linux/include/net/tcp.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the TCP module.
   7 *
   8 * Version:     @(#)tcp.h       1.0.5   05/23/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *              This program is free software; you can redistribute it and/or
  14 *              modify it under the terms of the GNU General Public License
  15 *              as published by the Free Software Foundation; either version
  16 *              2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
  48
  49#include <linux/bpf.h>
  50#include <linux/filter.h>
  51#include <linux/bpf-cgroup.h>
  52
  53extern struct inet_hashinfo tcp_hashinfo;
  54
  55extern struct percpu_counter tcp_orphan_count;
  56void tcp_time_wait(struct sock *sk, int state, int timeo);
  57
  58#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  59#define MAX_TCP_OPTION_SPACE 40
  60
  61/*
  62 * Never offer a window over 32767 without using window scaling. Some
  63 * poor stacks do signed 16bit maths!
  64 */
  65#define MAX_TCP_WINDOW          32767U
  66
  67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  68#define TCP_MIN_MSS             88U
  69
  70/* The least MTU to use for probing */
  71#define TCP_BASE_MSS            1024
  72
  73/* probing interval, default to 10 minutes as per RFC4821 */
  74#define TCP_PROBE_INTERVAL      600
  75
  76/* Specify interval when tcp mtu probing will stop */
  77#define TCP_PROBE_THRESHOLD     8
  78
  79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  80#define TCP_FASTRETRANS_THRESH 3
  81
  82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  83#define TCP_MAX_QUICKACKS       16U
  84
  85/* Maximal number of window scale according to RFC1323 */
  86#define TCP_MAX_WSCALE          14U
  87
  88/* urg_data states */
  89#define TCP_URG_VALID   0x0100
  90#define TCP_URG_NOTYET  0x0200
  91#define TCP_URG_READ    0x0400
  92
  93#define TCP_RETR1       3       /*
  94                                 * This is how many retries it does before it
  95                                 * tries to figure out if the gateway is
  96                                 * down. Minimal RFC value is 3; it corresponds
  97                                 * to ~3sec-8min depending on RTO.
  98                                 */
  99
 100#define TCP_RETR2       15      /*
 101                                 * This should take at least
 102                                 * 90 minutes to time out.
 103                                 * RFC1122 says that the limit is 100 sec.
 104                                 * 15 is ~13-30min depending on RTO.
 105                                 */
 106
 107#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 108                                 * when active opening a connection.
 109                                 * RFC1122 says the minimum retry MUST
 110                                 * be at least 180secs.  Nevertheless
 111                                 * this value is corresponding to
 112                                 * 63secs of retransmission with the
 113                                 * current initial RTO.
 114                                 */
 115
 116#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 117                                 * when passive opening a connection.
 118                                 * This is corresponding to 31secs of
 119                                 * retransmission with the current
 120                                 * initial RTO.
 121                                 */
 122
 123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 124                                  * state, about 60 seconds     */
 125#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 126                                 /* BSD style FIN_WAIT2 deadlock breaker.
 127                                  * It used to be 3min, new value is 60sec,
 128                                  * to combine FIN-WAIT-2 timeout with
 129                                  * TIME-WAIT timer.
 130                                  */
 131
 132#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 133#if HZ >= 100
 134#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 135#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 136#else
 137#define TCP_DELACK_MIN  4U
 138#define TCP_ATO_MIN     4U
 139#endif
 140#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 141#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 142#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 143#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 144#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 145                                                 * used as a fallback RTO for the
 146                                                 * initial data transmission if no
 147                                                 * valid RTT sample has been acquired,
 148                                                 * most likely due to retrans in 3WHS.
 149                                                 */
 150
 151#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 152                                                         * for local resources.
 153                                                         */
 154#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 155#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 156#define TCP_KEEPALIVE_INTVL     (75*HZ)
 157
 158#define MAX_TCP_KEEPIDLE        32767
 159#define MAX_TCP_KEEPINTVL       32767
 160#define MAX_TCP_KEEPCNT         127
 161#define MAX_TCP_SYNCNT          127
 162
 163#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 164
 165#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 166#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 167                                         * after this time. It should be equal
 168                                         * (or greater than) TCP_TIMEWAIT_LEN
 169                                         * to provide reliability equal to one
 170                                         * provided by timewait state.
 171                                         */
 172#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 173                                         * timestamps. It must be less than
 174                                         * minimal timewait lifetime.
 175                                         */
 176/*
 177 *      TCP option
 178 */
 179
 180#define TCPOPT_NOP              1       /* Padding */
 181#define TCPOPT_EOL              0       /* End of options */
 182#define TCPOPT_MSS              2       /* Segment size negotiating */
 183#define TCPOPT_WINDOW           3       /* Window scaling */
 184#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 185#define TCPOPT_SACK             5       /* SACK Block */
 186#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 187#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 188#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 189#define TCPOPT_EXP              254     /* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC   0xF989
 194
 195/*
 196 *     TCP option lengths
 197 */
 198
 199#define TCPOLEN_MSS            4
 200#define TCPOLEN_WINDOW         3
 201#define TCPOLEN_SACK_PERM      2
 202#define TCPOLEN_TIMESTAMP      10
 203#define TCPOLEN_MD5SIG         18
 204#define TCPOLEN_FASTOPEN_BASE  2
 205#define TCPOLEN_EXP_FASTOPEN_BASE  4
 206
 207/* But this is what stacks really send out. */
 208#define TCPOLEN_TSTAMP_ALIGNED          12
 209#define TCPOLEN_WSCALE_ALIGNED          4
 210#define TCPOLEN_SACKPERM_ALIGNED        4
 211#define TCPOLEN_SACK_BASE               2
 212#define TCPOLEN_SACK_BASE_ALIGNED       4
 213#define TCPOLEN_SACK_PERBLOCK           8
 214#define TCPOLEN_MD5SIG_ALIGNED          20
 215#define TCPOLEN_MSS_ALIGNED             4
 216
 217/* Flags in tp->nonagle */
 218#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 219#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 220#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 221
 222/* TCP thin-stream limits */
 223#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 224
 225/* TCP initial congestion window as per rfc6928 */
 226#define TCP_INIT_CWND           10
 227
 228/* Bit Flags for sysctl_tcp_fastopen */
 229#define TFO_CLIENT_ENABLE       1
 230#define TFO_SERVER_ENABLE       2
 231#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 232
 233/* Accept SYN data w/o any cookie option */
 234#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 235
 236/* Force enable TFO on all listeners, i.e., not requiring the
 237 * TCP_FASTOPEN socket option.
 238 */
 239#define TFO_SERVER_WO_SOCKOPT1  0x400
 240
 241
 242/* sysctl variables for tcp */
 243extern int sysctl_tcp_fastopen;
 244extern int sysctl_tcp_retrans_collapse;
 245extern int sysctl_tcp_stdurg;
 246extern int sysctl_tcp_rfc1337;
 247extern int sysctl_tcp_abort_on_overflow;
 248extern int sysctl_tcp_max_orphans;
 249extern int sysctl_tcp_fack;
 250extern int sysctl_tcp_reordering;
 251extern int sysctl_tcp_max_reordering;
 252extern int sysctl_tcp_dsack;
 253extern long sysctl_tcp_mem[3];
 254extern int sysctl_tcp_wmem[3];
 255extern int sysctl_tcp_rmem[3];
 256extern int sysctl_tcp_app_win;
 257extern int sysctl_tcp_adv_win_scale;
 258extern int sysctl_tcp_frto;
 259extern int sysctl_tcp_nometrics_save;
 260extern int sysctl_tcp_moderate_rcvbuf;
 261extern int sysctl_tcp_tso_win_divisor;
 262extern int sysctl_tcp_workaround_signed_windows;
 263extern int sysctl_tcp_slow_start_after_idle;
 264extern int sysctl_tcp_thin_linear_timeouts;
 265extern int sysctl_tcp_thin_dupack;
 266extern int sysctl_tcp_early_retrans;
 267extern int sysctl_tcp_recovery;
 268#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 269
 270extern int sysctl_tcp_limit_output_bytes;
 271extern int sysctl_tcp_challenge_ack_limit;
 272extern int sysctl_tcp_min_tso_segs;
 273extern int sysctl_tcp_min_rtt_wlen;
 274extern int sysctl_tcp_autocorking;
 275extern int sysctl_tcp_invalid_ratelimit;
 276extern int sysctl_tcp_pacing_ss_ratio;
 277extern int sysctl_tcp_pacing_ca_ratio;
 278
 279extern atomic_long_t tcp_memory_allocated;
 280extern struct percpu_counter tcp_sockets_allocated;
 281extern unsigned long tcp_memory_pressure;
 282
 283/* optimized version of sk_under_memory_pressure() for TCP sockets */
 284static inline bool tcp_under_memory_pressure(const struct sock *sk)
 285{
 286        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 287            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 288                return true;
 289
 290        return tcp_memory_pressure;
 291}
 292/*
 293 * The next routines deal with comparing 32 bit unsigned ints
 294 * and worry about wraparound (automatic with unsigned arithmetic).
