linux/kernel/rcu/update.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *              http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/debug.h>
  41#include <linux/atomic.h>
  42#include <linux/bitops.h>
  43#include <linux/percpu.h>
  44#include <linux/notifier.h>
  45#include <linux/cpu.h>
  46#include <linux/mutex.h>
  47#include <linux/export.h>
  48#include <linux/hardirq.h>
  49#include <linux/delay.h>
  50#include <linux/moduleparam.h>
  51#include <linux/kthread.h>
  52#include <linux/tick.h>
  53#include <linux/rcupdate_wait.h>
  54
  55#define CREATE_TRACE_POINTS
  56
  57#include "rcu.h"
  58
  59#ifdef MODULE_PARAM_PREFIX
  60#undef MODULE_PARAM_PREFIX
  61#endif
  62#define MODULE_PARAM_PREFIX "rcupdate."
  63
  64#ifndef CONFIG_TINY_RCU
  65extern int rcu_expedited; /* from sysctl */
  66module_param(rcu_expedited, int, 0);
  67extern int rcu_normal; /* from sysctl */
  68module_param(rcu_normal, int, 0);
  69static int rcu_normal_after_boot;
  70module_param(rcu_normal_after_boot, int, 0);
  71#endif /* #ifndef CONFIG_TINY_RCU */
  72
  73#ifdef CONFIG_DEBUG_LOCK_ALLOC
  74/**
  75 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  76 *
  77 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  78 * RCU-sched read-side critical section.  In absence of
  79 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  80 * critical section unless it can prove otherwise.  Note that disabling
  81 * of preemption (including disabling irqs) counts as an RCU-sched
  82 * read-side critical section.  This is useful for debug checks in functions
  83 * that required that they be called within an RCU-sched read-side
  84 * critical section.
  85 *
  86 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  87 * and while lockdep is disabled.
  88 *
  89 * Note that if the CPU is in the idle loop from an RCU point of
  90 * view (ie: that we are in the section between rcu_idle_enter() and
  91 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  92 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  93 * that are in such a section, considering these as in extended quiescent
  94 * state, so such a CPU is effectively never in an RCU read-side critical
  95 * section regardless of what RCU primitives it invokes.  This state of
  96 * affairs is required --- we need to keep an RCU-free window in idle
  97 * where the CPU may possibly enter into low power mode. This way we can
  98 * notice an extended quiescent state to other CPUs that started a grace
  99 * period. Otherwise we would delay any grace period as long as we run in
 100 * the idle task.
 101 *
 102 * Similarly, we avoid claiming an SRCU read lock held if the current
 103 * CPU is offline.
 104 */
 105int rcu_read_lock_sched_held(void)
 106{
 107        int lockdep_opinion = 0;
 108
 109        if (!debug_lockdep_rcu_enabled())
 110                return 1;
 111        if (!rcu_is_watching())
 112                return 0;
 113        if (!rcu_lockdep_current_cpu_online())
 114                return 0;
 115        if (debug_locks)
 116                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 117        return lockdep_opinion || !preemptible();
 118}
 119EXPORT_SYMBOL(rcu_read_lock_sched_held);
 120#endif
 121
 122#ifndef CONFIG_TINY_RCU
 123
 124/*
 125 * Should expedited grace-period primitives always fall back to their
 126 * non-expedited counterparts?  Intended for use within RCU.  Note
 127 * that if the user specifies both rcu_expedited and rcu_normal, then
 128 * rcu_normal wins.  (Except during the time period during boot from
 129 * when the first task is spawned until the rcu_set_runtime_mode()
 130 * core_initcall() is invoked, at which point everything is expedited.)
