linux/lib/swiotlb.c
<<
>>
Prefs
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
  13 *                      unnecessary i-cache flushing.
  14 * 04/07/.. ak          Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville    Add support for syncing ranges, support syncing for
  16 *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb      Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33#include <linux/mem_encrypt.h>
  34
  35#include <asm/io.h>
  36#include <asm/dma.h>
  37
  38#include <linux/init.h>
  39#include <linux/bootmem.h>
  40#include <linux/iommu-helper.h>
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/swiotlb.h>
  44
  45#define OFFSET(val,align) ((unsigned long)      \
  46                           ( (val) & ( (align) - 1)))
  47
  48#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  49
  50/*
  51 * Minimum IO TLB size to bother booting with.  Systems with mainly
  52 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  53 * allocate a contiguous 1MB, we're probably in trouble anyway.
  54 */
  55#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  56
  57enum swiotlb_force swiotlb_force;
  58
  59/*
  60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  62 * API.
  63 */
  64static phys_addr_t io_tlb_start, io_tlb_end;
  65
  66/*
  67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  68 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  69 */
  70static unsigned long io_tlb_nslabs;
  71
  72/*
  73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  74 */
  75static unsigned long io_tlb_overflow = 32*1024;
  76
  77static phys_addr_t io_tlb_overflow_buffer;
  78
  79/*
  80 * This is a free list describing the number of free entries available from
  81 * each index
  82 */
  83static unsigned int *io_tlb_list;
  84static unsigned int io_tlb_index;
  85
  86/*
  87 * Max segment that we can provide which (if pages are contingous) will
  88 * not be bounced (unless SWIOTLB_FORCE is set).
  89 */
  90unsigned int max_segment;
  91
  92/*
  93 * We need to save away the original address corresponding to a mapped entry
  94 * for the sync operations.
  95 */
  96#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  97static phys_addr_t *io_tlb_orig_addr;
  98
  99/*
 100 * Protect the above data structures in the map and unmap calls
 101 */
 102static DEFINE_SPINLOCK(io_tlb_lock);
 103
 104static int late_alloc;
 105
 106static int __init
 107setup_io_tlb_npages(char *str)
 108{
 109        if (isdigit(*str)) {
 110                io_tlb_nslabs = simple_strtoul(str, &str, 0);
 111                /* avoid tail segment of size < IO_TLB_SEGSIZE */
 112                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 113        }
 114        if (*str == ',')
 115                ++str;
 116        if (!strcmp(str, "force")) {
 117                swiotlb_force = SWIOTLB_FORCE;
 118        } else if (!strcmp(str, "noforce")) {
 119                swiotlb_force = SWIOTLB_NO_FORCE;
 120                io_tlb_nslabs = 1;
 121        }
 122
 123        return 0;
 124}
 125early_param("swiotlb", setup_io_tlb_npages);
 126/* make io_tlb_overflow tunable too? */
 127
 128unsigned long swiotlb_nr_tbl(void)
 129{
 130        return io_tlb_nslabs;
 131}
 132EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 133
 134unsigned int swiotlb_max_segment(void)
 135{
 136        return max_segment;
 137}
 138EXPORT_SYMBOL_GPL(swiotlb_max_segment);
 139
 140void swiotlb_set_max_segment(unsigned int val)
 141{
 142        if (swiotlb_force == SWIOTLB_FORCE)
 143                max_segment = 1;
 144        else
 145                max_segment = rounddown(val, PAGE_SIZE);
 146}
 147
 148/* default to 64MB */
 149#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 150unsigned long swiotlb_size_or_default(void)
 151{
 152        unsigned long size;
 153
 154        size = io_tlb_nslabs << IO_TLB_SHIFT;
 155
 156        return size ? size : (IO_TLB_DEFAULT_SIZE);
 157}
 158
 159void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
 160
 161/* For swiotlb, clear memory encryption mask from dma addresses */
 162static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
 163                                      phys_addr_t address)
 164{
 165        return __sme_clr(phys_to_dma(hwdev, address));
 166}
 167
 168/* Note that this doesn't work with highmem page */
 169static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 170                                      volatile void *address)
 171{
 172        return phys_to_dma(hwdev, virt_to_phys(address));
 173}
 174
 175static bool no_iotlb_memory;
 176
 177void swiotlb_print_info(void)
 178{
 179        unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 180        unsigned char *vstart, *vend;
 181
 182        if (no_iotlb_memory) {
 183                pr_warn("software IO TLB: No low mem\n");
 184                return;
 185        }
 186
 187        vstart = phys_to_virt(io_tlb_start);
 188        vend = phys_to_virt(io_tlb_end);
 189
 190        printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 191               (unsigned long long)io_tlb_start,
 192               (unsigned long long)io_tlb_end,
 193               bytes >> 20, vstart, vend - 1);
 194}
 195
 196/*
 197 * Early SWIOTLB allocation may be too early to allow an architecture to
 198 * perform the desired operations.  This function allows the architecture to
 199 * call SWIOTLB when the operations are possible.  It needs to be called
 200 * before the SWIOTLB memory is used.