 295 */
 296
 297static inline bool before(__u32 seq1, __u32 seq2)
 298{
 299        return (__s32)(seq1-seq2) < 0;
 300}
 301#define after(seq2, seq1)       before(seq1, seq2)
 302
 303/* is s2<=s1<=s3 ? */
 304static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 305{
 306        return seq3 - seq2 >= seq1 - seq2;
 307}
 308
 309static inline bool tcp_out_of_memory(struct sock *sk)
 310{
 311        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 312            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 313                return true;
 314        return false;
 315}
 316
 317void sk_forced_mem_schedule(struct sock *sk, int size);
 318
 319static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 320{
 321        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 322        int orphans = percpu_counter_read_positive(ocp);
 323
 324        if (orphans << shift > sysctl_tcp_max_orphans) {
 325                orphans = percpu_counter_sum_positive(ocp);
 326                if (orphans << shift > sysctl_tcp_max_orphans)
 327                        return true;
 328        }
 329        return false;
 330}
 331
 332bool tcp_check_oom(struct sock *sk, int shift);
 333
 334
 335extern struct proto tcp_prot;
 336
 337#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 338#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 339#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 340#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 341
 342void tcp_tasklet_init(void);
 343
 344void tcp_v4_err(struct sk_buff *skb, u32);
 345
 346void tcp_shutdown(struct sock *sk, int how);
 347
 348int tcp_v4_early_demux(struct sk_buff *skb);
 349int tcp_v4_rcv(struct sk_buff *skb);
 350
 351int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 352int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 353int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 354int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 355                 int flags);
 356int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 357                        size_t size, int flags);
 358ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 359                 size_t size, int flags);
 360void tcp_release_cb(struct sock *sk);
 361void tcp_wfree(struct sk_buff *skb);
 362void tcp_write_timer_handler(struct sock *sk);
 363void tcp_delack_timer_handler(struct sock *sk);
 364int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 365int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 366void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 367                         const struct tcphdr *th);
 368void tcp_rcv_space_adjust(struct sock *sk);
 369int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 370void tcp_twsk_destructor(struct sock *sk);
 371ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 372                        struct pipe_inode_info *pipe, size_t len,
 373                        unsigned int flags);
 374
 375static inline void tcp_dec_quickack_mode(struct sock *sk,
 376                                         const unsigned int pkts)
 377{
 378        struct inet_connection_sock *icsk = inet_csk(sk);
 379
 380        if (icsk->icsk_ack.quick) {
 381                if (pkts >= icsk->icsk_ack.quick) {
 382                        icsk->icsk_ack.quick = 0;
 383                        /* Leaving quickack mode we deflate ATO. */
 384                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 385                } else
 386                        icsk->icsk_ack.quick -= pkts;
 387        }
 388}
 389
 390#define TCP_ECN_OK              1
 391#define TCP_ECN_QUEUE_CWR       2
 392#define TCP_ECN_DEMAND_CWR      4
 393#define TCP_ECN_SEEN            8
 394
 395enum tcp_tw_status {
 396        TCP_TW_SUCCESS = 0,
 397        TCP_TW_RST = 1,
 398        TCP_TW_ACK = 2,
 399        TCP_TW_SYN = 3
 400};
 401
 402
 403enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 404                                              struct sk_buff *skb,
 405                                              const struct tcphdr *th);
 406struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 407                           struct request_sock *req, bool fastopen);
 408int tcp_child_process(struct sock *parent, struct sock *child,
 409                      struct sk_buff *skb);
 410void tcp_enter_loss(struct sock *sk);
 411void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 412void tcp_clear_retrans(struct tcp_sock *tp);
 413void tcp_update_metrics(struct sock *sk);
 414void tcp_init_metrics(struct sock *sk);
 415void tcp_metrics_init(void);
 416bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 417void tcp_disable_fack(struct tcp_sock *tp);
 418void tcp_close(struct sock *sk, long timeout);
 419void tcp_init_sock(struct sock *sk);
 420unsigned int tcp_poll(struct file *file, struct socket *sock,
 421                      struct poll_table_struct *wait);
 422int tcp_getsockopt(struct sock *sk, int level, int optname,
 423                   char __user *optval, int __user *optlen);
 424int tcp_setsockopt(struct sock *sk, int level, int optname,
 425                   char __user *optval, unsigned int optlen);
 426int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 427                          char __user *optval, int __user *optlen);
 428int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 429                          char __user *optval, unsigned int optlen);
 430void tcp_set_keepalive(struct sock *sk, int val);
 431void tcp_syn_ack_timeout(const struct request_sock *req);
 432int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 433                int flags, int *addr_len);
 434void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 435                       struct tcp_options_received *opt_rx,
 436                       int estab, struct tcp_fastopen_cookie *foc);
 437const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 438
 439/*
 440 *      TCP v4 functions exported for the inet6 API
 441 */
 442
 443void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 444void tcp_v4_mtu_reduced(struct sock *sk);
 445void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 446int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 447struct sock *tcp_create_openreq_child(const struct sock *sk,
 448                                      struct request_sock *req,
 449                                      struct sk_buff *skb);
 450void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 451struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 452                                  struct request_sock *req,
 453                                  struct dst_entry *dst,
 454                                  struct request_sock *req_unhash,
 455                                  bool *own_req);
 456int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 457int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 458int tcp_connect(struct sock *sk);
 459enum tcp_synack_type {
 460        TCP_SYNACK_NORMAL,
 461        TCP_SYNACK_FASTOPEN,
 462        TCP_SYNACK_COOKIE,
 463};
 464struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 465                                struct request_sock *req,
 466                                struct tcp_fastopen_cookie *foc,
 467                                enum tcp_synack_type synack_type);
 468int tcp_disconnect(struct sock *sk, int flags);
 469
 470void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 471int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 472void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 473
 474/* From syncookies.c */
 475struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 476                                 struct request_sock *req,
 477                                 struct dst_entry *dst, u32 tsoff);
 478int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 479                      u32 cookie);
 480struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 481#ifdef CONFIG_SYN_COOKIES
 482
 483/* Syncookies use a monotonic timer which increments every 60 seconds.
 484 * This counter is used both as a hash input and partially encoded into
 485 * the cookie value.  A cookie is only validated further if the delta
 486 * between the current counter value and the encoded one is less than this,
 487 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 488 * the counter advances immediately after a cookie is generated).
 489 */
 490#define MAX_SYNCOOKIE_AGE       2
 491#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 492#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 493
 494/* syncookies: remember time of last synqueue overflow
 495 * But do not dirty this field too often (once per second is enough)
 496 * It is racy as we do not hold a lock, but race is very minor.
