1/* 2 * <linux/usb/gadget.h> 3 * 4 * We call the USB code inside a Linux-based peripheral device a "gadget" 5 * driver, except for the hardware-specific bus glue. One USB host can 6 * master many USB gadgets, but the gadgets are only slaved to one host. 7 * 8 * 9 * (C) Copyright 2002-2004 by David Brownell 10 * All Rights Reserved. 11 * 12 * This software is licensed under the GNU GPL version 2. 13 */ 14 15#ifndef __LINUX_USB_GADGET_H 16#define __LINUX_USB_GADGET_H 17 18#include <linux/device.h> 19#include <linux/errno.h> 20#include <linux/init.h> 21#include <linux/list.h> 22#include <linux/slab.h> 23#include <linux/scatterlist.h> 24#include <linux/types.h> 25#include <linux/workqueue.h> 26#include <linux/usb/ch9.h> 27 28#define UDC_TRACE_STR_MAX 512 29 30struct usb_ep; 31 32/** 33 * struct usb_request - describes one i/o request 34 * @buf: Buffer used for data. Always provide this; some controllers 35 * only use PIO, or don't use DMA for some endpoints. 36 * @dma: DMA address corresponding to 'buf'. If you don't set this 37 * field, and the usb controller needs one, it is responsible 38 * for mapping and unmapping the buffer. 39 * @sg: a scatterlist for SG-capable controllers. 40 * @num_sgs: number of SG entries 41 * @num_mapped_sgs: number of SG entries mapped to DMA (internal) 42 * @length: Length of that data 43 * @stream_id: The stream id, when USB3.0 bulk streams are being used 44 * @no_interrupt: If true, hints that no completion irq is needed. 45 * Helpful sometimes with deep request queues that are handled 46 * directly by DMA controllers. 47 * @zero: If true, when writing data, makes the last packet be "short" 48 * by adding a zero length packet as needed; 49 * @short_not_ok: When reading data, makes short packets be 50 * treated as errors (queue stops advancing till cleanup). 51 * @dma_mapped: Indicates if request has been mapped to DMA (internal) 52 * @complete: Function called when request completes, so this request and 53 * its buffer may be re-used. The function will always be called with 54 * interrupts disabled, and it must not sleep. 55 * Reads terminate with a short packet, or when the buffer fills, 56 * whichever comes first. When writes terminate, some data bytes 57 * will usually still be in flight (often in a hardware fifo). 58 * Errors (for reads or writes) stop the queue from advancing 59 * until the completion function returns, so that any transfers 60 * invalidated by the error may first be dequeued. 61 * @context: For use by the completion callback 62 * @list: For use by the gadget driver. 63 * @status: Reports completion code, zero or a negative errno. 64 * Normally, faults block the transfer queue from advancing until 65 * the completion callback returns. 66 * Code "-ESHUTDOWN" indicates completion caused by device disconnect, 67 * or when the driver disabled the endpoint. 68 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT 69 * transfers) this may be less than the requested length. If the 70 * short_not_ok flag is set, short reads are treated as errors 71 * even when status otherwise indicates successful completion. 72 * Note that for writes (IN transfers) some data bytes may still 73 * reside in a device-side FIFO when the request is reported as 74 * complete. 75 * 76 * These are allocated/freed through the endpoint they're used with. The 77 * hardware's driver can add extra per-request data to the memory it returns, 78 * which often avoids separate memory allocations (potential failures), 79 * later when the request is queued. 80 * 81 * Request flags affect request handling, such as whether a zero length 82 * packet is written (the "zero" flag), whether a short read should be 83 * treated as an error (blocking request queue advance, the "short_not_ok" 84 * flag), or hinting that an interrupt is not required (the "no_interrupt" 85 * flag, for use with deep request queues). 86 * 87 * Bulk endpoints can use any size buffers, and can also be used for interrupt 88 * transfers. interrupt-only endpoints can be much less functional. 89 * 90 * NOTE: this is analogous to 'struct urb' on the host side, except that 91 * it's thinner and promotes more pre-allocation. 