     weight;
 317        unsigned int            gro_count;
 318        int                     (*poll)(struct napi_struct *, int);
 319#ifdef CONFIG_NETPOLL
 320        int                     poll_owner;
 321#endif
 322        struct net_device       *dev;
 323        struct sk_buff          *gro_list;
 324        struct sk_buff          *skb;
 325        struct hrtimer          timer;
 326        struct list_head        dev_list;
 327        struct hlist_node       napi_hash_node;
 328        unsigned int            napi_id;
 329};
 330
 331enum {
 332        NAPI_STATE_SCHED,       /* Poll is scheduled */
 333        NAPI_STATE_MISSED,      /* reschedule a napi */
 334        NAPI_STATE_DISABLE,     /* Disable pending */
 335        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 336        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 337        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 338        NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 339};
 340
 341enum {
 342        NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
 343        NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
 344        NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
 345        NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
 346        NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
 347        NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 348        NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 349};
 350
 351enum gro_result {
 352        GRO_MERGED,
 353        GRO_MERGED_FREE,
 354        GRO_HELD,
 355        GRO_NORMAL,
 356        GRO_DROP,
 357        GRO_CONSUMED,
 358};
 359typedef enum gro_result gro_result_t;
 360
 361/*
 362 * enum rx_handler_result - Possible return values for rx_handlers.
 363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 364 * further.
 365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 366 * case skb->dev was changed by rx_handler.
 367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 369 *
 370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 371 * special processing of the skb, prior to delivery to protocol handlers.
 372 *
 373 * Currently, a net_device can only have a single rx_handler registered. Trying
 374 * to register a second rx_handler will return -EBUSY.
 375 *
 376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 377 * To unregister a rx_handler on a net_device, use
 378 * netdev_rx_handler_unregister().
 379 *
 380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 381 * do with the skb.
 382 *
 383 * If the rx_handler consumed the skb in some way, it should return
 384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 385 * the skb to be delivered in some other way.
 386 *
 387 * If the rx_handler changed skb->dev, to divert the skb to another
 388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 389 * new device will be called if it exists.
 390 *
 391 * If the rx_handler decides the skb should be ignored, it should return
 392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 393 * are registered on exact device (ptype->dev == skb->dev).
 394 *
 395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 396 * delivered, it should return RX_HANDLER_PASS.
 397 *
 398 * A device without a registered rx_handler will behave as if rx_handler
 399 * returned RX_HANDLER_PASS.
 400 */
 401
 402enum rx_handler_result {
 403        RX_HANDLER_CONSUMED,
 404        RX_HANDLER_ANOTHER,
 405        RX_HANDLER_EXACT,
 406        RX_HANDLER_PASS,
 407};
 408typedef enum rx_handler_result rx_handler_result_t;
 409typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 410
 411void __napi_schedule(struct napi_struct *n);
 412void __napi_schedule_irqoff(struct napi_struct *n);
 413
 414static inline bool napi_disable_pending(struct napi_struct *n)
 415{
 416        return test_bit(NAPI_STATE_DISABLE, &n->state);
 417}
 418
 419bool napi_schedule_prep(struct napi_struct *n);
 420
 421/**
 422 *      napi_schedule - schedule NAPI poll
 423 *      @n: NAPI context
 424 *
 425 * Schedule NAPI poll routine to be called if it is not already
 426 * running.
 427 */
 428static inline void napi_schedule(struct napi_struct *n)
 429{
 430        if (napi_schedule_prep(n))
 431                __napi_schedule(n);
 432}
 433
 434/**
 435 *      napi_schedule_irqoff - schedule NAPI poll
 436 *      @n: NAPI context
 437 *
 438 * Variant of napi_schedule(), assuming hard irqs are masked.
 439 */
 440static inline void napi_schedule_irqoff(struct napi_struct *n)
 441{
 442        if (napi_schedule_prep(n))
 443                __napi_schedule_irqoff(n);
 444}
 445
 446/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 447static inline bool napi_reschedule(struct napi_struct *napi)
 448{
 449        if (napi_schedule_prep(napi)) {
 450                __napi_schedule(napi);
 451                return true;
 452        }
 453        return false;
 454}
 455
 456bool napi_complete_done(struct napi_struct *n, int work_done);
 457/**
 458 *      napi_complete - NAPI processing complete
 459 *      @n: NAPI context
 460 *
 461 * Mark NAPI processing as complete.
 462 * Consider using napi_complete_done() instead.
 463 * Return false if device should avoid rearming interrupts.
 464 */
 465static inline bool napi_complete(struct napi_struct *n)
 466{
 467        return napi_complete_done(n, 0);
 468}
 469
 470/**
 471 *      napi_hash_del - remove a NAPI from global table
 472 *      @napi: NAPI context
 473 *
 474 * Warning: caller must observe RCU grace period
 475 * before freeing memory containing @napi, if
 476 * this function returns true.
 477 * Note: core networking stack automatically calls it
 478 * from netif_napi_del().
 479 * Drivers might want to call this helper to combine all
 480 * the needed RCU grace periods into a single one.
 481 */
 482bool napi_hash_del(struct napi_struct *napi);
 483
 484/**
 485 *      napi_disable - prevent NAPI from scheduling
 486 *      @n: NAPI context
 487 *
 488 * Stop NAPI from being scheduled on this context.
 489 * Waits till any outstanding processing completes.
 490 */
 491void napi_disable(struct napi_struct *n);
 492
 493/**
 494 *      napi_enable - enable NAPI scheduling
 495 *      @n: NAPI context
 496 *
 497 * Resume NAPI from being scheduled on this context.
 498 * Must be paired with napi_disable.
 499 */
 500static inline void napi_enable(struct napi_struct *n)
 501{
 502        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 503        smp_mb__before_atomic();
 504        clear_bit(NAPI_STATE_SCHED, &n->state);
 505        clear_bit(NAPI_STATE_NPSVC, &n->state);
 506}
 507
 508/**
 509 *      napi_synchronize - wait until NAPI is not running
 510 *      @n: NAPI context
 511 *
 512 * Wait until NAPI is done being scheduled on this context.
 513 * Waits till any outstanding processing completes but
 514 * does not disable future activations.
 515 */
 516static inline void napi_synchronize(const struct napi_struct *n)
 517{
 518        if (IS_ENABLED(CONFIG_SMP))
 519                while (test_bit(NAPI_STATE_SCHED, &n->state))
 520                        msleep(1);
 521        else
 522                barrier();
 523}
 524
 525enum netdev_queue_state_t {
 526        __QUEUE_STATE_DRV_XOFF,
 527        __QUEUE_STATE_STACK_XOFF,
 528        __QUEUE_STATE_FROZEN,
 529};
 530
 531#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 532#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 533#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 534
 535#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 536#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 537                                        QUEUE_STATE_FROZEN)
 538#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 539                                        QUEUE_STATE_FROZEN)
 540
 541/*
 542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 543 * netif_tx_* functions below are used to manipulate this flag.  The
 544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 545 * queue independently.  The netif_xmit_*stopped functions below are called
 546 * to check if the queue has been stopped by the driver or stack (either
 547 * of the XOFF bits are set in the state).  Drivers should not need to call
 548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 549 */
 550
 551struct netdev_queue {
 552/*
 553 * read-mostly part
 554 */
 555        struct net_device       *dev;
 556        struct Qdisc __rcu      *qdisc;
 557        struct Qdisc            *qdisc_sleeping;
 558#ifdef CONFIG_SYSFS
 559        struct kobject          kobj;
 560#endif
 561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 562        int                     numa_node;
 563#endif
 564        unsigned long           tx_maxrate;
 565        /*
 566         * Number of TX timeouts for this queue
 567         * (/sys/class/net/DEV/Q/trans_timeout)
 568         */
 569        unsigned long           trans_timeout;
 570/*
 571 * write-mostly part
 572 */
 573        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 574        int                     xmit_lock_owner;
 575        /*
 576         * Time (in jiffies) of last Tx
 577         */
 578        unsigned long           trans_start;
 579
 580        unsigned long           state;
 581
 582#ifdef CONFIG_BQL
 583        struct dql              dql;
 584#endif
 585} ____cacheline_aligned_in_smp;
 586
 587static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 588{
 589#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 590        return q->numa_node;
 591#else
 592        return NUMA_NO_NODE;
 593#endif
 594}
 595
 596static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 597{
 598#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 599        q->numa_node = node;
 600#endif
 601}
 602
 603#ifdef CONFIG_RPS
 604/*
 605 * This structure holds an RPS map which can be of variable length.  The
 606 * map is an array of CPUs.
 607 */
 608struct rps_map {
 609        unsigned int len;
 610        struct rcu_head rcu;
 611        u16 cpus[0];
 612};
 613#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 614
 615/*
 616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 617 * tail pointer for that CPU's input queue at the time of last enqueue, and
 618 * a hardware filter index.
 619 */
 620struct rps_dev_flow {
 621        u16 cpu;
 622        u16 filter;
 623        unsigned int last_qtail;
 624};
 625#define RPS_NO_FILTER 0xffff
 626
 627/*
 628 * The rps_dev_flow_table structure contains a table of flow mappings.
 629 */
 630struct rps_dev_flow_table {
 631        unsigned int mask;
 632        struct rcu_head rcu;
 633        struct rps_dev_flow flows[0];
 634};
 635#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 636    ((_num) * sizeof(struct rps_dev_flow)))
 637
 638/*
 639 * The rps_sock_flow_table contains mappings of flows to the last CPU
 640 * on which they were processed by the application (set in recvmsg).
 641 * Each entry is a 32bit value. Upper part is the high-order bits
 642 * of flow hash, lower part is CPU number.
 643 * rps_cpu_mask is used to partition the space, depending on number of
 644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 646 * meaning we use 32-6=26 bits for the hash.
 647 */
 648struct rps_sock_flow_table {
 649        u32     mask;
 650
 651        u32     ents[0] ____cacheline_aligned_in_smp;
 652};
 653#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 654
 655#define RPS_NO_CPU 0xffff
 656
 657extern u32 rps_cpu_mask;
 658extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 659
 660static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 661                                        u32 hash)
 662{
 663        if (table && hash) {
 664                unsigned int index = hash & table->mask;
 665                u32 val = hash & ~rps_cpu_mask;
 666
 667                /* We only give a hint, preemption can change CPU under us */
 668                val |= raw_smp_processor_id();
 669
 670                if (table->ents[index] != val)
 671                        table->ents[index] = val;
 672        }
 673}
 674
 675#ifdef CONFIG_RFS_ACCEL
 676bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 677                         u16 filter_id);
 678#endif
 679#endif /* CONFIG_RPS */
 680
 681/* This structure contains an instance of an RX queue. */
 682struct netdev_rx_queue {
 683#ifdef CONFIG_RPS
 684        struct rps_map __rcu            *rps_map;
 685        struct rps_dev_flow_table __rcu *rps_flow_table;
 686#endif
 687        struct kobject                  kobj;
 688        struct net_device               *dev;
 689} ____cacheline_aligned_in_smp;
 690
 691/*
 692 * RX queue sysfs structures and functions.
 693 */
 694struct rx_queue_attribute {
 695        struct attribute attr;
 696        ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 697        ssize_t (*store)(struct netdev_rx_queue *queue,
 698                         const char *buf, size_t len);
 699};
 700
 701#ifdef CONFIG_XPS
 702/*
 703 * This structure holds an XPS map which can be of variable length.  The
 704 * map is an array of queues.
 705 */
 706struct xps_map {
 707        unsigned int len;
 708        unsigned int alloc_len;
 709        struct rcu_head rcu;
 710        u16 queues[0];
 711};
 712#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 713#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 714       - sizeof(struct xps_map)) / sizeof(u16))
 715
 716/*
 717 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 718 */
 719struct xps_dev_maps {
 720        struct rcu_head rcu;
 721        struct xps_map __rcu *cpu_map[0];
 722};
 723#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
 724        (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 725#endif /* CONFIG_XPS */
 726
 727#define TC_MAX_QUEUE    16
 728#define TC_BITMASK      15
 729/* HW offloaded queuing disciplines txq count and offset maps */
 730struct netdev_tc_txq {
 731        u16 count;
 732        u16 offset;
 733};
 734
 735#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 736/*
 737 * This structure is to hold information about the device
 738 * configured to run FCoE protocol stack.
 739 */
 740struct netdev_fcoe_hbainfo {
 741        char    manufacturer[64];
 742        char    serial_number[64];
 743        char    hardware_version[64];
 744        char    driver_version[64];
 745        char    optionrom_version[64];
 746        char    firmware_version[64];
 747        char    model[256];
 748        char    model_description[256];
 749};
 750#endif
 751
 752#define MAX_PHYS_ITEM_ID_LEN 32
 753
 754/* This structure holds a unique identifier to identify some
 755 * physical item (port for example) used by a netdevice.
 756 */
 757struct netdev_phys_item_id {
 758        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 759        unsigned char id_len;
 760};
 761
 762static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 763                                            struct netdev_phys_item_id *b)
 764{
 765        return a->id_len == b->id_len &&
 766               memcmp(a->id, b->id, a->id_len) == 0;
 767}
 768
 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 770                                       struct sk_buff *skb);
 771
 772enum tc_setup_type {
 773        TC_SETUP_MQPRIO,
 774        TC_SETUP_CLSU32,
 775        TC_SETUP_CLSFLOWER,
 776        TC_SETUP_CLSMATCHALL,
 777        TC_SETUP_CLSBPF,
 778};
 779
 780/* These structures hold the attributes of xdp state that are being passed
 781 * to the netdevice through the xdp op.
 782 */
 783enum xdp_netdev_command {
 784        /* Set or clear a bpf program used in the earliest stages of packet
 785         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 786         * is responsible for calling bpf_prog_put on any old progs that are
 787         * stored. In case of error, the callee need not release the new prog
 788         * reference, but on success it takes ownership and must bpf_prog_put
 789         * when it is no longer used.
 790         */
 791        XDP_SETUP_PROG,
 792        XDP_SETUP_PROG_HW,
 793        /* Check if a bpf program is set on the device.  The callee should
 794         * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
 795         * is equivalent to XDP_ATTACHED_DRV.
 796         */
 797        XDP_QUERY_PROG,
 798};
 799
 800struct netlink_ext_ack;
 801
 802struct netdev_xdp {
 803        enum xdp_netdev_command command;
 804        union {
 805                /* XDP_SETUP_PROG */
 806                struct {
 807                        u32 flags;
 808                        struct bpf_prog *prog;
 809                        struct netlink_ext_ack *extack;
 810                };
 811                /* XDP_QUERY_PROG */
 812                struct {
 813                        u8 prog_attached;
 814                        u32 prog_id;
 815                };
 816        };
 817};
 818
 819#ifdef CONFIG_XFRM_OFFLOAD
 820struct xfrmdev_ops {
 821        int     (*xdo_dev_state_add) (struct xfrm_state *x);
 822        void    (*xdo_dev_state_delete) (struct xfrm_state *x);
 823        void    (*xdo_dev_state_free) (struct xfrm_state *x);
 824        bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
 825                                       struct xfrm_state *x);
 826};
 827#endif
 828
 829/*
 830 * This structure defines the management hooks for network devices.
 831 * The following hooks can be defined; unless noted otherwise, they are
 832 * optional and can be filled with a null pointer.
 833 *
 834 * int (*ndo_init)(struct net_device *dev);
 835 *     This function is called once when a network device is registered.
 836 *     The network device can use this for any late stage initialization
 837 *     or semantic validation. It can fail with an error code which will
 838 *     be propagated back to register_netdev.
 839 *
 840 * void (*ndo_uninit)(struct net_device *dev);
 841 *     This function is called when device is unregistered or when registration
 842 *     fails. It is not called if init fails.
 843 *
 844 * int (*ndo_open)(struct net_device *dev);
 845 *     This function is called when a network device transitions to the up
 846 *     state.
 847 *
 848 * int (*ndo_stop)(struct net_device *dev);
 849 *     This function is called when a network device transitions to the down
 850 *     state.
 851 *
 852 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 853 *                               struct net_device *dev);
 854 *      Called when a packet needs to be transmitted.
