linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default transparent hugepage support is disabled in order that avoid
  43 * to risk increase the memory footprint of applications without a guaranteed
  44 * benefit. When transparent hugepage support is enabled, is for all mappings,
  45 * and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67        struct page *zero_page;
  68retry:
  69        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70                return READ_ONCE(huge_zero_page);
  71
  72        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73                        HPAGE_PMD_ORDER);
  74        if (!zero_page) {
  75                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76                return NULL;
  77        }
  78        count_vm_event(THP_ZERO_PAGE_ALLOC);
  79        preempt_disable();
  80        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81                preempt_enable();
  82                __free_pages(zero_page, compound_order(zero_page));
  83                goto retry;
  84        }
  85
  86        /* We take additional reference here. It will be put back by shrinker */
  87        atomic_set(&huge_zero_refcount, 2);
  88        preempt_enable();
  89        return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94        /*
  95         * Counter should never go to zero here. Only shrinker can put
  96         * last reference.
  97         */
  98        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104                return READ_ONCE(huge_zero_page);
 105
 106        if (!get_huge_zero_page())
 107                return NULL;
 108
 109        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110                put_huge_zero_page();
 111
 112        return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118                put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122                                        struct shrink_control *sc)
 123{
 124        /* we can free zero page only if last reference remains */
 125        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129                                       struct shrink_control *sc)
 130{
 131        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132                struct page *zero_page = xchg(&huge_zero_page, NULL);
 133                BUG_ON(zero_page == NULL);
 134                __free_pages(zero_page, compound_order(zero_page));
 135                return HPAGE_PMD_NR;
 136        }
 137
 138        return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142        .count_objects = shrink_huge_zero_page_count,
 143        .scan_objects = shrink_huge_zero_page_scan,
 144        .seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149                            struct kobj_attribute *attr, char *buf)
 150{
 151        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152                return sprintf(buf, "[always] madvise never\n");
 153        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154                return sprintf(buf, "always [madvise] never\n");
 155        else
 156                return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160                             struct kobj_attribute *attr,
 161                             const char *buf, size_t count)
 162{
 163        ssize_t ret = count;
 164
 165        if (!memcmp("always", buf,
 166                    min(sizeof("always")-1, count))) {
 167                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168                set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169        } else if (!memcmp("madvise", buf,
 170                           min(sizeof("madvise")-1, count))) {
 171                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173        } else if (!memcmp("never", buf,
 174                           min(sizeof("never")-1, count))) {
 175                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177        } else
 178                ret = -EINVAL;
 179
 180        if (ret > 0) {
 181                int err = start_stop_khugepaged();
 182                if (err)
 183                        ret = err;
 184        }
 185        return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188        __ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191                                struct kobj_attribute *attr, char *buf,
 192                                enum transparent_hugepage_flag flag)
 193{
 194        return sprintf(buf, "%d\n",
 195                       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199                                 struct kobj_attribute *attr,
 200                                 const char *buf, size_t count,
 201                                 enum transparent_hugepage_flag flag)
 202{
 203        unsigned long value;
 204        int ret;
 205
 206        ret = kstrtoul(buf, 10, &value);
 207        if (ret < 0)
 208                return ret;
 209        if (value > 1)
 210                return -EINVAL;
 211
 212        if (value)
 213                set_bit(flag, &transparent_hugepage_flags);
 214        else
 215                clear_bit(flag, &transparent_hugepage_flags);
 216
 217        return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221                           struct kobj_attribute *attr, char *buf)
 222{
 223        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224                return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226                return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228                return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230                return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231        return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235                            struct kobj_attribute *attr,
 236                            const char *buf, size_t count)
 237{
 238        if (!memcmp("always", buf,
 239                    min(sizeof("always")-1, count))) {
 240                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244        } else if (!memcmp("defer+madvise", buf,
 245                    min(sizeof("defer+madvise")-1, count))) {
 246                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250        } else if (!memcmp("defer", buf,
 251                    min(sizeof("defer")-1, count))) {
 252                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256        } else if (!memcmp("madvise", buf,
 257                           min(sizeof("madvise")-1, count))) {
 258                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262        } else if (!memcmp("never", buf,
 263                           min(sizeof("never")-1, count))) {
 264                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268        } else
 269                return -EINVAL;
 270
 271        return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274        __ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277                struct kobj_attribute *attr, char *buf)
 278{
 279        return single_hugepage_flag_show(kobj, attr, buf,
 280                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283                struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285        return single_hugepage_flag_store(kobj, attr, buf, count,
 286                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292                struct kobj_attribute *attr, char *buf)
 293{
 294        return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297        __ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301                                struct kobj_attribute *attr, char *buf)
 302{
 303        return single_hugepage_flag_show(kobj, attr, buf,
 304                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307                               struct kobj_attribute *attr,