 201 */
 202void __init swiotlb_update_mem_attributes(void)
 203{
 204        void *vaddr;
 205        unsigned long bytes;
 206
 207        if (no_iotlb_memory || late_alloc)
 208                return;
 209
 210        vaddr = phys_to_virt(io_tlb_start);
 211        bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
 212        swiotlb_set_mem_attributes(vaddr, bytes);
 213        memset(vaddr, 0, bytes);
 214
 215        vaddr = phys_to_virt(io_tlb_overflow_buffer);
 216        bytes = PAGE_ALIGN(io_tlb_overflow);
 217        swiotlb_set_mem_attributes(vaddr, bytes);
 218        memset(vaddr, 0, bytes);
 219}
 220
 221int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 222{
 223        void *v_overflow_buffer;
 224        unsigned long i, bytes;
 225
 226        bytes = nslabs << IO_TLB_SHIFT;
 227
 228        io_tlb_nslabs = nslabs;
 229        io_tlb_start = __pa(tlb);
 230        io_tlb_end = io_tlb_start + bytes;
 231
 232        /*
 233         * Get the overflow emergency buffer
 234         */
 235        v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 236                                                PAGE_ALIGN(io_tlb_overflow),
 237                                                PAGE_SIZE);
 238        if (!v_overflow_buffer)
 239                return -ENOMEM;
 240
 241        io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 242
 243        /*
 244         * Allocate and initialize the free list array.  This array is used
 245         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 246         * between io_tlb_start and io_tlb_end.
 247         */
 248        io_tlb_list = memblock_virt_alloc(
 249                                PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 250                                PAGE_SIZE);
 251        io_tlb_orig_addr = memblock_virt_alloc(
 252                                PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 253                                PAGE_SIZE);
 254        for (i = 0; i < io_tlb_nslabs; i++) {
 255                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 256                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 257        }
 258        io_tlb_index = 0;
 259
 260        if (verbose)
 261                swiotlb_print_info();
 262
 263        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 264        return 0;
 265}
 266
 267/*
 268 * Statically reserve bounce buffer space and initialize bounce buffer data
 269 * structures for the software IO TLB used to implement the DMA API.
 270 */
 271void  __init
 272swiotlb_init(int verbose)
 273{
 274        size_t default_size = IO_TLB_DEFAULT_SIZE;
 275        unsigned char *vstart;
 276        unsigned long bytes;
 277
 278        if (!io_tlb_nslabs) {
 279                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 280                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 281        }
 282
 283        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 284
 285        /* Get IO TLB memory from the low pages */
 286        vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 287        if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 288                return;
 289
 290        if (io_tlb_start)
 291                memblock_free_early(io_tlb_start,
 292                                    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 293        pr_warn("Cannot allocate SWIOTLB buffer");
 294        no_iotlb_memory = true;
 295}
 296
 297/*
 298 * Systems with larger DMA zones (those that don't support ISA) can
 299 * initialize the swiotlb later using the slab allocator if needed.
