linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages, which can never be swapped out. Some
  21 * of them might not even exist (eg empty_bad_page)...
  22 *
  23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  24 * specific data (which is normally at page->private). It can be used by
  25 * private allocations for its own usage.
  26 *
  27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  29 * is set before writeback starts and cleared when it finishes.
  30 *
  31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  32 * while it is held.
  33 *
  34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  35 * to become unlocked.
  36 *
  37 * PG_uptodate tells whether the page's contents is valid.  When a read
  38 * completes, the page becomes uptodate, unless a disk I/O error happened.
  39 *
  40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  41 * file-backed pagecache (see mm/vmscan.c).
  42 *
  43 * PG_error is set to indicate that an I/O error occurred on this page.
  44 *
  45 * PG_arch_1 is an architecture specific page state bit.  The generic code
  46 * guarantees that this bit is cleared for a page when it first is entered into
  47 * the page cache.
  48 *
  49 * PG_highmem pages are not permanently mapped into the kernel virtual address
  50 * space, they need to be kmapped separately for doing IO on the pages.  The
  51 * struct page (these bits with information) are always mapped into kernel
  52 * address space...
  53 *
  54 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  55 * data with incorrect ECC bits that triggered a machine check. Accessing is
  56 * not safe since it may cause another machine check. Don't touch!
  57 */
  58
  59/*
  60 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  61 * locked- and dirty-page accounting.
  62 *
  63 * The page flags field is split into two parts, the main flags area
  64 * which extends from the low bits upwards, and the fields area which
  65 * extends from the high bits downwards.
  66 *
  67 *  | FIELD | ... | FLAGS |
  68 *  N-1           ^       0
  69 *               (NR_PAGEFLAGS)
  70 *
  71 * The fields area is reserved for fields mapping zone, node (for NUMA) and
  72 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  73 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  74 */
  75enum pageflags {
  76        PG_locked,              /* Page is locked. Don't touch. */
  77        PG_error,
  78        PG_referenced,
  79        PG_uptodate,
  80        PG_dirty,
  81        PG_lru,
  82        PG_active,
  83        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
  84        PG_slab,
  85        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
  86        PG_arch_1,
  87        PG_reserved,
  88        PG_private,             /* If pagecache, has fs-private data */
  89        PG_private_2,           /* If pagecache, has fs aux data */
  90        PG_writeback,           /* Page is under writeback */
  91        PG_head,                /* A head page */
  92        PG_mappedtodisk,        /* Has blocks allocated on-disk */
  93        PG_reclaim,             /* To be reclaimed asap */
  94        PG_swapbacked,          /* Page is backed by RAM/swap */
  95        PG_unevictable,         /* Page is "unevictable"  */
  96#ifdef CONFIG_MMU
  97        PG_mlocked,             /* Page is vma mlocked */
  98#endif
  99#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 100        PG_uncached,            /* Page has been mapped as uncached */
 101#endif
 102#ifdef CONFIG_MEMORY_FAILURE
 103        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 104#endif
 105#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 106        PG_young,
 107        PG_idle,
 108#endif
 109        __NR_PAGEFLAGS,
 110
 111        /* Filesystems */
 112        PG_checked = PG_owner_priv_1,
 113
 114        /* SwapBacked */
 115        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 116
 117        /* Two page bits are conscripted by FS-Cache to maintain local caching
 118         * state.  These bits are set on pages belonging to the netfs's inodes
 119         * when those inodes are being locally cached.