 308                               const char *buf, size_t count)
 309{
 310        return single_hugepage_flag_store(kobj, attr, buf, count,
 311                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318        &enabled_attr.attr,
 319        &defrag_attr.attr,
 320        &use_zero_page_attr.attr,
 321        &hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323        &shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326        &debug_cow_attr.attr,
 327#endif
 328        NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332        .attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337        int err;
 338
 339        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340        if (unlikely(!*hugepage_kobj)) {
 341                pr_err("failed to create transparent hugepage kobject\n");
 342                return -ENOMEM;
 343        }
 344
 345        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346        if (err) {
 347                pr_err("failed to register transparent hugepage group\n");
 348                goto delete_obj;
 349        }
 350
 351        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352        if (err) {
 353                pr_err("failed to register transparent hugepage group\n");
 354                goto remove_hp_group;
 355        }
 356
 357        return 0;
 358
 359remove_hp_group:
 360        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362        kobject_put(*hugepage_kobj);
 363        return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370        kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375        return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385        int err;
 386        struct kobject *hugepage_kobj;
 387
 388        if (!has_transparent_hugepage()) {
 389                transparent_hugepage_flags = 0;
 390                return -EINVAL;
 391        }
 392
 393        /*
 394         * hugepages can't be allocated by the buddy allocator
 395         */
 396        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397        /*
 398         * we use page->mapping and page->index in second tail page
 399         * as list_head: assuming THP order >= 2
 400         */
 401        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403        err = hugepage_init_sysfs(&hugepage_kobj);
 404        if (err)
 405                goto err_sysfs;
 406
 407        err = khugepaged_init();
 408        if (err)
 409                goto err_slab;
 410
 411        err = register_shrinker(&huge_zero_page_shrinker);
 412        if (err)
 413                goto err_hzp_shrinker;
 414        err = register_shrinker(&deferred_split_shrinker);
 415        if (err)
 416                goto err_split_shrinker;
 417
 418        /*
 419         * By default disable transparent hugepages on smaller systems,
 420         * where the extra memory used could hurt more than TLB overhead
 421         * is likely to save.  The admin can still enable it through /sys.
 422         */
 423        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424                transparent_hugepage_flags = 0;
 425                return 0;
 426        }
 427
 428        err = start_stop_khugepaged();
 429        if (err)
 430                goto err_khugepaged;
 431
 432        return 0;
 433err_khugepaged:
 434        unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436        unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438        khugepaged_destroy();
 439err_slab:
 440        hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442        return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448        int ret = 0;
 449        if (!str)
 450                goto out;
 451        if (!strcmp(str, "always")) {
 452                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453                        &transparent_hugepage_flags);
 454                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455                          &transparent_hugepage_flags);
 456                ret = 1;
 457        } else if (!strcmp(str, "madvise")) {
 458                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459                          &transparent_hugepage_flags);
 460                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461                        &transparent_hugepage_flags);
 462                ret = 1;
 463        } else if (!strcmp(str, "never")) {
 464                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465                          &transparent_hugepage_flags);
 466                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467                          &transparent_hugepage_flags);
 468                ret = 1;
 469        }
 470out:
 471        if (!ret)
 472                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473        return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479        if (likely(vma->vm_flags & VM_WRITE))
 480                pmd = pmd_mkwrite(pmd);
 481        return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486        /*
 487         * ->lru in the tail pages is occupied by compound_head.
 488         * Let's use ->mapping + ->index in the second tail page as list_head.
 489         */
 490        return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495        /*
 496         * we use page->mapping and page->indexlru in second tail page
 497         * as list_head: assuming THP order >= 2
 498         */
 499
 500        INIT_LIST_HEAD(page_deferred_list(page));
 501        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505                loff_t off, unsigned long flags, unsigned long size)
 506{
 507        unsigned long addr;
 508        loff_t off_end = off + len;
 509        loff_t off_align = round_up(off, size);
 510        unsigned long len_pad;
 511
 512        if (off_end <= off_align || (off_end - off_align) < size)
 513                return 0;
 514
 515        len_pad = len + size;
 516        if (len_pad < len || (off + len_pad) < off)
 517                return 0;
 518
 519        addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520                                              off >> PAGE_SHIFT, flags);
 521        if (IS_ERR_VALUE(addr))
 522                return 0;
 523
 524        addr += (off - addr) & (size - 1);
 525        return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529                unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533        if (addr)
 534                goto out;
 535        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536                goto out;
 537
 538        addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539        if (addr)
 540                return addr;
 541
 542 out:
 543        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548                gfp_t gfp)
 549{
 550        struct vm_area_struct *vma = vmf->vma;
 551        struct mem_cgroup *memcg;
 552        pgtable_t pgtable;
 553        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554        int ret = 0;
 555
 556        VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558        if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559                put_page(page);
 560                count_vm_event(THP_FAULT_FALLBACK);
 561                return VM_FAULT_FALLBACK;
 562        }
 563
 564        pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565        if (unlikely(!pgtable)) {
 566                ret = VM_FAULT_OOM;
 567                goto release;
 568        }
 569
 570        clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571        /*
 572         * The memory barrier inside __SetPageUptodate makes sure that
 573         * clear_huge_page writes become visible before the set_pmd_at()
 574         * write.
