linux/kernel/rcu/srcutree.c
<<
>>
Prefs
   1/*
   2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright (C) IBM Corporation, 2006
  19 * Copyright (C) Fujitsu, 2012
  20 *
  21 * Author: Paul McKenney <paulmck@us.ibm.com>
  22 *         Lai Jiangshan <laijs@cn.fujitsu.com>
  23 *
  24 * For detailed explanation of Read-Copy Update mechanism see -
  25 *              Documentation/RCU/ *.txt
  26 *
  27 */
  28
  29#include <linux/export.h>
  30#include <linux/mutex.h>
  31#include <linux/percpu.h>
  32#include <linux/preempt.h>
  33#include <linux/rcupdate_wait.h>
  34#include <linux/sched.h>
  35#include <linux/smp.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/srcu.h>
  39
  40#include "rcu.h"
  41#include "rcu_segcblist.h"
  42
  43/* Holdoff in nanoseconds for auto-expediting. */
  44#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  45static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  46module_param(exp_holdoff, ulong, 0444);
  47
  48/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  49static ulong counter_wrap_check = (ULONG_MAX >> 2);
  50module_param(counter_wrap_check, ulong, 0444);
  51
  52static void srcu_invoke_callbacks(struct work_struct *work);
  53static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
  54static void process_srcu(struct work_struct *work);
  55
  56/*
  57 * Initialize SRCU combining tree.  Note that statically allocated
  58 * srcu_struct structures might already have srcu_read_lock() and
  59 * srcu_read_unlock() running against them.  So if the is_static parameter
  60 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
  61 */
  62static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
  63{
  64        int cpu;
  65        int i;
  66        int level = 0;
  67        int levelspread[RCU_NUM_LVLS];
  68        struct srcu_data *sdp;
  69        struct srcu_node *snp;
  70        struct srcu_node *snp_first;
  71
  72        /* Work out the overall tree geometry. */
  73        sp->level[0] = &sp->node[0];
  74        for (i = 1; i < rcu_num_lvls; i++)
  75                sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
  76        rcu_init_levelspread(levelspread, num_rcu_lvl);
  77
  78        /* Each pass through this loop initializes one srcu_node structure. */
  79        rcu_for_each_node_breadth_first(sp, snp) {
  80                raw_spin_lock_init(&ACCESS_PRIVATE(snp, lock));
  81                WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
  82                             ARRAY_SIZE(snp->srcu_data_have_cbs));
  83                for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
  84                        snp->srcu_have_cbs[i] = 0;
  85                        snp->srcu_data_have_cbs[i] = 0;
  86                }
  87                snp->srcu_gp_seq_needed_exp = 0;
  88                snp->grplo = -1;
  89                snp->grphi = -1;
  90                if (snp == &sp->node[0]) {
  91                        /* Root node, special case. */
  92                        snp->srcu_parent = NULL;
  93                        continue;
  94                }
  95
  96                /* Non-root node. */
  97                if (snp == sp->level[level + 1])
  98                        level++;
  99                snp->srcu_parent = sp->level[level - 1] +
 100                                   (snp - sp->level[level]) /
 101                                   levelspread[level - 1];
 102        }
 103
 104        /*
 105         * Initialize the per-CPU srcu_data array, which feeds into the
 106         * leaves of the srcu_node tree.
 107         */
 108        WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 109                     ARRAY_SIZE(sdp->srcu_unlock_count));
 110        level = rcu_num_lvls - 1;
 111        snp_first = sp->level[level];
 112        for_each_possible_cpu(cpu) {
 113                sdp = per_cpu_ptr(sp->sda, cpu);
 114                raw_spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 115                rcu_segcblist_init(&sdp->srcu_cblist);
 116                sdp->srcu_cblist_invoking = false;
 117                sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
 118                sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
 119                sdp->mynode = &snp_first[cpu / levelspread[level]];
 120                for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 121                        if (snp->grplo < 0)
 122                                snp->grplo = cpu;
 123                        snp->grphi = cpu;
 124                }
 125                sdp->cpu = cpu;
 126                INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
 127                sdp->sp = sp;
 128                sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 129                if (is_static)
 130                        continue;
 131
 132                /* Dynamically allocated, better be no srcu_read_locks()! */
 133                for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
 134                        sdp->srcu_lock_count[i] = 0;
 135                        sdp->srcu_unlock_count[i] = 0;
 136                }
 137        }
 138}
 139
 140/*
 141 * Initialize non-compile-time initialized fields, including the
 142 * associated srcu_node and srcu_data structures.  The is_static
 143 * parameter is passed through to init_srcu_struct_nodes(), and
 144 * also tells us that ->sda has already been wired up to srcu_data.
 145 */
 146static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
 147{
 148        mutex_init(&sp->srcu_cb_mutex);
 149        mutex_init(&sp->srcu_gp_mutex);
 150        sp->srcu_idx = 0;
 151        sp->srcu_gp_seq = 0;
 152        sp->srcu_barrier_seq = 0;
 153        mutex_init(&sp->srcu_barrier_mutex);
 154        atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
 155        INIT_DELAYED_WORK(&sp->work, process_srcu);
 156        if (!is_static)
 157                sp->sda = alloc_percpu(struct srcu_data);
 158        init_srcu_struct_nodes(sp, is_static);
 159        sp->srcu_gp_seq_needed_exp = 0;
 160        sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 161        smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
 162        return sp->sda ? 0 : -ENOMEM;
 163}
 164
 165#ifdef CONFIG_DEBUG_LOCK_ALLOC
 166
 167int __init_srcu_struct(struct srcu_struct *sp, const char *name,
 168                       struct lock_class_key *key)
 169{
 170        /* Don't re-initialize a lock while it is held. */
 171        debug_check_no_locks_freed((void *)sp, sizeof(*sp));
 172        lockdep_init_map(&sp->dep_map, name, key, 0);
 173        raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 174        return init_srcu_struct_fields(sp, false);
 175}
 176EXPORT_SYMBOL_GPL(__init_srcu_struct);
 177
 178#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 179
 180/**
 181 * init_srcu_struct - initialize a sleep-RCU structure
 182 * @sp: structure to initialize.