 120         */
 121        PG_fscache = PG_private_2,      /* page backed by cache */
 122
 123        /* XEN */
 124        /* Pinned in Xen as a read-only pagetable page. */
 125        PG_pinned = PG_owner_priv_1,
 126        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 127        PG_savepinned = PG_dirty,
 128        /* Has a grant mapping of another (foreign) domain's page. */
 129        PG_foreign = PG_owner_priv_1,
 130
 131        /* SLOB */
 132        PG_slob_free = PG_private,
 133
 134        /* Compound pages. Stored in first tail page's flags */
 135        PG_double_map = PG_private_2,
 136
 137        /* non-lru isolated movable page */
 138        PG_isolated = PG_reclaim,
 139};
 140
 141#ifndef __GENERATING_BOUNDS_H
 142
 143struct page;    /* forward declaration */
 144
 145static inline struct page *compound_head(struct page *page)
 146{
 147        unsigned long head = READ_ONCE(page->compound_head);
 148
 149        if (unlikely(head & 1))
 150                return (struct page *) (head - 1);
 151        return page;
 152}
 153
 154static __always_inline int PageTail(struct page *page)
 155{
 156        return READ_ONCE(page->compound_head) & 1;
 157}
 158
 159static __always_inline int PageCompound(struct page *page)
 160{
 161        return test_bit(PG_head, &page->flags) || PageTail(page);
 162}
 163
 164/*
 165 * Page flags policies wrt compound pages
 166 *
 167 * PF_ANY:
 168 *     the page flag is relevant for small, head and tail pages.
 169 *
 170 * PF_HEAD:
 171 *     for compound page all operations related to the page flag applied to
 172 *     head page.
 173 *
 174 * PF_ONLY_HEAD:
 175 *     for compound page, callers only ever operate on the head page.
 176 *
 177 * PF_NO_TAIL:
 178 *     modifications of the page flag must be done on small or head pages,
 179 *     checks can be done on tail pages too.
 180 *
 181 * PF_NO_COMPOUND:
 182 *     the page flag is not relevant for compound pages.
 183 */
 184#define PF_ANY(page, enforce)   page
 185#define PF_HEAD(page, enforce)  compound_head(page)
 186#define PF_ONLY_HEAD(page, enforce) ({                                  \
 187                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 188                page;})
 189#define PF_NO_TAIL(page, enforce) ({                                    \
 190                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 191                compound_head(page);})
 192#define PF_NO_COMPOUND(page, enforce) ({                                \
 193                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 194                page;})
 195
 196/*
 197 * Macros to create function definitions for page flags
 198 */
 199#define TESTPAGEFLAG(uname, lname, policy)                              \
 200static __always_inline int Page##uname(struct page *page)               \
 201        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 202
 203#define SETPAGEFLAG(uname, lname, policy)                               \
 204static __always_inline void SetPage##uname(struct page *page)           \
 205        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 206
 207#define CLEARPAGEFLAG(uname, lname, policy)                             \
 208static __always_inline void ClearPage##uname(struct page *page)         \
 209        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 210
 211#define __SETPAGEFLAG(uname, lname, policy)                             \
 212static __always_inline void __SetPage##uname(struct page *page)         \
 213        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 214
 215#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 216static __always_inline void __ClearPage##uname(struct page *page)       \
 217        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 218
 219#define TESTSETFLAG(uname, lname, policy)                               \
 220static __always_inline int TestSetPage##uname(struct page *page)        \
 221        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 222
 223#define TESTCLEARFLAG(uname, lname, policy)                             \
 224static __always_inline int TestClearPage##uname(struct page *page)      \
 225        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 226
 227#define PAGEFLAG(uname, lname, policy)                                  \
 228        TESTPAGEFLAG(uname, lname, policy)                              \
 229        SETPAGEFLAG(uname, lname, policy)                               \
 230        CLEARPAGEFLAG(uname, lname, policy)
 231
 232#define __PAGEFLAG(uname, lname, policy)                                \
 233        TESTPAGEFLAG(uname, lname, policy)                              \
 234        __SETPAGEFLAG(uname, lname, policy)                             \
 235        __CLEARPAGEFLAG(uname, lname, policy)
 236
 237#define TESTSCFLAG(uname, lname, policy)                                \
 238        TESTSETFLAG(uname, lname, policy)                               \
 239        TESTCLEARFLAG(uname, lname, policy)
 240
 241#define TESTPAGEFLAG_FALSE(uname)                                       \
 242static inline int Page##uname(const struct page *page) { return 0; }
 243
 244#define SETPAGEFLAG_NOOP(uname)                                         \
 245static inline void SetPage##uname(struct page *page) {  }
 246
 247#define CLEARPAGEFLAG_NOOP(uname)                                       \
 248static inline void ClearPage##uname(struct page *page) {  }
 249
 250#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 251static inline void __ClearPage##uname(struct page *page) {  }
 252
 253#define TESTSETFLAG_FALSE(uname)                                        \
 254static inline int TestSetPage##uname(struct page *page) { return 0; }
 255
 256#define TESTCLEARFLAG_FALSE(uname)                                      \
 257static inline int TestClearPage##uname(struct page *page) { return 0; }
 258
 259#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 260        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 261
 262#define TESTSCFLAG_FALSE(uname)                                         \
 263        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 264
 265__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 266PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 267PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
 268PAGEFLAG(Referenced, referenced, PF_HEAD)
 269        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 270        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 271PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 272        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 273PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 274PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 275        TESTCLEARFLAG(Active, active, PF_HEAD)
 276__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 277__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 278PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 279
 280/* Xen */
 281PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 282        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 283PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 284PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 285
 286PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 287        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 288PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 289        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 290        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 291
 292/*
 293 * Private page markings that may be used by the filesystem that owns the page
 294 * for its own purposes.