 131 */
 132bool rcu_gp_is_normal(void)
 133{
 134        return READ_ONCE(rcu_normal) &&
 135               rcu_scheduler_active != RCU_SCHEDULER_INIT;
 136}
 137EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 138
 139static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 140
 141/*
 142 * Should normal grace-period primitives be expedited?  Intended for
 143 * use within RCU.  Note that this function takes the rcu_expedited
 144 * sysfs/boot variable and rcu_scheduler_active into account as well
 145 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 146 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 147 */
 148bool rcu_gp_is_expedited(void)
 149{
 150        return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 151               rcu_scheduler_active == RCU_SCHEDULER_INIT;
 152}
 153EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 154
 155/**
 156 * rcu_expedite_gp - Expedite future RCU grace periods
 157 *
 158 * After a call to this function, future calls to synchronize_rcu() and
 159 * friends act as the corresponding synchronize_rcu_expedited() function
 160 * had instead been called.
 161 */
 162void rcu_expedite_gp(void)
 163{
 164        atomic_inc(&rcu_expedited_nesting);
 165}
 166EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 167
 168/**
 169 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 170 *
 171 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 172 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 173 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 174 * subsequent calls to synchronize_rcu() and friends will return to
 175 * their normal non-expedited behavior.
 176 */
 177void rcu_unexpedite_gp(void)
 178{
 179        atomic_dec(&rcu_expedited_nesting);
 180}
 181EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 182
 183/*
 184 * Inform RCU of the end of the in-kernel boot sequence.
 185 */
 186void rcu_end_inkernel_boot(void)
 187{
 188        rcu_unexpedite_gp();
 189        if (rcu_normal_after_boot)
 190                WRITE_ONCE(rcu_normal, 1);
 191}
 192
 193#endif /* #ifndef CONFIG_TINY_RCU */
 194
 195/*
 196 * Test each non-SRCU synchronous grace-period wait API.  This is
 197 * useful just after a change in mode for these primitives, and
 198 * during early boot.
 199 */
 200void rcu_test_sync_prims(void)
 201{
 202        if (!IS_ENABLED(CONFIG_PROVE_RCU))
 203                return;
 204        synchronize_rcu();
 205        synchronize_rcu_bh();
 206        synchronize_sched();
 207        synchronize_rcu_expedited();
 208        synchronize_rcu_bh_expedited();
 209        synchronize_sched_expedited();
 210}
 211
 212#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 213
 214/*
 215 * Switch to run-time mode once RCU has fully initialized.
 216 */
 217static int __init rcu_set_runtime_mode(void)
 218{
 219        rcu_test_sync_prims();
 220        rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 221        rcu_test_sync_prims();
 222        return 0;
 223}
 224core_initcall(rcu_set_runtime_mode);
 225
 226#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 227
 228#ifdef CONFIG_PREEMPT_RCU
 229
 230/*
 231 * Preemptible RCU implementation for rcu_read_lock().
 232 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 233 * if we block.
 234 */
 235void __rcu_read_lock(void)
 236{
 237        current->rcu_read_lock_nesting++;
 238        barrier();  /* critical section after entry code. */
 239}
 240EXPORT_SYMBOL_GPL(__rcu_read_lock);
 241
 242/*
 243 * Preemptible RCU implementation for rcu_read_unlock().
 244 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 245 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 246 * invoke rcu_read_unlock_special() to clean up after a context switch
 247 * in an RCU read-side critical section and other special cases.