 855 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 856 *      the queue before that can happen; it's for obsolete devices and weird
 857 *      corner cases, but the stack really does a non-trivial amount
 858 *      of useless work if you return NETDEV_TX_BUSY.
 859 *      Required; cannot be NULL.
 860 *
 861 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 862 *                                         struct net_device *dev
 863 *                                         netdev_features_t features);
 864 *      Called by core transmit path to determine if device is capable of
 865 *      performing offload operations on a given packet. This is to give
 866 *      the device an opportunity to implement any restrictions that cannot
 867 *      be otherwise expressed by feature flags. The check is called with
 868 *      the set of features that the stack has calculated and it returns
 869 *      those the driver believes to be appropriate.
 870 *
 871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 872 *                         void *accel_priv, select_queue_fallback_t fallback);
 873 *      Called to decide which queue to use when device supports multiple
 874 *      transmit queues.
 875 *
 876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 877 *      This function is called to allow device receiver to make
 878 *      changes to configuration when multicast or promiscuous is enabled.
 879 *
 880 * void (*ndo_set_rx_mode)(struct net_device *dev);
 881 *      This function is called device changes address list filtering.
 882 *      If driver handles unicast address filtering, it should set
 883 *      IFF_UNICAST_FLT in its priv_flags.
 884 *
 885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 886 *      This function  is called when the Media Access Control address
 887 *      needs to be changed. If this interface is not defined, the
 888 *      MAC address can not be changed.
 889 *
 890 * int (*ndo_validate_addr)(struct net_device *dev);
 891 *      Test if Media Access Control address is valid for the device.
 892 *
 893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 894 *      Called when a user requests an ioctl which can't be handled by
 895 *      the generic interface code. If not defined ioctls return
 896 *      not supported error code.
 897 *
 898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 899 *      Used to set network devices bus interface parameters. This interface
 900 *      is retained for legacy reasons; new devices should use the bus
 901 *      interface (PCI) for low level management.
 902 *
 903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 904 *      Called when a user wants to change the Maximum Transfer Unit
 905 *      of a device.
 906 *
 907 * void (*ndo_tx_timeout)(struct net_device *dev);
 908 *      Callback used when the transmitter has not made any progress
 909 *      for dev->watchdog ticks.
 910 *
 911 * void (*ndo_get_stats64)(struct net_device *dev,
 912 *                         struct rtnl_link_stats64 *storage);
 913 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 914 *      Called when a user wants to get the network device usage
 915 *      statistics. Drivers must do one of the following:
 916 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 917 *         rtnl_link_stats64 structure passed by the caller.
 918 *      2. Define @ndo_get_stats to update a net_device_stats structure
 919 *         (which should normally be dev->stats) and return a pointer to
 920 *         it. The structure may be changed asynchronously only if each
 921 *         field is written atomically.
 922 *      3. Update dev->stats asynchronously and atomically, and define
 923 *         neither operation.
 924 *
 925 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
 926 *      Return true if this device supports offload stats of this attr_id.
 927 *
 928 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
 929 *      void *attr_data)
 930 *      Get statistics for offload operations by attr_id. Write it into the
 931 *      attr_data pointer.
 932 *
 933 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 934 *      If device supports VLAN filtering this function is called when a
 935 *      VLAN id is registered.
 936 *
 937 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 938 *      If device supports VLAN filtering this function is called when a
 939 *      VLAN id is unregistered.
 940 *
 941 * void (*ndo_poll_controller)(struct net_device *dev);
 942 *
 943 *      SR-IOV management functions.
 944 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 945 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
 946 *                        u8 qos, __be16 proto);
 947 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 948 *                        int max_tx_rate);
 949 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 950 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
 951 * int (*ndo_get_vf_config)(struct net_device *dev,
 952 *                          int vf, struct ifla_vf_info *ivf);
 953 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 954 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 955 *                        struct nlattr *port[]);
 956 *
 957 *      Enable or disable the VF ability to query its RSS Redirection Table and
 958 *      Hash Key. This is needed since on some devices VF share this information
 959 *      with PF and querying it may introduce a theoretical security risk.
 960 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 961 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 962 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
 963 *                     void *type_data);
 964 *      Called to setup any 'tc' scheduler, classifier or action on @dev.
 965 *      This is always called from the stack with the rtnl lock held and netif
 966 *      tx queues stopped. This allows the netdevice to perform queue
 967 *      management safely.
 968 *
 969 *      Fiber Channel over Ethernet (FCoE) offload functions.
 970 * int (*ndo_fcoe_enable)(struct net_device *dev);
 971 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 972 *      so the underlying device can perform whatever needed configuration or
 973 *      initialization to support acceleration of FCoE traffic.
 974 *
 975 * int (*ndo_fcoe_disable)(struct net_device *dev);
 976 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 977 *      so the underlying device can perform whatever needed clean-ups to
 978 *      stop supporting acceleration of FCoE traffic.
 979 *
 980 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 981 *                           struct scatterlist *sgl, unsigned int sgc);
 982 *      Called when the FCoE Initiator wants to initialize an I/O that
 983 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 984 *      perform necessary setup and returns 1 to indicate the device is set up
 985 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 986 *
 987 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 988 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 989 *      indicated by the FC exchange id 'xid', so the underlying device can
 990 *      clean up and reuse resources for later DDP requests.
 991 *
 992 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 993 *                            struct scatterlist *sgl, unsigned int sgc);
 994 *      Called when the FCoE Target wants to initialize an I/O that
 995 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 996 *      perform necessary setup and returns 1 to indicate the device is set up
 997 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 998 *
 999 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1000 *                             struct netdev_fcoe_hbainfo *hbainfo);
1001 *      Called when the FCoE Protocol stack wants information on the underlying
1002 *      device. This information is utilized by the FCoE protocol stack to
1003 *      register attributes with Fiber Channel management service as per the
1004 *      FC-GS Fabric Device Management Information(FDMI) specification.
1005 *
1006 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1007 *      Called when the underlying device wants to override default World Wide
1008 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1009 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1010 *      protocol stack to use.
1011 *
1012 *      RFS acceleration.
1013 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1014 *                          u16 rxq_index, u32 flow_id);
1015 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1016 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1017 *      Return the filter ID on success, or a negative error code.
1018 *
1019 *      Slave management functions (for bridge, bonding, etc).
1020 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1021 *      Called to make another netdev an underling.
1022 *
1023 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1024 *      Called to release previously enslaved netdev.
1025 *
1026 *      Feature/offload setting functions.
1027 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1028 *              netdev_features_t features);
1029 *      Adjusts the requested feature flags according to device-specific
1030 *      constraints, and returns the resulting flags. Must not modify
1031 *      the device state.
1032 *
1033 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1034 *      Called to update device configuration to new features. Passed
1035 *      feature set might be less than what was returned by ndo_fix_features()).
1036 *      Must return >0 or -errno if it changed dev->features itself.
1037 *
1038 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1039 *                    struct net_device *dev,
1040 *                    const unsigned char *addr, u16 vid, u16 flags)
1041 *      Adds an FDB entry to dev for addr.
1042 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1043 *                    struct net_device *dev,
1044 *                    const unsigned char *addr, u16 vid)
1045 *      Deletes the FDB entry from dev coresponding to addr.
1046 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1047 *                     struct net_device *dev, struct net_device *filter_dev,
1048 *                     int *idx)
1049 *      Used to add FDB entries to dump requests. Implementers should add
1050 *      entries to skb and update idx with the number of entries.
1051 *
1052 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1053 *                           u16 flags)
1054 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1055 *                           struct net_device *dev, u32 filter_mask,
1056 *                           int nlflags)
1057 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1058 *                           u16 flags);
1059 *
1060 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1061 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1062 *      which do not represent real hardware may define this to allow their
1063 *      userspace components to manage their virtual carrier state. Devices
1064 *      that determine carrier state from physical hardware properties (eg
1065 *      network cables) or protocol-dependent mechanisms (eg
1066 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1067 *
1068 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1069 *                             struct netdev_phys_item_id *ppid);
1070 *      Called to get ID of physical port of this device. If driver does
1071 *      not implement this, it is assumed that the hw is not able to have
1072 *      multiple net devices on single physical port.
1073 *
1074 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1075 *                            struct udp_tunnel_info *ti);
1076 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1077 *      address family that a UDP tunnel is listnening to. It is called only
1078 *      when a new port starts listening. The operation is protected by the
1079 *      RTNL.
1080 *
1081 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1082 *                            struct udp_tunnel_info *ti);
1083 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1084 *      address family that the UDP tunnel is not listening to anymore. The
1085 *      operation is protected by the RTNL.
1086 *
1087 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1088 *                               struct net_device *dev)
1089 *      Called by upper layer devices to accelerate switching or other
1090 *      station functionality into hardware. 'pdev is the lowerdev
1091 *      to use for the offload and 'dev' is the net device that will
1092 *      back the offload. Returns a pointer to the private structure
1093 *      the upper layer will maintain.
1094 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1095 *      Called by upper layer device to delete the station created
1096 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1097 *      the station and priv is the structure returned by the add
1098 *      operation.
1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100 *                           int queue_index, u32 maxrate);
1101 *      Called when a user wants to set a max-rate limitation of specific
1102 *      TX queue.
1103 * int (*ndo_get_iflink)(const struct net_device *dev);
1104 *      Called to get the iflink value of this device.
1105 * void (*ndo_change_proto_down)(struct net_device *dev,
1106 *                               bool proto_down);
1107 *      This function is used to pass protocol port error state information
1108 *      to the switch driver. The switch driver can react to the proto_down
1109 *      by doing a phys down on the associated switch port.
1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111 *      This function is used to get egress tunnel information for given skb.
1112 *      This is useful for retrieving outer tunnel header parameters while
1113 *      sampling packet.
1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115 *      This function is used to specify the headroom that the skb must
1116 *      consider when allocation skb during packet reception. Setting
1117 *      appropriate rx headroom value allows avoiding skb head copy on
1118 *      forward. Setting a negative value resets the rx headroom to the
1119 *      default value.
1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121 *      This function is used to set or query state related to XDP on the
1122 *      netdevice. See definition of enum xdp_netdev_command for details.
1123 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1124 *      This function is used to submit a XDP packet for transmit on a
1125 *      netdevice.
1126 * void (*ndo_xdp_flush)(struct net_device *dev);
1127 *      This function is used to inform the driver to flush a particular
1128 *      xdp tx queue. Must be called on same CPU as xdp_xmit.
1129 */
1130struct net_device_ops {
1131        int                     (*ndo_init)(struct net_device *dev);
1132        void                    (*ndo_uninit)(struct net_device *dev);
1133        int                     (*ndo_open)(struct net_device *dev);
1134        int                     (*ndo_stop)(struct net_device *dev);
1135        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1136                                                  struct net_device *dev);
1137        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1138                                                      struct net_device *dev,
1139                                                      netdev_features_t features);
1140        u16                     (*ndo_select_queue)(struct net_device *dev,
1141                                                    struct sk_buff *skb,
1142                                                    void *accel_priv,
1143                                                    select_queue_fallback_t fallback);
1144        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1145                                                       int flags);
1146        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1147        int                     (*ndo_set_mac_address)(struct net_device *dev,
1148                                                       void *addr);
1149        int                     (*ndo_validate_addr)(struct net_device *dev);
1150        int                     (*ndo_do_ioctl)(struct net_device *dev,
1151                                                struct ifreq *ifr, int cmd);
1152        int                     (*ndo_set_config)(struct net_device *dev,
1153                                                  struct ifmap *map);
1154        int                     (*ndo_change_mtu)(struct net_device *dev,
1155                                                  int new_mtu);
1156        int                     (*ndo_neigh_setup)(struct net_device *dev,
1157                                                   struct neigh_parms *);
1158        void                    (*ndo_tx_timeout) (struct net_device *dev);
1159
1160        void                    (*ndo_get_stats64)(struct net_device *dev,
1161                                                   struct rtnl_link_stats64 *storage);
1162        bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1163        int                     (*ndo_get_offload_stats)(int attr_id,
1164                                                         const struct net_device *dev,
1165                                                         void *attr_data);
1166        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1167
1168        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1169                                                       __be16 proto, u16 vid);
1170        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1171                                                        __be16 proto, u16 vid);
1172#ifdef CONFIG_NET_POLL_CONTROLLER
1173        void                    (*ndo_poll_controller)(struct net_device *dev);
1174        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1175                                                     struct netpoll_info *info);
1176        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1177#endif
1178        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1179                                                  int queue, u8 *mac);
1180        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1181                                                   int queue, u16 vlan,
1182                                                   u8 qos, __be16 proto);
1183        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1184                                                   int vf, int min_tx_rate,
1185                                                   int max_tx_rate);
1186        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1187                                                       int vf, bool setting);
1188        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1189                                                    int vf, bool setting);
1190        int                     (*ndo_get_vf_config)(struct net_device *dev,
1191                                                     int vf,
1192                                                     struct ifla_vf_info *ivf);
1193        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1194                                                         int vf, int link_state);
1195        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1196                                                    int vf,
1197                                                    struct ifla_vf_stats
1198                                                    *vf_stats);
1199        int                     (*ndo_set_vf_port)(struct net_device *dev,
1200                                                   int vf,
1201                                                   struct nlattr *port[]);
1202        int                     (*ndo_get_vf_port)(struct net_device *dev,
1203                                                   int vf, struct sk_buff *skb);
1204        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1205                                                   int vf, u64 guid,
1206                                                   int guid_type);
1207        int                     (*ndo_set_vf_rss_query_en)(
1208                                                   struct net_device *dev,
1209                                                   int vf, bool setting);
1210        int                     (*ndo_setup_tc)(struct net_device *dev,
1211                                                enum tc_setup_type type,
1212                                                void *type_data);
1213#if IS_ENABLED(CONFIG_FCOE)
1214        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1215        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1216        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1217                                                      u16 xid,
1218                                                      struct scatterlist *sgl,
1219                                                      unsigned int sgc);
1220        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1221                                                     u16 xid);
1222        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1223                                                       u16 xid,
1224                                                       struct scatterlist *sgl,
1225                                                       unsigned int sgc);
1226        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1227                                                        struct netdev_fcoe_hbainfo *hbainfo);
1228#endif
1229
1230#if IS_ENABLED(CONFIG_LIBFCOE)
1231#define NETDEV_FCOE_WWNN 0
1232#define NETDEV_FCOE_WWPN 1
1233        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1234                                                    u64 *wwn, int type);
1235#endif
1236
1237#ifdef CONFIG_RFS_ACCEL
1238        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1239                                                     const struct sk_buff *skb,
1240                                                     u16 rxq_index,
1241                                                     u32 flow_id);
1242#endif
1243        int                     (*ndo_add_slave)(struct net_device *dev,
1244                                                 struct net_device *slave_dev);
1245        int                     (*ndo_del_slave)(struct net_device *dev,
1246                                                 struct net_device *slave_dev);
1247        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1248                                                    netdev_features_t features);
1249        int                     (*ndo_set_features)(struct net_device *dev,
1250                                                    netdev_features_t features);
1251        int                     (*ndo_neigh_construct)(struct net_device *dev,
1252                                                       struct neighbour *n);
1253        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1254                                                     struct neighbour *n);
1255
1256        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1257                                               struct nlattr *tb[],
1258                                               struct net_device *dev,
1259                                               const unsigned char *addr,
1260                                               u16 vid,
1261                                               u16 flags);
1262        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1263                                               struct nlattr *tb[],
1264                                               struct net_device *dev,
1265                                               const unsigned char *addr,
1266                                               u16 vid);
1267        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1268                                                struct netlink_callback *cb,
1269                                                struct net_device *dev,
1270                                                struct net_device *filter_dev,
1271                                                int *idx);
1272
1273        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1274                                                      struct nlmsghdr *nlh,
1275                                                      u16 flags);
1276        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1277                                                      u32 pid, u32 seq,
1278                                                      struct net_device *dev,
1279                                                      u32 filter_mask,
1280                                                      int nlflags);
1281        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1282                                                      struct nlmsghdr *nlh,
1283                                                      u16 flags);
1284        int                     (*ndo_change_carrier)(struct net_device *dev,
1285                                                      bool new_carrier);
1286        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1287                                                        struct netdev_phys_item_id *ppid);
1288        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1289                                                          char *name, size_t len);
1290        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1291                                                      struct udp_tunnel_info *ti);
1292        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1293                                                      struct udp_tunnel_info *ti);
1294        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1295                                                        struct net_device *dev);
1296        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1297                                                        void *priv);
1298
1299        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1300        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1301                                                      int queue_index,
1302                                                      u32 maxrate);
1303        int                     (*ndo_get_iflink)(const struct net_device *dev);
1304        int                     (*ndo_change_proto_down)(struct net_device *dev,
1305                                                         bool proto_down);
1306        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1307                                                       struct sk_buff *skb);
1308        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1309                                                       int needed_headroom);
1310        int                     (*ndo_xdp)(struct net_device *dev,
1311                                           struct netdev_xdp *xdp);
1312        int                     (*ndo_xdp_xmit)(struct net_device *dev,
1313                                                struct xdp_buff *xdp);
1314        void                    (*ndo_xdp_flush)(struct net_device *dev);
1315};
1316
1317/**
1318 * enum net_device_priv_flags - &struct net_device priv_flags
1319 *
1320 * These are the &struct net_device, they are only set internally
1321 * by drivers and used in the kernel. These flags are invisible to
1322 * userspace; this means that the order of these flags can change
1323 * during any kernel release.