 497 */
 498static inline void tcp_synq_overflow(const struct sock *sk)
 499{
 500        unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 501        unsigned long now = jiffies;
 502
 503        if (time_after(now, last_overflow + HZ))
 504                tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 505}
 506
 507/* syncookies: no recent synqueue overflow on this listening socket? */
 508static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 509{
 510        unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 511
 512        return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 513}
 514
 515static inline u32 tcp_cookie_time(void)
 516{
 517        u64 val = get_jiffies_64();
 518
 519        do_div(val, TCP_SYNCOOKIE_PERIOD);
 520        return val;
 521}
 522
 523u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 524                              u16 *mssp);
 525__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 526u64 cookie_init_timestamp(struct request_sock *req);
 527bool cookie_timestamp_decode(const struct net *net,
 528                             struct tcp_options_received *opt);
 529bool cookie_ecn_ok(const struct tcp_options_received *opt,
 530                   const struct net *net, const struct dst_entry *dst);
 531
 532/* From net/ipv6/syncookies.c */
 533int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 534                      u32 cookie);
 535struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 536
 537u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 538                              const struct tcphdr *th, u16 *mssp);
 539__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 540#endif
 541/* tcp_output.c */
 542
 543u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
 544                     int min_tso_segs);
 545void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 546                               int nonagle);
 547int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 548int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 549void tcp_retransmit_timer(struct sock *sk);
 550void tcp_xmit_retransmit_queue(struct sock *);
 551void tcp_simple_retransmit(struct sock *);
 552void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 553int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 554int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
 555
 556void tcp_send_probe0(struct sock *);
 557void tcp_send_partial(struct sock *);
 558int tcp_write_wakeup(struct sock *, int mib);
 559void tcp_send_fin(struct sock *sk);
 560void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 561int tcp_send_synack(struct sock *);
 562void tcp_push_one(struct sock *, unsigned int mss_now);
 563void tcp_send_ack(struct sock *sk);
 564void tcp_send_delayed_ack(struct sock *sk);
 565void tcp_send_loss_probe(struct sock *sk);
 566bool tcp_schedule_loss_probe(struct sock *sk);
 567void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 568                             const struct sk_buff *next_skb);
 569
 570/* tcp_input.c */
 571void tcp_rearm_rto(struct sock *sk);
 572void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 573void tcp_reset(struct sock *sk);
 574void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 575void tcp_fin(struct sock *sk);
 576
 577/* tcp_timer.c */
 578void tcp_init_xmit_timers(struct sock *);
 579static inline void tcp_clear_xmit_timers(struct sock *sk)
 580{
 581        hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
 582        inet_csk_clear_xmit_timers(sk);
 583}
 584
 585unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 586unsigned int tcp_current_mss(struct sock *sk);
 587
 588/* Bound MSS / TSO packet size with the half of the window */
 589static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 590{
 591        int cutoff;
 592
 593        /* When peer uses tiny windows, there is no use in packetizing
 594         * to sub-MSS pieces for the sake of SWS or making sure there
 595         * are enough packets in the pipe for fast recovery.
 596         *
 597         * On the other hand, for extremely large MSS devices, handling
 598         * smaller than MSS windows in this way does make sense.
 599         */
 600        if (tp->max_window > TCP_MSS_DEFAULT)
 601                cutoff = (tp->max_window >> 1);
 602        else
 603                cutoff = tp->max_window;
 604
 605        if (cutoff && pktsize > cutoff)
 606                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 607        else
 608                return pktsize;
 609}
 610
 611/* tcp.c */
 612void tcp_get_info(struct sock *, struct tcp_info *);
 613
 614/* Read 'sendfile()'-style from a TCP socket */
 615int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 616                  sk_read_actor_t recv_actor);
 617
 618void tcp_initialize_rcv_mss(struct sock *sk);
 619
 620int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 621int tcp_mss_to_mtu(struct sock *sk, int mss);
 622void tcp_mtup_init(struct sock *sk);
 623void tcp_init_buffer_space(struct sock *sk);
 624
 625static inline void tcp_bound_rto(const struct sock *sk)
 626{
 627        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 628                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 629}
 630
 631static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 632{
 633        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 634}
 635
 636static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 637{
 638        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 639                               ntohl(TCP_FLAG_ACK) |
 640                               snd_wnd);
 641}
 642
 643static inline void tcp_fast_path_on(struct tcp_sock *tp)
 644{
 645        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 646}
 647
 648static inline void tcp_fast_path_check(struct sock *sk)
 649{
 650        struct tcp_sock *tp = tcp_sk(sk);
 651
 652        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 653            tp->rcv_wnd &&
 654            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 655            !tp->urg_data)
 656                tcp_fast_path_on(tp);
 657}
 658
 659/* Compute the actual rto_min value */
 660static inline u32 tcp_rto_min(struct sock *sk)
 661{
 662        const struct dst_entry *dst = __sk_dst_get(sk);
 663        u32 rto_min = TCP_RTO_MIN;
 664
 665        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 666                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 667        return rto_min;
 668}
 669
 670static inline u32 tcp_rto_min_us(struct sock *sk)
 671{
 672        return jiffies_to_usecs(tcp_rto_min(sk));
 673}
 674
 675static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 676{
 677        return dst_metric_locked(dst, RTAX_CC_ALGO);
 678}
 679
 680/* Minimum RTT in usec. ~0 means not available. */
 681static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 682{
 683        return minmax_get(&tp->rtt_min);
 684}
 685
 686/* Compute the actual receive window we are currently advertising.
 687 * Rcv_nxt can be after the window if our peer push more data
 688 * than the offered window.
 689 */
 690static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 691{
 692        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 693
 694        if (win < 0)
 695                win = 0;
 696        return (u32) win;
 697}
 698
 699/* Choose a new window, without checks for shrinking, and without
 700 * scaling applied to the result.  The caller does these things
 701 * if necessary.  This is a "raw" window selection.
 702 */
 703u32 __tcp_select_window(struct sock *sk);
 704
 705void tcp_send_window_probe(struct sock *sk);
 706
 707/* TCP uses 32bit jiffies to save some space.
 708 * Note that this is different from tcp_time_stamp, which
 709 * historically has been the same until linux-4.13.
 710 */
 711#define tcp_jiffies32 ((u32)jiffies)
 712
 713/*
 714 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 715 * It is no longer tied to jiffies, but to 1 ms clock.
 716 * Note: double check if you want to use tcp_jiffies32 instead of this.
 717 */
 718#define TCP_TS_HZ       1000
 719
 720static inline u64 tcp_clock_ns(void)
 721{
 722        return local_clock();
 723}
 724
 725static inline u64 tcp_clock_us(void)
 726{
 727        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 728}
 729
 730/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 731static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 732{
 733        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 734}
 735
 736/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 737static inline u32 tcp_time_stamp_raw(void)
 738{
 739        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 740}
 741
 742
 743/* Refresh 1us clock of a TCP socket,
 744 * ensuring monotically increasing values.
 745 */
 746static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
 747{
 748        u64 val = tcp_clock_us();
 749
 750        if (val > tp->tcp_mstamp)
 751                tp->tcp_mstamp = val;
 752}
 753
 754static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 755{
 756        return max_t(s64, t1 - t0, 0);
 757}
 758
 759static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 760{
 761        return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 762}
 763
 764
 765#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 766
 767#define TCPHDR_FIN 0x01
 768#define TCPHDR_SYN 0x02
 769#define TCPHDR_RST 0x04
 770#define TCPHDR_PSH 0x08
 771#define TCPHDR_ACK 0x10
 772#define TCPHDR_URG 0x20
 773#define TCPHDR_ECE 0x40
 774#define TCPHDR_CWR 0x80
 775
 776#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 777
 778/* This is what the send packet queuing engine uses to pass
 779 * TCP per-packet control information to the transmission code.