 183 *
 184 * Must invoke this on a given srcu_struct before passing that srcu_struct
 185 * to any other function.  Each srcu_struct represents a separate domain
 186 * of SRCU protection.
 187 */
 188int init_srcu_struct(struct srcu_struct *sp)
 189{
 190        raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 191        return init_srcu_struct_fields(sp, false);
 192}
 193EXPORT_SYMBOL_GPL(init_srcu_struct);
 194
 195#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 196
 197/*
 198 * First-use initialization of statically allocated srcu_struct
 199 * structure.  Wiring up the combining tree is more than can be
 200 * done with compile-time initialization, so this check is added
 201 * to each update-side SRCU primitive.  Use sp->lock, which -is-
 202 * compile-time initialized, to resolve races involving multiple
 203 * CPUs trying to garner first-use privileges.
 204 */
 205static void check_init_srcu_struct(struct srcu_struct *sp)
 206{
 207        unsigned long flags;
 208
 209        WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
 210        /* The smp_load_acquire() pairs with the smp_store_release(). */
 211        if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
 212                return; /* Already initialized. */
 213        raw_spin_lock_irqsave_rcu_node(sp, flags);
 214        if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
 215                raw_spin_unlock_irqrestore_rcu_node(sp, flags);
 216                return;
 217        }
 218        init_srcu_struct_fields(sp, true);
 219        raw_spin_unlock_irqrestore_rcu_node(sp, flags);
 220}
 221
 222/*
 223 * Returns approximate total of the readers' ->srcu_lock_count[] values
 224 * for the rank of per-CPU counters specified by idx.
 225 */
 226static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
 227{
 228        int cpu;
 229        unsigned long sum = 0;
 230
 231        for_each_possible_cpu(cpu) {
 232                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 233
 234                sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 235        }
 236        return sum;
 237}
 238
 239/*
 240 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 241 * for the rank of per-CPU counters specified by idx.
 242 */
 243static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
 244{
 245        int cpu;
 246        unsigned long sum = 0;
 247
 248        for_each_possible_cpu(cpu) {
 249                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 250
 251                sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 252        }
 253        return sum;
 254}
 255
 256/*
 257 * Return true if the number of pre-existing readers is determined to
 258 * be zero.
 259 */
 260static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
 261{
 262        unsigned long unlocks;
 263
 264        unlocks = srcu_readers_unlock_idx(sp, idx);
 265
 266        /*
 267         * Make sure that a lock is always counted if the corresponding
 268         * unlock is counted. Needs to be a smp_mb() as the read side may
 269         * contain a read from a variable that is written to before the
 270         * synchronize_srcu() in the write side. In this case smp_mb()s
 271         * A and B act like the store buffering pattern.
 272         *
 273         * This smp_mb() also pairs with smp_mb() C to prevent accesses
 274         * after the synchronize_srcu() from being executed before the
 275         * grace period ends.
 276         */
 277        smp_mb(); /* A */
 278
 279        /*
 280         * If the locks are the same as the unlocks, then there must have
 281         * been no readers on this index at some time in between. This does
 282         * not mean that there are no more readers, as one could have read
 283         * the current index but not have incremented the lock counter yet.
 284         *
 285         * So suppose that the updater is preempted here for so long
 286         * that more than ULONG_MAX non-nested readers come and go in
 287         * the meantime.  It turns out that this cannot result in overflow
 288         * because if a reader modifies its unlock count after we read it
 289         * above, then that reader's next load of ->srcu_idx is guaranteed
 290         * to get the new value, which will cause it to operate on the
 291         * other bank of counters, where it cannot contribute to the
 292         * overflow of these counters.  This means that there is a maximum
 293         * of 2*NR_CPUS increments, which cannot overflow given current
 294         * systems, especially not on 64-bit systems.
 295         *
 296         * OK, how about nesting?  This does impose a limit on nesting
 297         * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 298         * especially on 64-bit systems.
 299         */
 300        return srcu_readers_lock_idx(sp, idx) == unlocks;
 301}
 302
 303/**
 304 * srcu_readers_active - returns true if there are readers. and false
 305 *                       otherwise
 306 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
 307 *
 308 * Note that this is not an atomic primitive, and can therefore suffer
 309 * severe errors when invoked on an active srcu_struct.  That said, it
 310 * can be useful as an error check at cleanup time.
 311 */
 312static bool srcu_readers_active(struct srcu_struct *sp)
 313{
 314        int cpu;
 315        unsigned long sum = 0;
 316
 317        for_each_possible_cpu(cpu) {
 318                struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 319
 320                sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 321                sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 322                sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 323                sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 324        }
 325        return sum;
 326}
 327
 328#define SRCU_INTERVAL           1
 329
 330/*
 331 * Return grace-period delay, zero if there are expedited grace
 332 * periods pending, SRCU_INTERVAL otherwise.
 333 */
 334static unsigned long srcu_get_delay(struct srcu_struct *sp)
 335{
 336        if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
 337                         READ_ONCE(sp->srcu_gp_seq_needed_exp)))
 338                return 0;
 339        return SRCU_INTERVAL;
 340}
 341
 342/**
 343 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 344 * @sp: structure to clean up.
 345 *
 346 * Must invoke this after you are finished using a given srcu_struct that
 347 * was initialized via init_srcu_struct(), else you leak memory.