92 */ 93 94struct usb_request { 95 void *buf; 96 unsigned length; 97 dma_addr_t dma; 98 99 struct scatterlist *sg; 100 unsigned num_sgs; 101 unsigned num_mapped_sgs; 102 103 unsigned stream_id:16; 104 unsigned no_interrupt:1; 105 unsigned zero:1; 106 unsigned short_not_ok:1; 107 unsigned dma_mapped:1; 108 109 void (*complete)(struct usb_ep *ep, 110 struct usb_request *req); 111 void *context; 112 struct list_head list; 113 114 int status; 115 unsigned actual; 116}; 117 118/*-------------------------------------------------------------------------*/ 119 120/* endpoint-specific parts of the api to the usb controller hardware. 121 * unlike the urb model, (de)multiplexing layers are not required. 122 * (so this api could slash overhead if used on the host side...) 123 * 124 * note that device side usb controllers commonly differ in how many 125 * endpoints they support, as well as their capabilities. 126 */ 127struct usb_ep_ops { 128 int (*enable) (struct usb_ep *ep, 129 const struct usb_endpoint_descriptor *desc); 130 int (*disable) (struct usb_ep *ep); 131 132 struct usb_request *(*alloc_request) (struct usb_ep *ep, 133 gfp_t gfp_flags); 134 void (*free_request) (struct usb_ep *ep, struct usb_request *req); 135 136 int (*queue) (struct usb_ep *ep, struct usb_request *req, 137 gfp_t gfp_flags); 138 int (*dequeue) (struct usb_ep *ep, struct usb_request *req); 139 140 int (*set_halt) (struct usb_ep *ep, int value); 141 int (*set_wedge) (struct usb_ep *ep); 142 143 int (*fifo_status) (struct usb_ep *ep); 144 void (*fifo_flush) (struct usb_ep *ep); 145}; 146 147/** 148 * struct usb_ep_caps - endpoint capabilities description 149 * @type_control:Endpoint supports control type (reserved for ep0). 150 * @type_iso:Endpoint supports isochronous transfers. 151 * @type_bulk:Endpoint supports bulk transfers. 152 * @type_int:Endpoint supports interrupt transfers. 153 * @dir_in:Endpoint supports IN direction. 154 * @dir_out:Endpoint supports OUT direction. 155 */ 156struct usb_ep_caps { 157 unsigned type_control:1; 158 unsigned type_iso:1; 159 unsigned type_bulk:1; 160 unsigned type_int:1; 161 unsigned dir_in:1; 162 unsigned dir_out:1; 163}; 164 165#define USB_EP_CAPS_TYPE_CONTROL 0x01 166#define USB_EP_CAPS_TYPE_ISO 0x02 167#define USB_EP_CAPS_TYPE_BULK 0x04 168#define USB_EP_CAPS_TYPE_INT 0x08 169#define USB_EP_CAPS_TYPE_ALL \ 170 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT) 171#define USB_EP_CAPS_DIR_IN 0x01 172#define USB_EP_CAPS_DIR_OUT 0x02 173#define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT) 174 175#define USB_EP_CAPS(_type, _dir) \ 176 { \ 177 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \ 178 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \ 179 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \ 180 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \ 181 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \ 182 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \ 183 } 184 185/** 186 * struct usb_ep - device side representation of USB endpoint 187 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk" 188 * @ops: Function pointers used to access hardware-specific operations. 189 * @ep_list:the gadget's ep_list holds all of its endpoints 190 * @caps:The structure describing types and directions supported by endoint. 191 * @maxpacket:The maximum packet size used on this endpoint. The initial 192 * value can sometimes be reduced (hardware allowing), according to 193 * the endpoint descriptor used to configure the endpoint. 194 * @maxpacket_limit:The maximum packet size value which can be handled by this 195 * endpoint. It's set once by UDC driver when endpoint is initialized, and 196 * should not be changed. Should not be confused with maxpacket. 197 * @max_streams: The maximum number of streams supported 198 * by this EP (0 - 16, actual number is 2^n) 199 * @mult: multiplier, 'mult' value for SS Isoc EPs 200 * @maxburst: the maximum number of bursts supported by this EP (for usb3) 201 * @driver_data:for use by the gadget driver. 202 * @address: used to identify the endpoint when finding descriptor that 203 * matches connection speed 204 * @desc: endpoint descriptor. This pointer is set before the endpoint is 205 * enabled and remains valid until the endpoint is disabled. 206 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion 207 * descriptor that is used to configure the endpoint 208 * 209 * the bus controller driver lists all the general purpose endpoints in 210 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list, 211 * and is accessed only in response to a driver setup() callback. 