 300 * This should be just like above, but with some error catching.
 301 */
 302int
 303swiotlb_late_init_with_default_size(size_t default_size)
 304{
 305        unsigned long bytes, req_nslabs = io_tlb_nslabs;
 306        unsigned char *vstart = NULL;
 307        unsigned int order;
 308        int rc = 0;
 309
 310        if (!io_tlb_nslabs) {
 311                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 312                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 313        }
 314
 315        /*
 316         * Get IO TLB memory from the low pages
 317         */
 318        order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 319        io_tlb_nslabs = SLABS_PER_PAGE << order;
 320        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 321
 322        while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 323                vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 324                                                  order);
 325                if (vstart)
 326                        break;
 327                order--;
 328        }
 329
 330        if (!vstart) {
 331                io_tlb_nslabs = req_nslabs;
 332                return -ENOMEM;
 333        }
 334        if (order != get_order(bytes)) {
 335                printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 336                       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 337                io_tlb_nslabs = SLABS_PER_PAGE << order;
 338        }
 339        rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 340        if (rc)
 341                free_pages((unsigned long)vstart, order);
 342
 343        return rc;
 344}
 345
 346int
 347swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 348{
 349        unsigned long i, bytes;
 350        unsigned char *v_overflow_buffer;
 351
 352        bytes = nslabs << IO_TLB_SHIFT;
 353
 354        io_tlb_nslabs = nslabs;
 355        io_tlb_start = virt_to_phys(tlb);
 356        io_tlb_end = io_tlb_start + bytes;
 357
 358        swiotlb_set_mem_attributes(tlb, bytes);
 359        memset(tlb, 0, bytes);
 360
 361        /*
 362         * Get the overflow emergency buffer
 363         */
 364        v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 365                                                     get_order(io_tlb_overflow));
 366        if (!v_overflow_buffer)
 367                goto cleanup2;
 368
 369        swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
 370        memset(v_overflow_buffer, 0, io_tlb_overflow);
 371        io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 372
 373        /*
 374         * Allocate and initialize the free list array.  This array is used
 375         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 376         * between io_tlb_start and io_tlb_end.
 377         */
 378        io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 379                                      get_order(io_tlb_nslabs * sizeof(int)));
 380        if (!io_tlb_list)
 381                goto cleanup3;
 382
 383        io_tlb_orig_addr = (phys_addr_t *)
 384                __get_free_pages(GFP_KERNEL,
 385                                 get_order(io_tlb_nslabs *
 386                                           sizeof(phys_addr_t)));
 387        if (!io_tlb_orig_addr)
 388                goto cleanup4;
 389
 390        for (i = 0; i < io_tlb_nslabs; i++) {
 391                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 392                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 393        }
 394        io_tlb_index = 0;
 395
 396        swiotlb_print_info();
 397
 398        late_alloc = 1;
 399
 400        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 401
 402        return 0;
 403
 404cleanup4:
 405        free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 406                                                         sizeof(int)));
 407        io_tlb_list = NULL;
 408cleanup3:
 409        free_pages((unsigned long)v_overflow_buffer,
 410                   get_order(io_tlb_overflow));
 411        io_tlb_overflow_buffer = 0;
 412cleanup2:
 413        io_tlb_end = 0;
 414        io_tlb_start = 0;
 415        io_tlb_nslabs = 0;
 416        max_segment = 0;
 417        return -ENOMEM;
 418}
 419
 420void __init swiotlb_free(void)
 421{
 422        if (!io_tlb_orig_addr)
 423                return;
 424
 425        if (late_alloc) {
 426                free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 427                           get_order(io_tlb_overflow));
 428                free_pages((unsigned long)io_tlb_orig_addr,
 429                           get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 430                free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 431                                                                 sizeof(int)));
 432                free_pages((unsigned long)phys_to_virt(io_tlb_start),
 433                           get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 434        } else {
 435                memblock_free_late(io_tlb_overflow_buffer,