 295 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 296 */
 297PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 298        __CLEARPAGEFLAG(Private, private, PF_ANY)
 299PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 300PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 301        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 302
 303/*
 304 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 305 * risky: they bypass page accounting.
 306 */
 307TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 308        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 309PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 310
 311/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 312PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 313        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 314PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 315        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 316
 317#ifdef CONFIG_HIGHMEM
 318/*
 319 * Must use a macro here due to header dependency issues. page_zone() is not
 320 * available at this point.
 321 */
 322#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 323#else
 324PAGEFLAG_FALSE(HighMem)
 325#endif
 326
 327#ifdef CONFIG_SWAP
 328static __always_inline int PageSwapCache(struct page *page)
 329{
 330#ifdef CONFIG_THP_SWAP
 331        page = compound_head(page);
 332#endif
 333        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 334
 335}
 336SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 337CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 338#else
 339PAGEFLAG_FALSE(SwapCache)
 340#endif
 341
 342PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 343        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 344        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 345
 346#ifdef CONFIG_MMU
 347PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 348        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 349        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 350#else
 351PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 352        TESTSCFLAG_FALSE(Mlocked)
 353#endif
 354
 355#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 356PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 357#else
 358PAGEFLAG_FALSE(Uncached)
 359#endif
 360
 361#ifdef CONFIG_MEMORY_FAILURE
 362PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 363TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 364#define __PG_HWPOISON (1UL << PG_hwpoison)
 365#else
 366PAGEFLAG_FALSE(HWPoison)
 367#define __PG_HWPOISON 0
 368#endif
 369
 370#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 371TESTPAGEFLAG(Young, young, PF_ANY)
 372SETPAGEFLAG(Young, young, PF_ANY)
 373TESTCLEARFLAG(Young, young, PF_ANY)
 374PAGEFLAG(Idle, idle, PF_ANY)
 375#endif
 376
 377/*
 378 * On an anonymous page mapped into a user virtual memory area,
 379 * page->mapping points to its anon_vma, not to a struct address_space;
 380 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 381 *
 382 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 383 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 384 * bit; and then page->mapping points, not to an anon_vma, but to a private
 385 * structure which KSM associates with that merged page.  See ksm.h.
 386 *
 387 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 388 * page and then page->mapping points a struct address_space.
 389 *
 390 * Please note that, confusingly, "page_mapping" refers to the inode
 391 * address_space which maps the page from disk; whereas "page_mapped"
 392 * refers to user virtual address space into which the page is mapped.