1324 *
1325 * You should have a pretty good reason to be extending these flags.
1326 *
1327 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1328 * @IFF_EBRIDGE: Ethernet bridging device
1329 * @IFF_BONDING: bonding master or slave
1330 * @IFF_ISATAP: ISATAP interface (RFC4214)
1331 * @IFF_WAN_HDLC: WAN HDLC device
1332 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1333 *      release skb->dst
1334 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1335 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1336 * @IFF_MACVLAN_PORT: device used as macvlan port
1337 * @IFF_BRIDGE_PORT: device used as bridge port
1338 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1339 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1340 * @IFF_UNICAST_FLT: Supports unicast filtering
1341 * @IFF_TEAM_PORT: device used as team port
1342 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1343 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1344 *      change when it's running
1345 * @IFF_MACVLAN: Macvlan device
1346 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1347 *      underlying stacked devices
1348 * @IFF_IPVLAN_MASTER: IPvlan master device
1349 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1350 * @IFF_L3MDEV_MASTER: device is an L3 master device
1351 * @IFF_NO_QUEUE: device can run without qdisc attached
1352 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1353 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1354 * @IFF_TEAM: device is a team device
1355 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1356 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1357 *      entity (i.e. the master device for bridged veth)
1358 * @IFF_MACSEC: device is a MACsec device
1359 */
1360enum netdev_priv_flags {
1361        IFF_802_1Q_VLAN                 = 1<<0,
1362        IFF_EBRIDGE                     = 1<<1,
1363        IFF_BONDING                     = 1<<2,
1364        IFF_ISATAP                      = 1<<3,
1365        IFF_WAN_HDLC                    = 1<<4,
1366        IFF_XMIT_DST_RELEASE            = 1<<5,
1367        IFF_DONT_BRIDGE                 = 1<<6,
1368        IFF_DISABLE_NETPOLL             = 1<<7,
1369        IFF_MACVLAN_PORT                = 1<<8,
1370        IFF_BRIDGE_PORT                 = 1<<9,
1371        IFF_OVS_DATAPATH                = 1<<10,
1372        IFF_TX_SKB_SHARING              = 1<<11,
1373        IFF_UNICAST_FLT                 = 1<<12,
1374        IFF_TEAM_PORT                   = 1<<13,
1375        IFF_SUPP_NOFCS                  = 1<<14,
1376        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1377        IFF_MACVLAN                     = 1<<16,
1378        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1379        IFF_IPVLAN_MASTER               = 1<<18,
1380        IFF_IPVLAN_SLAVE                = 1<<19,
1381        IFF_L3MDEV_MASTER               = 1<<20,
1382        IFF_NO_QUEUE                    = 1<<21,
1383        IFF_OPENVSWITCH                 = 1<<22,
1384        IFF_L3MDEV_SLAVE                = 1<<23,
1385        IFF_TEAM                        = 1<<24,
1386        IFF_RXFH_CONFIGURED             = 1<<25,
1387        IFF_PHONY_HEADROOM              = 1<<26,
1388        IFF_MACSEC                      = 1<<27,
1389};
1390
1391#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1392#define IFF_EBRIDGE                     IFF_EBRIDGE
1393#define IFF_BONDING                     IFF_BONDING
1394#define IFF_ISATAP                      IFF_ISATAP
1395#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1396#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1397#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1398#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1399#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1400#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1401#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1402#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1403#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1404#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1405#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1406#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1407#define IFF_MACVLAN                     IFF_MACVLAN
1408#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1409#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1410#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1411#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1412#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1413#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1414#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1415#define IFF_TEAM                        IFF_TEAM
1416#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1417#define IFF_MACSEC                      IFF_MACSEC
1418
1419/**
1420 *      struct net_device - The DEVICE structure.
1421 *
1422 *      Actually, this whole structure is a big mistake.  It mixes I/O
1423 *      data with strictly "high-level" data, and it has to know about
1424 *      almost every data structure used in the INET module.
1425 *
1426 *      @name:  This is the first field of the "visible" part of this structure
1427 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1428 *              of the interface.
1429 *
1430 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1431 *      @ifalias:       SNMP alias
1432 *      @mem_end:       Shared memory end
1433 *      @mem_start:     Shared memory start
1434 *      @base_addr:     Device I/O address
1435 *      @irq:           Device IRQ number
1436 *
1437 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1438 *
1439 *      @state:         Generic network queuing layer state, see netdev_state_t
1440 *      @dev_list:      The global list of network devices
1441 *      @napi_list:     List entry used for polling NAPI devices
1442 *      @unreg_list:    List entry  when we are unregistering the
1443 *                      device; see the function unregister_netdev
1444 *      @close_list:    List entry used when we are closing the device
1445 *      @ptype_all:     Device-specific packet handlers for all protocols
1446 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1447 *
1448 *      @adj_list:      Directly linked devices, like slaves for bonding
1449 *      @features:      Currently active device features
1450 *      @hw_features:   User-changeable features
1451 *
1452 *      @wanted_features:       User-requested features
1453 *      @vlan_features:         Mask of features inheritable by VLAN devices
1454 *
1455 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1456 *                              This field indicates what encapsulation
1457 *                              offloads the hardware is capable of doing,
1458 *                              and drivers will need to set them appropriately.
1459 *
1460 *      @mpls_features: Mask of features inheritable by MPLS
1461 *
1462 *      @ifindex:       interface index
1463 *      @group:         The group the device belongs to
1464 *
1465 *      @stats:         Statistics struct, which was left as a legacy, use
1466 *                      rtnl_link_stats64 instead
1467 *
1468 *      @rx_dropped:    Dropped packets by core network,
1469 *                      do not use this in drivers
1470 *      @tx_dropped:    Dropped packets by core network,
1471 *                      do not use this in drivers
1472 *      @rx_nohandler:  nohandler dropped packets by core network on
1473 *                      inactive devices, do not use this in drivers
1474 *
1475 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1476 *                              instead of ioctl,
1477 *                              see <net/iw_handler.h> for details.
1478 *      @wireless_data: Instance data managed by the core of wireless extensions
1479 *
1480 *      @netdev_ops:    Includes several pointers to callbacks,
1481 *                      if one wants to override the ndo_*() functions
1482 *      @ethtool_ops:   Management operations
1483 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1484 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1485 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1486 *                      of Layer 2 headers.
1487 *
1488 *      @flags:         Interface flags (a la BSD)
1489 *      @priv_flags:    Like 'flags' but invisible to userspace,
1490 *                      see if.h for the definitions
1491 *      @gflags:        Global flags ( kept as legacy )
1492 *      @padded:        How much padding added by alloc_netdev()
1493 *      @operstate:     RFC2863 operstate
1494 *      @link_mode:     Mapping policy to operstate
1495 *      @if_port:       Selectable AUI, TP, ...
1496 *      @dma:           DMA channel
1497 *      @mtu:           Interface MTU value
1498 *      @min_mtu:       Interface Minimum MTU value
1499 *      @max_mtu:       Interface Maximum MTU value
1500 *      @type:          Interface hardware type
1501 *      @hard_header_len: Maximum hardware header length.
1502 *      @min_header_len:  Minimum hardware header length
1503 *
1504 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1505 *                        cases can this be guaranteed
1506 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1507 *                        cases can this be guaranteed. Some cases also use
1508 *                        LL_MAX_HEADER instead to allocate the skb
1509 *
1510 *      interface address info:
1511 *
1512 *      @perm_addr:             Permanent hw address
1513 *      @addr_assign_type:      Hw address assignment type
1514 *      @addr_len:              Hardware address length
1515 *      @neigh_priv_len:        Used in neigh_alloc()
1516 *      @dev_id:                Used to differentiate devices that share
1517 *                              the same link layer address
1518 *      @dev_port:              Used to differentiate devices that share
1519 *                              the same function
1520 *      @addr_list_lock:        XXX: need comments on this one
1521 *      @uc_promisc:            Counter that indicates promiscuous mode
1522 *                              has been enabled due to the need to listen to
1523 *                              additional unicast addresses in a device that
1524 *                              does not implement ndo_set_rx_mode()
1525 *      @uc:                    unicast mac addresses
1526 *      @mc:                    multicast mac addresses
1527 *      @dev_addrs:             list of device hw addresses
1528 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1529 *      @promiscuity:           Number of times the NIC is told to work in
1530 *                              promiscuous mode; if it becomes 0 the NIC will
1531 *                              exit promiscuous mode
1532 *      @allmulti:              Counter, enables or disables allmulticast mode
1533 *
1534 *      @vlan_info:     VLAN info
1535 *      @dsa_ptr:       dsa specific data
1536 *      @tipc_ptr:      TIPC specific data
1537 *      @atalk_ptr:     AppleTalk link
1538 *      @ip_ptr:        IPv4 specific data
1539 *      @dn_ptr:        DECnet specific data
1540 *      @ip6_ptr:       IPv6 specific data
1541 *      @ax25_ptr:      AX.25 specific data
1542 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1543 *
1544 *      @dev_addr:      Hw address (before bcast,
1545 *                      because most packets are unicast)
1546 *
1547 *      @_rx:                   Array of RX queues
1548 *      @num_rx_queues:         Number of RX queues
1549 *                              allocated at register_netdev() time
1550 *      @real_num_rx_queues:    Number of RX queues currently active in device
1551 *
1552 *      @rx_handler:            handler for received packets
1553 *      @rx_handler_data:       XXX: need comments on this one
1554 *      @ingress_queue:         XXX: need comments on this one
1555 *      @broadcast:             hw bcast address
1556 *
1557 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1558 *                      indexed by RX queue number. Assigned by driver.
1559 *                      This must only be set if the ndo_rx_flow_steer
1560 *                      operation is defined
1561 *      @index_hlist:           Device index hash chain
1562 *
1563 *      @_tx:                   Array of TX queues
1564 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1565 *      @real_num_tx_queues:    Number of TX queues currently active in device
1566 *      @qdisc:                 Root qdisc from userspace point of view
1567 *      @tx_queue_len:          Max frames per queue allowed
1568 *      @tx_global_lock:        XXX: need comments on this one
1569 *
1570 *      @xps_maps:      XXX: need comments on this one
1571 *
1572 *      @watchdog_timeo:        Represents the timeout that is used by
1573 *                              the watchdog (see dev_watchdog())
1574 *      @watchdog_timer:        List of timers
1575 *
1576 *      @pcpu_refcnt:           Number of references to this device
1577 *      @todo_list:             Delayed register/unregister
1578 *      @link_watch_list:       XXX: need comments on this one
1579 *
1580 *      @reg_state:             Register/unregister state machine
1581 *      @dismantle:             Device is going to be freed
1582 *      @rtnl_link_state:       This enum represents the phases of creating
1583 *                              a new link
1584 *
1585 *      @needs_free_netdev:     Should unregister perform free_netdev?
1586 *      @priv_destructor:       Called from unregister
1587 *      @npinfo:                XXX: need comments on this one
1588 *      @nd_net:                Network namespace this network device is inside
1589 *
1590 *      @ml_priv:       Mid-layer private
1591 *      @lstats:        Loopback statistics
1592 *      @tstats:        Tunnel statistics
1593 *      @dstats:        Dummy statistics
1594 *      @vstats:        Virtual ethernet statistics
1595 *
1596 *      @garp_port:     GARP
1597 *      @mrp_port:      MRP
1598 *
1599 *      @dev:           Class/net/name entry
1600 *      @sysfs_groups:  Space for optional device, statistics and wireless
1601 *                      sysfs groups
1602 *
1603 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1604 *      @rtnl_link_ops: Rtnl_link_ops
1605 *
1606 *      @gso_max_size:  Maximum size of generic segmentation offload
1607 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1608 *                      NIC for GSO
1609 *
1610 *      @dcbnl_ops:     Data Center Bridging netlink ops
1611 *      @num_tc:        Number of traffic classes in the net device
1612 *      @tc_to_txq:     XXX: need comments on this one
1613 *      @prio_tc_map:   XXX: need comments on this one
1614 *
1615 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1616 *
1617 *      @priomap:       XXX: need comments on this one
1618 *      @phydev:        Physical device may attach itself
1619 *                      for hardware timestamping
1620 *
1621 *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1622 *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1623 *
1624 *      @proto_down:    protocol port state information can be sent to the
1625 *                      switch driver and used to set the phys state of the
1626 *                      switch port.
1627 *
1628 *      FIXME: cleanup struct net_device such that network protocol info
1629 *      moves out.
1630 */
1631
1632struct net_device {
1633        char                    name[IFNAMSIZ];
1634        struct hlist_node       name_hlist;
1635        char                    *ifalias;
1636        /*
1637         *      I/O specific fields
1638         *      FIXME: Merge these and struct ifmap into one
1639         */
1640        unsigned long           mem_end;
1641        unsigned long           mem_start;
1642        unsigned long           base_addr;
1643        int                     irq;
1644
1645        atomic_t                carrier_changes;
1646
1647        /*
1648         *      Some hardware also needs these fields (state,dev_list,
1649         *      napi_list,unreg_list,close_list) but they are not
1650         *      part of the usual set specified in Space.c.