 436                                   PAGE_ALIGN(io_tlb_overflow));
 437                memblock_free_late(__pa(io_tlb_orig_addr),
 438                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 439                memblock_free_late(__pa(io_tlb_list),
 440                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 441                memblock_free_late(io_tlb_start,
 442                                   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 443        }
 444        io_tlb_nslabs = 0;
 445        max_segment = 0;
 446}
 447
 448int is_swiotlb_buffer(phys_addr_t paddr)
 449{
 450        return paddr >= io_tlb_start && paddr < io_tlb_end;
 451}
 452
 453/*
 454 * Bounce: copy the swiotlb buffer back to the original dma location
 455 */
 456static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 457                           size_t size, enum dma_data_direction dir)
 458{
 459        unsigned long pfn = PFN_DOWN(orig_addr);
 460        unsigned char *vaddr = phys_to_virt(tlb_addr);
 461
 462        if (PageHighMem(pfn_to_page(pfn))) {
 463                /* The buffer does not have a mapping.  Map it in and copy */
 464                unsigned int offset = orig_addr & ~PAGE_MASK;
 465                char *buffer;
 466                unsigned int sz = 0;
 467                unsigned long flags;
 468
 469                while (size) {
 470                        sz = min_t(size_t, PAGE_SIZE - offset, size);
 471
 472                        local_irq_save(flags);
 473                        buffer = kmap_atomic(pfn_to_page(pfn));
 474                        if (dir == DMA_TO_DEVICE)
 475                                memcpy(vaddr, buffer + offset, sz);
 476                        else
 477                                memcpy(buffer + offset, vaddr, sz);
 478                        kunmap_atomic(buffer);
 479                        local_irq_restore(flags);
 480
 481                        size -= sz;
 482                        pfn++;
 483                        vaddr += sz;
 484                        offset = 0;
 485                }
 486        } else if (dir == DMA_TO_DEVICE) {
 487                memcpy(vaddr, phys_to_virt(orig_addr), size);
 488        } else {
 489                memcpy(phys_to_virt(orig_addr), vaddr, size);
 490        }
 491}
 492
 493phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 494                                   dma_addr_t tbl_dma_addr,
 495                                   phys_addr_t orig_addr, size_t size,
 496                                   enum dma_data_direction dir,
 497                                   unsigned long attrs)
 498{
 499        unsigned long flags;
 500        phys_addr_t tlb_addr;
 501        unsigned int nslots, stride, index, wrap;
 502        int i;
 503        unsigned long mask;
 504        unsigned long offset_slots;
 505        unsigned long max_slots;
 506
 507        if (no_iotlb_memory)
 508                panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 509
 510        if (sme_active())
 511                pr_warn_once("SME is active and system is using DMA bounce buffers\n");
 512
 513        mask = dma_get_seg_boundary(hwdev);
 514
 515        tbl_dma_addr &= mask;
 516
 517        offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 518
 519        /*
 520         * Carefully handle integer overflow which can occur when mask == ~0UL.
 521         */
 522        max_slots = mask + 1
 523                    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 524                    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 525
 526        /*
 527         * For mappings greater than or equal to a page, we limit the stride
 528         * (and hence alignment) to a page size.
 529         */
 530        nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 531        if (size >= PAGE_SIZE)
 532                stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 533        else
 534                stride = 1;
 535
 536        BUG_ON(!nslots);
 537
 538        /*
 539         * Find suitable number of IO TLB entries size that will fit this
 540         * request and allocate a buffer from that IO TLB pool.
 541         */
 542        spin_lock_irqsave(&io_tlb_lock, flags);
 543        index = ALIGN(io_tlb_index, stride);
 544        if (index >= io_tlb_nslabs)
 545                index = 0;
 546        wrap = index;
 547
 548        do {
 549                while (iommu_is_span_boundary(index, nslots, offset_slots,
 550                                              max_slots)) {
 551                        index += stride;
 552                        if (index >= io_tlb_nslabs)
 553                                index = 0;
 554                        if (index == wrap)
 555                                goto not_found;
 556                }
 557
 558                /*
 559                 * If we find a slot that indicates we have 'nslots' number of
 560                 * contiguous buffers, we allocate the buffers from that slot
 561                 * and mark the entries as '0' indicating unavailable.