 575         */
 576        __SetPageUptodate(page);
 577
 578        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579        if (unlikely(!pmd_none(*vmf->pmd))) {
 580                goto unlock_release;
 581        } else {
 582                pmd_t entry;
 583
 584                ret = check_stable_address_space(vma->vm_mm);
 585                if (ret)
 586                        goto unlock_release;
 587
 588                /* Deliver the page fault to userland */
 589                if (userfaultfd_missing(vma)) {
 590                        int ret;
 591
 592                        spin_unlock(vmf->ptl);
 593                        mem_cgroup_cancel_charge(page, memcg, true);
 594                        put_page(page);
 595                        pte_free(vma->vm_mm, pgtable);
 596                        ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598                        return ret;
 599                }
 600
 601                entry = mk_huge_pmd(page, vma->vm_page_prot);
 602                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603                page_add_new_anon_rmap(page, vma, haddr, true);
 604                mem_cgroup_commit_charge(page, memcg, false, true);
 605                lru_cache_add_active_or_unevictable(page, vma);
 606                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609                atomic_long_inc(&vma->vm_mm->nr_ptes);
 610                spin_unlock(vmf->ptl);
 611                count_vm_event(THP_FAULT_ALLOC);
 612        }
 613
 614        return 0;
 615unlock_release:
 616        spin_unlock(vmf->ptl);
 617release:
 618        if (pgtable)
 619                pte_free(vma->vm_mm, pgtable);
 620        mem_cgroup_cancel_charge(page, memcg, true);
 621        put_page(page);
 622        return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *                fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *          available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637        const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 639        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645                                                             __GFP_KSWAPD_RECLAIM);
 646        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648                                                             0);
 649        return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655                struct page *zero_page)
 656{
 657        pmd_t entry;
 658        if (!pmd_none(*pmd))
 659                return false;
 660        entry = mk_pmd(zero_page, vma->vm_page_prot);
 661        entry = pmd_mkhuge(entry);
 662        if (pgtable)
 663                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664        set_pmd_at(mm, haddr, pmd, entry);
 665        atomic_long_inc(&mm->nr_ptes);
 666        return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671        struct vm_area_struct *vma = vmf->vma;
 672        gfp_t gfp;
 673        struct page *page;
 674        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677                return VM_FAULT_FALLBACK;
 678        if (unlikely(anon_vma_prepare(vma)))
 679                return VM_FAULT_OOM;
 680        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681                return VM_FAULT_OOM;
 682        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683                        !mm_forbids_zeropage(vma->vm_mm) &&
 684                        transparent_hugepage_use_zero_page()) {
 685                pgtable_t pgtable;
 686                struct page *zero_page;
 687                bool set;
 688                int ret;
 689                pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690                if (unlikely(!pgtable))
 691                        return VM_FAULT_OOM;
 692                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693                if (unlikely(!zero_page)) {
 694                        pte_free(vma->vm_mm, pgtable);
 695                        count_vm_event(THP_FAULT_FALLBACK);
 696                        return VM_FAULT_FALLBACK;
 697                }
 698                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699                ret = 0;
 700                set = false;
 701                if (pmd_none(*vmf->pmd)) {
 702                        ret = check_stable_address_space(vma->vm_mm);
 703                        if (ret) {
 704                                spin_unlock(vmf->ptl);
 705                        } else if (userfaultfd_missing(vma)) {
 706                                spin_unlock(vmf->ptl);
 707                                ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709                        } else {
 710                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711                                                   haddr, vmf->pmd, zero_page);
 712                                spin_unlock(vmf->ptl);
 713                                set = true;
 714                        }
 715                } else
 716                        spin_unlock(vmf->ptl);
 717                if (!set)
 718                        pte_free(vma->vm_mm, pgtable);
 719                return ret;
 720        }
 721        gfp = alloc_hugepage_direct_gfpmask(vma);
 722        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723        if (unlikely(!page)) {
 724                count_vm_event(THP_FAULT_FALLBACK);
 725                return VM_FAULT_FALLBACK;
 726        }
 727        prep_transhuge_page(page);
 728        return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733                pgtable_t pgtable)
 734{
 735        struct mm_struct *mm = vma->vm_mm;
 736        pmd_t entry;
 737        spinlock_t *ptl;
 738
 739        ptl = pmd_lock(mm, pmd);
 740        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741        if (pfn_t_devmap(pfn))
 742                entry = pmd_mkdevmap(entry);
 743        if (write) {
 744                entry = pmd_mkyoung(pmd_mkdirty(entry));
 745                entry = maybe_pmd_mkwrite(entry, vma);
 746        }
 747
 748        if (pgtable) {
 749                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750                atomic_long_inc(&mm->nr_ptes);
 751        }
 752
 753        set_pmd_at(mm, addr, pmd, entry);
 754        update_mmu_cache_pmd(vma, addr, pmd);
 755        spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759                        pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761        pgprot_t pgprot = vma->vm_page_prot;
 762        pgtable_t pgtable = NULL;
 763        /*
 764         * If we had pmd_special, we could avoid all these restrictions,
 765         * but we need to be consistent with PTEs and architectures that
 766         * can't support a 'special' bit.