 248 */
 249void __rcu_read_unlock(void)
 250{
 251        struct task_struct *t = current;
 252
 253        if (t->rcu_read_lock_nesting != 1) {
 254                --t->rcu_read_lock_nesting;
 255        } else {
 256                barrier();  /* critical section before exit code. */
 257                t->rcu_read_lock_nesting = INT_MIN;
 258                barrier();  /* assign before ->rcu_read_unlock_special load */
 259                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 260                        rcu_read_unlock_special(t);
 261                barrier();  /* ->rcu_read_unlock_special load before assign */
 262                t->rcu_read_lock_nesting = 0;
 263        }
 264#ifdef CONFIG_PROVE_LOCKING
 265        {
 266                int rrln = READ_ONCE(t->rcu_read_lock_nesting);
 267
 268                WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 269        }
 270#endif /* #ifdef CONFIG_PROVE_LOCKING */
 271}
 272EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 273
 274#endif /* #ifdef CONFIG_PREEMPT_RCU */
 275
 276#ifdef CONFIG_DEBUG_LOCK_ALLOC
 277static struct lock_class_key rcu_lock_key;
 278struct lockdep_map rcu_lock_map =
 279        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 280EXPORT_SYMBOL_GPL(rcu_lock_map);
 281
 282static struct lock_class_key rcu_bh_lock_key;
 283struct lockdep_map rcu_bh_lock_map =
 284        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 285EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 286
 287static struct lock_class_key rcu_sched_lock_key;
 288struct lockdep_map rcu_sched_lock_map =
 289        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 290EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 291
 292static struct lock_class_key rcu_callback_key;
 293struct lockdep_map rcu_callback_map =
 294        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 295EXPORT_SYMBOL_GPL(rcu_callback_map);
 296
 297int notrace debug_lockdep_rcu_enabled(void)
 298{
 299        return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 300               current->lockdep_recursion == 0;
 301}
 302EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 303
 304/**
 305 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 306 *
 307 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 308 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 309 * this assumes we are in an RCU read-side critical section unless it can
 310 * prove otherwise.  This is useful for debug checks in functions that
 311 * require that they be called within an RCU read-side critical section.
 312 *
 313 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 314 * and while lockdep is disabled.
 315 *
 316 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 317 * occur in the same context, for example, it is illegal to invoke
 318 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 319 * was invoked from within an irq handler.
 320 *
 321 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 322 * offline from an RCU perspective, so check for those as well.
 323 */
 324int rcu_read_lock_held(void)
 325{
 326        if (!debug_lockdep_rcu_enabled())
 327                return 1;
 328        if (!rcu_is_watching())
 329                return 0;
 330        if (!rcu_lockdep_current_cpu_online())
 331                return 0;
 332        return lock_is_held(&rcu_lock_map);
 333}
 334EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 335
 336/**
 337 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 338 *
 339 * Check for bottom half being disabled, which covers both the
 340 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 341 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 342 * will show the situation.  This is useful for debug checks in functions
 343 * that require that they be called within an RCU read-side critical
 344 * section.
 345 *
 346 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 347 *
 348 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 349 * offline from an RCU perspective, so check for those as well.
 350 */
 351int rcu_read_lock_bh_held(void)
 352{
 353        if (!debug_lockdep_rcu_enabled())
 354                return 1;
 355        if (!rcu_is_watching())
 356                return 0;
 357        if (!rcu_lockdep_current_cpu_online())
 358                return 0;
 359        return in_softirq() || irqs_disabled();
 360}
 361EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 362
 363#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 364
 365/**
 366 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 367 * @head: Pointer to rcu_head member within rcu_synchronize structure
 368 *
 369 * Awaken the corresponding task now that a grace period has elapsed.