 562                 */
 563                if (io_tlb_list[index] >= nslots) {
 564                        int count = 0;
 565
 566                        for (i = index; i < (int) (index + nslots); i++)
 567                                io_tlb_list[i] = 0;
 568                        for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 569                                io_tlb_list[i] = ++count;
 570                        tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 571
 572                        /*
 573                         * Update the indices to avoid searching in the next
 574                         * round.
 575                         */
 576                        io_tlb_index = ((index + nslots) < io_tlb_nslabs
 577                                        ? (index + nslots) : 0);
 578
 579                        goto found;
 580                }
 581                index += stride;
 582                if (index >= io_tlb_nslabs)
 583                        index = 0;
 584        } while (index != wrap);
 585
 586not_found:
 587        spin_unlock_irqrestore(&io_tlb_lock, flags);
 588        if (printk_ratelimit())
 589                dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 590        return SWIOTLB_MAP_ERROR;
 591found:
 592        spin_unlock_irqrestore(&io_tlb_lock, flags);
 593
 594        /*
 595         * Save away the mapping from the original address to the DMA address.
 596         * This is needed when we sync the memory.  Then we sync the buffer if
 597         * needed.
 598         */
 599        for (i = 0; i < nslots; i++)
 600                io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 601        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 602            (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 603                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 604
 605        return tlb_addr;
 606}
 607EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 608
 609/*
 610 * Allocates bounce buffer and returns its kernel virtual address.
 611 */
 612
 613static phys_addr_t
 614map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 615           enum dma_data_direction dir, unsigned long attrs)
 616{
 617        dma_addr_t start_dma_addr;
 618
 619        if (swiotlb_force == SWIOTLB_NO_FORCE) {
 620                dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
 621                                     &phys);
 622                return SWIOTLB_MAP_ERROR;
 623        }
 624
 625        start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
 626        return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
 627                                      dir, attrs);
 628}
 629
 630/*
 631 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 632 */
 633void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 634                              size_t size, enum dma_data_direction dir,
 635                              unsigned long attrs)
 636{
 637        unsigned long flags;
 638        int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 639        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 640        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 641
 642        /*
 643         * First, sync the memory before unmapping the entry
 644         */
 645        if (orig_addr != INVALID_PHYS_ADDR &&
 646            !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 647            ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 648                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 649
 650        /*
 651         * Return the buffer to the free list by setting the corresponding
 652         * entries to indicate the number of contiguous entries available.
 653         * While returning the entries to the free list, we merge the entries
 654         * with slots below and above the pool being returned.