 780 * We also store the host-order sequence numbers in here too.
 781 * This is 44 bytes if IPV6 is enabled.
 782 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 783 */
 784struct tcp_skb_cb {
 785        __u32           seq;            /* Starting sequence number     */
 786        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 787        union {
 788                /* Note : tcp_tw_isn is used in input path only
 789                 *        (isn chosen by tcp_timewait_state_process())
 790                 *
 791                 *        tcp_gso_segs/size are used in write queue only,
 792                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 793                 */
 794                __u32           tcp_tw_isn;
 795                struct {
 796                        u16     tcp_gso_segs;
 797                        u16     tcp_gso_size;
 798                };
 799
 800                /* Used to stash the receive timestamp while this skb is in the
 801                 * out of order queue, as skb->tstamp is overwritten by the
 802                 * rbnode.
 803                 */
 804                ktime_t         swtstamp;
 805        };
 806        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 807
 808        __u8            sacked;         /* State flags for SACK/FACK.   */
 809#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 810#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 811#define TCPCB_LOST              0x04    /* SKB is lost                  */
 812#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 813#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp) */
 814#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 815#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 816                                TCPCB_REPAIRED)
 817
 818        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 819        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 820                        eor:1,          /* Is skb MSG_EOR marked? */
 821                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 822                        unused:5;
 823        __u32           ack_seq;        /* Sequence number ACK'd        */
 824        union {
 825                struct {
 826                        /* There is space for up to 24 bytes */
 827                        __u32 in_flight:30,/* Bytes in flight at transmit */
 828                              is_app_limited:1, /* cwnd not fully used? */
 829                              unused:1;
 830                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 831                        __u32 delivered;
 832                        /* start of send pipeline phase */
 833                        u64 first_tx_mstamp;
 834                        /* when we reached the "delivered" count */
 835                        u64 delivered_mstamp;
 836                } tx;   /* only used for outgoing skbs */
 837                union {
 838                        struct inet_skb_parm    h4;
 839#if IS_ENABLED(CONFIG_IPV6)
 840                        struct inet6_skb_parm   h6;
 841#endif
 842                } header;       /* For incoming skbs */
 843                struct {
 844                        __u32 key;
 845                        __u32 flags;
 846                        struct bpf_map *map;
 847                        void *data_end;
 848                } bpf;
 849        };
 850};
 851
 852#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 853
 854
 855#if IS_ENABLED(CONFIG_IPV6)
 856/* This is the variant of inet6_iif() that must be used by TCP,
 857 * as TCP moves IP6CB into a different location in skb->cb[]
 858 */
 859static inline int tcp_v6_iif(const struct sk_buff *skb)
 860{
 861        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 862
 863        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 864}
 865
 866/* TCP_SKB_CB reference means this can not be used from early demux */
 867static inline int tcp_v6_sdif(const struct sk_buff *skb)
 868{
 869#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 870        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 871                return TCP_SKB_CB(skb)->header.h6.iif;
 872#endif
 873        return 0;
 874}
 875#endif
 876
 877/* TCP_SKB_CB reference means this can not be used from early demux */
 878static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 879{
 880#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 881        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 882            skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 883                return true;
 884#endif
 885        return false;
 886}
 887
 888/* TCP_SKB_CB reference means this can not be used from early demux */
 889static inline int tcp_v4_sdif(struct sk_buff *skb)
 890{
 891#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 892        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 893                return TCP_SKB_CB(skb)->header.h4.iif;
 894#endif
 895        return 0;
 896}
 897
 898/* Due to TSO, an SKB can be composed of multiple actual
 899 * packets.  To keep these tracked properly, we use this.
 900 */
 901static inline int tcp_skb_pcount(const struct sk_buff *skb)
 902{
 903        return TCP_SKB_CB(skb)->tcp_gso_segs;
 904}
 905
 906static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 907{
 908        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 909}
 910
 911static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 912{
 913        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 914}
 915
 916/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 917static inline int tcp_skb_mss(const struct sk_buff *skb)
 918{
 919        return TCP_SKB_CB(skb)->tcp_gso_size;
 920}
 921
 922static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 923{
 924        return likely(!TCP_SKB_CB(skb)->eor);
 925}
 926
 927/* Events passed to congestion control interface */
 928enum tcp_ca_event {
 929        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 930        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 931        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 932        CA_EVENT_LOSS,          /* loss timeout */
 933        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 934        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 935        CA_EVENT_DELAYED_ACK,   /* Delayed ack is sent */
 936        CA_EVENT_NON_DELAYED_ACK,
 937};
 938
 939/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 940enum tcp_ca_ack_event_flags {
 941        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 942        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 943        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 944};
 945
 946/*
 947 * Interface for adding new TCP congestion control handlers
 948 */
 949#define TCP_CA_NAME_MAX 16
 950#define TCP_CA_MAX      128
 951#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
 952
 953#define TCP_CA_UNSPEC   0
 954
 955/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 956#define TCP_CONG_NON_RESTRICTED 0x1
 957/* Requires ECN/ECT set on all packets */
 958#define TCP_CONG_NEEDS_ECN      0x2
 959
 960union tcp_cc_info;
 961
 962struct ack_sample {
 963        u32 pkts_acked;
 964        s32 rtt_us;
 965        u32 in_flight;
 966};
 967
 968/* A rate sample measures the number of (original/retransmitted) data
 969 * packets delivered "delivered" over an interval of time "interval_us".
 970 * The tcp_rate.c code fills in the rate sample, and congestion
 971 * control modules that define a cong_control function to run at the end
 972 * of ACK processing can optionally chose to consult this sample when
 973 * setting cwnd and pacing rate.
 974 * A sample is invalid if "delivered" or "interval_us" is negative.
 975 */
 976struct rate_sample {
 977        u64  prior_mstamp; /* starting timestamp for interval */
 978        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
 979        s32  delivered;         /* number of packets delivered over interval */
 980        long interval_us;       /* time for tp->delivered to incr "delivered" */
 981        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
 982        int  losses;            /* number of packets marked lost upon ACK */
 983        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
 984        u32  prior_in_flight;   /* in flight before this ACK */
 985        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
 986        bool is_retrans;        /* is sample from retransmission? */
 987};
 988
 989struct tcp_congestion_ops {
 990        struct list_head        list;
 991        u32 key;
 992        u32 flags;
 993
 994        /* initialize private data (optional) */
 995        void (*init)(struct sock *sk);
 996        /* cleanup private data  (optional) */
 997        void (*release)(struct sock *sk);
 998
 999        /* return slow start threshold (required) */
1000        u32 (*ssthresh)(struct sock *sk);
1001        /* do new cwnd calculation (required) */
1002        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1003        /* call before changing ca_state (optional) */
1004        void (*set_state)(struct sock *sk, u8 new_state);
1005        /* call when cwnd event occurs (optional) */
1006        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1007        /* call when ack arrives (optional) */
1008        void (*in_ack_event)(struct sock *sk, u32 flags);
1009        /* new value of cwnd after loss (required) */
1010        u32  (*undo_cwnd)(struct sock *sk);
1011        /* hook for packet ack accounting (optional) */
1012        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1013        /* suggest number of segments for each skb to transmit (optional) */
1014        u32 (*tso_segs_goal)(struct sock *sk);
1015        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1016        u32 (*sndbuf_expand)(struct sock *sk);
1017        /* call when packets are delivered to update cwnd and pacing rate,
1018         * after all the ca_state processing. (optional)
1019         */
1020        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1021        /* get info for inet_diag (optional) */
1022        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1023                           union tcp_cc_info *info);
1024
1025        char            name[TCP_CA_NAME_MAX];
1026        struct module   *owner;
1027};
1028
1029int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1030void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1031
1032void tcp_assign_congestion_control(struct sock *sk);
1033void tcp_init_congestion_control(struct sock *sk);
1034void tcp_cleanup_congestion_control(struct sock *sk);
1035int tcp_set_default_congestion_control(const char *name);
1036void tcp_get_default_congestion_control(char *name);
1037void tcp_get_available_congestion_control(char *buf, size_t len);
1038void tcp_get_allowed_congestion_control(char *buf, size_t len);
1039int tcp_set_allowed_congestion_control(char *allowed);
1040int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1041u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1042void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1043
1044u32 tcp_reno_ssthresh(struct sock *sk);
1045u32 tcp_reno_undo_cwnd(struct sock *sk);
1046void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1047extern struct tcp_congestion_ops tcp_reno;
1048
1049struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1050u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1051#ifdef CONFIG_INET
1052char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1053#else
1054static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1055{
1056        return NULL;
1057}
1058#endif
1059
1060static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1061{
1062        const struct inet_connection_sock *icsk = inet_csk(sk);
1063
1064        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1065}
1066
1067static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1068{
1069        struct inet_connection_sock *icsk = inet_csk(sk);
1070
1071        if (icsk->icsk_ca_ops->set_state)
1072                icsk->icsk_ca_ops->set_state(sk, ca_state);
1073        icsk->icsk_ca_state = ca_state;
1074}
1075
1076static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1077{
1078        const struct inet_connection_sock *icsk = inet_csk(sk);
1079
1080        if (icsk->icsk_ca_ops->cwnd_event)
1081                icsk->icsk_ca_ops->cwnd_event(sk, event);
1082}
1083
1084/* From tcp_rate.c */
1085void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1086void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1087                            struct rate_sample *rs);
1088void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1089                  struct rate_sample *rs);
1090void tcp_rate_check_app_limited(struct sock *sk);
1091
1092/* These functions determine how the current flow behaves in respect of SACK
1093 * handling. SACK is negotiated with the peer, and therefore it can vary
1094 * between different flows.