 370 */
 371void wakeme_after_rcu(struct rcu_head *head)
 372{
 373        struct rcu_synchronize *rcu;
 374
 375        rcu = container_of(head, struct rcu_synchronize, head);
 376        complete(&rcu->completion);
 377}
 378EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 379
 380void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 381                   struct rcu_synchronize *rs_array)
 382{
 383        int i;
 384        int j;
 385
 386        /* Initialize and register callbacks for each flavor specified. */
 387        for (i = 0; i < n; i++) {
 388                if (checktiny &&
 389                    (crcu_array[i] == call_rcu ||
 390                     crcu_array[i] == call_rcu_bh)) {
 391                        might_sleep();
 392                        continue;
 393                }
 394                init_rcu_head_on_stack(&rs_array[i].head);
 395                init_completion(&rs_array[i].completion);
 396                for (j = 0; j < i; j++)
 397                        if (crcu_array[j] == crcu_array[i])
 398                                break;
 399                if (j == i)
 400                        (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 401        }
 402
 403        /* Wait for all callbacks to be invoked. */
 404        for (i = 0; i < n; i++) {
 405                if (checktiny &&
 406                    (crcu_array[i] == call_rcu ||
 407                     crcu_array[i] == call_rcu_bh))
 408                        continue;
 409                for (j = 0; j < i; j++)
 410                        if (crcu_array[j] == crcu_array[i])
 411                                break;
 412                if (j == i)
 413                        wait_for_completion(&rs_array[i].completion);
 414                destroy_rcu_head_on_stack(&rs_array[i].head);
 415        }
 416}
 417EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 418
 419#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 420void init_rcu_head(struct rcu_head *head)
 421{
 422        debug_object_init(head, &rcuhead_debug_descr);
 423}
 424
 425void destroy_rcu_head(struct rcu_head *head)
 426{
 427        debug_object_free(head, &rcuhead_debug_descr);
 428}
 429
 430static bool rcuhead_is_static_object(void *addr)
 431{
 432        return true;
 433}
 434
 435/**
 436 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 437 * @head: pointer to rcu_head structure to be initialized
 438 *
 439 * This function informs debugobjects of a new rcu_head structure that
 440 * has been allocated as an auto variable on the stack.  This function
 441 * is not required for rcu_head structures that are statically defined or
 442 * that are dynamically allocated on the heap.  This function has no
 443 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 444 */
 445void init_rcu_head_on_stack(struct rcu_head *head)
 446{
 447        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 448}
 449EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 450
 451/**
 452 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 453 * @head: pointer to rcu_head structure to be initialized
 454 *
 455 * This function informs debugobjects that an on-stack rcu_head structure
 456 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 457 * function is not required for rcu_head structures that are statically
 458 * defined or that are dynamically allocated on the heap.  Also as with
 459 * init_rcu_head_on_stack(), this function has no effect for
 460 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 461 */
 462void destroy_rcu_head_on_stack(struct rcu_head *head)
 463{
 464        debug_object_free(head, &rcuhead_debug_descr);
 465}
 466EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 467
 468struct debug_obj_descr rcuhead_debug_descr = {
 469        .name = "rcu_head",
 470        .is_static_object = rcuhead_is_static_object,
 471};
 472EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 473#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 474
 475#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 476void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 477                               unsigned long secs,
 478                               unsigned long c_old, unsigned long c)
 479{
 480        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 481}
 482EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 483#else
 484#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 485        do { } while (0)
 486#endif
 487
 488#ifdef CONFIG_RCU_STALL_COMMON
 489
 490#ifdef CONFIG_PROVE_RCU
 491#define RCU_STALL_DELAY_DELTA          (5 * HZ)
 492#else
 493#define RCU_STALL_DELAY_DELTA          0
 494#endif
 495
 496int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 497static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 498
 499module_param(rcu_cpu_stall_suppress, int, 0644);
 500module_param(rcu_cpu_stall_timeout, int, 0644);
 501
 502int rcu_jiffies_till_stall_check(void)
 503{
 504        int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 505
 506        /*
 507         * Limit check must be consistent with the Kconfig limits
 508         * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 509         */
 510        if (till_stall_check < 3) {
 511                WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 512                till_stall_check = 3;
 513        } else if (till_stall_check > 300) {
 514                WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 515                till_stall_check = 300;
 516        }
 517        return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 518}
 519
 520void rcu_sysrq_start(void)
 521{
 522        if (!rcu_cpu_stall_suppress)
 523                rcu_cpu_stall_suppress = 2;
 524}
 525
 526void rcu_sysrq_end(void)
 527{
 528        if (rcu_cpu_stall_suppress == 2)
 529                rcu_cpu_stall_suppress = 0;
 530}
 531
 532static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 533{
 534        rcu_cpu_stall_suppress = 1;
 535        return NOTIFY_DONE;
 536}
 537
 538static struct notifier_block rcu_panic_block = {
 539        .notifier_call = rcu_panic,
 540};
 541
 542static int __init check_cpu_stall_init(void)
 543{
 544        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 545        return 0;
 546}
 547early_initcall(check_cpu_stall_init);
 548
 549#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 550
 551#ifdef CONFIG_TASKS_RCU
 552
 553/*
 554 * Simple variant of RCU whose quiescent states are voluntary context switch,
 555 * user-space execution, and idle.  As such, grace periods can take one good
 556 * long time.  There are no read-side primitives similar to rcu_read_lock()
 557 * and rcu_read_unlock() because this implementation is intended to get
 558 * the system into a safe state for some of the manipulations involved in
 559 * tracing and the like.  Finally, this implementation does not support
 560 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 561 * per-CPU callback lists will be needed.