 655         */
 656        spin_lock_irqsave(&io_tlb_lock, flags);
 657        {
 658                count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 659                         io_tlb_list[index + nslots] : 0);
 660                /*
 661                 * Step 1: return the slots to the free list, merging the
 662                 * slots with superceeding slots
 663                 */
 664                for (i = index + nslots - 1; i >= index; i--) {
 665                        io_tlb_list[i] = ++count;
 666                        io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 667                }
 668                /*
 669                 * Step 2: merge the returned slots with the preceding slots,
 670                 * if available (non zero)
 671                 */
 672                for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 673                        io_tlb_list[i] = ++count;
 674        }
 675        spin_unlock_irqrestore(&io_tlb_lock, flags);
 676}
 677EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 678
 679void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 680                             size_t size, enum dma_data_direction dir,
 681                             enum dma_sync_target target)
 682{
 683        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 684        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 685
 686        if (orig_addr == INVALID_PHYS_ADDR)
 687                return;
 688        orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 689
 690        switch (target) {
 691        case SYNC_FOR_CPU:
 692                if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 693                        swiotlb_bounce(orig_addr, tlb_addr,
 694                                       size, DMA_FROM_DEVICE);
 695                else
 696                        BUG_ON(dir != DMA_TO_DEVICE);
 697                break;
 698        case SYNC_FOR_DEVICE:
 699                if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 700                        swiotlb_bounce(orig_addr, tlb_addr,
 701                                       size, DMA_TO_DEVICE);
 702                else
 703                        BUG_ON(dir != DMA_FROM_DEVICE);
 704                break;
 705        default:
 706                BUG();
 707        }
 708}
 709EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 710
 711void *
 712swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 713                       dma_addr_t *dma_handle, gfp_t flags)
 714{
 715        dma_addr_t dev_addr;
 716        void *ret;
 717        int order = get_order(size);
 718        u64 dma_mask = DMA_BIT_MASK(32);
 719
 720        if (hwdev && hwdev->coherent_dma_mask)
 721                dma_mask = hwdev->coherent_dma_mask;
 722
 723        ret = (void *)__get_free_pages(flags, order);
 724        if (ret) {
 725                dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 726                if (dev_addr + size - 1 > dma_mask) {
 727                        /*
 728                         * The allocated memory isn't reachable by the device.
 729                         */
 730                        free_pages((unsigned long) ret, order);
 731                        ret = NULL;
 732                }
 733        }
 734        if (!ret) {
 735                /*
 736                 * We are either out of memory or the device can't DMA to
 737                 * GFP_DMA memory; fall back on map_single(), which
 738                 * will grab memory from the lowest available address range.
 739                 */
 740                phys_addr_t paddr = map_single(hwdev, 0, size,
 741                                               DMA_FROM_DEVICE, 0);
 742                if (paddr == SWIOTLB_MAP_ERROR)
 743                        goto err_warn;
 744
 745                ret = phys_to_virt(paddr);
 746                dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
 747
 748                /* Confirm address can be DMA'd by device */
 749                if (dev_addr + size - 1 > dma_mask) {
 750                        printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 751                               (unsigned long long)dma_mask,
 752                               (unsigned long long)dev_addr);
 753
 754                        /*
 755                         * DMA_TO_DEVICE to avoid memcpy in unmap_single.
 756                         * The DMA_ATTR_SKIP_CPU_SYNC is optional.
 757                         */
 758                        swiotlb_tbl_unmap_single(hwdev, paddr,
 759                                                 size, DMA_TO_DEVICE,
 760                                                 DMA_ATTR_SKIP_CPU_SYNC);
 761                        goto err_warn;
 762                }
 763        }
 764
 765        *dma_handle = dev_addr;
 766        memset(ret, 0, size);
 767
 768        return ret;
 769
 770err_warn:
 771        pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 772                dev_name(hwdev), size);
 773        dump_stack();
 774
 775        return NULL;
 776}
 777EXPORT_SYMBOL(swiotlb_alloc_coherent);
 778
 779void
 780swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 781                      dma_addr_t dev_addr)
 782{
 783        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 784
 785        WARN_ON(irqs_disabled());
 786        if (!is_swiotlb_buffer(paddr))
 787                free_pages((unsigned long)vaddr, get_order(size));
 788        else
 789                /*
 790                 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
 791                 * DMA_ATTR_SKIP_CPU_SYNC is optional.
 792                 */
 793                swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
 794                                         DMA_ATTR_SKIP_CPU_SYNC);
 795}
 796EXPORT_SYMBOL(swiotlb_free_coherent);
 797
 798static void
 799swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 800             int do_panic)
 801{
 802        if (swiotlb_force == SWIOTLB_NO_FORCE)
 803                return;
 804
 805        /*
 806         * Ran out of IOMMU space for this operation. This is very bad.
 807         * Unfortunately the drivers cannot handle this operation properly.
 808         * unless they check for dma_mapping_error (most don't)
 809         * When the mapping is small enough return a static buffer to limit
 810         * the damage, or panic when the transfer is too big.