1651         */
1652
1653        unsigned long           state;
1654
1655        struct list_head        dev_list;
1656        struct list_head        napi_list;
1657        struct list_head        unreg_list;
1658        struct list_head        close_list;
1659        struct list_head        ptype_all;
1660        struct list_head        ptype_specific;
1661
1662        struct {
1663                struct list_head upper;
1664                struct list_head lower;
1665        } adj_list;
1666
1667        netdev_features_t       features;
1668        netdev_features_t       hw_features;
1669        netdev_features_t       wanted_features;
1670        netdev_features_t       vlan_features;
1671        netdev_features_t       hw_enc_features;
1672        netdev_features_t       mpls_features;
1673        netdev_features_t       gso_partial_features;
1674
1675        int                     ifindex;
1676        int                     group;
1677
1678        struct net_device_stats stats;
1679
1680        atomic_long_t           rx_dropped;
1681        atomic_long_t           tx_dropped;
1682        atomic_long_t           rx_nohandler;
1683
1684#ifdef CONFIG_WIRELESS_EXT
1685        const struct iw_handler_def *wireless_handlers;
1686        struct iw_public_data   *wireless_data;
1687#endif
1688        const struct net_device_ops *netdev_ops;
1689        const struct ethtool_ops *ethtool_ops;
1690#ifdef CONFIG_NET_SWITCHDEV
1691        const struct switchdev_ops *switchdev_ops;
1692#endif
1693#ifdef CONFIG_NET_L3_MASTER_DEV
1694        const struct l3mdev_ops *l3mdev_ops;
1695#endif
1696#if IS_ENABLED(CONFIG_IPV6)
1697        const struct ndisc_ops *ndisc_ops;
1698#endif
1699
1700#ifdef CONFIG_XFRM
1701        const struct xfrmdev_ops *xfrmdev_ops;
1702#endif
1703
1704        const struct header_ops *header_ops;
1705
1706        unsigned int            flags;
1707        unsigned int            priv_flags;
1708
1709        unsigned short          gflags;
1710        unsigned short          padded;
1711
1712        unsigned char           operstate;
1713        unsigned char           link_mode;
1714
1715        unsigned char           if_port;
1716        unsigned char           dma;
1717
1718        unsigned int            mtu;
1719        unsigned int            min_mtu;
1720        unsigned int            max_mtu;
1721        unsigned short          type;
1722        unsigned short          hard_header_len;
1723        unsigned char           min_header_len;
1724
1725        unsigned short          needed_headroom;
1726        unsigned short          needed_tailroom;
1727
1728        /* Interface address info. */
1729        unsigned char           perm_addr[MAX_ADDR_LEN];
1730        unsigned char           addr_assign_type;
1731        unsigned char           addr_len;
1732        unsigned short          neigh_priv_len;
1733        unsigned short          dev_id;
1734        unsigned short          dev_port;
1735        spinlock_t              addr_list_lock;
1736        unsigned char           name_assign_type;
1737        bool                    uc_promisc;
1738        struct netdev_hw_addr_list      uc;
1739        struct netdev_hw_addr_list      mc;
1740        struct netdev_hw_addr_list      dev_addrs;
1741
1742#ifdef CONFIG_SYSFS
1743        struct kset             *queues_kset;
1744#endif
1745        unsigned int            promiscuity;
1746        unsigned int            allmulti;
1747
1748
1749        /* Protocol-specific pointers */
1750
1751#if IS_ENABLED(CONFIG_VLAN_8021Q)
1752        struct vlan_info __rcu  *vlan_info;
1753#endif
1754#if IS_ENABLED(CONFIG_NET_DSA)
1755        struct dsa_switch_tree  *dsa_ptr;
1756#endif
1757#if IS_ENABLED(CONFIG_TIPC)
1758        struct tipc_bearer __rcu *tipc_ptr;
1759#endif
1760        void                    *atalk_ptr;
1761        struct in_device __rcu  *ip_ptr;
1762        struct dn_dev __rcu     *dn_ptr;
1763        struct inet6_dev __rcu  *ip6_ptr;
1764        void                    *ax25_ptr;
1765        struct wireless_dev     *ieee80211_ptr;
1766        struct wpan_dev         *ieee802154_ptr;
1767#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1768        struct mpls_dev __rcu   *mpls_ptr;
1769#endif
1770
1771/*
1772 * Cache lines mostly used on receive path (including eth_type_trans())
1773 */
1774        /* Interface address info used in eth_type_trans() */
1775        unsigned char           *dev_addr;
1776
1777#ifdef CONFIG_SYSFS
1778        struct netdev_rx_queue  *_rx;
1779
1780        unsigned int            num_rx_queues;
1781        unsigned int            real_num_rx_queues;
1782#endif
1783
1784        struct bpf_prog __rcu   *xdp_prog;
1785        unsigned long           gro_flush_timeout;
1786        rx_handler_func_t __rcu *rx_handler;
1787        void __rcu              *rx_handler_data;
1788
1789#ifdef CONFIG_NET_CLS_ACT
1790        struct tcf_proto __rcu  *ingress_cl_list;
1791#endif
1792        struct netdev_queue __rcu *ingress_queue;
1793#ifdef CONFIG_NETFILTER_INGRESS
1794        struct nf_hook_entries __rcu *nf_hooks_ingress;
1795#endif
1796
1797        unsigned char           broadcast[MAX_ADDR_LEN];
1798#ifdef CONFIG_RFS_ACCEL
1799        struct cpu_rmap         *rx_cpu_rmap;
1800#endif
1801        struct hlist_node       index_hlist;
1802
1803/*
1804 * Cache lines mostly used on transmit path
1805 */
1806        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1807        unsigned int            num_tx_queues;
1808        unsigned int            real_num_tx_queues;
1809        struct Qdisc            *qdisc;
1810#ifdef CONFIG_NET_SCHED
1811        DECLARE_HASHTABLE       (qdisc_hash, 4);
1812#endif
1813        unsigned int            tx_queue_len;
1814        spinlock_t              tx_global_lock;
1815        int                     watchdog_timeo;
1816
1817#ifdef CONFIG_XPS
1818        struct xps_dev_maps __rcu *xps_maps;
1819#endif
1820#ifdef CONFIG_NET_CLS_ACT
1821        struct tcf_proto __rcu  *egress_cl_list;
1822#endif
1823
1824        /* These may be needed for future network-power-down code. */
1825        struct timer_list       watchdog_timer;
1826
1827        int __percpu            *pcpu_refcnt;
1828        struct list_head        todo_list;
1829
1830        struct list_head        link_watch_list;
1831
1832        enum { NETREG_UNINITIALIZED=0,
1833               NETREG_REGISTERED,       /* completed register_netdevice */
1834               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1835               NETREG_UNREGISTERED,     /* completed unregister todo */
1836               NETREG_RELEASED,         /* called free_netdev */
1837               NETREG_DUMMY,            /* dummy device for NAPI poll */
1838        } reg_state:8;
1839
1840        bool dismantle;
1841
1842        enum {
1843                RTNL_LINK_INITIALIZED,
1844                RTNL_LINK_INITIALIZING,
1845        } rtnl_link_state:16;
1846
1847        bool needs_free_netdev;
1848        void (*priv_destructor)(struct net_device *dev);
1849
1850#ifdef CONFIG_NETPOLL
1851        struct netpoll_info __rcu       *npinfo;
1852#endif
1853
1854        possible_net_t                  nd_net;
1855
1856        /* mid-layer private */
1857        union {
1858                void                                    *ml_priv;
1859                struct pcpu_lstats __percpu             *lstats;
1860                struct pcpu_sw_netstats __percpu        *tstats;
1861                struct pcpu_dstats __percpu             *dstats;
1862                struct pcpu_vstats __percpu             *vstats;
1863        };
1864
1865#if IS_ENABLED(CONFIG_GARP)
1866        struct garp_port __rcu  *garp_port;
1867#endif
1868#if IS_ENABLED(CONFIG_MRP)
1869        struct mrp_port __rcu   *mrp_port;
1870#endif
1871
1872        struct device           dev;
1873        const struct attribute_group *sysfs_groups[4];
1874        const struct attribute_group *sysfs_rx_queue_group;
1875
1876        const struct rtnl_link_ops *rtnl_link_ops;
1877
1878        /* for setting kernel sock attribute on TCP connection setup */
1879#define GSO_MAX_SIZE            65536
1880        unsigned int            gso_max_size;
1881#define GSO_MAX_SEGS            65535
1882        u16                     gso_max_segs;
1883
1884#ifdef CONFIG_DCB
1885        const struct dcbnl_rtnl_ops *dcbnl_ops;
1886#endif
1887        u8                      num_tc;
1888        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1889        u8                      prio_tc_map[TC_BITMASK + 1];
1890
1891#if IS_ENABLED(CONFIG_FCOE)
1892        unsigned int            fcoe_ddp_xid;
1893#endif
1894#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1895        struct netprio_map __rcu *priomap;
1896#endif
1897        struct phy_device       *phydev;
1898        struct lock_class_key   *qdisc_tx_busylock;
1899        struct lock_class_key   *qdisc_running_key;
1900        bool                    proto_down;
1901};
1902#define to_net_dev(d) container_of(d, struct net_device, dev)
1903
1904static inline bool netif_elide_gro(const struct net_device *dev)
1905{
1906        if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1907                return true;
1908        return false;
1909}
1910
1911#define NETDEV_ALIGN            32
1912
1913static inline
1914int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1915{
1916        return dev->prio_tc_map[prio & TC_BITMASK];
1917}
1918
1919static inline
1920int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1921{
1922        if (tc >= dev->num_tc)
1923                return -EINVAL;
1924
1925        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1926        return 0;
1927}
1928
1929int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1930void netdev_reset_tc(struct net_device *dev);
1931int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1932int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1933
1934static inline
1935int netdev_get_num_tc(struct net_device *dev)
1936{
1937        return dev->num_tc;
1938}
1939
1940static inline
1941struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1942                                         unsigned int index)
1943{
1944        return &dev->_tx[index];
1945}
1946
1947static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1948                                                    const struct sk_buff *skb)
1949{
1950        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1951}
1952
1953static inline void netdev_for_each_tx_queue(struct net_device *dev,
1954                                            void (*f)(struct net_device *,
1955                                                      struct netdev_queue *,
1956                                                      void *),
1957                                            void *arg)
1958{
1959        unsigned int i;
1960
1961        for (i = 0; i < dev->num_tx_queues; i++)
1962                f(dev, &dev->_tx[i], arg);
1963}
1964
1965#define netdev_lockdep_set_classes(dev)                         \
1966{                                                               \
1967        static struct lock_class_key qdisc_tx_busylock_key;     \
1968        static struct lock_class_key qdisc_running_key;         \
1969        static struct lock_class_key qdisc_xmit_lock_key;       \
1970        static struct lock_class_key dev_addr_list_lock_key;    \
1971        unsigned int i;                                         \
1972                                                                \
1973        (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1974        (dev)->qdisc_running_key = &qdisc_running_key;          \
1975        lockdep_set_class(&(dev)->addr_list_lock,               \
1976                          &dev_addr_list_lock_key);             \
1977        for (i = 0; i < (dev)->num_tx_queues; i++)              \
1978                lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1979                                  &qdisc_xmit_lock_key);        \
1980}
1981
1982struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1983                                    struct sk_buff *skb,
1984                                    void *accel_priv);
1985
1986/* returns the headroom that the master device needs to take in account
1987 * when forwarding to this dev
1988 */
1989static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1990{
1991        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1992}
1993
1994static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1995{
1996        if (dev->netdev_ops->ndo_set_rx_headroom)
1997                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1998}
1999
2000/* set the device rx headroom to the dev's default */
2001static inline void netdev_reset_rx_headroom(struct net_device *dev)
2002{
2003        netdev_set_rx_headroom(dev, -1);
2004}
2005
2006/*
2007 * Net namespace inlines
2008 */
2009static inline
2010struct net *dev_net(const struct net_device *dev)
2011{
2012        return read_pnet(&dev->nd_net);
2013}
2014
2015static inline
2016void dev_net_set(struct net_device *dev, struct net *net)
2017{
2018        write_pnet(&dev->nd_net, net);
2019}
2020
2021/**
2022 *      netdev_priv - access network device private data
2023 *      @dev: network device
2024 *
2025 * Get network device private data
2026 */
2027static inline void *netdev_priv(const struct net_device *dev)
2028{
2029        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2030}
2031
2032/* Set the sysfs physical device reference for the network logical device
2033 * if set prior to registration will cause a symlink during initialization.
2034 */
2035#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2036
2037/* Set the sysfs device type for the network logical device to allow
2038 * fine-grained identification of different network device types. For
2039 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2040 */
2041#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2042
2043/* Default NAPI poll() weight
2044 * Device drivers are strongly advised to not use bigger value
2045 */
2046#define NAPI_POLL_WEIGHT 64
2047
2048/**
2049 *      netif_napi_add - initialize a NAPI context
2050 *      @dev:  network device
2051 *      @napi: NAPI context
2052 *      @poll: polling function
2053 *      @weight: default weight
2054 *
2055 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2056 * *any* of the other NAPI-related functions.
2057 */
2058void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2059                    int (*poll)(struct napi_struct *, int), int weight);
2060
2061/**
2062 *      netif_tx_napi_add - initialize a NAPI context
2063 *      @dev:  network device
2064 *      @napi: NAPI context
2065 *      @poll: polling function
2066 *      @weight: default weight
2067 *
2068 * This variant of netif_napi_add() should be used from drivers using NAPI
2069 * to exclusively poll a TX queue.
2070 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2071 */
2072static inline void netif_tx_napi_add(struct net_device *dev,
2073                                     struct napi_struct *napi,
2074                                     int (*poll)(struct napi_struct *, int),
2075                                     int weight)
2076{
2077        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2078        netif_napi_add(dev, napi, poll, weight);
2079}
2080
2081/**
2082 *  netif_napi_del - remove a NAPI context
2083 *  @napi: NAPI context
2084 *
2085 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2086 */
2087void netif_napi_del(struct napi_struct *napi);
2088
2089struct napi_gro_cb {
2090        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2091        void    *frag0;
2092
2093        /* Length of frag0. */
2094        unsigned int frag0_len;
2095
2096        /* This indicates where we are processing relative to skb->data. */
2097        int     data_offset;
2098
2099        /* This is non-zero if the packet cannot be merged with the new skb. */
2100        u16     flush;
2101
2102        /* Save the IP ID here and check when we get to the transport layer */
2103        u16     flush_id;
2104
2105        /* Number of segments aggregated. */
2106        u16     count;
2107
2108        /* Start offset for remote checksum offload */
2109        u16     gro_remcsum_start;
2110
2111        /* jiffies when first packet was created/queued */
2112        unsigned long age;
2113
2114        /* Used in ipv6_gro_receive() and foo-over-udp */
2115        u16     proto;
2116
2117        /* This is non-zero if the packet may be of the same flow. */
2118        u8      same_flow:1;
2119
2120        /* Used in tunnel GRO receive */
2121        u8      encap_mark:1;
2122
2123        /* GRO checksum is valid */
2124        u8      csum_valid:1;
2125
2126        /* Number of checksums via CHECKSUM_UNNECESSARY */
2127        u8      csum_cnt:3;
2128
2129        /* Free the skb? */
2130        u8      free:2;
2131#define NAPI_GRO_FREE             1
2132#define NAPI_GRO_FREE_STOLEN_HEAD 2
2133
2134        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2135        u8      is_ipv6:1;
2136
2137        /* Used in GRE, set in fou/gue_gro_receive */
2138        u8      is_fou:1;
2139
2140        /* Used to determine if flush_id can be ignored */
2141        u8      is_atomic:1;
2142
2143        /* Number of gro_receive callbacks this packet already went through */
2144        u8 recursion_counter:4;
2145
2146        /* 1 bit hole */
2147
2148        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2149        __wsum  csum;
2150
2151        /* used in skb_gro_receive() slow path */
2152        struct sk_buff *last;
2153};
2154
2155#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2156
2157#define GRO_RECURSION_LIMIT 15
2158static inline int gro_recursion_inc_test(struct sk_buff *skb)
2159{
2160        return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2161}
2162
2163typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2164static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2165                                                struct sk_buff **head,
2166                                                struct sk_buff *skb)
2167{
2168        if (unlikely(gro_recursion_inc_test(skb))) {
2169                NAPI_GRO_CB(skb)->flush |= 1;
2170                return NULL;
2171        }
2172
2173        return cb(head, skb);
2174}
2175
2176typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2177                                             struct sk_buff *);
2178static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2179                                                   struct sock *sk,
2180                                                   struct sk_buff **head,
2181                                                   struct sk_buff *skb)
2182{
2183        if (unlikely(gro_recursion_inc_test(skb))) {
2184                NAPI_GRO_CB(skb)->flush |= 1;
2185                return NULL;
2186        }
2187
2188        return cb(sk, head, skb);
2189}
2190
2191struct packet_type {
2192        __be16                  type;   /* This is really htons(ether_type). */
2193        struct net_device       *dev;   /* NULL is wildcarded here           */
2194        int                     (*func) (struct sk_buff *,
2195                                         struct net_device *,
2196                                         struct packet_type *,
2197                                         struct net_device *);
2198        bool                    (*id_match)(struct packet_type *ptype,
2199                                            struct sock *sk);
2200        void                    *af_packet_priv;
2201        struct list_head        list;
2202};
2203
2204struct offload_callbacks {
2205        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2206                                                netdev_features_t features);
2207        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2208                                                 struct sk_buff *skb);
2209        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2210};
2211
2212struct packet_offload {
2213        __be16                   type;  /* This is really htons(ether_type). */
2214        u16                      priority;
2215        struct offload_callbacks callbacks;
2216        struct list_head         list;
2217};
2218
2219/* often modified stats are per-CPU, other are shared (netdev->stats) */
2220struct pcpu_sw_netstats {
2221        u64     rx_packets;
2222        u64     rx_bytes;
2223        u64     tx_packets;
2224        u64     tx_bytes;
2225        struct u64_stats_sync   syncp;
2226};
2227
2228#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2229({                                                                      \
2230        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2231        if (pcpu_stats) {                                               \
2232                int __cpu;                                              \
2233                for_each_possible_cpu(__cpu) {                          \
2234                        typeof(type) *stat;                             \
2235                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2236                        u64_stats_init(&stat->syncp);                   \
2237                }                                                       \
2238        }                                                               \
2239        pcpu_stats;                                                     \
2240})
2241
2242#define netdev_alloc_pcpu_stats(type)                                   \
2243        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2244
2245enum netdev_lag_tx_type {
2246        NETDEV_LAG_TX_TYPE_UNKNOWN,
2247        NETDEV_LAG_TX_TYPE_RANDOM,
2248        NETDEV_LAG_TX_TYPE_BROADCAST,
2249        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2250        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2251        NETDEV_LAG_TX_TYPE_HASH,
2252};
2253
2254struct netdev_lag_upper_info {
2255        enum netdev_lag_tx_type tx_type;
2256};
2257
2258struct netdev_lag_lower_state_info {
2259        u8 link_up : 1,
2260           tx_enabled : 1;
2261};
2262
2263#include <linux/notifier.h>
2264
2265/* netdevice notifier chain. Please remember to update the rtnetlink
2266 * notification exclusion list in rtnetlink_event() when adding new
2267 * types.