 562 */
 563
 564/* Global list of callbacks and associated lock. */
 565static struct rcu_head *rcu_tasks_cbs_head;
 566static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 567static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 568static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 569
 570/* Track exiting tasks in order to allow them to be waited for. */
 571DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 572
 573/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 574#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 575static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 576module_param(rcu_task_stall_timeout, int, 0644);
 577
 578static void rcu_spawn_tasks_kthread(void);
 579static struct task_struct *rcu_tasks_kthread_ptr;
 580
 581/**
 582 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 583 * @rhp: structure to be used for queueing the RCU updates.
 584 * @func: actual callback function to be invoked after the grace period
 585 *
 586 * The callback function will be invoked some time after a full grace
 587 * period elapses, in other words after all currently executing RCU
 588 * read-side critical sections have completed. call_rcu_tasks() assumes
 589 * that the read-side critical sections end at a voluntary context
 590 * switch (not a preemption!), entry into idle, or transition to usermode
 591 * execution.  As such, there are no read-side primitives analogous to
 592 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 593 * to determine that all tasks have passed through a safe state, not so
 594 * much for data-strcuture synchronization.
 595 *
 596 * See the description of call_rcu() for more detailed information on
 597 * memory ordering guarantees.
 598 */
 599void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 600{
 601        unsigned long flags;
 602        bool needwake;
 603        bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
 604
 605        rhp->next = NULL;
 606        rhp->func = func;
 607        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 608        needwake = !rcu_tasks_cbs_head;
 609        *rcu_tasks_cbs_tail = rhp;
 610        rcu_tasks_cbs_tail = &rhp->next;
 611        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 612        /* We can't create the thread unless interrupts are enabled. */
 613        if ((needwake && havetask) ||
 614            (!havetask && !irqs_disabled_flags(flags))) {
 615                rcu_spawn_tasks_kthread();
 616                wake_up(&rcu_tasks_cbs_wq);
 617        }
 618}
 619EXPORT_SYMBOL_GPL(call_rcu_tasks);
 620
 621/**
 622 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 623 *
 624 * Control will return to the caller some time after a full rcu-tasks
 625 * grace period has elapsed, in other words after all currently
 626 * executing rcu-tasks read-side critical sections have elapsed.  These
 627 * read-side critical sections are delimited by calls to schedule(),
 628 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 629 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 630 *
 631 * This is a very specialized primitive, intended only for a few uses in
 632 * tracing and other situations requiring manipulation of function
 633 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 634 * is not (yet) intended for heavy use from multiple CPUs.
 635 *
 636 * Note that this guarantee implies further memory-ordering guarantees.
 637 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 638 * each CPU is guaranteed to have executed a full memory barrier since the
 639 * end of its last RCU-tasks read-side critical section whose beginning
 640 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 641 * having an RCU-tasks read-side critical section that extends beyond
 642 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 643 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 644 * and before the beginning of that RCU-tasks read-side critical section.
 645 * Note that these guarantees include CPUs that are offline, idle, or
 646 * executing in user mode, as well as CPUs that are executing in the kernel.
 647 *
 648 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 649 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 650 * to have executed a full memory barrier during the execution of
 651 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 652 * (but again only if the system has more than one CPU).