 767         */
 768        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770                                                (VM_PFNMAP|VM_MIXEDMAP));
 771        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772        BUG_ON(!pfn_t_devmap(pfn));
 773
 774        if (addr < vma->vm_start || addr >= vma->vm_end)
 775                return VM_FAULT_SIGBUS;
 776
 777        if (arch_needs_pgtable_deposit()) {
 778                pgtable = pte_alloc_one(vma->vm_mm, addr);
 779                if (!pgtable)
 780                        return VM_FAULT_OOM;
 781        }
 782
 783        track_pfn_insert(vma, &pgprot, pfn);
 784
 785        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786        return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793        if (likely(vma->vm_flags & VM_WRITE))
 794                pud = pud_mkwrite(pud);
 795        return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799                pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801        struct mm_struct *mm = vma->vm_mm;
 802        pud_t entry;
 803        spinlock_t *ptl;
 804
 805        ptl = pud_lock(mm, pud);
 806        entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807        if (pfn_t_devmap(pfn))
 808                entry = pud_mkdevmap(entry);
 809        if (write) {
 810                entry = pud_mkyoung(pud_mkdirty(entry));
 811                entry = maybe_pud_mkwrite(entry, vma);
 812        }
 813        set_pud_at(mm, addr, pud, entry);
 814        update_mmu_cache_pud(vma, addr, pud);
 815        spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819                        pud_t *pud, pfn_t pfn, bool write)
 820{
 821        pgprot_t pgprot = vma->vm_page_prot;
 822        /*
 823         * If we had pud_special, we could avoid all these restrictions,
 824         * but we need to be consistent with PTEs and architectures that
 825         * can't support a 'special' bit.
 826         */
 827        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829                                                (VM_PFNMAP|VM_MIXEDMAP));
 830        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831        BUG_ON(!pfn_t_devmap(pfn));
 832
 833        if (addr < vma->vm_start || addr >= vma->vm_end)
 834                return VM_FAULT_SIGBUS;
 835
 836        track_pfn_insert(vma, &pgprot, pfn);
 837
 838        insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839        return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845                pmd_t *pmd)
 846{
 847        pmd_t _pmd;
 848
 849        /*
 850         * We should set the dirty bit only for FOLL_WRITE but for now
 851         * the dirty bit in the pmd is meaningless.  And if the dirty
 852         * bit will become meaningful and we'll only set it with
 853         * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 854         * set the young bit, instead of the current set_pmd_at.
 855         */
 856        _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 857        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 858                                pmd, _pmd,  1))
 859                update_mmu_cache_pmd(vma, addr, pmd);
 860}
 861
 862struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 863                pmd_t *pmd, int flags)
 864{
 865        unsigned long pfn = pmd_pfn(*pmd);
 866        struct mm_struct *mm = vma->vm_mm;
 867        struct dev_pagemap *pgmap;
 868        struct page *page;
 869
 870        assert_spin_locked(pmd_lockptr(mm, pmd));
 871
 872        /*
 873         * When we COW a devmap PMD entry, we split it into PTEs, so we should
 874         * not be in this function with `flags & FOLL_COW` set.
 875         */
 876        WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 877
 878        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 879                return NULL;
 880
 881        if (pmd_present(*pmd) && pmd_devmap(*pmd))
 882                /* pass */;
 883        else
 884                return NULL;
 885
 886        if (flags & FOLL_TOUCH)
 887                touch_pmd(vma, addr, pmd);
 888
 889        /*
 890         * device mapped pages can only be returned if the
 891         * caller will manage the page reference count.