2268 */
2269#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2270#define NETDEV_DOWN     0x0002
2271#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2272                                   detected a hardware crash and restarted
2273                                   - we can use this eg to kick tcp sessions
2274                                   once done */
2275#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2276#define NETDEV_REGISTER 0x0005
2277#define NETDEV_UNREGISTER       0x0006
2278#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2279#define NETDEV_CHANGEADDR       0x0008
2280#define NETDEV_GOING_DOWN       0x0009
2281#define NETDEV_CHANGENAME       0x000A
2282#define NETDEV_FEAT_CHANGE      0x000B
2283#define NETDEV_BONDING_FAILOVER 0x000C
2284#define NETDEV_PRE_UP           0x000D
2285#define NETDEV_PRE_TYPE_CHANGE  0x000E
2286#define NETDEV_POST_TYPE_CHANGE 0x000F
2287#define NETDEV_POST_INIT        0x0010
2288#define NETDEV_UNREGISTER_FINAL 0x0011
2289#define NETDEV_RELEASE          0x0012
2290#define NETDEV_NOTIFY_PEERS     0x0013
2291#define NETDEV_JOIN             0x0014
2292#define NETDEV_CHANGEUPPER      0x0015
2293#define NETDEV_RESEND_IGMP      0x0016
2294#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2295#define NETDEV_CHANGEINFODATA   0x0018
2296#define NETDEV_BONDING_INFO     0x0019
2297#define NETDEV_PRECHANGEUPPER   0x001A
2298#define NETDEV_CHANGELOWERSTATE 0x001B
2299#define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2300#define NETDEV_UDP_TUNNEL_DROP_INFO     0x001D
2301#define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2302
2303int register_netdevice_notifier(struct notifier_block *nb);
2304int unregister_netdevice_notifier(struct notifier_block *nb);
2305
2306struct netdev_notifier_info {
2307        struct net_device *dev;
2308};
2309
2310struct netdev_notifier_change_info {
2311        struct netdev_notifier_info info; /* must be first */
2312        unsigned int flags_changed;
2313};
2314
2315struct netdev_notifier_changeupper_info {
2316        struct netdev_notifier_info info; /* must be first */
2317        struct net_device *upper_dev; /* new upper dev */
2318        bool master; /* is upper dev master */
2319        bool linking; /* is the notification for link or unlink */
2320        void *upper_info; /* upper dev info */
2321};
2322
2323struct netdev_notifier_changelowerstate_info {
2324        struct netdev_notifier_info info; /* must be first */
2325        void *lower_state_info; /* is lower dev state */
2326};
2327
2328static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2329                                             struct net_device *dev)
2330{
2331        info->dev = dev;
2332}
2333
2334static inline struct net_device *
2335netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2336{
2337        return info->dev;
2338}
2339
2340int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2341
2342
2343extern rwlock_t                         dev_base_lock;          /* Device list lock */
2344
2345#define for_each_netdev(net, d)         \
2346                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2347#define for_each_netdev_reverse(net, d) \
2348                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2349#define for_each_netdev_rcu(net, d)             \
2350                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2351#define for_each_netdev_safe(net, d, n) \
2352                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2353#define for_each_netdev_continue(net, d)                \
2354                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2355#define for_each_netdev_continue_rcu(net, d)            \
2356        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2357#define for_each_netdev_in_bond_rcu(bond, slave)        \
2358                for_each_netdev_rcu(&init_net, slave)   \
2359                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2360#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2361
2362static inline struct net_device *next_net_device(struct net_device *dev)
2363{
2364        struct list_head *lh;
2365        struct net *net;
2366
2367        net = dev_net(dev);
2368        lh = dev->dev_list.next;
2369        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2370}
2371
2372static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2373{
2374        struct list_head *lh;
2375        struct net *net;
2376
2377        net = dev_net(dev);
2378        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2379        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2380}
2381
2382static inline struct net_device *first_net_device(struct net *net)
2383{
2384        return list_empty(&net->dev_base_head) ? NULL :
2385                net_device_entry(net->dev_base_head.next);
2386}
2387
2388static inline struct net_device *first_net_device_rcu(struct net *net)
2389{
2390        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2391
2392        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2393}
2394
2395int netdev_boot_setup_check(struct net_device *dev);
2396unsigned long netdev_boot_base(const char *prefix, int unit);
2397struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2398                                       const char *hwaddr);
2399struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2400struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2401void dev_add_pack(struct packet_type *pt);
2402void dev_remove_pack(struct packet_type *pt);
2403void __dev_remove_pack(struct packet_type *pt);
2404void dev_add_offload(struct packet_offload *po);
2405void dev_remove_offload(struct packet_offload *po);
2406
2407int dev_get_iflink(const struct net_device *dev);
2408int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2409struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2410                                      unsigned short mask);
2411struct net_device *dev_get_by_name(struct net *net, const char *name);
2412struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2413struct net_device *__dev_get_by_name(struct net *net, const char *name);
2414int dev_alloc_name(struct net_device *dev, const char *name);
2415int dev_open(struct net_device *dev);
2416void dev_close(struct net_device *dev);
2417void dev_close_many(struct list_head *head, bool unlink);
2418void dev_disable_lro(struct net_device *dev);
2419int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2420int dev_queue_xmit(struct sk_buff *skb);
2421int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2422int register_netdevice(struct net_device *dev);
2423void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2424void unregister_netdevice_many(struct list_head *head);
2425static inline void unregister_netdevice(struct net_device *dev)
2426{
2427        unregister_netdevice_queue(dev, NULL);
2428}
2429
2430int netdev_refcnt_read(const struct net_device *dev);
2431void free_netdev(struct net_device *dev);
2432void netdev_freemem(struct net_device *dev);
2433void synchronize_net(void);
2434int init_dummy_netdev(struct net_device *dev);
2435
2436DECLARE_PER_CPU(int, xmit_recursion);
2437#define XMIT_RECURSION_LIMIT    10
2438
2439static inline int dev_recursion_level(void)
2440{
2441        return this_cpu_read(xmit_recursion);
2442}
2443
2444struct net_device *dev_get_by_index(struct net *net, int ifindex);
2445struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2446struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2447struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2448int netdev_get_name(struct net *net, char *name, int ifindex);
2449int dev_restart(struct net_device *dev);
2450int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2451
2452static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2453{
2454        return NAPI_GRO_CB(skb)->data_offset;
2455}
2456
2457static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2458{
2459        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2460}
2461
2462static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2463{
2464        NAPI_GRO_CB(skb)->data_offset += len;
2465}
2466
2467static inline void *skb_gro_header_fast(struct sk_buff *skb,
2468                                        unsigned int offset)
2469{
2470        return NAPI_GRO_CB(skb)->frag0 + offset;
2471}
2472
2473static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2474{
2475        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2476}
2477
2478static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2479{
2480        NAPI_GRO_CB(skb)->frag0 = NULL;
2481        NAPI_GRO_CB(skb)->frag0_len = 0;
2482}
2483
2484static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2485                                        unsigned int offset)
2486{
2487        if (!pskb_may_pull(skb, hlen))
2488                return NULL;
2489
2490        skb_gro_frag0_invalidate(skb);
2491        return skb->data + offset;
2492}
2493
2494static inline void *skb_gro_network_header(struct sk_buff *skb)
2495{
2496        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2497               skb_network_offset(skb);
2498}
2499
2500static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2501                                        const void *start, unsigned int len)
2502{
2503        if (NAPI_GRO_CB(skb)->csum_valid)
2504                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2505                                                  csum_partial(start, len, 0));
2506}
2507
2508/* GRO checksum functions. These are logical equivalents of the normal
2509 * checksum functions (in skbuff.h) except that they operate on the GRO
2510 * offsets and fields in sk_buff.
2511 */
2512
2513__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2514
2515static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2516{
2517        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2518}
2519
2520static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2521                                                      bool zero_okay,
2522                                                      __sum16 check)
2523{
2524        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2525                skb_checksum_start_offset(skb) <
2526                 skb_gro_offset(skb)) &&
2527                !skb_at_gro_remcsum_start(skb) &&
2528                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2529                (!zero_okay || check));
2530}
2531
2532static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2533                                                           __wsum psum)
2534{
2535        if (NAPI_GRO_CB(skb)->csum_valid &&
2536            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2537                return 0;
2538
2539        NAPI_GRO_CB(skb)->csum = psum;
2540
2541        return __skb_gro_checksum_complete(skb);
2542}
2543
2544static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2545{
2546        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2547                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2548                NAPI_GRO_CB(skb)->csum_cnt--;
2549        } else {
2550                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2551                 * verified a new top level checksum or an encapsulated one
2552                 * during GRO. This saves work if we fallback to normal path.
2553                 */
2554                __skb_incr_checksum_unnecessary(skb);
2555        }
2556}
2557
2558#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2559                                    compute_pseudo)                     \
2560({                                                                      \
2561        __sum16 __ret = 0;                                              \
2562        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2563                __ret = __skb_gro_checksum_validate_complete(skb,       \
2564                                compute_pseudo(skb, proto));            \
2565        if (!__ret)                                                     \
2566                skb_gro_incr_csum_unnecessary(skb);                     \
2567        __ret;                                                          \
2568})
2569
2570#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2571        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2572
2573#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2574                                             compute_pseudo)            \
2575        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2576
2577#define skb_gro_checksum_simple_validate(skb)                           \
2578        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2579
2580static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2581{
2582        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2583                !NAPI_GRO_CB(skb)->csum_valid);
2584}
2585
2586static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2587                                              __sum16 check, __wsum pseudo)
2588{
2589        NAPI_GRO_CB(skb)->csum = ~pseudo;
2590        NAPI_GRO_CB(skb)->csum_valid = 1;
2591}
2592
2593#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2594do {                                                                    \
2595        if (__skb_gro_checksum_convert_check(skb))                      \
2596                __skb_gro_checksum_convert(skb, check,                  \
2597                                           compute_pseudo(skb, proto)); \
2598} while (0)
2599
2600struct gro_remcsum {
2601        int offset;
2602        __wsum delta;
2603};
2604
2605static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2606{
2607        grc->offset = 0;
2608        grc->delta = 0;
2609}
2610
2611static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2612                                            unsigned int off, size_t hdrlen,
2613                                            int start, int offset,
2614                                            struct gro_remcsum *grc,
2615                                            bool nopartial)
2616{
2617        __wsum delta;
2618        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2619
2620        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2621
2622        if (!nopartial) {
2623                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2624                return ptr;
2625        }
2626
2627        ptr = skb_gro_header_fast(skb, off);
2628        if (skb_gro_header_hard(skb, off + plen)) {
2629                ptr = skb_gro_header_slow(skb, off + plen, off);
2630                if (!ptr)
2631                        return NULL;
2632        }
2633
2634        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2635                               start, offset);
2636
2637        /* Adjust skb->csum since we changed the packet */
2638        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2639
2640        grc->offset = off + hdrlen + offset;
2641        grc->delta = delta;
2642
2643        return ptr;
2644}
2645
2646static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2647                                           struct gro_remcsum *grc)
2648{
2649        void *ptr;
2650        size_t plen = grc->offset + sizeof(u16);
2651
2652        if (!grc->delta)
2653                return;
2654
2655        ptr = skb_gro_header_fast(skb, grc->offset);
2656        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2657                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2658                if (!ptr)
2659                        return;
2660        }
2661
2662        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2663}
2664
2665#ifdef CONFIG_XFRM_OFFLOAD
2666static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2667{
2668        if (PTR_ERR(pp) != -EINPROGRESS)
2669                NAPI_GRO_CB(skb)->flush |= flush;
2670}
2671#else
2672static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2673{
2674        NAPI_GRO_CB(skb)->flush |= flush;
2675}
2676#endif
2677
2678static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2679                                  unsigned short type,
2680                                  const void *daddr, const void *saddr,
2681                                  unsigned int len)
2682{
2683        if (!dev->header_ops || !dev->header_ops->create)
2684                return 0;
2685
2686        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2687}
2688
2689static inline int dev_parse_header(const struct sk_buff *skb,
2690                                   unsigned char *haddr)
2691{
2692        const struct net_device *dev = skb->dev;
2693
2694        if (!dev->header_ops || !dev->header_ops->parse)
2695                return 0;
2696        return dev->header_ops->parse(skb, haddr);
2697}
2698
2699/* ll_header must have at least hard_header_len allocated */
2700static inline bool dev_validate_header(const struct net_device *dev,
2701                                       char *ll_header, int len)
2702{
2703        if (likely(len >= dev->hard_header_len))
2704                return true;
2705        if (len < dev->min_header_len)
2706                return false;
2707
2708        if (capable(CAP_SYS_RAWIO)) {
2709                memset(ll_header + len, 0, dev->hard_header_len - len);
2710                return true;
2711        }
2712
2713        if (dev->header_ops && dev->header_ops->validate)
2714                return dev->header_ops->validate(ll_header, len);
2715
2716        return false;
2717}
2718
2719typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2720int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2721static inline int unregister_gifconf(unsigned int family)
2722{
2723        return register_gifconf(family, NULL);
2724}
2725
2726#ifdef CONFIG_NET_FLOW_LIMIT
2727#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2728struct sd_flow_limit {
2729        u64                     count;
2730        unsigned int            num_buckets;
2731        unsigned int            history_head;
2732        u16                     history[FLOW_LIMIT_HISTORY];
2733        u8                      buckets[];
2734};
2735
2736extern int netdev_flow_limit_table_len;
2737#endif /* CONFIG_NET_FLOW_LIMIT */
2738
2739/*
2740 * Incoming packets are placed on per-CPU queues
2741 */
2742struct softnet_data {
2743        struct list_head        poll_list;
2744        struct sk_buff_head     process_queue;
2745
2746        /* stats */
2747        unsigned int            processed;
2748        unsigned int            time_squeeze;
2749        unsigned int            received_rps;
2750#ifdef CONFIG_RPS
2751        struct softnet_data     *rps_ipi_list;
2752#endif
2753#ifdef CONFIG_NET_FLOW_LIMIT
2754        struct sd_flow_limit __rcu *flow_limit;
2755#endif
2756        struct Qdisc            *output_queue;
2757        struct Qdisc            **output_queue_tailp;
2758        struct sk_buff          *completion_queue;
2759
2760#ifdef CONFIG_RPS
2761        /* input_queue_head should be written by cpu owning this struct,
2762         * and only read by other cpus. Worth using a cache line.