1095 *
1096 * tcp_is_sack - SACK enabled
1097 * tcp_is_reno - No SACK
1098 * tcp_is_fack - FACK enabled, implies SACK enabled
1099 */
1100static inline int tcp_is_sack(const struct tcp_sock *tp)
1101{
1102        return tp->rx_opt.sack_ok;
1103}
1104
1105static inline bool tcp_is_reno(const struct tcp_sock *tp)
1106{
1107        return !tcp_is_sack(tp);
1108}
1109
1110static inline bool tcp_is_fack(const struct tcp_sock *tp)
1111{
1112        return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1113}
1114
1115static inline void tcp_enable_fack(struct tcp_sock *tp)
1116{
1117        tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1118}
1119
1120static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1121{
1122        return tp->sacked_out + tp->lost_out;
1123}
1124
1125/* This determines how many packets are "in the network" to the best
1126 * of our knowledge.  In many cases it is conservative, but where
1127 * detailed information is available from the receiver (via SACK
1128 * blocks etc.) we can make more aggressive calculations.
1129 *
1130 * Use this for decisions involving congestion control, use just
1131 * tp->packets_out to determine if the send queue is empty or not.
1132 *
1133 * Read this equation as:
1134 *
1135 *      "Packets sent once on transmission queue" MINUS
1136 *      "Packets left network, but not honestly ACKed yet" PLUS
1137 *      "Packets fast retransmitted"
1138 */
1139static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1140{
1141        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1142}
1143
1144#define TCP_INFINITE_SSTHRESH   0x7fffffff
1145
1146static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1147{
1148        return tp->snd_cwnd < tp->snd_ssthresh;
1149}
1150
1151static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1152{
1153        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1154}
1155
1156static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1157{
1158        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1159               (1 << inet_csk(sk)->icsk_ca_state);
1160}
1161
1162/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1163 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1164 * ssthresh.
1165 */
1166static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1167{
1168        const struct tcp_sock *tp = tcp_sk(sk);
1169
1170        if (tcp_in_cwnd_reduction(sk))
1171                return tp->snd_ssthresh;
1172        else
1173                return max(tp->snd_ssthresh,
1174                           ((tp->snd_cwnd >> 1) +
1175                            (tp->snd_cwnd >> 2)));
1176}
1177
1178/* Use define here intentionally to get WARN_ON location shown at the caller */
1179#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1180
1181void tcp_enter_cwr(struct sock *sk);
1182__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1183
1184/* The maximum number of MSS of available cwnd for which TSO defers
1185 * sending if not using sysctl_tcp_tso_win_divisor.
1186 */
1187static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1188{
1189        return 3;
1190}
1191
1192/* Returns end sequence number of the receiver's advertised window */
1193static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1194{
1195        return tp->snd_una + tp->snd_wnd;
1196}
1197
1198/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1199 * flexible approach. The RFC suggests cwnd should not be raised unless
1200 * it was fully used previously. And that's exactly what we do in
1201 * congestion avoidance mode. But in slow start we allow cwnd to grow
1202 * as long as the application has used half the cwnd.
1203 * Example :
1204 *    cwnd is 10 (IW10), but application sends 9 frames.
1205 *    We allow cwnd to reach 18 when all frames are ACKed.
1206 * This check is safe because it's as aggressive as slow start which already
1207 * risks 100% overshoot. The advantage is that we discourage application to
1208 * either send more filler packets or data to artificially blow up the cwnd
1209 * usage, and allow application-limited process to probe bw more aggressively.
1210 */
1211static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1212{
1213        const struct tcp_sock *tp = tcp_sk(sk);
1214
1215        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1216        if (tcp_in_slow_start(tp))
1217                return tp->snd_cwnd < 2 * tp->max_packets_out;
1218
1219        return tp->is_cwnd_limited;
1220}
1221
1222/* Something is really bad, we could not queue an additional packet,
1223 * because qdisc is full or receiver sent a 0 window.
1224 * We do not want to add fuel to the fire, or abort too early,
1225 * so make sure the timer we arm now is at least 200ms in the future,
1226 * regardless of current icsk_rto value (as it could be ~2ms)
1227 */
1228static inline unsigned long tcp_probe0_base(const struct sock *sk)
1229{
1230        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1231}
1232
1233/* Variant of inet_csk_rto_backoff() used for zero window probes */
1234static inline unsigned long tcp_probe0_when(const struct sock *sk,
1235                                            unsigned long max_when)
1236{
1237        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1238
1239        return (unsigned long)min_t(u64, when, max_when);
1240}
1241
1242static inline void tcp_check_probe_timer(struct sock *sk)
1243{
1244        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1245                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1246                                          tcp_probe0_base(sk), TCP_RTO_MAX);
1247}
1248
1249static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1250{
1251        tp->snd_wl1 = seq;
1252}
1253
1254static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1255{
1256        tp->snd_wl1 = seq;
1257}
1258
1259/*
1260 * Calculate(/check) TCP checksum
1261 */
1262static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1263                                   __be32 daddr, __wsum base)
1264{
1265        return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1266}
1267
1268static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1269{
1270        return __skb_checksum_complete(skb);
1271}
1272
1273static inline bool tcp_checksum_complete(struct sk_buff *skb)
1274{
1275        return !skb_csum_unnecessary(skb) &&
1276                __tcp_checksum_complete(skb);
1277}
1278
1279bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1280int tcp_filter(struct sock *sk, struct sk_buff *skb);
1281
1282#undef STATE_TRACE
1283
1284#ifdef STATE_TRACE
1285static const char *statename[]={
1286        "Unused","Established","Syn Sent","Syn Recv",
1287        "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1288        "Close Wait","Last ACK","Listen","Closing"
1289};
1290#endif
1291void tcp_set_state(struct sock *sk, int state);
1292
1293void tcp_done(struct sock *sk);
1294
1295int tcp_abort(struct sock *sk, int err);
1296
1297static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1298{
1299        rx_opt->dsack = 0;
1300        rx_opt->num_sacks = 0;
1301}
1302
1303u32 tcp_default_init_rwnd(u32 mss);
1304void tcp_cwnd_restart(struct sock *sk, s32 delta);
1305
1306static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1307{
1308        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1309        struct tcp_sock *tp = tcp_sk(sk);
1310        s32 delta;
1311
1312        if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1313            ca_ops->cong_control)
1314                return;
1315        delta = tcp_jiffies32 - tp->lsndtime;
1316        if (delta > inet_csk(sk)->icsk_rto)
1317                tcp_cwnd_restart(sk, delta);
1318}
1319
1320/* Determine a window scaling and initial window to offer. */
1321void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1322                               __u32 *window_clamp, int wscale_ok,
1323                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1324
1325static inline int tcp_win_from_space(int space)
1326{
1327        int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1328
1329        return tcp_adv_win_scale <= 0 ?