 653 */
 654void synchronize_rcu_tasks(void)
 655{
 656        /* Complain if the scheduler has not started.  */
 657        RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 658                         "synchronize_rcu_tasks called too soon");
 659
 660        /* Wait for the grace period. */
 661        wait_rcu_gp(call_rcu_tasks);
 662}
 663EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 664
 665/**
 666 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 667 *
 668 * Although the current implementation is guaranteed to wait, it is not
 669 * obligated to, for example, if there are no pending callbacks.
 670 */
 671void rcu_barrier_tasks(void)
 672{
 673        /* There is only one callback queue, so this is easy.  ;-) */
 674        synchronize_rcu_tasks();
 675}
 676EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 677
 678/* See if tasks are still holding out, complain if so. */
 679static void check_holdout_task(struct task_struct *t,
 680                               bool needreport, bool *firstreport)
 681{
 682        int cpu;
 683
 684        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 685            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 686            !READ_ONCE(t->on_rq) ||
 687            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 688             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 689                WRITE_ONCE(t->rcu_tasks_holdout, false);
 690                list_del_init(&t->rcu_tasks_holdout_list);
 691                put_task_struct(t);
 692                return;
 693        }
 694        rcu_request_urgent_qs_task(t);
 695        if (!needreport)
 696                return;
 697        if (*firstreport) {
 698                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 699                *firstreport = false;
 700        }
 701        cpu = task_cpu(t);
 702        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 703                 t, ".I"[is_idle_task(t)],
 704                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 705                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 706                 t->rcu_tasks_idle_cpu, cpu);
 707        sched_show_task(t);
 708}
 709
 710/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 711static int __noreturn rcu_tasks_kthread(void *arg)
 712{
 713        unsigned long flags;
 714        struct task_struct *g, *t;
 715        unsigned long lastreport;
 716        struct rcu_head *list;
 717        struct rcu_head *next;
 718        LIST_HEAD(rcu_tasks_holdouts);
 719
 720        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 721        housekeeping_affine(current);
 722
 723        /*
 724         * Each pass through the following loop makes one check for
 725         * newly arrived callbacks, and, if there are some, waits for
 726         * one RCU-tasks grace period and then invokes the callbacks.
 727         * This loop is terminated by the system going down.  ;-)
 728         */
 729        for (;;) {
 730
 731                /* Pick up any new callbacks. */
 732                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 733                list = rcu_tasks_cbs_head;
 734                rcu_tasks_cbs_head = NULL;
 735                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 736                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 737
 738                /* If there were none, wait a bit and start over. */
 739                if (!list) {
 740                        wait_event_interruptible(rcu_tasks_cbs_wq,
 741                                                 rcu_tasks_cbs_head);
 742                        if (!rcu_tasks_cbs_head) {
 743                                WARN_ON(signal_pending(current));
 744                                schedule_timeout_interruptible(HZ/10);
 745                        }
 746                        continue;
 747                }
 748
 749                /*
 750                 * Wait for all pre-existing t->on_rq and t->nvcsw
 751                 * transitions to complete.  Invoking synchronize_sched()
 752                 * suffices because all these transitions occur with
 753                 * interrupts disabled.  Without this synchronize_sched(),
 754                 * a read-side critical section that started before the
 755                 * grace period might be incorrectly seen as having started
 756                 * after the grace period.
 757                 *
 758                 * This synchronize_sched() also dispenses with the
 759                 * need for a memory barrier on the first store to
 760                 * ->rcu_tasks_holdout, as it forces the store to happen
 761                 * after the beginning of the grace period.
 762                 */
 763                synchronize_sched();
 764
 765                /*
 766                 * There were callbacks, so we need to wait for an
 767                 * RCU-tasks grace period.  Start off by scanning
 768                 * the task list for tasks that are not already
 769                 * voluntarily blocked.  Mark these tasks and make
 770                 * a list of them in rcu_tasks_holdouts.