2763         */
2764        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2765
2766        /* Elements below can be accessed between CPUs for RPS/RFS */
2767        call_single_data_t      csd ____cacheline_aligned_in_smp;
2768        struct softnet_data     *rps_ipi_next;
2769        unsigned int            cpu;
2770        unsigned int            input_queue_tail;
2771#endif
2772        unsigned int            dropped;
2773        struct sk_buff_head     input_pkt_queue;
2774        struct napi_struct      backlog;
2775
2776};
2777
2778static inline void input_queue_head_incr(struct softnet_data *sd)
2779{
2780#ifdef CONFIG_RPS
2781        sd->input_queue_head++;
2782#endif
2783}
2784
2785static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2786                                              unsigned int *qtail)
2787{
2788#ifdef CONFIG_RPS
2789        *qtail = ++sd->input_queue_tail;
2790#endif
2791}
2792
2793DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2794
2795void __netif_schedule(struct Qdisc *q);
2796void netif_schedule_queue(struct netdev_queue *txq);
2797
2798static inline void netif_tx_schedule_all(struct net_device *dev)
2799{
2800        unsigned int i;
2801
2802        for (i = 0; i < dev->num_tx_queues; i++)
2803                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2804}
2805
2806static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2807{
2808        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2809}
2810
2811/**
2812 *      netif_start_queue - allow transmit
2813 *      @dev: network device
2814 *
2815 *      Allow upper layers to call the device hard_start_xmit routine.
2816 */
2817static inline void netif_start_queue(struct net_device *dev)
2818{
2819        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2820}
2821
2822static inline void netif_tx_start_all_queues(struct net_device *dev)
2823{
2824        unsigned int i;
2825
2826        for (i = 0; i < dev->num_tx_queues; i++) {
2827                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2828                netif_tx_start_queue(txq);
2829        }
2830}
2831
2832void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2833
2834/**
2835 *      netif_wake_queue - restart transmit
2836 *      @dev: network device
2837 *
2838 *      Allow upper layers to call the device hard_start_xmit routine.
2839 *      Used for flow control when transmit resources are available.
2840 */
2841static inline void netif_wake_queue(struct net_device *dev)
2842{
2843        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2844}
2845
2846static inline void netif_tx_wake_all_queues(struct net_device *dev)
2847{
2848        unsigned int i;
2849
2850        for (i = 0; i < dev->num_tx_queues; i++) {
2851                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2852                netif_tx_wake_queue(txq);
2853        }
2854}
2855
2856static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2857{
2858        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2859}
2860
2861/**
2862 *      netif_stop_queue - stop transmitted packets
2863 *      @dev: network device
2864 *
2865 *      Stop upper layers calling the device hard_start_xmit routine.
2866 *      Used for flow control when transmit resources are unavailable.
2867 */
2868static inline void netif_stop_queue(struct net_device *dev)
2869{
2870        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2871}
2872
2873void netif_tx_stop_all_queues(struct net_device *dev);
2874
2875static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2876{
2877        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2878}
2879
2880/**
2881 *      netif_queue_stopped - test if transmit queue is flowblocked
2882 *      @dev: network device
2883 *
2884 *      Test if transmit queue on device is currently unable to send.
2885 */
2886static inline bool netif_queue_stopped(const struct net_device *dev)
2887{
2888        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2889}
2890
2891static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2892{
2893        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2894}
2895
2896static inline bool
2897netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2898{
2899        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2900}
2901
2902static inline bool
2903netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2904{
2905        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2906}
2907
2908/**
2909 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2910 *      @dev_queue: pointer to transmit queue
2911 *
2912 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2913 * to give appropriate hint to the CPU.
2914 */
2915static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2916{
2917#ifdef CONFIG_BQL
2918        prefetchw(&dev_queue->dql.num_queued);
2919#endif
2920}
2921
2922/**
2923 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2924 *      @dev_queue: pointer to transmit queue
2925 *
2926 * BQL enabled drivers might use this helper in their TX completion path,
2927 * to give appropriate hint to the CPU.
2928 */
2929static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2930{
2931#ifdef CONFIG_BQL
2932        prefetchw(&dev_queue->dql.limit);
2933#endif
2934}
2935
2936static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2937                                        unsigned int bytes)
2938{
2939#ifdef CONFIG_BQL
2940        dql_queued(&dev_queue->dql, bytes);
2941
2942        if (likely(dql_avail(&dev_queue->dql) >= 0))
2943                return;
2944
2945        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2946
2947        /*
2948         * The XOFF flag must be set before checking the dql_avail below,
2949         * because in netdev_tx_completed_queue we update the dql_completed
2950         * before checking the XOFF flag.
2951         */
2952        smp_mb();
2953
2954        /* check again in case another CPU has just made room avail */
2955        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2956                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2957#endif
2958}
2959
2960/**
2961 *      netdev_sent_queue - report the number of bytes queued to hardware
2962 *      @dev: network device
2963 *      @bytes: number of bytes queued to the hardware device queue
2964 *
2965 *      Report the number of bytes queued for sending/completion to the network
2966 *      device hardware queue. @bytes should be a good approximation and should
2967 *      exactly match netdev_completed_queue() @bytes
2968 */
2969static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2970{
2971        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2972}
2973
2974static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2975                                             unsigned int pkts, unsigned int bytes)
2976{
2977#ifdef CONFIG_BQL
2978        if (unlikely(!bytes))
2979                return;
2980
2981        dql_completed(&dev_queue->dql, bytes);
2982
2983        /*
2984         * Without the memory barrier there is a small possiblity that
2985         * netdev_tx_sent_queue will miss the update and cause the queue to
2986         * be stopped forever
2987         */
2988        smp_mb();
2989
2990        if (dql_avail(&dev_queue->dql) < 0)
2991                return;
2992
2993        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2994                netif_schedule_queue(dev_queue);
2995#endif
2996}
2997
2998/**
2999 *      netdev_completed_queue - report bytes and packets completed by device
3000 *      @dev: network device
3001 *      @pkts: actual number of packets sent over the medium
3002 *      @bytes: actual number of bytes sent over the medium
3003 *
3004 *      Report the number of bytes and packets transmitted by the network device
3005 *      hardware queue over the physical medium, @bytes must exactly match the
3006 *      @bytes amount passed to netdev_sent_queue()
3007 */
3008static inline void netdev_completed_queue(struct net_device *dev,
3009                                          unsigned int pkts, unsigned int bytes)
3010{
3011        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3012}
3013
3014static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3015{
3016#ifdef CONFIG_BQL
3017        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3018        dql_reset(&q->dql);
3019#endif
3020}
3021
3022/**
3023 *      netdev_reset_queue - reset the packets and bytes count of a network device
3024 *      @dev_queue: network device
3025 *
3026 *      Reset the bytes and packet count of a network device and clear the
3027 *      software flow control OFF bit for this network device
3028 */
3029static inline void netdev_reset_queue(struct net_device *dev_queue)
3030{
3031        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3032}
3033
3034/**
3035 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3036 *      @dev: network device
3037 *      @queue_index: given tx queue index
3038 *
3039 *      Returns 0 if given tx queue index >= number of device tx queues,
3040 *      otherwise returns the originally passed tx queue index.
3041 */
3042static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3043{
3044        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3045                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3046                                     dev->name, queue_index,
3047                                     dev->real_num_tx_queues);
3048                return 0;
3049        }
3050
3051        return queue_index;
3052}
3053
3054/**
3055 *      netif_running - test if up
3056 *      @dev: network device
3057 *
3058 *      Test if the device has been brought up.
3059 */
3060static inline bool netif_running(const struct net_device *dev)
3061{
3062        return test_bit(__LINK_STATE_START, &dev->state);
3063}
3064
3065/*
3066 * Routines to manage the subqueues on a device.  We only need start,
3067 * stop, and a check if it's stopped.  All other device management is
3068 * done at the overall netdevice level.
3069 * Also test the device if we're multiqueue.
3070 */
3071
3072/**
3073 *      netif_start_subqueue - allow sending packets on subqueue
3074 *      @dev: network device
3075 *      @queue_index: sub queue index
3076 *
3077 * Start individual transmit queue of a device with multiple transmit queues.
3078 */
3079static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3080{
3081        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3082
3083        netif_tx_start_queue(txq);
3084}
3085
3086/**
3087 *      netif_stop_subqueue - stop sending packets on subqueue
3088 *      @dev: network device
3089 *      @queue_index: sub queue index
3090 *
3091 * Stop individual transmit queue of a device with multiple transmit queues.
3092 */
3093static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3094{
3095        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096        netif_tx_stop_queue(txq);
3097}
3098
3099/**
3100 *      netif_subqueue_stopped - test status of subqueue
3101 *      @dev: network device
3102 *      @queue_index: sub queue index
3103 *
3104 * Check individual transmit queue of a device with multiple transmit queues.
3105 */
3106static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3107                                            u16 queue_index)
3108{
3109        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3110
3111        return netif_tx_queue_stopped(txq);
3112}
3113
3114static inline bool netif_subqueue_stopped(const struct net_device *dev,
3115                                          struct sk_buff *skb)
3116{
3117        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3118}
3119
3120/**
3121 *      netif_wake_subqueue - allow sending packets on subqueue
3122 *      @dev: network device
3123 *      @queue_index: sub queue index
3124 *
3125 * Resume individual transmit queue of a device with multiple transmit queues.
3126 */
3127static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3128{
3129        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3130
3131        netif_tx_wake_queue(txq);
3132}
3133
3134#ifdef CONFIG_XPS
3135int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3136                        u16 index);
3137#else
3138static inline int netif_set_xps_queue(struct net_device *dev,
3139                                      const struct cpumask *mask,
3140                                      u16 index)
3141{
3142        return 0;
3143}
3144#endif
3145
3146u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3147                  unsigned int num_tx_queues);
3148
3149/*
3150 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3151 * as a distribution range limit for the returned value.
3152 */
3153static inline u16 skb_tx_hash(const struct net_device *dev,
3154                              struct sk_buff *skb)
3155{
3156        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3157}
3158
3159/**
3160 *      netif_is_multiqueue - test if device has multiple transmit queues
3161 *      @dev: network device
3162 *
3163 * Check if device has multiple transmit queues
3164 */
3165static inline bool netif_is_multiqueue(const struct net_device *dev)
3166{
3167        return dev->num_tx_queues > 1;
3168}
3169
3170int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3171
3172#ifdef CONFIG_SYSFS
3173int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3174#else
3175static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3176                                                unsigned int rxq)
3177{
3178        return 0;
3179}
3180#endif
3181
3182#ifdef CONFIG_SYSFS
3183static inline unsigned int get_netdev_rx_queue_index(
3184                struct netdev_rx_queue *queue)
3185{
3186        struct net_device *dev = queue->dev;
3187        int index = queue - dev->_rx;
3188
3189        BUG_ON(index >= dev->num_rx_queues);
3190        return index;
3191}
3192#endif
3193
3194#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3195int netif_get_num_default_rss_queues(void);
3196
3197enum skb_free_reason {
3198        SKB_REASON_CONSUMED,
3199        SKB_REASON_DROPPED,
3200};
3201
3202void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3203void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3204
3205/*
3206 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3207 * interrupt context or with hardware interrupts being disabled.
3208 * (in_irq() || irqs_disabled())
3209 *
3210 * We provide four helpers that can be used in following contexts :
3211 *
3212 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3213 *  replacing kfree_skb(skb)
3214 *
3215 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3216 *  Typically used in place of consume_skb(skb) in TX completion path
3217 *
3218 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3219 *  replacing kfree_skb(skb)
3220 *
3221 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3222 *  and consumed a packet. Used in place of consume_skb(skb)
3223 */
3224static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3225{
3226        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3227}
3228
3229static inline void dev_consume_skb_irq(struct sk_buff *skb)
3230{
3231        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3232}
3233
3234static inline void dev_kfree_skb_any(struct sk_buff *skb)
3235{
3236        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3237}
3238
3239static inline void dev_consume_skb_any(struct sk_buff *skb)
3240{
3241        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3242}
3243
3244void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3245int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3246int netif_rx(struct sk_buff *skb);
3247int netif_rx_ni(struct sk_buff *skb);
3248int netif_receive_skb(struct sk_buff *skb);
3249gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3250void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3251struct sk_buff *napi_get_frags(struct napi_struct *napi);
3252gro_result_t napi_gro_frags(struct napi_struct *napi);
3253struct packet_offload *gro_find_receive_by_type(__be16 type);
3254struct packet_offload *gro_find_complete_by_type(__be16 type);
3255
3256static inline void napi_free_frags(struct napi_struct *napi)
3257{
3258        kfree_skb(napi->skb);
3259        napi->skb = NULL;
3260}
3261
3262bool netdev_is_rx_handler_busy(struct net_device *dev);
3263int netdev_rx_handler_register(struct net_device *dev,
3264                               rx_handler_func_t *rx_handler,
3265                               void *rx_handler_data);
3266void netdev_rx_handler_unregister(struct net_device *dev);
3267
3268bool dev_valid_name(const char *name);
3269int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3270int dev_ethtool(struct net *net, struct ifreq *);
3271unsigned int dev_get_flags(const struct net_device *);
3272int __dev_change_flags(struct net_device *, unsigned int flags);
3273int dev_change_flags(struct net_device *, unsigned int);
3274void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3275                        unsigned int gchanges);
3276int dev_change_name(struct net_device *, const char *);
3277int dev_set_alias(struct net_device *, const char *, size_t);
3278int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3279int __dev_set_mtu(struct net_device *, int);
3280int dev_set_mtu(struct net_device *, int);
3281void dev_set_group(struct net_device *, int);
3282int dev_set_mac_address(struct net_device *, struct sockaddr *);
3283int dev_change_carrier(struct net_device *, bool new_carrier);
3284int dev_get_phys_port_id(struct net_device *dev,
3285                         struct netdev_phys_item_id *ppid);
3286int dev_get_phys_port_name(struct net_device *dev,
3287                           char *name, size_t len);
3288int dev_change_proto_down(struct net_device *dev, bool proto_down);
3289struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3290struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3291                                    struct netdev_queue *txq, int *ret);
3292
3293typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3294int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3295                      int fd, u32 flags);
3296u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3297
3298int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3299int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300bool is_skb_forwardable(const struct net_device *dev,
3301                        const struct sk_buff *skb);
3302
3303static __always_inline int ____dev_forward_skb(struct net_device *dev,
3304                                               struct sk_buff *skb)
3305{
3306        if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3307            unlikely(!is_skb_forwardable(dev, skb))) {
3308                atomic_long_inc(&dev->rx_dropped);
3309                kfree_skb(skb);
3310                return NET_RX_DROP;
3311        }
3312
3313        skb_scrub_packet(skb, true);
3314        skb->priority = 0;
3315        return 0;
3316}
3317
3318void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3319
3320extern int              netdev_budget;
3321extern unsigned int     netdev_budget_usecs;
3322
3323/* Called by rtnetlink.c:rtnl_unlock() */
3324void netdev_run_todo(void);
3325
3326/**
3327 *      dev_put - release reference to device
3328 *      @dev: network device
3329 *
3330 * Release reference to device to allow it to be freed.
3331 */
3332static inline void dev_put(struct net_device *dev)
3333{
3334        this_cpu_dec(*dev->pcpu_refcnt);
3335}
3336
3337/**
3338 *      dev_hold - get reference to device
3339 *      @dev: network device
3340 *
3341 * Hold reference to device to keep it from being freed.
3342 */
3343static inline void dev_hold(struct net_device *dev)
3344{
3345        this_cpu_inc(*dev->pcpu_refcnt);
3346}
3347
3348/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3349 * and _off may be called from IRQ context, but it is caller
3350 * who is responsible for serialization of these calls.
3351 *
3352 * The name carrier is inappropriate, these functions should really be
3353 * called netif_lowerlayer_*() because they represent the state of any
3354 * kind of lower layer not just hardware media.
3355 */
3356
3357void linkwatch_init_dev(struct net_device *dev);
3358void linkwatch_fire_event(struct net_device *dev);
3359void linkwatch_forget_dev(struct net_device *dev);
3360
3361/**
3362 *      netif_carrier_ok - test if carrier present
3363 *      @dev: network device
3364 *
3365 * Check if carrier is present on device
3366 */
3367static inline bool netif_carrier_ok(const struct net_device *dev)
3368{
3369        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3370}
3371
3372unsigned long dev_trans_start(struct net_device *dev);
3373
3374void __netdev_watchdog_up(struct net_device *dev);
3375
3376void netif_carrier_on(struct net_device *dev);
3377
3378void netif_carrier_off(struct net_device *dev);
3379
3380/**
3381 *      netif_dormant_on - mark device as dormant.