212 */ 213 214struct usb_ep { 215 void *driver_data; 216 217 const char *name; 218 const struct usb_ep_ops *ops; 219 struct list_head ep_list; 220 struct usb_ep_caps caps; 221 bool claimed; 222 bool enabled; 223 unsigned maxpacket:16; 224 unsigned maxpacket_limit:16; 225 unsigned max_streams:16; 226 unsigned mult:2; 227 unsigned maxburst:5; 228 u8 address; 229 const struct usb_endpoint_descriptor *desc; 230 const struct usb_ss_ep_comp_descriptor *comp_desc; 231}; 232 233/*-------------------------------------------------------------------------*/ 234 235#if IS_ENABLED(CONFIG_USB_GADGET) 236void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit); 237int usb_ep_enable(struct usb_ep *ep); 238int usb_ep_disable(struct usb_ep *ep); 239struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags); 240void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req); 241int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags); 242int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req); 243int usb_ep_set_halt(struct usb_ep *ep); 244int usb_ep_clear_halt(struct usb_ep *ep); 245int usb_ep_set_wedge(struct usb_ep *ep); 246int usb_ep_fifo_status(struct usb_ep *ep); 247void usb_ep_fifo_flush(struct usb_ep *ep); 248#else 249static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 250 unsigned maxpacket_limit) 251{ } 252static inline int usb_ep_enable(struct usb_ep *ep) 253{ return 0; } 254static inline int usb_ep_disable(struct usb_ep *ep) 255{ return 0; } 256static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 257 gfp_t gfp_flags) 258{ return NULL; } 259static inline void usb_ep_free_request(struct usb_ep *ep, 260 struct usb_request *req) 261{ } 262static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, 263 gfp_t gfp_flags) 264{ return 0; } 265static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 266{ return 0; } 267static inline int usb_ep_set_halt(struct usb_ep *ep) 268{ return 0; } 269static inline int usb_ep_clear_halt(struct usb_ep *ep) 270{ return 0; } 271static inline int usb_ep_set_wedge(struct usb_ep *ep) 272{ return 0; } 273static inline int usb_ep_fifo_status(struct usb_ep *ep) 274{ return 0; } 275static inline void usb_ep_fifo_flush(struct usb_ep *ep) 276{ } 277#endif /* USB_GADGET */ 278 279/*-------------------------------------------------------------------------*/ 280 281struct usb_dcd_config_params { 282 __u8 bU1devExitLat; /* U1 Device exit Latency */ 283#define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */ 284 __le16 bU2DevExitLat; /* U2 Device exit Latency */ 285#define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */ 286}; 287 288 289struct usb_gadget; 290struct usb_gadget_driver; 291struct usb_udc; 292 293/* the rest of the api to the controller hardware: device operations, 294 * which don't involve endpoints (or i/o). 295 */ 296struct usb_gadget_ops { 297 int (*get_frame)(struct usb_gadget *); 298 int (*wakeup)(struct usb_gadget *); 299 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered); 300 int (*vbus_session) (struct usb_gadget *, int is_active); 301 int (*vbus_draw) (struct usb_gadget *, unsigned mA); 302 int (*pullup) (struct usb_gadget *, int is_on); 303 int (*ioctl)(struct usb_gadget *, 304 unsigned code, unsigned long param); 305 void (*get_config_params)(struct usb_dcd_config_params *); 306 int (*udc_start)(struct usb_gadget *, 307 struct usb_gadget_driver *); 308 int (*udc_stop)(struct usb_gadget *); 309 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed); 310 struct usb_ep *(*match_ep)(struct usb_gadget *, 311 struct usb_endpoint_descriptor *, 312 struct usb_ss_ep_comp_descriptor *); 313}; 314 315/** 316 * struct usb_gadget - represents a usb slave device 317 * @work: (internal use) Workqueue to be used for sysfs_notify() 318 * @udc: struct usb_udc pointer for this gadget 319 * @ops: Function pointers used to access hardware-specific operations. 320 * @ep0: Endpoint zero, used when reading or writing responses to 321 * driver setup() requests 322 * @ep_list: List of other endpoints supported by the device. 323 * @speed: Speed of current connection to USB host. 324 * @max_speed: Maximal speed the UDC can handle. UDC must support this 325 * and all slower speeds. 