linux/kernel/bpf/lpm_trie.c
<<
>>
Prefs
   1/*
   2 * Longest prefix match list implementation
   3 *
   4 * Copyright (c) 2016,2017 Daniel Mack
   5 * Copyright (c) 2016 David Herrmann
   6 *
   7 * This file is subject to the terms and conditions of version 2 of the GNU
   8 * General Public License.  See the file COPYING in the main directory of the
   9 * Linux distribution for more details.
  10 */
  11
  12#include <linux/bpf.h>
  13#include <linux/err.h>
  14#include <linux/slab.h>
  15#include <linux/spinlock.h>
  16#include <linux/vmalloc.h>
  17#include <net/ipv6.h>
  18
  19/* Intermediate node */
  20#define LPM_TREE_NODE_FLAG_IM BIT(0)
  21
  22struct lpm_trie_node;
  23
  24struct lpm_trie_node {
  25        struct rcu_head rcu;
  26        struct lpm_trie_node __rcu      *child[2];
  27        u32                             prefixlen;
  28        u32                             flags;
  29        u8                              data[0];
  30};
  31
  32struct lpm_trie {
  33        struct bpf_map                  map;
  34        struct lpm_trie_node __rcu      *root;
  35        size_t                          n_entries;
  36        size_t                          max_prefixlen;
  37        size_t                          data_size;
  38        raw_spinlock_t                  lock;
  39};
  40
  41/* This trie implements a longest prefix match algorithm that can be used to
  42 * match IP addresses to a stored set of ranges.
  43 *
  44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
  45 * interpreted as big endian, so data[0] stores the most significant byte.
  46 *
  47 * Match ranges are internally stored in instances of struct lpm_trie_node
  48 * which each contain their prefix length as well as two pointers that may
  49 * lead to more nodes containing more specific matches. Each node also stores
  50 * a value that is defined by and returned to userspace via the update_elem
  51 * and lookup functions.
  52 *
  53 * For instance, let's start with a trie that was created with a prefix length
  54 * of 32, so it can be used for IPv4 addresses, and one single element that
  55 * matches 192.168.0.0/16. The data array would hence contain
  56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
  57 * stick to IP-address notation for readability though.
  58 *
  59 * As the trie is empty initially, the new node (1) will be places as root
  60 * node, denoted as (R) in the example below. As there are no other node, both
  61 * child pointers are %NULL.
  62 *
  63 *              +----------------+
  64 *              |       (1)  (R) |
  65 *              | 192.168.0.0/16 |
  66 *              |    value: 1    |
  67 *              |   [0]    [1]   |
  68 *              +----------------+
  69 *
  70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
  71 * a node with the same data and a smaller prefix (ie, a less specific one),
  72 * node (2) will become a child of (1). In child index depends on the next bit
  73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
  74 * child[0] of (1):
  75 *
  76 *              +----------------+
  77 *              |       (1)  (R) |
  78 *              | 192.168.0.0/16 |
  79 *              |    value: 1    |
  80 *              |   [0]    [1]   |
  81 *              +----------------+
  82 *                   |
  83 *    +----------------+
  84 *    |       (2)      |
  85 *    | 192.168.0.0/24 |
  86 *    |    value: 2    |
  87 *    |   [0]    [1]   |
  88 *    +----------------+
  89 *
  90 * The child[1] slot of (1) could be filled with another node which has bit #17
  91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
  92 * 192.168.128.0/24:
  93 *
  94 *              +----------------+
  95 *              |       (1)  (R) |
  96 *              | 192.168.0.0/16 |
  97 *              |    value: 1    |
  98 *              |   [0]    [1]   |
  99 *              +----------------+
 100 *                   |      |
 101 *    +----------------+  +------------------+
 102 *    |       (2)      |  |        (3)       |
 103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 104 *    |    value: 2    |  |     value: 3     |
 105 *    |   [0]    [1]   |  |    [0]    [1]    |
 106 *    +----------------+  +------------------+
 107 *
 108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 109 * it, node (1) is looked at first, and because (4) of the semantics laid out
 110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 111 * However, that slot is already allocated, so a new node is needed in between.