 348 */
 349void cleanup_srcu_struct(struct srcu_struct *sp)
 350{
 351        int cpu;
 352
 353        if (WARN_ON(!srcu_get_delay(sp)))
 354                return; /* Leakage unless caller handles error. */
 355        if (WARN_ON(srcu_readers_active(sp)))
 356                return; /* Leakage unless caller handles error. */
 357        flush_delayed_work(&sp->work);
 358        for_each_possible_cpu(cpu)
 359                flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
 360        if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 361            WARN_ON(srcu_readers_active(sp))) {
 362                pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
 363                return; /* Caller forgot to stop doing call_srcu()? */
 364        }
 365        free_percpu(sp->sda);
 366        sp->sda = NULL;
 367}
 368EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 369
 370/*
 371 * Counts the new reader in the appropriate per-CPU element of the
 372 * srcu_struct.
 373 * Returns an index that must be passed to the matching srcu_read_unlock().
 374 */
 375int __srcu_read_lock(struct srcu_struct *sp)
 376{
 377        int idx;
 378
 379        idx = READ_ONCE(sp->srcu_idx) & 0x1;
 380        this_cpu_inc(sp->sda->srcu_lock_count[idx]);
 381        smp_mb(); /* B */  /* Avoid leaking the critical section. */
 382        return idx;
 383}
 384EXPORT_SYMBOL_GPL(__srcu_read_lock);
 385
 386/*
 387 * Removes the count for the old reader from the appropriate per-CPU
 388 * element of the srcu_struct.  Note that this may well be a different
 389 * CPU than that which was incremented by the corresponding srcu_read_lock().
 390 */
 391void __srcu_read_unlock(struct srcu_struct *sp, int idx)
 392{
 393        smp_mb(); /* C */  /* Avoid leaking the critical section. */
 394        this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
 395}
 396EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 397
 398/*
 399 * We use an adaptive strategy for synchronize_srcu() and especially for
 400 * synchronize_srcu_expedited().  We spin for a fixed time period
 401 * (defined below) to allow SRCU readers to exit their read-side critical
 402 * sections.  If there are still some readers after a few microseconds,
 403 * we repeatedly block for 1-millisecond time periods.
 404 */
 405#define SRCU_RETRY_CHECK_DELAY          5
 406
 407/*
 408 * Start an SRCU grace period.
 409 */
 410static void srcu_gp_start(struct srcu_struct *sp)
 411{
 412        struct srcu_data *sdp = this_cpu_ptr(sp->sda);
 413        int state;
 414
 415        lockdep_assert_held(&sp->lock);
 416        WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 417        rcu_segcblist_advance(&sdp->srcu_cblist,
 418                              rcu_seq_current(&sp->srcu_gp_seq));
 419        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 420                                       rcu_seq_snap(&sp->srcu_gp_seq));
 421        smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 422        rcu_seq_start(&sp->srcu_gp_seq);
 423        state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
 424        WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 425}
 426
 427/*
 428 * Track online CPUs to guide callback workqueue placement.
 429 */
 430DEFINE_PER_CPU(bool, srcu_online);
 431
 432void srcu_online_cpu(unsigned int cpu)
 433{
 434        WRITE_ONCE(per_cpu(srcu_online, cpu), true);
 435}
 436
 437void srcu_offline_cpu(unsigned int cpu)
 438{
 439        WRITE_ONCE(per_cpu(srcu_online, cpu), false);
 440}
 441
 442/*
 443 * Place the workqueue handler on the specified CPU if online, otherwise
 444 * just run it whereever.  This is useful for placing workqueue handlers
 445 * that are to invoke the specified CPU's callbacks.
 446 */
 447static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 448                                       struct delayed_work *dwork,
 449                                       unsigned long delay)
 450{
 451        bool ret;
 452
 453        preempt_disable();
 454        if (READ_ONCE(per_cpu(srcu_online, cpu)))
 455                ret = queue_delayed_work_on(cpu, wq, dwork, delay);
 456        else
 457                ret = queue_delayed_work(wq, dwork, delay);
 458        preempt_enable();
 459        return ret;
 460}
 461
 462/*
 463 * Schedule callback invocation for the specified srcu_data structure,
 464 * if possible, on the corresponding CPU.
 465 */
 466static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 467{
 468        srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq,
 469                                   &sdp->work, delay);
 470}
 471
 472/*
 473 * Schedule callback invocation for all srcu_data structures associated
 474 * with the specified srcu_node structure that have callbacks for the
 475 * just-completed grace period, the one corresponding to idx.  If possible,
 476 * schedule this invocation on the corresponding CPUs.
 477 */
 478static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
 479                                  unsigned long mask, unsigned long delay)
 480{
 481        int cpu;
 482
 483        for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 484                if (!(mask & (1 << (cpu - snp->grplo))))
 485                        continue;
 486                srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
 487        }
 488}
 489
 490/*
 491 * Note the end of an SRCU grace period.  Initiates callback invocation
 492 * and starts a new grace period if needed.
 493 *
 494 * The ->srcu_cb_mutex acquisition does not protect any data, but
 495 * instead prevents more than one grace period from starting while we
 496 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 497 * array to have a finite number of elements.