 393 */
 394#define PAGE_MAPPING_ANON       0x1
 395#define PAGE_MAPPING_MOVABLE    0x2
 396#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 397#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 398
 399static __always_inline int PageMappingFlags(struct page *page)
 400{
 401        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 402}
 403
 404static __always_inline int PageAnon(struct page *page)
 405{
 406        page = compound_head(page);
 407        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 408}
 409
 410static __always_inline int __PageMovable(struct page *page)
 411{
 412        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 413                                PAGE_MAPPING_MOVABLE;
 414}
 415
 416#ifdef CONFIG_KSM
 417/*
 418 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 419 * which KSM maps into multiple mms, wherever identical anonymous page content
 420 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 421 * anon_vma, but to that page's node of the stable tree.
 422 */
 423static __always_inline int PageKsm(struct page *page)
 424{
 425        page = compound_head(page);
 426        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 427                                PAGE_MAPPING_KSM;
 428}
 429#else
 430TESTPAGEFLAG_FALSE(Ksm)
 431#endif
 432
 433u64 stable_page_flags(struct page *page);
 434
 435static inline int PageUptodate(struct page *page)
 436{
 437        int ret;
 438        page = compound_head(page);
 439        ret = test_bit(PG_uptodate, &(page)->flags);
 440        /*
 441         * Must ensure that the data we read out of the page is loaded
 442         * _after_ we've loaded page->flags to check for PageUptodate.
 443         * We can skip the barrier if the page is not uptodate, because
 444         * we wouldn't be reading anything from it.
 445         *
 446         * See SetPageUptodate() for the other side of the story.
 447         */
 448        if (ret)
 449                smp_rmb();
 450
 451        return ret;
 452}
 453
 454static __always_inline void __SetPageUptodate(struct page *page)
 455{
 456        VM_BUG_ON_PAGE(PageTail(page), page);
 457        smp_wmb();
 458        __set_bit(PG_uptodate, &page->flags);
 459}
 460
 461static __always_inline void SetPageUptodate(struct page *page)
 462{
 463        VM_BUG_ON_PAGE(PageTail(page), page);
 464        /*
 465         * Memory barrier must be issued before setting the PG_uptodate bit,
 466         * so that all previous stores issued in order to bring the page
 467         * uptodate are actually visible before PageUptodate becomes true.
 468         */
 469        smp_wmb();
 470        set_bit(PG_uptodate, &page->flags);
 471}
 472
 473CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 474
 475int test_clear_page_writeback(struct page *page);
 476int __test_set_page_writeback(struct page *page, bool keep_write);
 477
 478#define test_set_page_writeback(page)                   \
 479        __test_set_page_writeback(page, false)
 480#define test_set_page_writeback_keepwrite(page) \
 481        __test_set_page_writeback(page, true)
 482
 483static inline void set_page_writeback(struct page *page)
 484{
 485        test_set_page_writeback(page);
 486}
 487
 488static inline void set_page_writeback_keepwrite(struct page *page)
 489{
 490        test_set_page_writeback_keepwrite(page);
 491}
 492
 493__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 494
 495static __always_inline void set_compound_head(struct page *page, struct page *head)
 496{
 497        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 498}
 499
 500static __always_inline void clear_compound_head(struct page *page)
 501{
 502        WRITE_ONCE(page->compound_head, 0);
 503}
 504
 505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 506static inline void ClearPageCompound(struct page *page)
 507{
 508        BUG_ON(!PageHead(page));
 509        ClearPageHead(page);
 510}
 511#endif
 512
 513#define PG_head_mask ((1UL << PG_head))
 514
 515#ifdef CONFIG_HUGETLB_PAGE
 516int PageHuge(struct page *page);
 517int PageHeadHuge(struct page *page);
 518bool page_huge_active(struct page *page);
 519#else
 520TESTPAGEFLAG_FALSE(Huge)
 521TESTPAGEFLAG_FALSE(HeadHuge)
 522
 523static inline bool page_huge_active(struct page *page)
 524{
 525        return 0;
 526}
 527#endif
 528
 529
 530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 531/*
 532 * PageHuge() only returns true for hugetlbfs pages, but not for
 533 * normal or transparent huge pages.
 534 *
 535 * PageTransHuge() returns true for both transparent huge and
 536 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 537 * called only in the core VM paths where hugetlbfs pages can't exist.