 112 * That node does not have a value attached to it and it will never be
 113 * returned to users as result of a lookup. It is only there to differentiate
 114 * the traversal further. It will get a prefix as wide as necessary to
 115 * distinguish its two children:
 116 *
 117 *                      +----------------+
 118 *                      |       (1)  (R) |
 119 *                      | 192.168.0.0/16 |
 120 *                      |    value: 1    |
 121 *                      |   [0]    [1]   |
 122 *                      +----------------+
 123 *                           |      |
 124 *            +----------------+  +------------------+
 125 *            |       (4)  (I) |  |        (3)       |
 126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 127 *            |    value: ---  |  |     value: 3     |
 128 *            |   [0]    [1]   |  |    [0]    [1]    |
 129 *            +----------------+  +------------------+
 130 *                 |      |
 131 *  +----------------+  +----------------+
 132 *  |       (2)      |  |       (5)      |
 133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 134 *  |    value: 2    |  |     value: 5   |
 135 *  |   [0]    [1]   |  |   [0]    [1]   |
 136 *  +----------------+  +----------------+
 137 *
 138 * 192.168.1.1/32 would be a child of (5) etc.
 139 *
 140 * An intermediate node will be turned into a 'real' node on demand. In the
 141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 142 *
 143 * A fully populated trie would have a height of 32 nodes, as the trie was
 144 * created with a prefix length of 32.
 145 *
 146 * The lookup starts at the root node. If the current node matches and if there
 147 * is a child that can be used to become more specific, the trie is traversed
 148 * downwards. The last node in the traversal that is a non-intermediate one is
 149 * returned.
 150 */
 151
 152static inline int extract_bit(const u8 *data, size_t index)
 153{
 154        return !!(data[index / 8] & (1 << (7 - (index % 8))));
 155}
 156
 157/**
 158 * longest_prefix_match() - determine the longest prefix
 159 * @trie:       The trie to get internal sizes from
 160 * @node:       The node to operate on
 161 * @key:        The key to compare to @node
 162 *
 163 * Determine the longest prefix of @node that matches the bits in @key.
 164 */
 165static size_t longest_prefix_match(const struct lpm_trie *trie,
 166                                   const struct lpm_trie_node *node,
 167                                   const struct bpf_lpm_trie_key *key)
 168{
 169        size_t prefixlen = 0;
 170        size_t i;
 171
 172        for (i = 0; i < trie->data_size; i++) {
 173                size_t b;
 174
 175                b = 8 - fls(node->data[i] ^ key->data[i]);
 176                prefixlen += b;
 177
 178                if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
 179                        return min(node->prefixlen, key->prefixlen);
 180
 181                if (b < 8)
 182                        break;
 183        }
 184
 185        return prefixlen;
 186}
 187
 188/* Called from syscall or from eBPF program */
 189static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 190{
 191        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 192        struct lpm_trie_node *node, *found = NULL;
 193        struct bpf_lpm_trie_key *key = _key;
 194
 195        /* Start walking the trie from the root node ... */
 196
 197        for (node = rcu_dereference(trie->root); node;) {
 198                unsigned int next_bit;
 199                size_t matchlen;
 200
 201                /* Determine the longest prefix of @node that matches @key.
 202                 * If it's the maximum possible prefix for this trie, we have
 203                 * an exact match and can return it directly.
 204                 */
 205                matchlen = longest_prefix_match(trie, node, key);
 206                if (matchlen == trie->max_prefixlen) {
 207                        found = node;
 208                        break;
 209                }
 210
 211                /* If the number of bits that match is smaller than the prefix
 212                 * length of @node, bail out and return the node we have seen
 213                 * last in the traversal (ie, the parent).
 214                 */
 215                if (matchlen < node->prefixlen)
 216                        break;
 217
 218                /* Consider this node as return candidate unless it is an
 219                 * artificially added intermediate one.
 220                 */
 221                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 222                        found = node;
 223
 224                /* If the node match is fully satisfied, let's see if we can
 225                 * become more specific. Determine the next bit in the key and
 226                 * traverse down.