 892         */
 893        if (!(flags & FOLL_GET))
 894                return ERR_PTR(-EEXIST);
 895
 896        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 897        pgmap = get_dev_pagemap(pfn, NULL);
 898        if (!pgmap)
 899                return ERR_PTR(-EFAULT);
 900        page = pfn_to_page(pfn);
 901        get_page(page);
 902        put_dev_pagemap(pgmap);
 903
 904        return page;
 905}
 906
 907int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 908                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 909                  struct vm_area_struct *vma)
 910{
 911        spinlock_t *dst_ptl, *src_ptl;
 912        struct page *src_page;
 913        pmd_t pmd;
 914        pgtable_t pgtable = NULL;
 915        int ret = -ENOMEM;
 916
 917        /* Skip if can be re-fill on fault */
 918        if (!vma_is_anonymous(vma))
 919                return 0;
 920
 921        pgtable = pte_alloc_one(dst_mm, addr);
 922        if (unlikely(!pgtable))
 923                goto out;
 924
 925        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 926        src_ptl = pmd_lockptr(src_mm, src_pmd);
 927        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 928
 929        ret = -EAGAIN;
 930        pmd = *src_pmd;
 931
 932#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 933        if (unlikely(is_swap_pmd(pmd))) {
 934                swp_entry_t entry = pmd_to_swp_entry(pmd);
 935
 936                VM_BUG_ON(!is_pmd_migration_entry(pmd));
 937                if (is_write_migration_entry(entry)) {
 938                        make_migration_entry_read(&entry);
 939                        pmd = swp_entry_to_pmd(entry);
 940                        if (pmd_swp_soft_dirty(*src_pmd))
 941                                pmd = pmd_swp_mksoft_dirty(pmd);
 942                        set_pmd_at(src_mm, addr, src_pmd, pmd);
 943                }
 944                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 945                atomic_long_inc(&dst_mm->nr_ptes);
 946                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 947                set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 948                ret = 0;
 949                goto out_unlock;
 950        }
 951#endif
 952
 953        if (unlikely(!pmd_trans_huge(pmd))) {
 954                pte_free(dst_mm, pgtable);
 955                goto out_unlock;
 956        }
 957        /*
 958         * When page table lock is held, the huge zero pmd should not be
 959         * under splitting since we don't split the page itself, only pmd to
 960         * a page table.
 961         */
 962        if (is_huge_zero_pmd(pmd)) {
 963                struct page *zero_page;
 964                /*
 965                 * get_huge_zero_page() will never allocate a new page here,
 966                 * since we already have a zero page to copy. It just takes a
 967                 * reference.
 968                 */
 969                zero_page = mm_get_huge_zero_page(dst_mm);
 970                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 971                                zero_page);
 972                ret = 0;
 973                goto out_unlock;
 974        }
 975
 976        src_page = pmd_page(pmd);
 977        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 978        get_page(src_page);
 979        page_dup_rmap(src_page, true);
 980        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 981        atomic_long_inc(&dst_mm->nr_ptes);
 982        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 983
 984        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 985        pmd = pmd_mkold(pmd_wrprotect(pmd));
 986        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 987
 988        ret = 0;
 989out_unlock:
 990        spin_unlock(src_ptl);
 991        spin_unlock(dst_ptl);
 992out:
 993        return ret;
 994}
 995
 996#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 997static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 998                pud_t *pud)
 999{
1000        pud_t _pud;
1001
1002        /*
1003         * We should set the dirty bit only for FOLL_WRITE but for now
1004         * the dirty bit in the pud is meaningless.  And if the dirty
1005         * bit will become meaningful and we'll only set it with
1006         * FOLL_WRITE, an atomic set_bit will be required on the pud to
1007         * set the young bit, instead of the current set_pud_at.
1008         */
1009        _pud = pud_mkyoung(pud_mkdirty(*pud));
1010        if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1011                                pud, _pud,  1))
1012                update_mmu_cache_pud(vma, addr, pud);
1013}
1014
1015struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1016                pud_t *pud, int flags)
1017{
1018        unsigned long pfn = pud_pfn(*pud);
1019        struct mm_struct *mm = vma->vm_mm;
1020        struct dev_pagemap *pgmap;
1021        struct page *page;
1022
1023        assert_spin_locked(pud_lockptr(mm, pud));
1024
1025        if (flags & FOLL_WRITE && !pud_write(*pud))
1026                return NULL;
1027
1028        if (pud_present(*pud) && pud_devmap(*pud))
1029                /* pass */;
1030        else
1031                return NULL;
1032
1033        if (flags & FOLL_TOUCH)
1034                touch_pud(vma, addr, pud);
1035
1036        /*
1037         * device mapped pages can only be returned if the
1038         * caller will manage the page reference count.
1039         */
1040        if (!(flags & FOLL_GET))
1041                return ERR_PTR(-EEXIST);
1042
1043        pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1044        pgmap = get_dev_pagemap(pfn, NULL);
1045        if (!pgmap)
1046                return ERR_PTR(-EFAULT);
1047        page = pfn_to_page(pfn);
1048        get_page(page);
1049        put_dev_pagemap(pgmap);
1050
1051        return page;
1052}
1053
1054int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055                  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1056                  struct vm_area_struct *vma)
1057{
1058        spinlock_t *dst_ptl, *src_ptl;
1059        pud_t pud;
1060        int ret;
1061
1062        dst_ptl = pud_lock(dst_mm, dst_pud);
1063        src_ptl = pud_lockptr(src_mm, src_pud);
1064        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1065
1066        ret = -EAGAIN;
1067        pud = *src_pud;
1068        if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1069                goto out_unlock;
1070
1071        /*
1072         * When page table lock is held, the huge zero pud should not be
1073         * under splitting since we don't split the page itself, only pud to
1074         * a page table.