 498 */
 499static void srcu_gp_end(struct srcu_struct *sp)
 500{
 501        unsigned long cbdelay;
 502        bool cbs;
 503        int cpu;
 504        unsigned long flags;
 505        unsigned long gpseq;
 506        int idx;
 507        int idxnext;
 508        unsigned long mask;
 509        struct srcu_data *sdp;
 510        struct srcu_node *snp;
 511
 512        /* Prevent more than one additional grace period. */
 513        mutex_lock(&sp->srcu_cb_mutex);
 514
 515        /* End the current grace period. */
 516        raw_spin_lock_irq_rcu_node(sp);
 517        idx = rcu_seq_state(sp->srcu_gp_seq);
 518        WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 519        cbdelay = srcu_get_delay(sp);
 520        sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 521        rcu_seq_end(&sp->srcu_gp_seq);
 522        gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 523        if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
 524                sp->srcu_gp_seq_needed_exp = gpseq;
 525        raw_spin_unlock_irq_rcu_node(sp);
 526        mutex_unlock(&sp->srcu_gp_mutex);
 527        /* A new grace period can start at this point.  But only one. */
 528
 529        /* Initiate callback invocation as needed. */
 530        idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 531        idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs);
 532        rcu_for_each_node_breadth_first(sp, snp) {
 533                raw_spin_lock_irq_rcu_node(snp);
 534                cbs = false;
 535                if (snp >= sp->level[rcu_num_lvls - 1])
 536                        cbs = snp->srcu_have_cbs[idx] == gpseq;
 537                snp->srcu_have_cbs[idx] = gpseq;
 538                rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 539                if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
 540                        snp->srcu_gp_seq_needed_exp = gpseq;
 541                mask = snp->srcu_data_have_cbs[idx];
 542                snp->srcu_data_have_cbs[idx] = 0;
 543                raw_spin_unlock_irq_rcu_node(snp);
 544                if (cbs)
 545                        srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
 546
 547                /* Occasionally prevent srcu_data counter wrap. */
 548                if (!(gpseq & counter_wrap_check))
 549                        for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 550                                sdp = per_cpu_ptr(sp->sda, cpu);
 551                                raw_spin_lock_irqsave_rcu_node(sdp, flags);
 552                                if (ULONG_CMP_GE(gpseq,
 553                                                 sdp->srcu_gp_seq_needed + 100))
 554                                        sdp->srcu_gp_seq_needed = gpseq;
 555                                raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
 556                        }
 557        }
 558
 559        /* Callback initiation done, allow grace periods after next. */
 560        mutex_unlock(&sp->srcu_cb_mutex);
 561
 562        /* Start a new grace period if needed. */
 563        raw_spin_lock_irq_rcu_node(sp);
 564        gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 565        if (!rcu_seq_state(gpseq) &&
 566            ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
 567                srcu_gp_start(sp);
 568                raw_spin_unlock_irq_rcu_node(sp);
 569                /* Throttle expedited grace periods: Should be rare! */
 570                srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff
 571                                    ? 0 : SRCU_INTERVAL);
 572        } else {
 573                raw_spin_unlock_irq_rcu_node(sp);
 574        }
 575}
 576
 577/*
 578 * Funnel-locking scheme to scalably mediate many concurrent expedited
 579 * grace-period requests.  This function is invoked for the first known
 580 * expedited request for a grace period that has already been requested,
 581 * but without expediting.  To start a completely new grace period,
 582 * whether expedited or not, use srcu_funnel_gp_start() instead.
 583 */
 584static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
 585                                  unsigned long s)
 586{
 587        unsigned long flags;
 588
 589        for (; snp != NULL; snp = snp->srcu_parent) {
 590                if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
 591                    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
 592                        return;
 593                raw_spin_lock_irqsave_rcu_node(snp, flags);
 594                if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
 595                        raw_spin_unlock_irqrestore_rcu_node(snp, flags);
 596                        return;
 597                }
 598                WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 599                raw_spin_unlock_irqrestore_rcu_node(snp, flags);
 600        }
 601        raw_spin_lock_irqsave_rcu_node(sp, flags);
 602        if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 603                sp->srcu_gp_seq_needed_exp = s;
 604        raw_spin_unlock_irqrestore_rcu_node(sp, flags);
 605}
 606
 607/*
 608 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 609 * requests.  The winner has to do the work of actually starting grace
 610 * period s.  Losers must either ensure that their desired grace-period
 611 * number is recorded on at least their leaf srcu_node structure, or they
 612 * must take steps to invoke their own callbacks.
 613 */
 614static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
 615                                 unsigned long s, bool do_norm)
 616{
 617        unsigned long flags;
 618        int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 619        struct srcu_node *snp = sdp->mynode;
 620        unsigned long snp_seq;
 621
 622        /* Each pass through the loop does one level of the srcu_node tree. */
 623        for (; snp != NULL; snp = snp->srcu_parent) {
 624                if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
 625                        return; /* GP already done and CBs recorded. */
 626                raw_spin_lock_irqsave_rcu_node(snp, flags);
 627                if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
 628                        snp_seq = snp->srcu_have_cbs[idx];
 629                        if (snp == sdp->mynode && snp_seq == s)
 630                                snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 631                        raw_spin_unlock_irqrestore_rcu_node(snp, flags);
 632                        if (snp == sdp->mynode && snp_seq != s) {
 633                                srcu_schedule_cbs_sdp(sdp, do_norm
 634                                                           ? SRCU_INTERVAL
 635                                                           : 0);
 636                                return;
 637                        }
 638                        if (!do_norm)
 639                                srcu_funnel_exp_start(sp, snp, s);
 640                        return;
 641                }
 642                snp->srcu_have_cbs[idx] = s;
 643                if (snp == sdp->mynode)
 644                        snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 645                if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
 646                        snp->srcu_gp_seq_needed_exp = s;
 647                raw_spin_unlock_irqrestore_rcu_node(snp, flags);
 648        }
 649
 650        /* Top of tree, must ensure the grace period will be started. */
 651        raw_spin_lock_irqsave_rcu_node(sp, flags);
 652        if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
 653                /*
 654                 * Record need for grace period s.  Pair with load
 655                 * acquire setting up for initialization.