 227                 */
 228                next_bit = extract_bit(key->data, node->prefixlen);
 229                node = rcu_dereference(node->child[next_bit]);
 230        }
 231
 232        if (!found)
 233                return NULL;
 234
 235        return found->data + trie->data_size;
 236}
 237
 238static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 239                                                 const void *value)
 240{
 241        struct lpm_trie_node *node;
 242        size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 243
 244        if (value)
 245                size += trie->map.value_size;
 246
 247        node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
 248                            trie->map.numa_node);
 249        if (!node)
 250                return NULL;
 251
 252        node->flags = 0;
 253
 254        if (value)
 255                memcpy(node->data + trie->data_size, value,
 256                       trie->map.value_size);
 257
 258        return node;
 259}
 260
 261/* Called from syscall or from eBPF program */
 262static int trie_update_elem(struct bpf_map *map,
 263                            void *_key, void *value, u64 flags)
 264{
 265        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 266        struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 267        struct lpm_trie_node __rcu **slot;
 268        struct bpf_lpm_trie_key *key = _key;
 269        unsigned long irq_flags;
 270        unsigned int next_bit;
 271        size_t matchlen = 0;
 272        int ret = 0;
 273
 274        if (unlikely(flags > BPF_EXIST))
 275                return -EINVAL;
 276
 277        if (key->prefixlen > trie->max_prefixlen)
 278                return -EINVAL;
 279
 280        raw_spin_lock_irqsave(&trie->lock, irq_flags);
 281
 282        /* Allocate and fill a new node */
 283
 284        if (trie->n_entries == trie->map.max_entries) {
 285                ret = -ENOSPC;
 286                goto out;
 287        }
 288
 289        new_node = lpm_trie_node_alloc(trie, value);
 290        if (!new_node) {
 291                ret = -ENOMEM;
 292                goto out;
 293        }
 294
 295        trie->n_entries++;
 296
 297        new_node->prefixlen = key->prefixlen;
 298        RCU_INIT_POINTER(new_node->child[0], NULL);
 299        RCU_INIT_POINTER(new_node->child[1], NULL);
 300        memcpy(new_node->data, key->data, trie->data_size);
 301
 302        /* Now find a slot to attach the new node. To do that, walk the tree
 303         * from the root and match as many bits as possible for each node until
 304         * we either find an empty slot or a slot that needs to be replaced by
 305         * an intermediate node.
 306         */
 307        slot = &trie->root;
 308
 309        while ((node = rcu_dereference_protected(*slot,
 310                                        lockdep_is_held(&trie->lock)))) {
 311                matchlen = longest_prefix_match(trie, node, key);
 312
 313                if (node->prefixlen != matchlen ||
 314                    node->prefixlen == key->prefixlen ||
 315                    node->prefixlen == trie->max_prefixlen)
 316                        break;
 317
 318                next_bit = extract_bit(key->data, node->prefixlen);
 319                slot = &node->child[next_bit];
 320        }
 321
 322        /* If the slot is empty (a free child pointer or an empty root),
 323         * simply assign the @new_node to that slot and be done.
 324         */
 325        if (!node) {
 326                rcu_assign_pointer(*slot, new_node);
 327                goto out;
 328        }
 329
 330        /* If the slot we picked already exists, replace it with @new_node
 331         * which already has the correct data array set.
 332         */
 333        if (node->prefixlen == matchlen) {
 334                new_node->child[0] = node->child[0];
 335                new_node->child[1] = node->child[1];
 336
 337                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 338                        trie->n_entries--;
 339
 340                rcu_assign_pointer(*slot, new_node);
 341                kfree_rcu(node, rcu);
 342
 343                goto out;
 344        }
 345
 346        /* If the new node matches the prefix completely, it must be inserted
 347         * as an ancestor. Simply insert it between @node and *@slot.