 811         */
 812        dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
 813                            size);
 814
 815        if (size <= io_tlb_overflow || !do_panic)
 816                return;
 817
 818        if (dir == DMA_BIDIRECTIONAL)
 819                panic("DMA: Random memory could be DMA accessed\n");
 820        if (dir == DMA_FROM_DEVICE)
 821                panic("DMA: Random memory could be DMA written\n");
 822        if (dir == DMA_TO_DEVICE)
 823                panic("DMA: Random memory could be DMA read\n");
 824}
 825
 826/*
 827 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 828 * physical address to use is returned.
 829 *
 830 * Once the device is given the dma address, the device owns this memory until
 831 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 832 */
 833dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 834                            unsigned long offset, size_t size,
 835                            enum dma_data_direction dir,
 836                            unsigned long attrs)
 837{
 838        phys_addr_t map, phys = page_to_phys(page) + offset;
 839        dma_addr_t dev_addr = phys_to_dma(dev, phys);
 840
 841        BUG_ON(dir == DMA_NONE);
 842        /*
 843         * If the address happens to be in the device's DMA window,
 844         * we can safely return the device addr and not worry about bounce
 845         * buffering it.
 846         */
 847        if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
 848                return dev_addr;
 849
 850        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 851
 852        /* Oh well, have to allocate and map a bounce buffer. */
 853        map = map_single(dev, phys, size, dir, attrs);
 854        if (map == SWIOTLB_MAP_ERROR) {
 855                swiotlb_full(dev, size, dir, 1);
 856                return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
 857        }
 858
 859        dev_addr = swiotlb_phys_to_dma(dev, map);
 860
 861        /* Ensure that the address returned is DMA'ble */
 862        if (dma_capable(dev, dev_addr, size))
 863                return dev_addr;
 864
 865        attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 866        swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
 867
 868        return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
 869}
 870EXPORT_SYMBOL_GPL(swiotlb_map_page);
 871
 872/*
 873 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 874 * match what was provided for in a previous swiotlb_map_page call.  All
 875 * other usages are undefined.
 876 *
 877 * After this call, reads by the cpu to the buffer are guaranteed to see
 878 * whatever the device wrote there.
 879 */
 880static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 881                         size_t size, enum dma_data_direction dir,
 882                         unsigned long attrs)
 883{
 884        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 885
 886        BUG_ON(dir == DMA_NONE);
 887
 888        if (is_swiotlb_buffer(paddr)) {
 889                swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 890                return;
 891        }
 892
 893        if (dir != DMA_FROM_DEVICE)
 894                return;
 895
 896        /*
 897         * phys_to_virt doesn't work with hihgmem page but we could
 898         * call dma_mark_clean() with hihgmem page here. However, we
 899         * are fine since dma_mark_clean() is null on POWERPC. We can
 900         * make dma_mark_clean() take a physical address if necessary.
 901         */
 902        dma_mark_clean(phys_to_virt(paddr), size);
 903}
 904
 905void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 906                        size_t size, enum dma_data_direction dir,
 907                        unsigned long attrs)
 908{
 909        unmap_single(hwdev, dev_addr, size, dir, attrs);
 910}
 911EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 912
 913/*
 914 * Make physical memory consistent for a single streaming mode DMA translation
 915 * after a transfer.
 916 *
 917 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 918 * using the cpu, yet do not wish to teardown the dma mapping, you must
 919 * call this function before doing so.  At the next point you give the dma
 920 * address back to the card, you must first perform a
 921 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 922 */
 923static void
 924swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 925                    size_t size, enum dma_data_direction dir,
 926                    enum dma_sync_target target)
 927{
 928        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 929
 930        BUG_ON(dir == DMA_NONE);
 931
 932        if (is_swiotlb_buffer(paddr)) {
 933                swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 934                return;
 935        }
 936
 937        if (dir != DMA_FROM_DEVICE)
 938                return;
 939
 940        dma_mark_clean(phys_to_virt(paddr), size);
 941}
 942
 943void
 944swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 945                            size_t size, enum dma_data_direction dir)
 946{
 947        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 948}
 949EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 950
 951void
 952swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 953                               size_t size, enum dma_data_direction dir)
 954{
 955        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 956}
 957EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 958
 959/*
 960 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 961 * This is the scatter-gather version of the above swiotlb_map_page
 962 * interface.  Here the scatter gather list elements are each tagged with the
 963 * appropriate dma address and length.  They are obtained via
 964 * sg_dma_{address,length}(SG).