3382 *      @dev: network device
3383 *
3384 * Mark device as dormant (as per RFC2863).
3385 *
3386 * The dormant state indicates that the relevant interface is not
3387 * actually in a condition to pass packets (i.e., it is not 'up') but is
3388 * in a "pending" state, waiting for some external event.  For "on-
3389 * demand" interfaces, this new state identifies the situation where the
3390 * interface is waiting for events to place it in the up state.
3391 */
3392static inline void netif_dormant_on(struct net_device *dev)
3393{
3394        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3395                linkwatch_fire_event(dev);
3396}
3397
3398/**
3399 *      netif_dormant_off - set device as not dormant.
3400 *      @dev: network device
3401 *
3402 * Device is not in dormant state.
3403 */
3404static inline void netif_dormant_off(struct net_device *dev)
3405{
3406        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3407                linkwatch_fire_event(dev);
3408}
3409
3410/**
3411 *      netif_dormant - test if device is dormant
3412 *      @dev: network device
3413 *
3414 * Check if device is dormant.
3415 */
3416static inline bool netif_dormant(const struct net_device *dev)
3417{
3418        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3419}
3420
3421
3422/**
3423 *      netif_oper_up - test if device is operational
3424 *      @dev: network device
3425 *
3426 * Check if carrier is operational
3427 */
3428static inline bool netif_oper_up(const struct net_device *dev)
3429{
3430        return (dev->operstate == IF_OPER_UP ||
3431                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3432}
3433
3434/**
3435 *      netif_device_present - is device available or removed
3436 *      @dev: network device
3437 *
3438 * Check if device has not been removed from system.
3439 */
3440static inline bool netif_device_present(struct net_device *dev)
3441{
3442        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3443}
3444
3445void netif_device_detach(struct net_device *dev);
3446
3447void netif_device_attach(struct net_device *dev);
3448
3449/*
3450 * Network interface message level settings
3451 */
3452
3453enum {
3454        NETIF_MSG_DRV           = 0x0001,
3455        NETIF_MSG_PROBE         = 0x0002,
3456        NETIF_MSG_LINK          = 0x0004,
3457        NETIF_MSG_TIMER         = 0x0008,
3458        NETIF_MSG_IFDOWN        = 0x0010,
3459        NETIF_MSG_IFUP          = 0x0020,
3460        NETIF_MSG_RX_ERR        = 0x0040,
3461        NETIF_MSG_TX_ERR        = 0x0080,
3462        NETIF_MSG_TX_QUEUED     = 0x0100,
3463        NETIF_MSG_INTR          = 0x0200,
3464        NETIF_MSG_TX_DONE       = 0x0400,
3465        NETIF_MSG_RX_STATUS     = 0x0800,
3466        NETIF_MSG_PKTDATA       = 0x1000,
3467        NETIF_MSG_HW            = 0x2000,
3468        NETIF_MSG_WOL           = 0x4000,
3469};
3470
3471#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3472#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3473#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3474#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3475#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3476#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3477#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3478#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3479#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3480#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3481#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3482#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3483#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3484#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3485#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3486
3487static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3488{
3489        /* use default */
3490        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3491                return default_msg_enable_bits;
3492        if (debug_value == 0)   /* no output */
3493                return 0;
3494        /* set low N bits */
3495        return (1 << debug_value) - 1;
3496}
3497
3498static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3499{
3500        spin_lock(&txq->_xmit_lock);
3501        txq->xmit_lock_owner = cpu;
3502}
3503
3504static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3505{
3506        __acquire(&txq->_xmit_lock);
3507        return true;
3508}
3509
3510static inline void __netif_tx_release(struct netdev_queue *txq)
3511{
3512        __release(&txq->_xmit_lock);
3513}
3514
3515static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3516{
3517        spin_lock_bh(&txq->_xmit_lock);
3518        txq->xmit_lock_owner = smp_processor_id();
3519}
3520
3521static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3522{
3523        bool ok = spin_trylock(&txq->_xmit_lock);
3524        if (likely(ok))
3525                txq->xmit_lock_owner = smp_processor_id();
3526        return ok;
3527}
3528
3529static inline void __netif_tx_unlock(struct netdev_queue *txq)
3530{
3531        txq->xmit_lock_owner = -1;
3532        spin_unlock(&txq->_xmit_lock);
3533}
3534
3535static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3536{
3537        txq->xmit_lock_owner = -1;
3538        spin_unlock_bh(&txq->_xmit_lock);
3539}
3540
3541static inline void txq_trans_update(struct netdev_queue *txq)
3542{
3543        if (txq->xmit_lock_owner != -1)
3544                txq->trans_start = jiffies;
3545}
3546
3547/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3548static inline void netif_trans_update(struct net_device *dev)
3549{
3550        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3551
3552        if (txq->trans_start != jiffies)
3553                txq->trans_start = jiffies;
3554}
3555
3556/**
3557 *      netif_tx_lock - grab network device transmit lock
3558 *      @dev: network device
3559 *
3560 * Get network device transmit lock
3561 */
3562static inline void netif_tx_lock(struct net_device *dev)
3563{
3564        unsigned int i;
3565        int cpu;
3566
3567        spin_lock(&dev->tx_global_lock);
3568        cpu = smp_processor_id();
3569        for (i = 0; i < dev->num_tx_queues; i++) {
3570                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3571
3572                /* We are the only thread of execution doing a
3573                 * freeze, but we have to grab the _xmit_lock in
3574                 * order to synchronize with threads which are in
3575                 * the ->hard_start_xmit() handler and already
3576                 * checked the frozen bit.
3577                 */
3578                __netif_tx_lock(txq, cpu);
3579                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3580                __netif_tx_unlock(txq);
3581        }
3582}
3583
3584static inline void netif_tx_lock_bh(struct net_device *dev)
3585{
3586        local_bh_disable();
3587        netif_tx_lock(dev);
3588}
3589
3590static inline void netif_tx_unlock(struct net_device *dev)
3591{
3592        unsigned int i;
3593
3594        for (i = 0; i < dev->num_tx_queues; i++) {
3595                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3596
3597                /* No need to grab the _xmit_lock here.  If the
3598                 * queue is not stopped for another reason, we
3599                 * force a schedule.
3600                 */
3601                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3602                netif_schedule_queue(txq);
3603        }
3604        spin_unlock(&dev->tx_global_lock);
3605}
3606
3607static inline void netif_tx_unlock_bh(struct net_device *dev)
3608{
3609        netif_tx_unlock(dev);
3610        local_bh_enable();
3611}
3612
3613#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3614        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3615                __netif_tx_lock(txq, cpu);              \
3616        } else {                                        \
3617                __netif_tx_acquire(txq);                \
3618        }                                               \
3619}
3620
3621#define HARD_TX_TRYLOCK(dev, txq)                       \
3622        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3623                __netif_tx_trylock(txq) :               \
3624                __netif_tx_acquire(txq))
3625
3626#define HARD_TX_UNLOCK(dev, txq) {                      \
3627        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3628                __netif_tx_unlock(txq);                 \
3629        } else {                                        \
3630                __netif_tx_release(txq);                \
3631        }                                               \
3632}
3633
3634static inline void netif_tx_disable(struct net_device *dev)
3635{
3636        unsigned int i;
3637        int cpu;
3638
3639        local_bh_disable();
3640        cpu = smp_processor_id();
3641        for (i = 0; i < dev->num_tx_queues; i++) {
3642                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3643
3644                __netif_tx_lock(txq, cpu);
3645                netif_tx_stop_queue(txq);
3646                __netif_tx_unlock(txq);
3647        }
3648        local_bh_enable();
3649}
3650
3651static inline void netif_addr_lock(struct net_device *dev)
3652{
3653        spin_lock(&dev->addr_list_lock);
3654}
3655
3656static inline void netif_addr_lock_nested(struct net_device *dev)
3657{
3658        int subclass = SINGLE_DEPTH_NESTING;
3659
3660        if (dev->netdev_ops->ndo_get_lock_subclass)
3661                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3662
3663        spin_lock_nested(&dev->addr_list_lock, subclass);
3664}
3665
3666static inline void netif_addr_lock_bh(struct net_device *dev)
3667{
3668        spin_lock_bh(&dev->addr_list_lock);
3669}
3670
3671static inline void netif_addr_unlock(struct net_device *dev)
3672{
3673        spin_unlock(&dev->addr_list_lock);
3674}
3675
3676static inline void netif_addr_unlock_bh(struct net_device *dev)
3677{
3678        spin_unlock_bh(&dev->addr_list_lock);
3679}
3680
3681/*
3682 * dev_addrs walker. Should be used only for read access. Call with
3683 * rcu_read_lock held.
3684 */
3685#define for_each_dev_addr(dev, ha) \
3686                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3687
3688/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3689
3690void ether_setup(struct net_device *dev);
3691
3692/* Support for loadable net-drivers */
3693struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3694                                    unsigned char name_assign_type,
3695                                    void (*setup)(struct net_device *),
3696                                    unsigned int txqs, unsigned int rxqs);
3697int dev_get_valid_name(struct net *net, struct net_device *dev,
3698                       const char *name);
3699
3700#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3701        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3702
3703#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3704        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3705                         count)
3706
3707int register_netdev(struct net_device *dev);
3708void unregister_netdev(struct net_device *dev);
3709
3710/* General hardware address lists handling functions */
3711int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3712                   struct netdev_hw_addr_list *from_list, int addr_len);
3713void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3714                      struct netdev_hw_addr_list *from_list, int addr_len);
3715int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3716                       struct net_device *dev,
3717                       int (*sync)(struct net_device *, const unsigned char *),
3718                       int (*unsync)(struct net_device *,
3719                                     const unsigned char *));
3720void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3721                          struct net_device *dev,
3722                          int (*unsync)(struct net_device *,
3723                                        const unsigned char *));
3724void __hw_addr_init(struct netdev_hw_addr_list *list);
3725
3726/* Functions used for device addresses handling */
3727int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3728                 unsigned char addr_type);
3729int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3730                 unsigned char addr_type);
3731void dev_addr_flush(struct net_device *dev);
3732int dev_addr_init(struct net_device *dev);
3733
3734/* Functions used for unicast addresses handling */
3735int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3736int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3737int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3738int dev_uc_sync(struct net_device *to, struct net_device *from);
3739int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3740void dev_uc_unsync(struct net_device *to, struct net_device *from);
3741void dev_uc_flush(struct net_device *dev);
3742void dev_uc_init(struct net_device *dev);
3743
3744/**
3745 *  __dev_uc_sync - Synchonize device's unicast list
3746 *  @dev:  device to sync
3747 *  @sync: function to call if address should be added
3748 *  @unsync: function to call if address should be removed
3749 *
3750 *  Add newly added addresses to the interface, and release
3751 *  addresses that have been deleted.
3752 */
3753static inline int __dev_uc_sync(struct net_device *dev,
3754                                int (*sync)(struct net_device *,
3755                                            const unsigned char *),
3756                                int (*unsync)(struct net_device *,
3757                                              const unsigned char *))
3758{
3759        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3760}
3761
3762/**
3763 *  __dev_uc_unsync - Remove synchronized addresses from device
3764 *  @dev:  device to sync
3765 *  @unsync: function to call if address should be removed
3766 *
3767 *  Remove all addresses that were added to the device by dev_uc_sync().
3768 */
3769static inline void __dev_uc_unsync(struct net_device *dev,
3770                                   int (*unsync)(struct net_device *,
3771                                                 const unsigned char *))
3772{
3773        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3774}
3775
3776/* Functions used for multicast addresses handling */
3777int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3778int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3779int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3780int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3781int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3782int dev_mc_sync(struct net_device *to, struct net_device *from);
3783int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3784void dev_mc_unsync(struct net_device *to, struct net_device *from);
3785void dev_mc_flush(struct net_device *dev);
3786void dev_mc_init(struct net_device *dev);
3787
3788/**
3789 *  __dev_mc_sync - Synchonize device's multicast list
3790 *  @dev:  device to sync
3791 *  @sync: function to call if address should be added
3792 *  @unsync: function to call if address should be removed
3793 *
3794 *  Add newly added addresses to the interface, and release
3795 *  addresses that have been deleted.
3796 */
3797static inline int __dev_mc_sync(struct net_device *dev,
3798                                int (*sync)(struct net_device *,
3799                                            const unsigned char *),
3800                                int (*unsync)(struct net_device *,
3801                                              const unsigned char *))
3802{
3803        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3804}
3805
3806/**
3807 *  __dev_mc_unsync - Remove synchronized addresses from device
3808 *  @dev:  device to sync
3809 *  @unsync: function to call if address should be removed
3810 *
3811 *  Remove all addresses that were added to the device by dev_mc_sync().