1075         */
1076        if (is_huge_zero_pud(pud)) {
1077                /* No huge zero pud yet */
1078        }
1079
1080        pudp_set_wrprotect(src_mm, addr, src_pud);
1081        pud = pud_mkold(pud_wrprotect(pud));
1082        set_pud_at(dst_mm, addr, dst_pud, pud);
1083
1084        ret = 0;
1085out_unlock:
1086        spin_unlock(src_ptl);
1087        spin_unlock(dst_ptl);
1088        return ret;
1089}
1090
1091void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1092{
1093        pud_t entry;
1094        unsigned long haddr;
1095        bool write = vmf->flags & FAULT_FLAG_WRITE;
1096
1097        vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1098        if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1099                goto unlock;
1100
1101        entry = pud_mkyoung(orig_pud);
1102        if (write)
1103                entry = pud_mkdirty(entry);
1104        haddr = vmf->address & HPAGE_PUD_MASK;
1105        if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1106                update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1107
1108unlock:
1109        spin_unlock(vmf->ptl);
1110}
1111#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1112
1113void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1114{
1115        pmd_t entry;
1116        unsigned long haddr;
1117        bool write = vmf->flags & FAULT_FLAG_WRITE;
1118
1119        vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1120        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1121                goto unlock;
1122
1123        entry = pmd_mkyoung(orig_pmd);
1124        if (write)
1125                entry = pmd_mkdirty(entry);
1126        haddr = vmf->address & HPAGE_PMD_MASK;
1127        if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1128                update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1129
1130unlock:
1131        spin_unlock(vmf->ptl);
1132}
1133
1134static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1135                struct page *page)
1136{
1137        struct vm_area_struct *vma = vmf->vma;
1138        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1139        struct mem_cgroup *memcg;
1140        pgtable_t pgtable;
1141        pmd_t _pmd;
1142        int ret = 0, i;
1143        struct page **pages;
1144        unsigned long mmun_start;       /* For mmu_notifiers */
1145        unsigned long mmun_end;         /* For mmu_notifiers */
1146
1147        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1148                        GFP_KERNEL);
1149        if (unlikely(!pages)) {
1150                ret |= VM_FAULT_OOM;
1151                goto out;
1152        }
1153
1154        for (i = 0; i < HPAGE_PMD_NR; i++) {
1155                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1156                                               vmf->address, page_to_nid(page));
1157                if (unlikely(!pages[i] ||
1158                             mem_cgroup_try_charge(pages[i], vma->vm_mm,
1159                                     GFP_KERNEL, &memcg, false))) {
1160                        if (pages[i])
1161                                put_page(pages[i]);
1162                        while (--i >= 0) {
1163                                memcg = (void *)page_private(pages[i]);
1164                                set_page_private(pages[i], 0);
1165                                mem_cgroup_cancel_charge(pages[i], memcg,
1166                                                false);
1167                                put_page(pages[i]);
1168                        }
1169                        kfree(pages);
1170                        ret |= VM_FAULT_OOM;
1171                        goto out;
1172                }
1173                set_page_private(pages[i], (unsigned long)memcg);
1174        }
1175
1176        for (i = 0; i < HPAGE_PMD_NR; i++) {
1177                copy_user_highpage(pages[i], page + i,
1178                                   haddr + PAGE_SIZE * i, vma);
1179                __SetPageUptodate(pages[i]);
1180                cond_resched();
1181        }
1182
1183        mmun_start = haddr;
1184        mmun_end   = haddr + HPAGE_PMD_SIZE;
1185        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1186
1187        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1188        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1189                goto out_free_pages;
1190        VM_BUG_ON_PAGE(!PageHead(page), page);
1191
1192        pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1193        /* leave pmd empty until pte is filled */
1194
1195        pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1196        pmd_populate(vma->vm_mm, &_pmd, pgtable);
1197
1198        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1199                pte_t entry;
1200                entry = mk_pte(pages[i], vma->vm_page_prot);
1201                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1202                memcg = (void *)page_private(pages[i]);
1203                set_page_private(pages[i], 0);
1204                page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1205                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1206                lru_cache_add_active_or_unevictable(pages[i], vma);
1207                vmf->pte = pte_offset_map(&_pmd, haddr);
1208                VM_BUG_ON(!pte_none(*vmf->pte));
1209                set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1210                pte_unmap(vmf->pte);
1211        }
1212        kfree(pages);
1213
1214        smp_wmb(); /* make pte visible before pmd */
1215        pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1216        page_remove_rmap(page, true);
1217        spin_unlock(vmf->ptl);
1218
1219        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1220
1221        ret |= VM_FAULT_WRITE;
1222        put_page(page);
1223
1224out:
1225        return ret;
1226
1227out_free_pages:
1228        spin_unlock(vmf->ptl);
1229        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1230        for (i = 0; i < HPAGE_PMD_NR; i++) {
1231                memcg = (void *)page_private(pages[i]);
1232                set_page_private(pages[i], 0);
1233                mem_cgroup_cancel_charge(pages[i], memcg, false);
1234                put_page(pages[i]);
1235        }
1236        kfree(pages);
1237        goto out;
1238}
1239
1240int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1241{
1242        struct vm_area_struct *vma = vmf->vma;
1243        struct page *page = NULL, *new_page;
1244        struct mem_cgroup *memcg;
1245        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1246        unsigned long mmun_start;       /* For mmu_notifiers */
1247        unsigned long mmun_end;         /* For mmu_notifiers */
1248        gfp_t huge_gfp;                 /* for allocation and charge */
1249        int ret = 0;
1250
1251        vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1252        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1253        if (is_huge_zero_pmd(orig_pmd))
1254                goto alloc;
1255        spin_lock(vmf->ptl);
1256        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1257                goto out_unlock;
1258
1259        page = pmd_page(orig_pmd);
1260        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1261        /*
1262         * We can only reuse the page if nobody else maps the huge page or it's
1263         * part.