 771                 */
 772                rcu_read_lock();
 773                for_each_process_thread(g, t) {
 774                        if (t != current && READ_ONCE(t->on_rq) &&
 775                            !is_idle_task(t)) {
 776                                get_task_struct(t);
 777                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 778                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 779                                list_add(&t->rcu_tasks_holdout_list,
 780                                         &rcu_tasks_holdouts);
 781                        }
 782                }
 783                rcu_read_unlock();
 784
 785                /*
 786                 * Wait for tasks that are in the process of exiting.
 787                 * This does only part of the job, ensuring that all
 788                 * tasks that were previously exiting reach the point
 789                 * where they have disabled preemption, allowing the
 790                 * later synchronize_sched() to finish the job.
 791                 */
 792                synchronize_srcu(&tasks_rcu_exit_srcu);
 793
 794                /*
 795                 * Each pass through the following loop scans the list
 796                 * of holdout tasks, removing any that are no longer
 797                 * holdouts.  When the list is empty, we are done.
 798                 */
 799                lastreport = jiffies;
 800                while (!list_empty(&rcu_tasks_holdouts)) {
 801                        bool firstreport;
 802                        bool needreport;
 803                        int rtst;
 804                        struct task_struct *t1;
 805
 806                        schedule_timeout_interruptible(HZ);
 807                        rtst = READ_ONCE(rcu_task_stall_timeout);
 808                        needreport = rtst > 0 &&
 809                                     time_after(jiffies, lastreport + rtst);
 810                        if (needreport)
 811                                lastreport = jiffies;
 812                        firstreport = true;
 813                        WARN_ON(signal_pending(current));
 814                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 815                                                rcu_tasks_holdout_list) {
 816                                check_holdout_task(t, needreport, &firstreport);
 817                                cond_resched();
 818                        }
 819                }
 820
 821                /*
 822                 * Because ->on_rq and ->nvcsw are not guaranteed
 823                 * to have a full memory barriers prior to them in the
 824                 * schedule() path, memory reordering on other CPUs could
 825                 * cause their RCU-tasks read-side critical sections to
 826                 * extend past the end of the grace period.  However,
 827                 * because these ->nvcsw updates are carried out with
 828                 * interrupts disabled, we can use synchronize_sched()
 829                 * to force the needed ordering on all such CPUs.
 830                 *
 831                 * This synchronize_sched() also confines all
 832                 * ->rcu_tasks_holdout accesses to be within the grace
 833                 * period, avoiding the need for memory barriers for
 834                 * ->rcu_tasks_holdout accesses.
 835                 *
 836                 * In addition, this synchronize_sched() waits for exiting
 837                 * tasks to complete their final preempt_disable() region
 838                 * of execution, cleaning up after the synchronize_srcu()
 839                 * above.
 840                 */
 841                synchronize_sched();
 842
 843                /* Invoke the callbacks. */
 844                while (list) {
 845                        next = list->next;
 846                        local_bh_disable();
 847                        list->func(list);
 848                        local_bh_enable();
 849                        list = next;
 850                        cond_resched();
 851                }
 852                schedule_timeout_uninterruptible(HZ/10);
 853        }
 854}
 855
 856/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
 857static void rcu_spawn_tasks_kthread(void)
 858{
 859        static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
 860        struct task_struct *t;
 861
 862        if (READ_ONCE(rcu_tasks_kthread_ptr)) {
 863                smp_mb(); /* Ensure caller sees full kthread. */
 864                return;
 865        }
 866        mutex_lock(&rcu_tasks_kthread_mutex);
 867        if (rcu_tasks_kthread_ptr) {
 868                mutex_unlock(&rcu_tasks_kthread_mutex);
 869                return;
 870        }
 871        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 872        BUG_ON(IS_ERR(t));
 873        smp_mb(); /* Ensure others see full kthread. */
 874        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 875        mutex_unlock(&rcu_tasks_kthread_mutex);
 876}
 877
 878/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 879void exit_tasks_rcu_start(void)
 880{
 881        preempt_disable();
 882        current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 883        preempt_enable();
 884}
 885
 886/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 887void exit_tasks_rcu_finish(void)
 888{
 889        preempt_disable();
 890        __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 891        preempt_enable();
 892}
 893
 894#endif /* #ifdef CONFIG_TASKS_RCU */
 895
 896#ifndef CONFIG_TINY_RCU
 897
 898/*
 899 * Print any non-default Tasks RCU settings.