 538 */
 539static inline int PageTransHuge(struct page *page)
 540{
 541        VM_BUG_ON_PAGE(PageTail(page), page);
 542        return PageHead(page);
 543}
 544
 545/*
 546 * PageTransCompound returns true for both transparent huge pages
 547 * and hugetlbfs pages, so it should only be called when it's known
 548 * that hugetlbfs pages aren't involved.
 549 */
 550static inline int PageTransCompound(struct page *page)
 551{
 552        return PageCompound(page);
 553}
 554
 555/*
 556 * PageTransCompoundMap is the same as PageTransCompound, but it also
 557 * guarantees the primary MMU has the entire compound page mapped
 558 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 559 * can also map the entire compound page. This allows the secondary
 560 * MMUs to call get_user_pages() only once for each compound page and
 561 * to immediately map the entire compound page with a single secondary
 562 * MMU fault. If there will be a pmd split later, the secondary MMUs
 563 * will get an update through the MMU notifier invalidation through
 564 * split_huge_pmd().
 565 *
 566 * Unlike PageTransCompound, this is safe to be called only while
 567 * split_huge_pmd() cannot run from under us, like if protected by the
 568 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
 569 * positives.
 570 */
 571static inline int PageTransCompoundMap(struct page *page)
 572{
 573        return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
 574}
 575
 576/*
 577 * PageTransTail returns true for both transparent huge pages
 578 * and hugetlbfs pages, so it should only be called when it's known
 579 * that hugetlbfs pages aren't involved.
 580 */
 581static inline int PageTransTail(struct page *page)
 582{
 583        return PageTail(page);
 584}
 585
 586/*
 587 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 588 * as PMDs.
 589 *
 590 * This is required for optimization of rmap operations for THP: we can postpone
 591 * per small page mapcount accounting (and its overhead from atomic operations)
 592 * until the first PMD split.
 593 *
 594 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 595 * by one. This reference will go away with last compound_mapcount.
 596 *
 597 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 598 */
 599static inline int PageDoubleMap(struct page *page)
 600{
 601        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 602}
 603
 604static inline void SetPageDoubleMap(struct page *page)
 605{
 606        VM_BUG_ON_PAGE(!PageHead(page), page);
 607        set_bit(PG_double_map, &page[1].flags);
 608}
 609
 610static inline void ClearPageDoubleMap(struct page *page)
 611{
 612        VM_BUG_ON_PAGE(!PageHead(page), page);
 613        clear_bit(PG_double_map, &page[1].flags);
 614}
 615static inline int TestSetPageDoubleMap(struct page *page)
 616{
 617        VM_BUG_ON_PAGE(!PageHead(page), page);
 618        return test_and_set_bit(PG_double_map, &page[1].flags);
 619}
 620
 621static inline int TestClearPageDoubleMap(struct page *page)
 622{
 623        VM_BUG_ON_PAGE(!PageHead(page), page);
 624        return test_and_clear_bit(PG_double_map, &page[1].flags);
 625}
 626
 627#else
 628TESTPAGEFLAG_FALSE(TransHuge)
 629TESTPAGEFLAG_FALSE(TransCompound)
 630TESTPAGEFLAG_FALSE(TransCompoundMap)
 631TESTPAGEFLAG_FALSE(TransTail)
 632PAGEFLAG_FALSE(DoubleMap)
 633        TESTSETFLAG_FALSE(DoubleMap)
 634        TESTCLEARFLAG_FALSE(DoubleMap)
 635#endif
 636
 637/*
 638 * For pages that are never mapped to userspace, page->mapcount may be
 639 * used for storing extra information about page type. Any value used
 640 * for this purpose must be <= -2, but it's better start not too close
 641 * to -2 so that an underflow of the page_mapcount() won't be mistaken
 642 * for a special page.