 965 *
 966 * NOTE: An implementation may be able to use a smaller number of
 967 *       DMA address/length pairs than there are SG table elements.
 968 *       (for example via virtual mapping capabilities)
 969 *       The routine returns the number of addr/length pairs actually
 970 *       used, at most nents.
 971 *
 972 * Device ownership issues as mentioned above for swiotlb_map_page are the
 973 * same here.
 974 */
 975int
 976swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 977                     enum dma_data_direction dir, unsigned long attrs)
 978{
 979        struct scatterlist *sg;
 980        int i;
 981
 982        BUG_ON(dir == DMA_NONE);
 983
 984        for_each_sg(sgl, sg, nelems, i) {
 985                phys_addr_t paddr = sg_phys(sg);
 986                dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 987
 988                if (swiotlb_force == SWIOTLB_FORCE ||
 989                    !dma_capable(hwdev, dev_addr, sg->length)) {
 990                        phys_addr_t map = map_single(hwdev, sg_phys(sg),
 991                                                     sg->length, dir, attrs);
 992                        if (map == SWIOTLB_MAP_ERROR) {
 993                                /* Don't panic here, we expect map_sg users
 994                                   to do proper error handling. */
 995                                swiotlb_full(hwdev, sg->length, dir, 0);
 996                                attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 997                                swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 998                                                       attrs);
 999                                sg_dma_len(sgl) = 0;
1000                                return 0;
1001                        }
1002                        sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1003                } else
1004                        sg->dma_address = dev_addr;
1005                sg_dma_len(sg) = sg->length;
1006        }
1007        return nelems;
1008}
1009EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1010
1011/*
1012 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
1013 * concerning calls here are the same as for swiotlb_unmap_page() above.
1014 */
1015void
1016swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
1017                       int nelems, enum dma_data_direction dir,
1018                       unsigned long attrs)
1019{
1020        struct scatterlist *sg;
1021        int i;
1022
1023        BUG_ON(dir == DMA_NONE);
1024
1025        for_each_sg(sgl, sg, nelems, i)
1026                unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1027                             attrs);
1028}
1029EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1030
1031/*
1032 * Make physical memory consistent for a set of streaming mode DMA translations
1033 * after a transfer.
1034 *
1035 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1036 * and usage.
1037 */
1038static void
1039swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1040                int nelems, enum dma_data_direction dir,
1041                enum dma_sync_target target)
1042{
1043        struct scatterlist *sg;
1044        int i;
1045
1046        for_each_sg(sgl, sg, nelems, i)
1047                swiotlb_sync_single(hwdev, sg->dma_address,
1048                                    sg_dma_len(sg), dir, target);
1049}
1050
1051void
1052swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1053                        int nelems, enum dma_data_direction dir)
1054{
1055        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1056}
1057EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1058
1059void
1060swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1061                           int nelems, enum dma_data_direction dir)
1062{
1063        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1064}
1065EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1066
1067int
1068swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1069{
1070        return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1071}
1072EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1073
1074/*
1075 * Return whether the given device DMA address mask can be supported
1076 * properly.  For example, if your device can only drive the low 24-bits
1077 * during bus mastering, then you would pass 0x00ffffff as the mask to
1078 * this function.
1079 */
1080int
1081swiotlb_dma_supported(struct device *hwdev, u64 mask)
1082{
1083        return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1084}
1085EXPORT_SYMBOL(swiotlb_dma_supported);
1086