326 * @state: the state we are now (attached, suspended, configured, etc) 327 * @name: Identifies the controller hardware type. Used in diagnostics 328 * and sometimes configuration. 329 * @dev: Driver model state for this abstract device. 330 * @out_epnum: last used out ep number 331 * @in_epnum: last used in ep number 332 * @mA: last set mA value 333 * @otg_caps: OTG capabilities of this gadget. 334 * @sg_supported: true if we can handle scatter-gather 335 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the 336 * gadget driver must provide a USB OTG descriptor. 337 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable 338 * is in the Mini-AB jack, and HNP has been used to switch roles 339 * so that the "A" device currently acts as A-Peripheral, not A-Host. 340 * @a_hnp_support: OTG device feature flag, indicating that the A-Host 341 * supports HNP at this port. 342 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host 343 * only supports HNP on a different root port. 344 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host 345 * enabled HNP support. 346 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device 347 * in peripheral mode can support HNP polling. 348 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral 349 * or B-Peripheral wants to take host role. 350 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to 351 * MaxPacketSize. 352 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in 353 * u_ether.c to improve performance. 354 * @is_selfpowered: if the gadget is self-powered. 355 * @deactivated: True if gadget is deactivated - in deactivated state it cannot 356 * be connected. 357 * @connected: True if gadget is connected. 358 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag 359 * indicates that it supports LPM as per the LPM ECN & errata. 360 * 361 * Gadgets have a mostly-portable "gadget driver" implementing device 362 * functions, handling all usb configurations and interfaces. Gadget 363 * drivers talk to hardware-specific code indirectly, through ops vectors. 364 * That insulates the gadget driver from hardware details, and packages 365 * the hardware endpoints through generic i/o queues. The "usb_gadget" 366 * and "usb_ep" interfaces provide that insulation from the hardware. 367 * 368 * Except for the driver data, all fields in this structure are 369 * read-only to the gadget driver. That driver data is part of the 370 * "driver model" infrastructure in 2.6 (and later) kernels, and for 371 * earlier systems is grouped in a similar structure that's not known 372 * to the rest of the kernel. 373 * 374 * Values of the three OTG device feature flags are updated before the 375 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before 376 * driver suspend() calls. They are valid only when is_otg, and when the 377 * device is acting as a B-Peripheral (so is_a_peripheral is false). 378 */ 379struct usb_gadget { 380 struct work_struct work; 381 struct usb_udc *udc; 382 /* readonly to gadget driver */ 383 const struct usb_gadget_ops *ops; 384 struct usb_ep *ep0; 385 struct list_head ep_list; /* of usb_ep */ 386 enum usb_device_speed speed; 387 enum usb_device_speed max_speed; 388 enum usb_device_state state; 389 const char *name; 390 struct device dev; 391 unsigned out_epnum; 392 unsigned in_epnum; 393 unsigned mA; 394 struct usb_otg_caps *otg_caps; 395 396 unsigned sg_supported:1; 397 unsigned is_otg:1; 398 unsigned is_a_peripheral:1; 399 unsigned b_hnp_enable:1; 400 unsigned a_hnp_support:1; 401 unsigned a_alt_hnp_support:1; 402 unsigned hnp_polling_support:1; 403 unsigned host_request_flag:1; 404 unsigned quirk_ep_out_aligned_size:1; 405 unsigned quirk_altset_not_supp:1; 406 unsigned quirk_stall_not_supp:1; 407 unsigned quirk_zlp_not_supp:1; 408 unsigned quirk_avoids_skb_reserve:1; 409 unsigned is_selfpowered:1; 410 unsigned deactivated:1; 411 unsigned connected:1; 412 unsigned lpm_capable:1; 413}; 414#define work_to_gadget(w) (container_of((w), struct usb_gadget, work)) 415 416static inline void set_gadget_data(struct usb_gadget *gadget, void *data) 417 { dev_set_drvdata(&gadget->dev, data); } 418static inline void *get_gadget_data(struct usb_gadget *gadget) 419 { return dev_get_drvdata(&gadget->dev); } 420static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev) 421{ 422 return container_of(dev, struct usb_gadget, dev); 423} 424 425/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */ 426#define gadget_for_each_ep(tmp, gadget) \ 427 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list) 428 429/** 430 * usb_ep_align - returns @len aligned to ep's maxpacketsize. 