 643 */
 644#define PAGE_MAPCOUNT_OPS(uname, lname)                                 \
 645static __always_inline int Page##uname(struct page *page)               \
 646{                                                                       \
 647        return atomic_read(&page->_mapcount) ==                         \
 648                                PAGE_##lname##_MAPCOUNT_VALUE;          \
 649}                                                                       \
 650static __always_inline void __SetPage##uname(struct page *page)         \
 651{                                                                       \
 652        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);      \
 653        atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE);    \
 654}                                                                       \
 655static __always_inline void __ClearPage##uname(struct page *page)       \
 656{                                                                       \
 657        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 658        atomic_set(&page->_mapcount, -1);                               \
 659}
 660
 661/*
 662 * PageBuddy() indicate that the page is free and in the buddy system
 663 * (see mm/page_alloc.c).
 664 */
 665#define PAGE_BUDDY_MAPCOUNT_VALUE               (-128)
 666PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
 667
 668/*
 669 * PageBalloon() is set on pages that are on the balloon page list
 670 * (see mm/balloon_compaction.c).
 671 */
 672#define PAGE_BALLOON_MAPCOUNT_VALUE             (-256)
 673PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
 674
 675/*
 676 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
 677 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
 678 */
 679#define PAGE_KMEMCG_MAPCOUNT_VALUE              (-512)
 680PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
 681
 682extern bool is_free_buddy_page(struct page *page);
 683
 684__PAGEFLAG(Isolated, isolated, PF_ANY);
 685
 686/*
 687 * If network-based swap is enabled, sl*b must keep track of whether pages
 688 * were allocated from pfmemalloc reserves.
 689 */
 690static inline int PageSlabPfmemalloc(struct page *page)
 691{
 692        VM_BUG_ON_PAGE(!PageSlab(page), page);
 693        return PageActive(page);
 694}
 695
 696static inline void SetPageSlabPfmemalloc(struct page *page)
 697{
 698        VM_BUG_ON_PAGE(!PageSlab(page), page);
 699        SetPageActive(page);
 700}
 701
 702static inline void __ClearPageSlabPfmemalloc(struct page *page)
 703{
 704        VM_BUG_ON_PAGE(!PageSlab(page), page);
 705        __ClearPageActive(page);
 706}
 707
 708static inline void ClearPageSlabPfmemalloc(struct page *page)
 709{
 710        VM_BUG_ON_PAGE(!PageSlab(page), page);
 711        ClearPageActive(page);
 712}
 713
 714#ifdef CONFIG_MMU
 715#define __PG_MLOCKED            (1UL << PG_mlocked)
 716#else
 717#define __PG_MLOCKED            0
 718#endif
 719
 720/*
 721 * Flags checked when a page is freed.  Pages being freed should not have
 722 * these flags set.  It they are, there is a problem.
 723 */
 724#define PAGE_FLAGS_CHECK_AT_FREE                                \
 725        (1UL << PG_lru          | 1UL << PG_locked      |       \
 726         1UL << PG_private      | 1UL << PG_private_2   |       \
 727         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 728         1UL << PG_slab         | 1UL << PG_active      |       \
 729         1UL << PG_unevictable  | __PG_MLOCKED)
 730
 731/*
 732 * Flags checked when a page is prepped for return by the page allocator.
 733 * Pages being prepped should not have these flags set.  It they are set,
 734 * there has been a kernel bug or struct page corruption.
 735 *
 736 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 737 * alloc-free cycle to prevent from reusing the page.
 738 */
 739#define PAGE_FLAGS_CHECK_AT_PREP        \
 740        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 741
 742#define PAGE_FLAGS_PRIVATE                              \
 743        (1UL << PG_private | 1UL << PG_private_2)
 744/**
 745 * page_has_private - Determine if page has private stuff
 746 * @page: The page to be checked
 747 *
 748 * Determine if a page has private stuff, indicating that release routines
 749 * should be invoked upon it.
 750 */
 751static inline int page_has_private(struct page *page)
 752{
 753        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 754}
 755
 756#undef PF_ANY
 757#undef PF_HEAD
 758#undef PF_ONLY_HEAD
 759#undef PF_NO_TAIL
 760#undef PF_NO_COMPOUND
 761#endif /* !__GENERATING_BOUNDS_H */
 762
 763#endif  /* PAGE_FLAGS_H */
 764