 900 */
 901static void __init rcu_tasks_bootup_oddness(void)
 902{
 903#ifdef CONFIG_TASKS_RCU
 904        if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 905                pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 906        else
 907                pr_info("\tTasks RCU enabled.\n");
 908#endif /* #ifdef CONFIG_TASKS_RCU */
 909}
 910
 911#endif /* #ifndef CONFIG_TINY_RCU */
 912
 913#ifdef CONFIG_PROVE_RCU
 914
 915/*
 916 * Early boot self test parameters, one for each flavor
 917 */
 918static bool rcu_self_test;
 919static bool rcu_self_test_bh;
 920static bool rcu_self_test_sched;
 921
 922module_param(rcu_self_test, bool, 0444);
 923module_param(rcu_self_test_bh, bool, 0444);
 924module_param(rcu_self_test_sched, bool, 0444);
 925
 926static int rcu_self_test_counter;
 927
 928static void test_callback(struct rcu_head *r)
 929{
 930        rcu_self_test_counter++;
 931        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 932}
 933
 934static void early_boot_test_call_rcu(void)
 935{
 936        static struct rcu_head head;
 937
 938        call_rcu(&head, test_callback);
 939}
 940
 941static void early_boot_test_call_rcu_bh(void)
 942{
 943        static struct rcu_head head;
 944
 945        call_rcu_bh(&head, test_callback);
 946}
 947
 948static void early_boot_test_call_rcu_sched(void)
 949{
 950        static struct rcu_head head;
 951
 952        call_rcu_sched(&head, test_callback);
 953}
 954
 955void rcu_early_boot_tests(void)
 956{
 957        pr_info("Running RCU self tests\n");
 958
 959        if (rcu_self_test)
 960                early_boot_test_call_rcu();
 961        if (rcu_self_test_bh)
 962                early_boot_test_call_rcu_bh();
 963        if (rcu_self_test_sched)
 964                early_boot_test_call_rcu_sched();
 965        rcu_test_sync_prims();
 966}
 967
 968static int rcu_verify_early_boot_tests(void)
 969{
 970        int ret = 0;
 971        int early_boot_test_counter = 0;
 972
 973        if (rcu_self_test) {
 974                early_boot_test_counter++;
 975                rcu_barrier();
 976        }
 977        if (rcu_self_test_bh) {
 978                early_boot_test_counter++;
 979                rcu_barrier_bh();
 980        }
 981        if (rcu_self_test_sched) {
 982                early_boot_test_counter++;
 983                rcu_barrier_sched();
 984        }
 985
 986        if (rcu_self_test_counter != early_boot_test_counter) {
 987                WARN_ON(1);
 988                ret = -1;
 989        }
 990
 991        return ret;
 992}
 993late_initcall(rcu_verify_early_boot_tests);
 994#else
 995void rcu_early_boot_tests(void) {}
 996#endif /* CONFIG_PROVE_RCU */
 997
 998#ifndef CONFIG_TINY_RCU
 999
1000/*
1001 * Print any significant non-default boot-time settings.
1002 */
1003void __init rcupdate_announce_bootup_oddness(void)
1004{
1005        if (rcu_normal)
1006                pr_info("\tNo expedited grace period (rcu_normal).\n");
1007        else if (rcu_normal_after_boot)
1008                pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
1009        else if (rcu_expedited)
1010                pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1011        if (rcu_cpu_stall_suppress)
1012                pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1013        if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1014                pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1015        rcu_tasks_bootup_oddness();
1016}
1017
1018#endif /* #ifndef CONFIG_TINY_RCU */
1019