1330                (space>>(-tcp_adv_win_scale)) :
1331                space - (space>>tcp_adv_win_scale);
1332}
1333
1334/* Note: caller must be prepared to deal with negative returns */
1335static inline int tcp_space(const struct sock *sk)
1336{
1337        return tcp_win_from_space(sk->sk_rcvbuf -
1338                                  atomic_read(&sk->sk_rmem_alloc));
1339}
1340
1341static inline int tcp_full_space(const struct sock *sk)
1342{
1343        return tcp_win_from_space(sk->sk_rcvbuf);
1344}
1345
1346extern void tcp_openreq_init_rwin(struct request_sock *req,
1347                                  const struct sock *sk_listener,
1348                                  const struct dst_entry *dst);
1349
1350void tcp_enter_memory_pressure(struct sock *sk);
1351void tcp_leave_memory_pressure(struct sock *sk);
1352
1353static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1354{
1355        struct net *net = sock_net((struct sock *)tp);
1356
1357        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1358}
1359
1360static inline int keepalive_time_when(const struct tcp_sock *tp)
1361{
1362        struct net *net = sock_net((struct sock *)tp);
1363
1364        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1365}
1366
1367static inline int keepalive_probes(const struct tcp_sock *tp)
1368{
1369        struct net *net = sock_net((struct sock *)tp);
1370
1371        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1372}
1373
1374static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1375{
1376        const struct inet_connection_sock *icsk = &tp->inet_conn;
1377
1378        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1379                          tcp_jiffies32 - tp->rcv_tstamp);
1380}
1381
1382static inline int tcp_fin_time(const struct sock *sk)
1383{
1384        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1385        const int rto = inet_csk(sk)->icsk_rto;
1386
1387        if (fin_timeout < (rto << 2) - (rto >> 1))
1388                fin_timeout = (rto << 2) - (rto >> 1);
1389
1390        return fin_timeout;
1391}
1392
1393static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1394                                  int paws_win)
1395{
1396        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1397                return true;
1398        if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1399                return true;
1400        /*
1401         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1402         * then following tcp messages have valid values. Ignore 0 value,
1403         * or else 'negative' tsval might forbid us to accept their packets.
1404         */
1405        if (!rx_opt->ts_recent)
1406                return true;
1407        return false;
1408}
1409
1410static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1411                                   int rst)
1412{
1413        if (tcp_paws_check(rx_opt, 0))
1414                return false;
1415
1416        /* RST segments are not recommended to carry timestamp,
1417           and, if they do, it is recommended to ignore PAWS because
1418           "their cleanup function should take precedence over timestamps."
1419           Certainly, it is mistake. It is necessary to understand the reasons
1420           of this constraint to relax it: if peer reboots, clock may go
1421           out-of-sync and half-open connections will not be reset.
1422           Actually, the problem would be not existing if all
1423           the implementations followed draft about maintaining clock
1424           via reboots. Linux-2.2 DOES NOT!
1425
1426           However, we can relax time bounds for RST segments to MSL.
1427         */
1428        if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1429                return false;
1430        return true;
1431}
1432
1433bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1434                          int mib_idx, u32 *last_oow_ack_time);
1435
1436static inline void tcp_mib_init(struct net *net)
1437{
1438        /* See RFC 2012 */
1439        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1440        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1441        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1442        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1443}
1444
1445/* from STCP */
1446static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1447{
1448        tp->lost_skb_hint = NULL;
1449}
1450
1451static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1452{
1453        tcp_clear_retrans_hints_partial(tp);
1454        tp->retransmit_skb_hint = NULL;
1455}
1456
1457union tcp_md5_addr {
1458        struct in_addr  a4;
1459#if IS_ENABLED(CONFIG_IPV6)
1460        struct in6_addr a6;
1461#endif
1462};
1463
1464/* - key database */
1465struct tcp_md5sig_key {
1466        struct hlist_node       node;
1467        u8                      keylen;
1468        u8                      family; /* AF_INET or AF_INET6 */
1469        union tcp_md5_addr      addr;
1470        u8                      prefixlen;
1471        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1472        struct rcu_head         rcu;
1473};
1474
1475/* - sock block */
1476struct tcp_md5sig_info {
1477        struct hlist_head       head;
1478        struct rcu_head         rcu;
1479};
1480
1481/* - pseudo header */
1482struct tcp4_pseudohdr {
1483        __be32          saddr;
1484        __be32          daddr;
1485        __u8            pad;
1486        __u8            protocol;
1487        __be16          len;
1488};
1489
1490struct tcp6_pseudohdr {
1491        struct in6_addr saddr;
1492        struct in6_addr daddr;
1493        __be32          len;
1494        __be32          protocol;       /* including padding */
1495};
1496
1497union tcp_md5sum_block {
1498        struct tcp4_pseudohdr ip4;
1499#if IS_ENABLED(CONFIG_IPV6)
1500        struct tcp6_pseudohdr ip6;
1501#endif
1502};
1503
1504/* - pool: digest algorithm, hash description and scratch buffer */
1505struct tcp_md5sig_pool {
1506        struct ahash_request    *md5_req;
1507        void                    *scratch;
1508};
1509
1510/* - functions */
1511int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1512                        const struct sock *sk, const struct sk_buff *skb);
1513int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1514                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1515                   gfp_t gfp);
1516int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1517                   int family, u8 prefixlen);
1518struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1519                                         const struct sock *addr_sk);
1520
1521#ifdef CONFIG_TCP_MD5SIG
1522struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1523                                         const union tcp_md5_addr *addr,
1524                                         int family);
1525#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1526#else
1527static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1528                                         const union tcp_md5_addr *addr,
1529                                         int family)
1530{
1531        return NULL;
1532}
1533#define tcp_twsk_md5_key(twsk)  NULL
1534#endif
1535
1536bool tcp_alloc_md5sig_pool(void);
1537
1538struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1539static inline void tcp_put_md5sig_pool(void)
1540{
1541        local_bh_enable();
1542}
1543
1544int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1545                          unsigned int header_len);
1546int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1547                     const struct tcp_md5sig_key *key);
1548
1549/* From tcp_fastopen.c */
1550void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1551                            struct tcp_fastopen_cookie *cookie, int *syn_loss,
1552                            unsigned long *last_syn_loss);
1553void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1554                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1555                            u16 try_exp);
1556struct tcp_fastopen_request {
1557        /* Fast Open cookie. Size 0 means a cookie request */
1558        struct tcp_fastopen_cookie      cookie;
1559        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1560        size_t                          size;
1561        int                             copied; /* queued in tcp_connect() */
1562};
1563void tcp_free_fastopen_req(struct tcp_sock *tp);
1564
1565extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1566int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1567void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1568struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1569                              struct request_sock *req,
1570                              struct tcp_fastopen_cookie *foc);
1571void tcp_fastopen_init_key_once(bool publish);
1572bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1573                             struct tcp_fastopen_cookie *cookie);
1574bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1575#define TCP_FASTOPEN_KEY_LENGTH 16
1576
1577/* Fastopen key context */
1578struct tcp_fastopen_context {
1579        struct crypto_cipher    *tfm;
1580        __u8                    key[TCP_FASTOPEN_KEY_LENGTH];
1581        struct rcu_head         rcu;
1582};
1583
1584extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1585void tcp_fastopen_active_disable(struct sock *sk);
1586bool tcp_fastopen_active_should_disable(struct sock *sk);
1587void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1588void tcp_fastopen_active_timeout_reset(void);
1589
1590/* Latencies incurred by various limits for a sender. They are
1591 * chronograph-like stats that are mutually exclusive.