 656                 */
 657                smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
 658        }
 659        if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 660                sp->srcu_gp_seq_needed_exp = s;
 661
 662        /* If grace period not already done and none in progress, start it. */
 663        if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
 664            rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 665                WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 666                srcu_gp_start(sp);
 667                queue_delayed_work(system_power_efficient_wq, &sp->work,
 668                                   srcu_get_delay(sp));
 669        }
 670        raw_spin_unlock_irqrestore_rcu_node(sp, flags);
 671}
 672
 673/*
 674 * Wait until all readers counted by array index idx complete, but
 675 * loop an additional time if there is an expedited grace period pending.
 676 * The caller must ensure that ->srcu_idx is not changed while checking.
 677 */
 678static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
 679{
 680        for (;;) {
 681                if (srcu_readers_active_idx_check(sp, idx))
 682                        return true;
 683                if (--trycount + !srcu_get_delay(sp) <= 0)
 684                        return false;
 685                udelay(SRCU_RETRY_CHECK_DELAY);
 686        }
 687}
 688
 689/*
 690 * Increment the ->srcu_idx counter so that future SRCU readers will
 691 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 692 * us to wait for pre-existing readers in a starvation-free manner.
 693 */
 694static void srcu_flip(struct srcu_struct *sp)
 695{
 696        /*
 697         * Ensure that if this updater saw a given reader's increment
 698         * from __srcu_read_lock(), that reader was using an old value
 699         * of ->srcu_idx.  Also ensure that if a given reader sees the
 700         * new value of ->srcu_idx, this updater's earlier scans cannot
 701         * have seen that reader's increments (which is OK, because this
 702         * grace period need not wait on that reader).
 703         */
 704        smp_mb(); /* E */  /* Pairs with B and C. */
 705
 706        WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
 707
 708        /*
 709         * Ensure that if the updater misses an __srcu_read_unlock()
 710         * increment, that task's next __srcu_read_lock() will see the
 711         * above counter update.  Note that both this memory barrier
 712         * and the one in srcu_readers_active_idx_check() provide the
 713         * guarantee for __srcu_read_lock().
 714         */
 715        smp_mb(); /* D */  /* Pairs with C. */
 716}
 717
 718/*
 719 * If SRCU is likely idle, return true, otherwise return false.
 720 *
 721 * Note that it is OK for several current from-idle requests for a new
 722 * grace period from idle to specify expediting because they will all end
 723 * up requesting the same grace period anyhow.  So no loss.
 724 *
 725 * Note also that if any CPU (including the current one) is still invoking
 726 * callbacks, this function will nevertheless say "idle".  This is not
 727 * ideal, but the overhead of checking all CPUs' callback lists is even
 728 * less ideal, especially on large systems.  Furthermore, the wakeup
 729 * can happen before the callback is fully removed, so we have no choice
 730 * but to accept this type of error.
 731 *
 732 * This function is also subject to counter-wrap errors, but let's face
 733 * it, if this function was preempted for enough time for the counters
 734 * to wrap, it really doesn't matter whether or not we expedite the grace
 735 * period.  The extra overhead of a needlessly expedited grace period is
 736 * negligible when amoritized over that time period, and the extra latency
 737 * of a needlessly non-expedited grace period is similarly negligible.
 738 */
 739static bool srcu_might_be_idle(struct srcu_struct *sp)
 740{
 741        unsigned long curseq;
 742        unsigned long flags;
 743        struct srcu_data *sdp;
 744        unsigned long t;
 745
 746        /* If the local srcu_data structure has callbacks, not idle.  */
 747        local_irq_save(flags);
 748        sdp = this_cpu_ptr(sp->sda);
 749        if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 750                local_irq_restore(flags);
 751                return false; /* Callbacks already present, so not idle. */
 752        }
 753        local_irq_restore(flags);
 754
 755        /*
 756         * No local callbacks, so probabalistically probe global state.
 757         * Exact information would require acquiring locks, which would
 758         * kill scalability, hence the probabalistic nature of the probe.
 759         */
 760
 761        /* First, see if enough time has passed since the last GP. */
 762        t = ktime_get_mono_fast_ns();
 763        if (exp_holdoff == 0 ||
 764            time_in_range_open(t, sp->srcu_last_gp_end,
 765                               sp->srcu_last_gp_end + exp_holdoff))
 766                return false; /* Too soon after last GP. */
 767
 768        /* Next, check for probable idleness. */
 769        curseq = rcu_seq_current(&sp->srcu_gp_seq);
 770        smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 771        if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
 772                return false; /* Grace period in progress, so not idle. */
 773        smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 774        if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
 775                return false; /* GP # changed, so not idle. */
 776        return true; /* With reasonable probability, idle! */
 777}
 778
 779/*
 780 * SRCU callback function to leak a callback.
 781 */
 782static void srcu_leak_callback(struct rcu_head *rhp)
 783{
 784}
 785
 786/*
 787 * Enqueue an SRCU callback on the srcu_data structure associated with
 788 * the current CPU and the specified srcu_struct structure, initiating
 789 * grace-period processing if it is not already running.
 790 *
 791 * Note that all CPUs must agree that the grace period extended beyond
 792 * all pre-existing SRCU read-side critical section.  On systems with
 793 * more than one CPU, this means that when "func()" is invoked, each CPU
 794 * is guaranteed to have executed a full memory barrier since the end of
 795 * its last corresponding SRCU read-side critical section whose beginning
 796 * preceded the call to call_rcu().  It also means that each CPU executing
 797 * an SRCU read-side critical section that continues beyond the start of
 798 * "func()" must have executed a memory barrier after the call_rcu()
 799 * but before the beginning of that SRCU read-side critical section.