431 * @ep: the endpoint whose maxpacketsize is used to align @len 432 * @len: buffer size's length to align to @ep's maxpacketsize 433 * 434 * This helper is used to align buffer's size to an ep's maxpacketsize. 435 */ 436static inline size_t usb_ep_align(struct usb_ep *ep, size_t len) 437{ 438 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff; 439 440 return round_up(len, max_packet_size); 441} 442 443/** 444 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget 445 * requires quirk_ep_out_aligned_size, otherwise returns len. 446 * @g: controller to check for quirk 447 * @ep: the endpoint whose maxpacketsize is used to align @len 448 * @len: buffer size's length to align to @ep's maxpacketsize 449 * 450 * This helper is used in case it's required for any reason to check and maybe 451 * align buffer's size to an ep's maxpacketsize. 452 */ 453static inline size_t 454usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len) 455{ 456 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len; 457} 458 459/** 460 * gadget_is_altset_supported - return true iff the hardware supports 461 * altsettings 462 * @g: controller to check for quirk 463 */ 464static inline int gadget_is_altset_supported(struct usb_gadget *g) 465{ 466 return !g->quirk_altset_not_supp; 467} 468 469/** 470 * gadget_is_stall_supported - return true iff the hardware supports stalling 471 * @g: controller to check for quirk 472 */ 473static inline int gadget_is_stall_supported(struct usb_gadget *g) 474{ 475 return !g->quirk_stall_not_supp; 476} 477 478/** 479 * gadget_is_zlp_supported - return true iff the hardware supports zlp 480 * @g: controller to check for quirk 481 */ 482static inline int gadget_is_zlp_supported(struct usb_gadget *g) 483{ 484 return !g->quirk_zlp_not_supp; 485} 486 487/** 488 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid 489 * skb_reserve to improve performance. 490 * @g: controller to check for quirk 491 */ 492static inline int gadget_avoids_skb_reserve(struct usb_gadget *g) 493{ 494 return g->quirk_avoids_skb_reserve; 495} 496 497/** 498 * gadget_is_dualspeed - return true iff the hardware handles high speed 499 * @g: controller that might support both high and full speeds 500 */ 501static inline int gadget_is_dualspeed(struct usb_gadget *g) 502{ 503 return g->max_speed >= USB_SPEED_HIGH; 504} 505 506/** 507 * gadget_is_superspeed() - return true if the hardware handles superspeed 508 * @g: controller that might support superspeed 509 */ 510static inline int gadget_is_superspeed(struct usb_gadget *g) 511{ 512 return g->max_speed >= USB_SPEED_SUPER; 513} 514 515/** 516 * gadget_is_superspeed_plus() - return true if the hardware handles 517 * superspeed plus 518 * @g: controller that might support superspeed plus 519 */ 520static inline int gadget_is_superspeed_plus(struct usb_gadget *g) 521{ 522 return g->max_speed >= USB_SPEED_SUPER_PLUS; 523} 524 525/** 526 * gadget_is_otg - return true iff the hardware is OTG-ready 527 * @g: controller that might have a Mini-AB connector 528 * 529 * This is a runtime test, since kernels with a USB-OTG stack sometimes 530 * run on boards which only have a Mini-B (or Mini-A) connector. 531 */ 532static inline int gadget_is_otg(struct usb_gadget *g) 533{ 534#ifdef CONFIG_USB_OTG 535 return g->is_otg; 536#else 537 return 0; 538#endif 539} 540 541/*-------------------------------------------------------------------------*/ 542 543#if IS_ENABLED(CONFIG_USB_GADGET) 544int usb_gadget_frame_number(struct usb_gadget *gadget); 545int usb_gadget_wakeup(struct usb_gadget *gadget); 546int usb_gadget_set_selfpowered(struct usb_gadget *gadget); 547int usb_gadget_clear_selfpowered(struct usb_gadget *gadget); 548int usb_gadget_vbus_connect(struct usb_gadget *gadget); 549int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA); 550int usb_gadget_vbus_disconnect(struct usb_gadget *gadget); 551int usb_gadget_connect(struct usb_gadget *gadget); 552int usb_gadget_disconnect(struct usb_gadget *gadget); 553int usb_gadget_deactivate(struct