1592 */
1593enum tcp_chrono {
1594        TCP_CHRONO_UNSPEC,
1595        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1596        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1597        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1598        __TCP_CHRONO_MAX,
1599};
1600
1601void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1602void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1603
1604/* write queue abstraction */
1605static inline void tcp_write_queue_purge(struct sock *sk)
1606{
1607        struct sk_buff *skb;
1608
1609        tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1610        while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1611                sk_wmem_free_skb(sk, skb);
1612        sk_mem_reclaim(sk);
1613        tcp_clear_all_retrans_hints(tcp_sk(sk));
1614}
1615
1616static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1617{
1618        return skb_peek(&sk->sk_write_queue);
1619}
1620
1621static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1622{
1623        return skb_peek_tail(&sk->sk_write_queue);
1624}
1625
1626static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1627                                                   const struct sk_buff *skb)
1628{
1629        return skb_queue_next(&sk->sk_write_queue, skb);
1630}
1631
1632static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1633                                                   const struct sk_buff *skb)
1634{
1635        return skb_queue_prev(&sk->sk_write_queue, skb);
1636}
1637
1638#define tcp_for_write_queue(skb, sk)                                    \
1639        skb_queue_walk(&(sk)->sk_write_queue, skb)
1640
1641#define tcp_for_write_queue_from(skb, sk)                               \
1642        skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1643
1644#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1645        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1646
1647static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1648{
1649        return sk->sk_send_head;
1650}
1651
1652static inline bool tcp_skb_is_last(const struct sock *sk,
1653                                   const struct sk_buff *skb)
1654{
1655        return skb_queue_is_last(&sk->sk_write_queue, skb);
1656}
1657
1658static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1659{
1660        if (tcp_skb_is_last(sk, skb))
1661                sk->sk_send_head = NULL;
1662        else
1663                sk->sk_send_head = tcp_write_queue_next(sk, skb);
1664}
1665
1666static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1667{
1668        if (sk->sk_send_head == skb_unlinked) {
1669                sk->sk_send_head = NULL;
1670                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1671        }
1672        if (tcp_sk(sk)->highest_sack == skb_unlinked)
1673                tcp_sk(sk)->highest_sack = NULL;
1674}
1675
1676static inline void tcp_init_send_head(struct sock *sk)
1677{
1678        sk->sk_send_head = NULL;
1679}
1680
1681static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1682{
1683        __skb_queue_tail(&sk->sk_write_queue, skb);
1684}
1685
1686static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1687{
1688        __tcp_add_write_queue_tail(sk, skb);
1689
1690        /* Queue it, remembering where we must start sending. */
1691        if (sk->sk_send_head == NULL) {
1692                sk->sk_send_head = skb;
1693                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1694
1695                if (tcp_sk(sk)->highest_sack == NULL)
1696                        tcp_sk(sk)->highest_sack = skb;
1697        }
1698}
1699
1700static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1701{
1702        __skb_queue_head(&sk->sk_write_queue, skb);
1703}
1704
1705/* Insert buff after skb on the write queue of sk.  */
1706static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1707                                                struct sk_buff *buff,
1708                                                struct sock *sk)
1709{
1710        __skb_queue_after(&sk->sk_write_queue, skb, buff);
1711}
1712
1713/* Insert new before skb on the write queue of sk.  */
1714static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1715                                                  struct sk_buff *skb,
1716                                                  struct sock *sk)
1717{
1718        __skb_queue_before(&sk->sk_write_queue, skb, new);
1719
1720        if (sk->sk_send_head == skb)
1721                sk->sk_send_head = new;
1722}
1723
1724static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1725{
1726        __skb_unlink(skb, &sk->sk_write_queue);
1727}
1728
1729static inline bool tcp_write_queue_empty(struct sock *sk)
1730{
1731        return skb_queue_empty(&sk->sk_write_queue);
1732}
1733
1734static inline void tcp_push_pending_frames(struct sock *sk)
1735{
1736        if (tcp_send_head(sk)) {
1737                struct tcp_sock *tp = tcp_sk(sk);
1738
1739                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1740        }
1741}
1742
1743/* Start sequence of the skb just after the highest skb with SACKed
1744 * bit, valid only if sacked_out > 0 or when the caller has ensured
1745 * validity by itself.
1746 */
1747static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1748{
1749        if (!tp->sacked_out)
1750                return tp->snd_una;
1751
1752        if (tp->highest_sack == NULL)
1753                return tp->snd_nxt;
1754
1755        return TCP_SKB_CB(tp->highest_sack)->seq;
1756}
1757
1758static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1759{
1760        tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1761                                                tcp_write_queue_next(sk, skb);
1762}
1763
1764static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1765{
1766        return tcp_sk(sk)->highest_sack;
1767}
1768
1769static inline void tcp_highest_sack_reset(struct sock *sk)
1770{
1771        tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1772}
1773
1774/* Called when old skb is about to be deleted and replaced by new skb */
1775static inline void tcp_highest_sack_replace(struct sock *sk,
1776                                            struct sk_buff *old,
1777                                            struct sk_buff *new)
1778{
1779        if (old == tcp_highest_sack(sk))
1780                tcp_sk(sk)->highest_sack = new;
1781}
1782
1783/* This helper checks if socket has IP_TRANSPARENT set */
1784static inline bool inet_sk_transparent(const struct sock *sk)
1785{
1786        switch (sk->sk_state) {
1787        case TCP_TIME_WAIT:
1788                return inet_twsk(sk)->tw_transparent;
1789        case TCP_NEW_SYN_RECV:
1790                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1791        }
1792        return inet_sk(sk)->transparent;
1793}
1794
1795/* Determines whether this is a thin stream (which may suffer from
1796 * increased latency). Used to trigger latency-reducing mechanisms.