 800 * Note that these guarantees include CPUs that are offline, idle, or
 801 * executing in user mode, as well as CPUs that are executing in the kernel.
 802 *
 803 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 804 * resulting SRCU callback function "func()", then both CPU A and CPU
 805 * B are guaranteed to execute a full memory barrier during the time
 806 * interval between the call to call_rcu() and the invocation of "func()".
 807 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 808 * again only if the system has more than one CPU).
 809 *
 810 * Of course, these guarantees apply only for invocations of call_srcu(),
 811 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 812 * srcu_struct structure.
 813 */
 814void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 815                 rcu_callback_t func, bool do_norm)
 816{
 817        unsigned long flags;
 818        bool needexp = false;
 819        bool needgp = false;
 820        unsigned long s;
 821        struct srcu_data *sdp;
 822
 823        check_init_srcu_struct(sp);
 824        if (debug_rcu_head_queue(rhp)) {
 825                /* Probable double call_srcu(), so leak the callback. */
 826                WRITE_ONCE(rhp->func, srcu_leak_callback);
 827                WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 828                return;
 829        }
 830        rhp->func = func;
 831        local_irq_save(flags);
 832        sdp = this_cpu_ptr(sp->sda);
 833        raw_spin_lock_rcu_node(sdp);
 834        rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
 835        rcu_segcblist_advance(&sdp->srcu_cblist,
 836                              rcu_seq_current(&sp->srcu_gp_seq));
 837        s = rcu_seq_snap(&sp->srcu_gp_seq);
 838        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
 839        if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 840                sdp->srcu_gp_seq_needed = s;
 841                needgp = true;
 842        }
 843        if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 844                sdp->srcu_gp_seq_needed_exp = s;
 845                needexp = true;
 846        }
 847        raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
 848        if (needgp)
 849                srcu_funnel_gp_start(sp, sdp, s, do_norm);
 850        else if (needexp)
 851                srcu_funnel_exp_start(sp, sdp->mynode, s);
 852}
 853
 854/**
 855 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 856 * @sp: srcu_struct in queue the callback
 857 * @rhp: structure to be used for queueing the SRCU callback.
 858 * @func: function to be invoked after the SRCU grace period
 859 *
 860 * The callback function will be invoked some time after a full SRCU
 861 * grace period elapses, in other words after all pre-existing SRCU
 862 * read-side critical sections have completed.  However, the callback
 863 * function might well execute concurrently with other SRCU read-side
 864 * critical sections that started after call_srcu() was invoked.  SRCU
 865 * read-side critical sections are delimited by srcu_read_lock() and
 866 * srcu_read_unlock(), and may be nested.
 867 *
 868 * The callback will be invoked from process context, but must nevertheless
 869 * be fast and must not block.
 870 */
 871void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 872               rcu_callback_t func)
 873{
 874        __call_srcu(sp, rhp, func, true);
 875}
 876EXPORT_SYMBOL_GPL(call_srcu);
 877
 878/*
 879 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 880 */
 881static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
 882{
 883        struct rcu_synchronize rcu;
 884
 885        RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
 886                         lock_is_held(&rcu_bh_lock_map) ||
 887                         lock_is_held(&rcu_lock_map) ||
 888                         lock_is_held(&rcu_sched_lock_map),
 889                         "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 890
 891        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 892                return;
 893        might_sleep();
 894        check_init_srcu_struct(sp);
 895        init_completion(&rcu.completion);
 896        init_rcu_head_on_stack(&rcu.head);
 897        __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
 898        wait_for_completion(&rcu.completion);
 899        destroy_rcu_head_on_stack(&rcu.head);
 900
 901        /*
 902         * Make sure that later code is ordered after the SRCU grace
 903         * period.  This pairs with the raw_spin_lock_irq_rcu_node()
 904         * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 905         * because the current CPU might have been totally uninvolved with
 906         * (and thus unordered against) that grace period.
 907         */
 908        smp_mb();
 909}
 910
 911/**
 912 * synchronize_srcu_expedited - Brute-force SRCU grace period
 913 * @sp: srcu_struct with which to synchronize.
 914 *
 915 * Wait for an SRCU grace period to elapse, but be more aggressive about
 916 * spinning rather than blocking when waiting.
 917 *
 918 * Note that synchronize_srcu_expedited() has the same deadlock and
 919 * memory-ordering properties as does synchronize_srcu().
 920 */
 921void synchronize_srcu_expedited(struct srcu_struct *sp)
 922{
 923        __synchronize_srcu(sp, rcu_gp_is_normal());
 924}
 925EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 926
 927/**
 928 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 929 * @sp: srcu_struct with which to synchronize.
 930 *
 931 * Wait for the count to drain to zero of both indexes. To avoid the
 932 * possible starvation of synchronize_srcu(), it waits for the count of
 933 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 934 * and then flip the srcu_idx and wait for the count of the other index.
 935 *
 936 * Can block; must be called from process context.
 937 *
 938 * Note that it is illegal to call synchronize_srcu() from the corresponding
 939 * SRCU read-side critical section; doing so will result in deadlock.
 940 * However, it is perfectly legal to call synchronize_srcu() on one
 941 * srcu_struct from some other srcu_struct's read-side critical section,
 942 * as long as the resulting graph of srcu_structs is acyclic.
 943 *
 944 * There are memory-ordering constraints implied by synchronize_srcu().
 945 * On systems with more than one CPU, when synchronize_srcu() returns,
 946 * each CPU is guaranteed to have executed a full memory barrier since
 947 * the end of its last corresponding SRCU-sched read-side critical section
 948 * whose beginning preceded the call to synchronize_srcu().  In addition,
 949 * each CPU having an SRCU read-side critical section that extends beyond
 950 * the return from synchronize_srcu() is guaranteed to have executed a
 951 * full memory barrier after the beginning of synchronize_srcu() and before
 952 * the beginning of that SRCU read-side critical section.  Note that these
 953 * guarantees include CPUs that are offline, idle, or executing in user mode,
 954 * as well as CPUs that are executing in the kernel.