3812 */
3813static inline void __dev_mc_unsync(struct net_device *dev,
3814                                   int (*unsync)(struct net_device *,
3815                                                 const unsigned char *))
3816{
3817        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3818}
3819
3820/* Functions used for secondary unicast and multicast support */
3821void dev_set_rx_mode(struct net_device *dev);
3822void __dev_set_rx_mode(struct net_device *dev);
3823int dev_set_promiscuity(struct net_device *dev, int inc);
3824int dev_set_allmulti(struct net_device *dev, int inc);
3825void netdev_state_change(struct net_device *dev);
3826void netdev_notify_peers(struct net_device *dev);
3827void netdev_features_change(struct net_device *dev);
3828/* Load a device via the kmod */
3829void dev_load(struct net *net, const char *name);
3830struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3831                                        struct rtnl_link_stats64 *storage);
3832void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3833                             const struct net_device_stats *netdev_stats);
3834
3835extern int              netdev_max_backlog;
3836extern int              netdev_tstamp_prequeue;
3837extern int              weight_p;
3838extern int              dev_weight_rx_bias;
3839extern int              dev_weight_tx_bias;
3840extern int              dev_rx_weight;
3841extern int              dev_tx_weight;
3842
3843bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3844struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3845                                                     struct list_head **iter);
3846struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3847                                                     struct list_head **iter);
3848
3849/* iterate through upper list, must be called under RCU read lock */
3850#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3851        for (iter = &(dev)->adj_list.upper, \
3852             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3853             updev; \
3854             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3855
3856int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3857                                  int (*fn)(struct net_device *upper_dev,
3858                                            void *data),
3859                                  void *data);
3860
3861bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3862                                  struct net_device *upper_dev);
3863
3864bool netdev_has_any_upper_dev(struct net_device *dev);
3865
3866void *netdev_lower_get_next_private(struct net_device *dev,
3867                                    struct list_head **iter);
3868void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3869                                        struct list_head **iter);
3870
3871#define netdev_for_each_lower_private(dev, priv, iter) \
3872        for (iter = (dev)->adj_list.lower.next, \
3873             priv = netdev_lower_get_next_private(dev, &(iter)); \
3874             priv; \
3875             priv = netdev_lower_get_next_private(dev, &(iter)))
3876
3877#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3878        for (iter = &(dev)->adj_list.lower, \
3879             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3880             priv; \
3881             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3882
3883void *netdev_lower_get_next(struct net_device *dev,
3884                                struct list_head **iter);
3885
3886#define netdev_for_each_lower_dev(dev, ldev, iter) \
3887        for (iter = (dev)->adj_list.lower.next, \
3888             ldev = netdev_lower_get_next(dev, &(iter)); \
3889             ldev; \
3890             ldev = netdev_lower_get_next(dev, &(iter)))
3891
3892struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3893                                             struct list_head **iter);
3894struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3895                                                 struct list_head **iter);
3896
3897int netdev_walk_all_lower_dev(struct net_device *dev,
3898                              int (*fn)(struct net_device *lower_dev,
3899                                        void *data),
3900                              void *data);
3901int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3902                                  int (*fn)(struct net_device *lower_dev,
3903                                            void *data),
3904                                  void *data);
3905
3906void *netdev_adjacent_get_private(struct list_head *adj_list);
3907void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3908struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3909struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3910int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3911int netdev_master_upper_dev_link(struct net_device *dev,
3912                                 struct net_device *upper_dev,
3913                                 void *upper_priv, void *upper_info);
3914void netdev_upper_dev_unlink(struct net_device *dev,
3915                             struct net_device *upper_dev);
3916void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3917void *netdev_lower_dev_get_private(struct net_device *dev,
3918                                   struct net_device *lower_dev);
3919void netdev_lower_state_changed(struct net_device *lower_dev,
3920                                void *lower_state_info);
3921
3922/* RSS keys are 40 or 52 bytes long */
3923#define NETDEV_RSS_KEY_LEN 52
3924extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3925void netdev_rss_key_fill(void *buffer, size_t len);
3926
3927int dev_get_nest_level(struct net_device *dev);
3928int skb_checksum_help(struct sk_buff *skb);
3929int skb_crc32c_csum_help(struct sk_buff *skb);
3930int skb_csum_hwoffload_help(struct sk_buff *skb,
3931                            const netdev_features_t features);
3932
3933struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3934                                  netdev_features_t features, bool tx_path);
3935struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3936                                    netdev_features_t features);
3937
3938struct netdev_bonding_info {
3939        ifslave slave;
3940        ifbond  master;
3941};
3942
3943struct netdev_notifier_bonding_info {
3944        struct netdev_notifier_info info; /* must be first */
3945        struct netdev_bonding_info  bonding_info;
3946};
3947
3948void netdev_bonding_info_change(struct net_device *dev,
3949                                struct netdev_bonding_info *bonding_info);
3950
3951static inline
3952struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3953{
3954        return __skb_gso_segment(skb, features, true);
3955}
3956__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3957
3958static inline bool can_checksum_protocol(netdev_features_t features,
3959                                         __be16 protocol)
3960{
3961        if (protocol == htons(ETH_P_FCOE))
3962                return !!(features & NETIF_F_FCOE_CRC);
3963
3964        /* Assume this is an IP checksum (not SCTP CRC) */
3965
3966        if (features & NETIF_F_HW_CSUM) {
3967                /* Can checksum everything */
3968                return true;
3969        }
3970
3971        switch (protocol) {
3972        case htons(ETH_P_IP):
3973                return !!(features & NETIF_F_IP_CSUM);
3974        case htons(ETH_P_IPV6):
3975                return !!(features & NETIF_F_IPV6_CSUM);
3976        default:
3977                return false;
3978        }
3979}
3980
3981#ifdef CONFIG_BUG
3982void netdev_rx_csum_fault(struct net_device *dev);
3983#else
3984static inline void netdev_rx_csum_fault(struct net_device *dev)
3985{
3986}
3987#endif
3988/* rx skb timestamps */
3989void net_enable_timestamp(void);
3990void net_disable_timestamp(void);
3991
3992#ifdef CONFIG_PROC_FS
3993int __init dev_proc_init(void);
3994#else
3995#define dev_proc_init() 0
3996#endif
3997
3998static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3999                                              struct sk_buff *skb, struct net_device *dev,
4000                                              bool more)
4001{
4002        skb->xmit_more = more ? 1 : 0;
4003        return ops->ndo_start_xmit(skb, dev);
4004}
4005
4006static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4007                                            struct netdev_queue *txq, bool more)
4008{
4009        const struct net_device_ops *ops = dev->netdev_ops;
4010        int rc;
4011
4012        rc = __netdev_start_xmit(ops, skb, dev, more);
4013        if (rc == NETDEV_TX_OK)
4014                txq_trans_update(txq);
4015
4016        return rc;
4017}
4018
4019int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4020                                const void *ns);
4021void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4022                                 const void *ns);
4023
4024static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4025{
4026        return netdev_class_create_file_ns(class_attr, NULL);
4027}
4028
4029static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4030{
4031        netdev_class_remove_file_ns(class_attr, NULL);
4032}
4033
4034extern const struct kobj_ns_type_operations net_ns_type_operations;
4035
4036const char *netdev_drivername(const struct net_device *dev);
4037
4038void linkwatch_run_queue(void);
4039
4040static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4041                                                          netdev_features_t f2)
4042{
4043        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4044                if (f1 & NETIF_F_HW_CSUM)
4045                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4046                else
4047                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4048        }
4049
4050        return f1 & f2;
4051}
4052
4053static inline netdev_features_t netdev_get_wanted_features(
4054        struct net_device *dev)
4055{
4056        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4057}
4058netdev_features_t netdev_increment_features(netdev_features_t all,
4059        netdev_features_t one, netdev_features_t mask);
4060
4061/* Allow TSO being used on stacked device :
4062 * Performing the GSO segmentation before last device
4063 * is a performance improvement.
4064 */
4065static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4066                                                        netdev_features_t mask)
4067{
4068        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4069}
4070
4071int __netdev_update_features(struct net_device *dev);
4072void netdev_update_features(struct net_device *dev);
4073void netdev_change_features(struct net_device *dev);
4074
4075void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4076                                        struct net_device *dev);
4077
4078netdev_features_t passthru_features_check(struct sk_buff *skb,
4079                                          struct net_device *dev,
4080                                          netdev_features_t features);
4081netdev_features_t netif_skb_features(struct sk_buff *skb);
4082
4083static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4084{
4085        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4086
4087        /* check flags correspondence */
4088        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4089        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4090        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4091        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4092        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4093        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4094        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4095        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4096        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4097        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4098        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4099        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4100        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4101        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4102        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4103        BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4104
4105        return (features & feature) == feature;
4106}
4107
4108static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4109{
4110        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4111               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4112}
4113
4114static inline bool netif_needs_gso(struct sk_buff *skb,
4115                                   netdev_features_t features)
4116{
4117        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4118                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4119                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4120}
4121
4122static inline void netif_set_gso_max_size(struct net_device *dev,
4123                                          unsigned int size)
4124{
4125        dev->gso_max_size = size;
4126}
4127
4128static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4129                                        int pulled_hlen, u16 mac_offset,
4130                                        int mac_len)
4131{
4132        skb->protocol = protocol;
4133        skb->encapsulation = 1;
4134        skb_push(skb, pulled_hlen);
4135        skb_reset_transport_header(skb);
4136        skb->mac_header = mac_offset;
4137        skb->network_header = skb->mac_header + mac_len;
4138        skb->mac_len = mac_len;
4139}
4140
4141static inline bool netif_is_macsec(const struct net_device *dev)
4142{
4143        return dev->priv_flags & IFF_MACSEC;
4144}
4145
4146static inline bool netif_is_macvlan(const struct net_device *dev)
4147{
4148        return dev->priv_flags & IFF_MACVLAN;
4149}
4150
4151static inline bool netif_is_macvlan_port(const struct net_device *dev)
4152{
4153        return dev->priv_flags & IFF_MACVLAN_PORT;
4154}
4155
4156static inline bool netif_is_ipvlan(const struct net_device *dev)
4157{
4158        return dev->priv_flags & IFF_IPVLAN_SLAVE;
4159}
4160
4161static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4162{
4163        return dev->priv_flags & IFF_IPVLAN_MASTER;
4164}
4165
4166static inline bool netif_is_bond_master(const struct net_device *dev)
4167{
4168        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4169}
4170
4171static inline bool netif_is_bond_slave(const struct net_device *dev)
4172{
4173        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4174}
4175
4176static inline bool netif_supports_nofcs(struct net_device *dev)
4177{
4178        return dev->priv_flags & IFF_SUPP_NOFCS;
4179}
4180
4181static inline bool netif_is_l3_master(const struct net_device *dev)
4182{
4183        return dev->priv_flags & IFF_L3MDEV_MASTER;
4184}
4185
4186static inline bool netif_is_l3_slave(const struct net_device *dev)
4187{
4188        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4189}
4190
4191static inline bool netif_is_bridge_master(const struct net_device *dev)
4192{
4193        return dev->priv_flags & IFF_EBRIDGE;
4194}
4195
4196static inline bool netif_is_bridge_port(const struct net_device *dev)
4197{
4198        return dev->priv_flags & IFF_BRIDGE_PORT;
4199}
4200
4201static inline bool netif_is_ovs_master(const struct net_device *dev)
4202{
4203        return dev->priv_flags & IFF_OPENVSWITCH;
4204}
4205
4206static inline bool netif_is_ovs_port(const struct net_device *dev)
4207{
4208        return dev->priv_flags & IFF_OVS_DATAPATH;
4209}
4210
4211static inline bool netif_is_team_master(const struct net_device *dev)
4212{
4213        return dev->priv_flags & IFF_TEAM;
4214}
4215
4216static inline bool netif_is_team_port(const struct net_device *dev)
4217{
4218        return dev->priv_flags & IFF_TEAM_PORT;
4219}
4220
4221static inline bool netif_is_lag_master(const struct net_device *dev)
4222{
4223        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4224}
4225
4226static inline bool netif_is_lag_port(const struct net_device *dev)
4227{
4228        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4229}
4230
4231static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4232{
4233        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4234}
4235
4236/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4237static inline void netif_keep_dst(struct net_device *dev)
4238{
4239        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4240}
4241
4242/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4243static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4244{
4245        /* TODO: reserve and use an additional IFF bit, if we get more users */
4246        return dev->priv_flags & IFF_MACSEC;
4247}
4248
4249extern struct pernet_operations __net_initdata loopback_net_ops;
4250
4251/* Logging, debugging and troubleshooting/diagnostic helpers. */
4252
4253/* netdev_printk helpers, similar to dev_printk */
4254
4255static inline const char *netdev_name(const struct net_device *dev)
4256{
4257        if (!dev->name[0] || strchr(dev->name, '%'))
4258                return "(unnamed net_device)";
4259        return dev->name;
4260}
4261
4262static inline bool netdev_unregistering(const struct net_device *dev)
4263{
4264        return dev->reg_state == NETREG_UNREGISTERING;
4265}
4266
4267static inline const char *netdev_reg_state(const struct net_device *dev)
4268{
4269        switch (dev->reg_state) {
4270        case NETREG_UNINITIALIZED: return " (uninitialized)";
4271        case NETREG_REGISTERED: return "";
4272        case NETREG_UNREGISTERING: return " (unregistering)";
4273        case NETREG_UNREGISTERED: return " (unregistered)";
4274        case NETREG_RELEASED: return " (released)";
4275        case NETREG_DUMMY: return " (dummy)";
4276        }
4277
4278        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4279        return " (unknown)";
4280}
4281
4282__printf(3, 4)
4283void netdev_printk(const char *level, const struct net_device *dev,
4284                   const char *format, ...);
4285__printf(2, 3)
4286void netdev_emerg(const struct net_device *dev, const char *format, ...);
4287__printf(2, 3)
4288void netdev_alert(const struct net_device *dev, const char *format, ...);
4289__printf(2, 3)
4290void netdev_crit(const struct net_device *dev, const char *format, ...);
4291__printf(2, 3)
4292void netdev_err(const struct net_device *dev, const char *format, ...);
4293__printf(2, 3)
4294void netdev_warn(const struct net_device *dev, const char *format, ...);
4295__printf(2, 3)
4296void netdev_notice(const struct net_device *dev, const char *format, ...);
4297__printf(2, 3)
4298void netdev_info(const struct net_device *dev, const char *format, ...);
4299
4300#define MODULE_ALIAS_NETDEV(device) \
4301        MODULE_ALIAS("netdev-" device)
4302
4303#if defined(CONFIG_DYNAMIC_DEBUG)
4304#define netdev_dbg(__dev, format, args...)                      \
4305do {                                                            \
4306        dynamic_netdev_dbg(__dev, format, ##args);              \
4307} while (0)
4308#elif defined(DEBUG)
4309#define netdev_dbg(__dev, format, args...)                      \
4310        netdev_printk(KERN_DEBUG, __dev, format, ##args)
4311#else
4312#define netdev_dbg(__dev, format, args...)                      \
4313({                                                              \
4314        if (0)                                                  \
4315                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4316})
4317#endif
4318
4319#if defined(VERBOSE_DEBUG)
4320#define netdev_vdbg     netdev_dbg
4321#else
4322
4323#define netdev_vdbg(dev, format, args...)                       \
4324({                                                              \
4325        if (0)                                                  \
4326                netdev_printk(KERN_DEBUG, dev, format, ##args); \
4327        0;                                                      \
4328})
4329#endif
4330
4331/*
4332 * netdev_WARN() acts like dev_printk(), but with the key difference
4333 * of using a WARN/WARN_ON to get the message out, including the
4334 * file/line information and a backtrace.
4335 */
4336#define netdev_WARN(dev, format, args...)                       \
4337        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4338             netdev_reg_state(dev), ##args)
4339
4340/* netif printk helpers, similar to netdev_printk */
4341
4342#define netif_printk(priv, type, level, dev, fmt, args...)      \
4343do {                                                            \
4344        if (netif_msg_##type(priv))                             \
4345                netdev_printk(level, (dev), fmt, ##args);       \
4346} while (0)
4347
4348#define netif_level(level, priv, type, dev, fmt, args...)       \
4349do {                                                            \
4350        if (netif_msg_##type(priv))                             \
4351                netdev_##level(dev, fmt, ##args);               \
4352} while (0)
4353
4354#define netif_emerg(priv, type, dev, fmt, args...)              \
4355        netif_level(emerg, priv, type, dev, fmt, ##args)
4356#define netif_alert(priv, type, dev, fmt, args...)              \
4357        netif_level(alert, priv, type, dev, fmt, ##args)
4358#define netif_crit(priv, type, dev, fmt, args...)               \
4359        netif_level(crit, priv, type, dev, fmt, ##args)
4360#define netif_err(priv, type, dev, fmt, args...)                \
4361        netif_level(err, priv, type, dev, fmt, ##args)
4362#define netif_warn(priv, type, dev, fmt, args...)               \
4363        netif_level(warn, priv, type, dev, fmt, ##args)
4364#define netif_notice(priv, type, dev, fmt, args...)             \
4365        netif_level(notice, priv, type, dev, fmt, ##args)
4366#define netif_info(priv, type, dev, fmt, args...)               \
4367        netif_level(info, priv, type, dev, fmt, ##args)
4368
4369#if defined(CONFIG_DYNAMIC_DEBUG)
4370#define netif_dbg(priv, type, netdev, format, args...)          \
4371do {                                                            \
4372        if (netif_msg_##type(priv))                             \
4373                dynamic_netdev_dbg(netdev, format, ##args);     \
4374} while (0)
4375#elif defined(DEBUG)
4376#define netif_dbg(priv, type, dev, format, args...)             \
4377        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4378#else
4379#define netif_dbg(priv, type, dev, format, args...)                     \
4380({                                                                      \
4381        if (0)                                                          \
4382                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4383        0;                                                              \
4384})
4385#endif
4386
4387/* if @cond then downgrade to debug, else print at @level */
4388#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4389        do {                                                              \
4390                if (cond)                                                 \
4391                        netif_dbg(priv, type, netdev, fmt, ##args);       \
4392                else                                                      \
4393                        netif_ ## level(priv, type, netdev, fmt, ##args); \
4394        } while (0)
4395
4396#if defined(VERBOSE_DEBUG)
4397#define netif_vdbg      netif_dbg
4398#else
4399#define netif_vdbg(priv, type, dev, format, args...)            \
4400({                                                              \
4401        if (0)                                                  \
4402                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4403        0;                                                      \
4404})
4405#endif
4406
4407/*
4408 *      The list of packet types we will receive (as opposed to discard)
4409 *      and the routines to invoke.
4410 *
4411 *      Why 16. Because with 16 the only overlap we get on a hash of the
4412 *      low nibble of the protocol value is RARP/SNAP/X.25.
4413 *
4414 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4415 *             sure which should go first, but I bet it won't make much
4416 *             difference if we are running VLANs.  The good news is that
4417 *             this protocol won't be in the list unless compiled in, so
4418 *             the average user (w/out VLANs) will not be adversely affected.
4419 *             --BLG
4420 *
4421 *              0800    IP
4422 *              8100    802.1Q VLAN
4423 *              0001    802.3
4424 *              0002    AX.25
4425 *              0004    802.2
4426 *              8035    RARP
4427 *              0005    SNAP
4428 *              0805    X.25
4429 *              0806    ARP
4430 *              8137    IPX
4431 *              0009    Localtalk
4432 *              86DD    IPv6
4433 */
4434#define PTYPE_HASH_SIZE (16)
4435#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4436
4437#endif  /* _LINUX_NETDEVICE_H */
4438