usb_gadget *gadget); 554int usb_gadget_activate(struct usb_gadget *gadget); 555#else 556static inline int usb_gadget_frame_number(struct usb_gadget *gadget) 557{ return 0; } 558static inline int usb_gadget_wakeup(struct usb_gadget *gadget) 559{ return 0; } 560static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 561{ return 0; } 562static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 563{ return 0; } 564static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget) 565{ return 0; } 566static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 567{ return 0; } 568static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 569{ return 0; } 570static inline int usb_gadget_connect(struct usb_gadget *gadget) 571{ return 0; } 572static inline int usb_gadget_disconnect(struct usb_gadget *gadget) 573{ return 0; } 574static inline int usb_gadget_deactivate(struct usb_gadget *gadget) 575{ return 0; } 576static inline int usb_gadget_activate(struct usb_gadget *gadget) 577{ return 0; } 578#endif /* CONFIG_USB_GADGET */ 579 580/*-------------------------------------------------------------------------*/ 581 582/** 583 * struct usb_gadget_driver - driver for usb 'slave' devices 584 * @function: String describing the gadget's function 585 * @max_speed: Highest speed the driver handles. 586 * @setup: Invoked for ep0 control requests that aren't handled by 587 * the hardware level driver. Most calls must be handled by 588 * the gadget driver, including descriptor and configuration 589 * management. The 16 bit members of the setup data are in 590 * USB byte order. Called in_interrupt; this may not sleep. Driver 591 * queues a response to ep0, or returns negative to stall. 592 * @disconnect: Invoked after all transfers have been stopped, 593 * when the host is disconnected. May be called in_interrupt; this 594 * may not sleep. Some devices can't detect disconnect, so this might 595 * not be called except as part of controller shutdown. 596 * @bind: the driver's bind callback 597 * @unbind: Invoked when the driver is unbound from a gadget, 598 * usually from rmmod (after a disconnect is reported). 599 * Called in a context that permits sleeping. 600 * @suspend: Invoked on USB suspend. May be called in_interrupt. 601 * @resume: Invoked on USB resume. May be called in_interrupt. 602 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers 603 * and should be called in_interrupt. 604 * @driver: Driver model state for this driver. 605 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL, 606 * this driver will be bound to any available UDC. 607 * @pending: UDC core private data used for deferred probe of this driver. 608 * @match_existing_only: If udc is not found, return an error and don't add this 609 * gadget driver to list of pending driver 610 * 611 * Devices are disabled till a gadget driver successfully bind()s, which 612 * means the driver will handle setup() requests needed to enumerate (and 613 * meet "chapter 9" requirements) then do some useful work. 614 * 615 * If gadget->is_otg is true, the gadget driver must provide an OTG 616 * descriptor during enumeration, or else fail the bind() call. In such 617 * cases, no USB traffic may flow until both bind() returns without 618 * having called usb_gadget_disconnect(), and the USB host stack has 619 * initialized. 620 * 621 * Drivers use hardware-specific knowledge to configure the usb hardware. 622 * endpoint addressing is only one of several hardware characteristics that 623 * are in descriptors the ep0 implementation returns from setup() calls. 624 * 625 * Except for ep0 implementation, most driver code shouldn't need change to 626 * run on top of different usb controllers. It'll use endpoints set up by 627 * that ep0 implementation. 628 * 629 * The usb controller driver handles a few standard usb requests. Those 630 * include set_address, and feature flags for devices, interfaces, and 631 * endpoints (the get_status, set_feature, and clear_feature requests). 632 * 633 * Accordingly, the driver's setup() callback must always implement all 634 * get_descriptor requests, returning at least a device descriptor and 635 * a configuration descriptor. Drivers must make sure the endpoint 636 * descriptors match any hardware constraints. Some hardware also constrains 637 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3). 