 955 *
 956 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 957 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 958 * to have executed a full memory barrier during the execution of
 959 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 960 * are the same CPU, but again only if the system has more than one CPU.
 961 *
 962 * Of course, these memory-ordering guarantees apply only when
 963 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 964 * passed the same srcu_struct structure.
 965 *
 966 * If SRCU is likely idle, expedite the first request.  This semantic
 967 * was provided by Classic SRCU, and is relied upon by its users, so TREE
 968 * SRCU must also provide it.  Note that detecting idleness is heuristic
 969 * and subject to both false positives and negatives.
 970 */
 971void synchronize_srcu(struct srcu_struct *sp)
 972{
 973        if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
 974                synchronize_srcu_expedited(sp);
 975        else
 976                __synchronize_srcu(sp, true);
 977}
 978EXPORT_SYMBOL_GPL(synchronize_srcu);
 979
 980/*
 981 * Callback function for srcu_barrier() use.
 982 */
 983static void srcu_barrier_cb(struct rcu_head *rhp)
 984{
 985        struct srcu_data *sdp;
 986        struct srcu_struct *sp;
 987
 988        sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
 989        sp = sdp->sp;
 990        if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
 991                complete(&sp->srcu_barrier_completion);
 992}
 993
 994/**
 995 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
 996 * @sp: srcu_struct on which to wait for in-flight callbacks.
 997 */
 998void srcu_barrier(struct srcu_struct *sp)
 999{
1000        int cpu;
1001        struct srcu_data *sdp;
1002        unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1003
1004        check_init_srcu_struct(sp);
1005        mutex_lock(&sp->srcu_barrier_mutex);
1006        if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1007                smp_mb(); /* Force ordering following return. */
1008                mutex_unlock(&sp->srcu_barrier_mutex);
1009                return; /* Someone else did our work for us. */
1010        }
1011        rcu_seq_start(&sp->srcu_barrier_seq);
1012        init_completion(&sp->srcu_barrier_completion);
1013
1014        /* Initial count prevents reaching zero until all CBs are posted. */
1015        atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1016
1017        /*
1018         * Each pass through this loop enqueues a callback, but only
1019         * on CPUs already having callbacks enqueued.  Note that if
1020         * a CPU already has callbacks enqueue, it must have already
1021         * registered the need for a future grace period, so all we
1022         * need do is enqueue a callback that will use the same
1023         * grace period as the last callback already in the queue.
1024         */
1025        for_each_possible_cpu(cpu) {
1026                sdp = per_cpu_ptr(sp->sda, cpu);
1027                raw_spin_lock_irq_rcu_node(sdp);
1028                atomic_inc(&sp->srcu_barrier_cpu_cnt);
1029                sdp->srcu_barrier_head.func = srcu_barrier_cb;
1030                debug_rcu_head_queue(&sdp->srcu_barrier_head);
1031                if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1032                                           &sdp->srcu_barrier_head, 0)) {
1033                        debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1034                        atomic_dec(&sp->srcu_barrier_cpu_cnt);
1035                }
1036                raw_spin_unlock_irq_rcu_node(sdp);
1037        }
1038
1039        /* Remove the initial count, at which point reaching zero can happen. */
1040        if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1041                complete(&sp->srcu_barrier_completion);
1042        wait_for_completion(&sp->srcu_barrier_completion);
1043
1044        rcu_seq_end(&sp->srcu_barrier_seq);
1045        mutex_unlock(&sp->srcu_barrier_mutex);
1046}
1047EXPORT_SYMBOL_GPL(srcu_barrier);
1048
1049/**
1050 * srcu_batches_completed - return batches completed.
1051 * @sp: srcu_struct on which to report batch completion.
1052 *
1053 * Report the number of batches, correlated with, but not necessarily
1054 * precisely the same as, the number of grace periods that have elapsed.
1055 */
1056unsigned long srcu_batches_completed(struct srcu_struct *sp)
1057{
1058        return sp->srcu_idx;
1059}
1060EXPORT_SYMBOL_GPL(srcu_batches_completed);
1061
1062/*
1063 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1064 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1065 * completed in that state.
1066 */
1067static void srcu_advance_state(struct srcu_struct *sp)
1068{
1069        int idx;
1070
1071        mutex_lock(&sp->srcu_gp_mutex);
1072
1073        /*
1074         * Because readers might be delayed for an extended period after
1075         * fetching ->srcu_idx for their index, at any point in time there
1076         * might well be readers using both idx=0 and idx=1.  We therefore
1077         * need to wait for readers to clear from both index values before
1078         * invoking a callback.
1079         *
1080         * The load-acquire ensures that we see the accesses performed
1081         * by the prior grace period.
1082         */
1083        idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1084        if (idx == SRCU_STATE_IDLE) {
1085                raw_spin_lock_irq_rcu_node(sp);
1086                if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1087                        WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1088                        raw_spin_unlock_irq_rcu_node(sp);
1089                        mutex_unlock(&sp->srcu_gp_mutex);
1090                        return;
1091                }
1092                idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1093                if (idx == SRCU_STATE_IDLE)
1094                        srcu_gp_start(sp);
1095                raw_spin_unlock_irq_rcu_node(sp);
1096                if (idx != SRCU_STATE_IDLE) {
1097                        mutex_unlock(&sp->srcu_gp_mutex);
1098                        return; /* Someone else started the grace period. */
1099                }
1100        }
1101
1102        if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1103                idx = 1 ^ (sp->srcu_idx & 1);
1104                if (!try_check_zero(sp, idx, 1)) {
1105                        mutex_unlock(&sp->srcu_gp_mutex);
1106                        return; /* readers present, retry later. */
1107                }
1108                srcu_flip(sp);
1109                rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1110        }
1111
1112        if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1113
1114                /*
1115                 * SRCU read-side critical sections are normally short,
1116                 * so check at least twice in quick succession after a flip.