 348         */
 349        if (matchlen == key->prefixlen) {
 350                next_bit = extract_bit(node->data, matchlen);
 351                rcu_assign_pointer(new_node->child[next_bit], node);
 352                rcu_assign_pointer(*slot, new_node);
 353                goto out;
 354        }
 355
 356        im_node = lpm_trie_node_alloc(trie, NULL);
 357        if (!im_node) {
 358                ret = -ENOMEM;
 359                goto out;
 360        }
 361
 362        im_node->prefixlen = matchlen;
 363        im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 364        memcpy(im_node->data, node->data, trie->data_size);
 365
 366        /* Now determine which child to install in which slot */
 367        if (extract_bit(key->data, matchlen)) {
 368                rcu_assign_pointer(im_node->child[0], node);
 369                rcu_assign_pointer(im_node->child[1], new_node);
 370        } else {
 371                rcu_assign_pointer(im_node->child[0], new_node);
 372                rcu_assign_pointer(im_node->child[1], node);
 373        }
 374
 375        /* Finally, assign the intermediate node to the determined spot */
 376        rcu_assign_pointer(*slot, im_node);
 377
 378out:
 379        if (ret) {
 380                if (new_node)
 381                        trie->n_entries--;
 382
 383                kfree(new_node);
 384                kfree(im_node);
 385        }
 386
 387        raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
 388
 389        return ret;
 390}
 391
 392static int trie_delete_elem(struct bpf_map *map, void *key)
 393{
 394        /* TODO */
 395        return -ENOSYS;
 396}
 397
 398#define LPM_DATA_SIZE_MAX       256
 399#define LPM_DATA_SIZE_MIN       1
 400
 401#define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 402                                 sizeof(struct lpm_trie_node))
 403#define LPM_VAL_SIZE_MIN        1
 404
 405#define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key) + (X))
 406#define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 407#define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 408
 409#define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE)
 410
 411static struct bpf_map *trie_alloc(union bpf_attr *attr)
 412{
 413        struct lpm_trie *trie;
 414        u64 cost = sizeof(*trie), cost_per_node;
 415        int ret;
 416
 417        if (!capable(CAP_SYS_ADMIN))
 418                return ERR_PTR(-EPERM);
 419
 420        /* check sanity of attributes */
 421        if (attr->max_entries == 0 ||
 422            !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 423            attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 424            attr->key_size < LPM_KEY_SIZE_MIN ||
 425            attr->key_size > LPM_KEY_SIZE_MAX ||
 426            attr->value_size < LPM_VAL_SIZE_MIN ||
 427            attr->value_size > LPM_VAL_SIZE_MAX)
 428                return ERR_PTR(-EINVAL);
 429
 430        trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
 431        if (!trie)
 432                return ERR_PTR(-ENOMEM);
 433
 434        /* copy mandatory map attributes */
 435        trie->map.map_type = attr->map_type;
 436        trie->map.key_size = attr->key_size;
 437        trie->map.value_size = attr->value_size;
 438        trie->map.max_entries = attr->max_entries;
 439        trie->map.map_flags = attr->map_flags;
 440        trie->map.numa_node = bpf_map_attr_numa_node(attr);
 441        trie->data_size = attr->key_size -
 442                          offsetof(struct bpf_lpm_trie_key, data);
 443        trie->max_prefixlen = trie->data_size * 8;
 444
 445        cost_per_node = sizeof(struct lpm_trie_node) +
 446                        attr->value_size + trie->data_size;
 447        cost += (u64) attr->max_entries * cost_per_node;
 448        if (cost >= U32_MAX - PAGE_SIZE) {
 449                ret = -E2BIG;
 450                goto out_err;
 451        }
 452
 453        trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 454
 455        ret = bpf_map_precharge_memlock(trie->map.pages);
 456        if (ret)
 457                goto out_err;
 458
 459        raw_spin_lock_init(&trie->lock);
 460
 461        return &trie->map;
 462out_err:
 463        kfree(trie);
 464        return ERR_PTR(ret);
 465}
 466
 467static void trie_free(struct bpf_map *map)
 468{
 469        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 470        struct lpm_trie_node __rcu **slot;
 471        struct lpm_trie_node *node;
 472
 473        raw_spin_lock(&trie->lock);
 474
 475        /* Always start at the root and walk down to a node that has no
 476         * children. Then free that node, nullify its reference in the parent
 477         * and start over.
 478         */
 479
 480        for (;;) {
 481                slot = &trie->root;
 482
 483                for (;;) {
 484                        node = rcu_dereference_protected(*slot,
 485                                        lockdep_is_held(&trie->lock));
 486                        if (!node)
 487                                goto unlock;
 488
 489                        if (rcu_access_pointer(node->child[0])) {
 490                                slot = &node->child[0];
 491                                continue;
 492                        }
 493
 494                        if (rcu_access_pointer(node->child[1])) {
 495                                slot = &node->child[1];
 496                                continue;
 497                        }
 498
 499                        kfree(node);
 500                        RCU_INIT_POINTER(*slot, NULL);
 501                        break;
 502                }
 503        }
 504
 505unlock:
 506        raw_spin_unlock(&trie->lock);
 507}
 508
 509static int trie_get_next_key(struct bpf_map *map, void *key, void *next_key)
 510{
 511        return -ENOTSUPP;
 512}
 513
 514const struct bpf_map_ops trie_map_ops = {
 515        .map_alloc = trie_alloc,
 516        .map_free = trie_free,
 517        .map_get_next_key = trie_get_next_key,
 518        .map_lookup_elem = trie_lookup_elem,
 519        .map_update_elem = trie_update_elem,
 520        .map_delete_elem = trie_delete_elem,
 521};
 522