638 * 639 * The driver's setup() callback must also implement set_configuration, 640 * and should also implement set_interface, get_configuration, and 641 * get_interface. Setting a configuration (or interface) is where 642 * endpoints should be activated or (config 0) shut down. 643 * 644 * (Note that only the default control endpoint is supported. Neither 645 * hosts nor devices generally support control traffic except to ep0.) 646 * 647 * Most devices will ignore USB suspend/resume operations, and so will 648 * not provide those callbacks. However, some may need to change modes 649 * when the host is not longer directing those activities. For example, 650 * local controls (buttons, dials, etc) may need to be re-enabled since 651 * the (remote) host can't do that any longer; or an error state might 652 * be cleared, to make the device behave identically whether or not 653 * power is maintained. 654 */ 655struct usb_gadget_driver { 656 char *function; 657 enum usb_device_speed max_speed; 658 int (*bind)(struct usb_gadget *gadget, 659 struct usb_gadget_driver *driver); 660 void (*unbind)(struct usb_gadget *); 661 int (*setup)(struct usb_gadget *, 662 const struct usb_ctrlrequest *); 663 void (*disconnect)(struct usb_gadget *); 664 void (*suspend)(struct usb_gadget *); 665 void (*resume)(struct usb_gadget *); 666 void (*reset)(struct usb_gadget *); 667 668 /* FIXME support safe rmmod */ 669 struct device_driver driver; 670 671 char *udc_name; 672 struct list_head pending; 673 unsigned match_existing_only:1; 674}; 675 676 677 678/*-------------------------------------------------------------------------*/ 679 680/* driver modules register and unregister, as usual. 681 * these calls must be made in a context that can sleep. 682 * 683 * these will usually be implemented directly by the hardware-dependent 684 * usb bus interface driver, which will only support a single driver. 685 */ 686 687/** 688 * usb_gadget_probe_driver - probe a gadget driver 689 * @driver: the driver being registered 690 * Context: can sleep 691 * 692 * Call this in your gadget driver's module initialization function, 693 * to tell the underlying usb controller driver about your driver. 694 * The @bind() function will be called to bind it to a gadget before this 695 * registration call returns. It's expected that the @bind() function will 696 * be in init sections. 697 */ 698int usb_gadget_probe_driver(struct usb_gadget_driver *driver); 699 700/** 701 * usb_gadget_unregister_driver - unregister a gadget driver 702 * @driver:the driver being unregistered 703 * Context: can sleep 704 * 705 * Call this in your gadget driver's module cleanup function, 706 * to tell the underlying usb controller that your driver is 707 * going away. If the controller is connected to a USB host, 708 * it will first disconnect(). The driver is also requested 709 * to unbind() and clean up any device state, before this procedure 710 * finally returns. It's expected that the unbind() functions 711 * will in in exit sections, so may not be linked in some kernels. 712 */ 713int usb_gadget_unregister_driver(struct usb_gadget_driver *driver); 714 715extern int usb_add_gadget_udc_release(struct device *parent, 716 struct usb_gadget *gadget, void (*release)(struct device *dev)); 717extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget); 718extern void usb_del_gadget_udc(struct usb_gadget *gadget); 719extern char *usb_get_gadget_udc_name(void); 720 721/*-------------------------------------------------------------------------*/ 722 723/* utility to simplify dealing with string descriptors */ 724 725/** 726 * struct usb_string - wraps a C string and its USB id 727 * @id:the (nonzero) ID for this string 728 * @s:the string, in UTF-8 encoding 729 * 730 * If you're using usb_gadget_get_string(), use this to wrap a string 731 * together with its ID. 732 */ 733struct usb_string { 734 u8 id; 735 const char *s; 736}; 737 738/** 739 * struct usb_gadget_strings - a set of USB strings in a given language 740 * @language:identifies the strings' language (0x0409 for en-us) 741 * @strings:array of strings with their ids 742 * 743 * If you're using usb_gadget_get_string(), use this to wrap all the 744 * strings for a given language. 