1264         */
1265        if (!trylock_page(page)) {
1266                get_page(page);
1267                spin_unlock(vmf->ptl);
1268                lock_page(page);
1269                spin_lock(vmf->ptl);
1270                if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1271                        unlock_page(page);
1272                        put_page(page);
1273                        goto out_unlock;
1274                }
1275                put_page(page);
1276        }
1277        if (reuse_swap_page(page, NULL)) {
1278                pmd_t entry;
1279                entry = pmd_mkyoung(orig_pmd);
1280                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1281                if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1282                        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1283                ret |= VM_FAULT_WRITE;
1284                unlock_page(page);
1285                goto out_unlock;
1286        }
1287        unlock_page(page);
1288        get_page(page);
1289        spin_unlock(vmf->ptl);
1290alloc:
1291        if (transparent_hugepage_enabled(vma) &&
1292            !transparent_hugepage_debug_cow()) {
1293                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1294                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1295        } else
1296                new_page = NULL;
1297
1298        if (likely(new_page)) {
1299                prep_transhuge_page(new_page);
1300        } else {
1301                if (!page) {
1302                        split_huge_pmd(vma, vmf->pmd, vmf->address);
1303                        ret |= VM_FAULT_FALLBACK;
1304                } else {
1305                        ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1306                        if (ret & VM_FAULT_OOM) {
1307                                split_huge_pmd(vma, vmf->pmd, vmf->address);
1308                                ret |= VM_FAULT_FALLBACK;
1309                        }
1310                        put_page(page);
1311                }
1312                count_vm_event(THP_FAULT_FALLBACK);
1313                goto out;
1314        }
1315
1316        if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1317                                        huge_gfp, &memcg, true))) {
1318                put_page(new_page);
1319                split_huge_pmd(vma, vmf->pmd, vmf->address);
1320                if (page)
1321                        put_page(page);
1322                ret |= VM_FAULT_FALLBACK;
1323                count_vm_event(THP_FAULT_FALLBACK);
1324                goto out;
1325        }
1326
1327        count_vm_event(THP_FAULT_ALLOC);
1328
1329        if (!page)
1330                clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1331        else
1332                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1333        __SetPageUptodate(new_page);
1334
1335        mmun_start = haddr;
1336        mmun_end   = haddr + HPAGE_PMD_SIZE;
1337        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1338
1339        spin_lock(vmf->ptl);
1340        if (page)
1341                put_page(page);
1342        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343                spin_unlock(vmf->ptl);
1344                mem_cgroup_cancel_charge(new_page, memcg, true);
1345                put_page(new_page);
1346                goto out_mn;
1347        } else {
1348                pmd_t entry;
1349                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1350                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1351                pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1352                page_add_new_anon_rmap(new_page, vma, haddr, true);
1353                mem_cgroup_commit_charge(new_page, memcg, false, true);
1354                lru_cache_add_active_or_unevictable(new_page, vma);
1355                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1356                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1357                if (!page) {
1358                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1359                } else {
1360                        VM_BUG_ON_PAGE(!PageHead(page), page);
1361                        page_remove_rmap(page, true);
1362                        put_page(page);
1363                }
1364                ret |= VM_FAULT_WRITE;
1365        }
1366        spin_unlock(vmf->ptl);
1367out_mn:
1368        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1369out:
1370        return ret;
1371out_unlock:
1372        spin_unlock(vmf->ptl);
1373        return ret;
1374}
1375
1376/*
1377 * FOLL_FORCE can write to even unwritable pmd's, but only
1378 * after we've gone through a COW cycle and they are dirty.