1797 */
1798static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1799{
1800        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1801}
1802
1803/* /proc */
1804enum tcp_seq_states {
1805        TCP_SEQ_STATE_LISTENING,
1806        TCP_SEQ_STATE_ESTABLISHED,
1807};
1808
1809int tcp_seq_open(struct inode *inode, struct file *file);
1810
1811struct tcp_seq_afinfo {
1812        char                            *name;
1813        sa_family_t                     family;
1814        const struct file_operations    *seq_fops;
1815        struct seq_operations           seq_ops;
1816};
1817
1818struct tcp_iter_state {
1819        struct seq_net_private  p;
1820        sa_family_t             family;
1821        enum tcp_seq_states     state;
1822        struct sock             *syn_wait_sk;
1823        int                     bucket, offset, sbucket, num;
1824        loff_t                  last_pos;
1825};
1826
1827int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1828void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1829
1830extern struct request_sock_ops tcp_request_sock_ops;
1831extern struct request_sock_ops tcp6_request_sock_ops;
1832
1833void tcp_v4_destroy_sock(struct sock *sk);
1834
1835struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1836                                netdev_features_t features);
1837struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1838int tcp_gro_complete(struct sk_buff *skb);
1839
1840void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1841
1842static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1843{
1844        struct net *net = sock_net((struct sock *)tp);
1845        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1846}
1847
1848static inline bool tcp_stream_memory_free(const struct sock *sk)
1849{
1850        const struct tcp_sock *tp = tcp_sk(sk);
1851        u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1852
1853        return notsent_bytes < tcp_notsent_lowat(tp);
1854}
1855
1856#ifdef CONFIG_PROC_FS
1857int tcp4_proc_init(void);
1858void tcp4_proc_exit(void);
1859#endif
1860
1861int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1862int tcp_conn_request(struct request_sock_ops *rsk_ops,
1863                     const struct tcp_request_sock_ops *af_ops,
1864                     struct sock *sk, struct sk_buff *skb);
1865
1866/* TCP af-specific functions */
1867struct tcp_sock_af_ops {
1868#ifdef CONFIG_TCP_MD5SIG
1869        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1870                                                const struct sock *addr_sk);
1871        int             (*calc_md5_hash)(char *location,
1872                                         const struct tcp_md5sig_key *md5,
1873                                         const struct sock *sk,
1874                                         const struct sk_buff *skb);
1875        int             (*md5_parse)(struct sock *sk,
1876                                     int optname,
1877                                     char __user *optval,
1878                                     int optlen);
1879#endif
1880};
1881
1882struct tcp_request_sock_ops {
1883        u16 mss_clamp;
1884#ifdef CONFIG_TCP_MD5SIG
1885        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1886                                                 const struct sock *addr_sk);
1887        int             (*calc_md5_hash) (char *location,
1888                                          const struct tcp_md5sig_key *md5,
1889                                          const struct sock *sk,
1890                                          const struct sk_buff *skb);
1891#endif
1892        void (*init_req)(struct request_sock *req,
1893                         const struct sock *sk_listener,
1894                         struct sk_buff *skb);
1895#ifdef CONFIG_SYN_COOKIES
1896        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1897                                 __u16 *mss);
1898#endif
1899        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1900                                       const struct request_sock *req);
1901        u32 (*init_seq)(const struct sk_buff *skb);
1902        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1903        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1904                           struct flowi *fl, struct request_sock *req,
1905                           struct tcp_fastopen_cookie *foc,
1906                           enum tcp_synack_type synack_type);
1907};
1908
1909#ifdef CONFIG_SYN_COOKIES
1910static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1911                                         const struct sock *sk, struct sk_buff *skb,
1912                                         __u16 *mss)
1913{
1914        tcp_synq_overflow(sk);
1915        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1916        return ops->cookie_init_seq(skb, mss);
1917}
1918#else
1919static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1920                                         const struct sock *sk, struct sk_buff *skb,
1921                                         __u16 *mss)
1922{
1923        return 0;
1924}
1925#endif
1926
1927int tcpv4_offload_init(void);
1928
1929void tcp_v4_init(void);
1930void tcp_init(void);
1931
1932/* tcp_recovery.c */
1933extern void tcp_rack_mark_lost(struct sock *sk);
1934extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1935                             u64 xmit_time);
1936extern void tcp_rack_reo_timeout(struct sock *sk);
1937
1938/* At how many usecs into the future should the RTO fire? */
1939static inline s64 tcp_rto_delta_us(const struct sock *sk)
1940{
1941        const struct sk_buff *skb = tcp_write_queue_head(sk);
1942        u32 rto = inet_csk(sk)->icsk_rto;
1943        u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1944
1945        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1946}
1947
1948/*
1949 * Save and compile IPv4 options, return a pointer to it
1950 */
1951static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1952                                                         struct sk_buff *skb)
1953{
1954        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1955        struct ip_options_rcu *dopt = NULL;
1956
1957        if (opt->optlen) {
1958                int opt_size = sizeof(*dopt) + opt->optlen;
1959
1960                dopt = kmalloc(opt_size, GFP_ATOMIC);
1961                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1962                        kfree(dopt);
1963                        dopt = NULL;
1964                }
1965        }
1966        return dopt;
1967}
1968
1969/* locally generated TCP pure ACKs have skb->truesize == 2
1970 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1971 * This is much faster than dissecting the packet to find out.
1972 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1973 */
1974static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1975{
1976        return skb->truesize == 2;
1977}
1978
1979static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1980{
1981        skb->truesize = 2;
1982}
1983
1984static inline int tcp_inq(struct sock *sk)
1985{
1986        struct tcp_sock *tp = tcp_sk(sk);
1987        int answ;
1988
1989        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1990                answ = 0;
1991        } else if (sock_flag(sk, SOCK_URGINLINE) ||
1992                   !tp->urg_data ||
1993                   before(tp->urg_seq, tp->copied_seq) ||
1994                   !before(tp->urg_seq, tp->rcv_nxt)) {
1995
1996                answ = tp->rcv_nxt - tp->copied_seq;
1997
1998                /* Subtract 1, if FIN was received */
1999                if (answ && sock_flag(sk, SOCK_DONE))
2000                        answ--;
2001        } else {
2002                answ = tp->urg_seq - tp->copied_seq;
2003        }
2004
2005        return answ;
2006}
2007
2008int tcp_peek_len(struct socket *sock);
2009
2010static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2011{
2012        u16 segs_in;
2013
2014        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2015        tp->segs_in += segs_in;
2016        if (skb->len > tcp_hdrlen(skb))
2017                tp->data_segs_in += segs_in;
2018}
2019
2020/*
2021 * TCP listen path runs lockless.
2022 * We forced "struct sock" to be const qualified to make sure
2023 * we don't modify one of its field by mistake.
2024 * Here, we increment sk_drops which is an atomic_t, so we can safely
2025 * make sock writable again.
2026 */
2027static inline void tcp_listendrop(const struct sock *sk)
2028{
2029        atomic_inc(&((struct sock *)sk)->sk_drops);
2030        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2031}
2032
2033enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2034
2035/*
2036 * Interface for adding Upper Level Protocols over TCP
2037 */
2038
2039#define TCP_ULP_NAME_MAX        16
2040#define TCP_ULP_MAX             128
2041#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2042
2043struct tcp_ulp_ops {
2044        struct list_head        list;
2045
2046        /* initialize ulp */
2047        int (*init)(struct sock *sk);
2048        /* cleanup ulp */
2049        void (*release)(struct sock *sk);
2050
2051        char            name[TCP_ULP_NAME_MAX];
2052        struct module   *owner;
2053};
2054int tcp_register_ulp(struct tcp_ulp_ops *type);
2055void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2056int tcp_set_ulp(struct sock *sk, const char *name);
2057void tcp_get_available_ulp(char *buf, size_t len);
2058void tcp_cleanup_ulp(struct sock *sk);
2059
2060/* Call BPF_SOCK_OPS program that returns an int. If the return value
2061 * is < 0, then the BPF op failed (for example if the loaded BPF
2062 * program does not support the chosen operation or there is no BPF
2063 * program loaded).
2064 */
2065#ifdef CONFIG_BPF
2066static inline int tcp_call_bpf(struct sock *sk, int op)
2067{
2068        struct bpf_sock_ops_kern sock_ops;
2069        int ret;
2070
2071        if (sk_fullsock(sk))
2072                sock_owned_by_me(sk);
2073
2074        memset(&sock_ops, 0, sizeof(sock_ops));
2075        sock_ops.sk = sk;
2076        sock_ops.op = op;
2077
2078        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2079        if (ret == 0)
2080                ret = sock_ops.reply;
2081        else
2082                ret = -1;
2083        return ret;
2084}
2085#else
2086static inline int tcp_call_bpf(struct sock *sk, int op)
2087{
2088        return -EPERM;
2089}
2090#endif
2091
2092static inline u32 tcp_timeout_init(struct sock *sk)
2093{
2094        int timeout;
2095
2096        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2097
2098        if (timeout <= 0)
2099                timeout = TCP_TIMEOUT_INIT;
2100        return timeout;
2101}
2102
2103static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2104{
2105        int rwnd;
2106
2107        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2108
2109        if (rwnd < 0)
2110                rwnd = 0;
2111        return rwnd;
2112}
2113
2114static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2115{
2116        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2117}
2118#endif  /* _TCP_H */
2119