745 */ 746struct usb_gadget_strings { 747 u16 language; /* 0x0409 for en-us */ 748 struct usb_string *strings; 749}; 750 751struct usb_gadget_string_container { 752 struct list_head list; 753 u8 *stash[0]; 754}; 755 756/* put descriptor for string with that id into buf (buflen >= 256) */ 757int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf); 758 759/*-------------------------------------------------------------------------*/ 760 761/* utility to simplify managing config descriptors */ 762 763/* write vector of descriptors into buffer */ 764int usb_descriptor_fillbuf(void *, unsigned, 765 const struct usb_descriptor_header **); 766 767/* build config descriptor from single descriptor vector */ 768int usb_gadget_config_buf(const struct usb_config_descriptor *config, 769 void *buf, unsigned buflen, const struct usb_descriptor_header **desc); 770 771/* copy a NULL-terminated vector of descriptors */ 772struct usb_descriptor_header **usb_copy_descriptors( 773 struct usb_descriptor_header **); 774 775/** 776 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors() 777 * @v: vector of descriptors 778 */ 779static inline void usb_free_descriptors(struct usb_descriptor_header **v) 780{ 781 kfree(v); 782} 783 784struct usb_function; 785int usb_assign_descriptors(struct usb_function *f, 786 struct usb_descriptor_header **fs, 787 struct usb_descriptor_header **hs, 788 struct usb_descriptor_header **ss, 789 struct usb_descriptor_header **ssp); 790void usb_free_all_descriptors(struct usb_function *f); 791 792struct usb_descriptor_header *usb_otg_descriptor_alloc( 793 struct usb_gadget *gadget); 794int usb_otg_descriptor_init(struct usb_gadget *gadget, 795 struct usb_descriptor_header *otg_desc); 796/*-------------------------------------------------------------------------*/ 797 798/* utility to simplify map/unmap of usb_requests to/from DMA */ 799 800extern int usb_gadget_map_request_by_dev(struct device *dev, 801 struct usb_request *req, int is_in); 802extern int usb_gadget_map_request(struct usb_gadget *gadget, 803 struct usb_request *req, int is_in); 804 805extern void usb_gadget_unmap_request_by_dev(struct device *dev, 806 struct usb_request *req, int is_in); 807extern void usb_gadget_unmap_request(struct usb_gadget *gadget, 808 struct usb_request *req, int is_in); 809 810/*-------------------------------------------------------------------------*/ 811 812/* utility to set gadget state properly */ 813 814extern void usb_gadget_set_state(struct usb_gadget *gadget, 815 enum usb_device_state state); 816 817/*-------------------------------------------------------------------------*/ 818 819/* utility to tell udc core that the bus reset occurs */ 820extern void usb_gadget_udc_reset(struct usb_gadget *gadget, 821 struct usb_gadget_driver *driver); 822 823/*-------------------------------------------------------------------------*/ 824 825/* utility to give requests back to the gadget layer */ 826 827extern void usb_gadget_giveback_request(struct usb_ep *ep, 828 struct usb_request *req); 829 830/*-------------------------------------------------------------------------*/ 831 832/* utility to find endpoint by name */ 833 834extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, 835 const char *name); 836 837/*-------------------------------------------------------------------------*/ 838 839/* utility to check if endpoint caps match descriptor needs */ 840 841extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 842 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 843 struct usb_ss_ep_comp_descriptor *ep_comp); 844 845/*-------------------------------------------------------------------------*/ 846 847/* utility to update vbus status for udc core, it may be scheduled */ 848extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status); 849 850/*-------------------------------------------------------------------------*/ 851 852/* utility wrapping a simple endpoint selection policy */ 853 854extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *, 855 struct usb_endpoint_descriptor *); 856 857 858extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *, 859 struct usb_endpoint_descriptor *, 860 struct usb_ss_ep_comp_descriptor *); 861 862extern void usb_ep_autoconfig_release(struct usb_ep *); 863 864extern void usb_ep_autoconfig_reset(struct usb_gadget *); 865 866#endif /* __LINUX_USB_GADGET_H */ 867