1117                 */
1118                idx = 1 ^ (sp->srcu_idx & 1);
1119                if (!try_check_zero(sp, idx, 2)) {
1120                        mutex_unlock(&sp->srcu_gp_mutex);
1121                        return; /* readers present, retry later. */
1122                }
1123                srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1124        }
1125}
1126
1127/*
1128 * Invoke a limited number of SRCU callbacks that have passed through
1129 * their grace period.  If there are more to do, SRCU will reschedule
1130 * the workqueue.  Note that needed memory barriers have been executed
1131 * in this task's context by srcu_readers_active_idx_check().
1132 */
1133static void srcu_invoke_callbacks(struct work_struct *work)
1134{
1135        bool more;
1136        struct rcu_cblist ready_cbs;
1137        struct rcu_head *rhp;
1138        struct srcu_data *sdp;
1139        struct srcu_struct *sp;
1140
1141        sdp = container_of(work, struct srcu_data, work.work);
1142        sp = sdp->sp;
1143        rcu_cblist_init(&ready_cbs);
1144        raw_spin_lock_irq_rcu_node(sdp);
1145        rcu_segcblist_advance(&sdp->srcu_cblist,
1146                              rcu_seq_current(&sp->srcu_gp_seq));
1147        if (sdp->srcu_cblist_invoking ||
1148            !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1149                raw_spin_unlock_irq_rcu_node(sdp);
1150                return;  /* Someone else on the job or nothing to do. */
1151        }
1152
1153        /* We are on the job!  Extract and invoke ready callbacks. */
1154        sdp->srcu_cblist_invoking = true;
1155        rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1156        raw_spin_unlock_irq_rcu_node(sdp);
1157        rhp = rcu_cblist_dequeue(&ready_cbs);
1158        for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1159                debug_rcu_head_unqueue(rhp);
1160                local_bh_disable();
1161                rhp->func(rhp);
1162                local_bh_enable();
1163        }
1164
1165        /*
1166         * Update counts, accelerate new callbacks, and if needed,
1167         * schedule another round of callback invocation.
1168         */
1169        raw_spin_lock_irq_rcu_node(sdp);
1170        rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1171        (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1172                                       rcu_seq_snap(&sp->srcu_gp_seq));
1173        sdp->srcu_cblist_invoking = false;
1174        more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1175        raw_spin_unlock_irq_rcu_node(sdp);
1176        if (more)
1177                srcu_schedule_cbs_sdp(sdp, 0);
1178}
1179
1180/*
1181 * Finished one round of SRCU grace period.  Start another if there are
1182 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1183 */
1184static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1185{
1186        bool pushgp = true;
1187
1188        raw_spin_lock_irq_rcu_node(sp);
1189        if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1190                if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1191                        /* All requests fulfilled, time to go idle. */
1192                        pushgp = false;
1193                }
1194        } else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1195                /* Outstanding request and no GP.  Start one. */
1196                srcu_gp_start(sp);
1197        }
1198        raw_spin_unlock_irq_rcu_node(sp);
1199
1200        if (pushgp)
1201                queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
1202}
1203
1204/*
1205 * This is the work-queue function that handles SRCU grace periods.
1206 */
1207static void process_srcu(struct work_struct *work)
1208{
1209        struct srcu_struct *sp;
1210
1211        sp = container_of(work, struct srcu_struct, work.work);
1212
1213        srcu_advance_state(sp);
1214        srcu_reschedule(sp, srcu_get_delay(sp));
1215}
1216
1217void srcutorture_get_gp_data(enum rcutorture_type test_type,
1218                             struct srcu_struct *sp, int *flags,
1219                             unsigned long *gpnum, unsigned long *completed)
1220{
1221        if (test_type != SRCU_FLAVOR)
1222                return;
1223        *flags = 0;
1224        *completed = rcu_seq_ctr(sp->srcu_gp_seq);
1225        *gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1226}
1227EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1228
1229void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1230{
1231        int cpu;
1232        int idx;
1233        unsigned long s0 = 0, s1 = 0;
1234
1235        idx = sp->srcu_idx & 0x1;
1236        pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx);
1237        for_each_possible_cpu(cpu) {
1238                unsigned long l0, l1;
1239                unsigned long u0, u1;
1240                long c0, c1;
1241                struct srcu_data *counts;
1242
1243                counts = per_cpu_ptr(sp->sda, cpu);
1244                u0 = counts->srcu_unlock_count[!idx];
1245                u1 = counts->srcu_unlock_count[idx];
1246
1247                /*
1248                 * Make sure that a lock is always counted if the corresponding
1249                 * unlock is counted.
1250                 */
1251                smp_rmb();
1252
1253                l0 = counts->srcu_lock_count[!idx];
1254                l1 = counts->srcu_lock_count[idx];
1255
1256                c0 = l0 - u0;
1257                c1 = l1 - u1;
1258                pr_cont(" %d(%ld,%ld)", cpu, c0, c1);
1259                s0 += c0;
1260                s1 += c1;
1261        }
1262        pr_cont(" T(%ld,%ld)\n", s0, s1);
1263}
1264EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1265
1266static int __init srcu_bootup_announce(void)
1267{
1268        pr_info("Hierarchical SRCU implementation.\n");
1269        if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1270                pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1271        return 0;
1272}
1273early_initcall(srcu_bootup_announce);
1274