1379 */
1380static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1381{
1382        return pmd_write(pmd) ||
1383               ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1384}
1385
1386struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1387                                   unsigned long addr,
1388                                   pmd_t *pmd,
1389                                   unsigned int flags)
1390{
1391        struct mm_struct *mm = vma->vm_mm;
1392        struct page *page = NULL;
1393
1394        assert_spin_locked(pmd_lockptr(mm, pmd));
1395
1396        if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1397                goto out;
1398
1399        /* Avoid dumping huge zero page */
1400        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1401                return ERR_PTR(-EFAULT);
1402
1403        /* Full NUMA hinting faults to serialise migration in fault paths */
1404        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1405                goto out;
1406
1407        page = pmd_page(*pmd);
1408        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1409        if (flags & FOLL_TOUCH)
1410                touch_pmd(vma, addr, pmd);
1411        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1412                /*
1413                 * We don't mlock() pte-mapped THPs. This way we can avoid
1414                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1415                 *
1416                 * For anon THP:
1417                 *
1418                 * In most cases the pmd is the only mapping of the page as we
1419                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1420                 * writable private mappings in populate_vma_page_range().
1421                 *
1422                 * The only scenario when we have the page shared here is if we
1423                 * mlocking read-only mapping shared over fork(). We skip
1424                 * mlocking such pages.
1425                 *
1426                 * For file THP:
1427                 *
1428                 * We can expect PageDoubleMap() to be stable under page lock:
1429                 * for file pages we set it in page_add_file_rmap(), which
1430                 * requires page to be locked.
1431                 */
1432
1433                if (PageAnon(page) && compound_mapcount(page) != 1)
1434                        goto skip_mlock;
1435                if (PageDoubleMap(page) || !page->mapping)
1436                        goto skip_mlock;
1437                if (!trylock_page(page))
1438                        goto skip_mlock;
1439                lru_add_drain();
1440                if (page->mapping && !PageDoubleMap(page))
1441                        mlock_vma_page(page);
1442                unlock_page(page);
1443        }
1444skip_mlock:
1445        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1446        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1447        if (flags & FOLL_GET)
1448                get_page(page);
1449
1450out:
1451        return page;
1452}
1453
1454/* NUMA hinting page fault entry point for trans huge pmds */
1455int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1456{
1457        struct vm_area_struct *vma = vmf->vma;
1458        struct anon_vma *anon_vma = NULL;
1459        struct page *page;
1460        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1461        int page_nid = -1, this_nid = numa_node_id();
1462        int target_nid, last_cpupid = -1;
1463        bool page_locked;
1464        bool migrated = false;
1465        bool was_writable;
1466        int flags = 0;
1467
1468        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1469        if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1470                goto out_unlock;
1471
1472        /*
1473         * If there are potential migrations, wait for completion and retry
1474         * without disrupting NUMA hinting information. Do not relock and
1475         * check_same as the page may no longer be mapped.
1476         */
1477        if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1478                page = pmd_page(*vmf->pmd);
1479                if (!get_page_unless_zero(page))
1480                        goto out_unlock;
1481                spin_unlock(vmf->ptl);
1482                wait_on_page_locked(page);
1483                put_page(page);
1484                goto out;
1485        }
1486
1487        page = pmd_page(pmd);
1488        BUG_ON(is_huge_zero_page(page));
1489        page_nid = page_to_nid(page);
1490        last_cpupid = page_cpupid_last(page);
1491        count_vm_numa_event(NUMA_HINT_FAULTS);
1492        if (page_nid == this_nid) {
1493                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1494                flags |= TNF_FAULT_LOCAL;
1495        }
1496
1497        /* See similar comment in do_numa_page for explanation */
1498        if (!pmd_savedwrite(pmd))
1499                flags |= TNF_NO_GROUP;
1500
1501        /*
1502         * Acquire the page lock to serialise THP migrations but avoid dropping
1503         * page_table_lock if at all possible
1504         */
1505        page_locked = trylock_page(page);
1506        target_nid = mpol_misplaced(page, vma, haddr);
1507        if (target_nid == -1) {
1508                /* If the page was locked, there are no parallel migrations */
1509                if (page_locked)
1510                        goto clear_pmdnuma;
1511        }
1512
1513        /* Migration could have started since the pmd_trans_migrating check */
1514        if (!page_locked) {
1515                page_nid = -1;
1516                if (!get_page_unless_zero(page))
1517                        goto out_unlock;
1518                spin_unlock(vmf->ptl);
1519                wait_on_page_locked(page);
1520                put_page(page);
1521                goto out;
1522        }
1523
1524        /*
1525         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1526         * to serialises splits
1527         */
1528        get_page(page);
1529        spin_unlock(vmf->ptl);
1530        anon_vma = page_lock_anon_vma_read(page);
1531
1532        /* Confirm the PMD did not change while page_table_lock was released */
1533        spin_lock(vmf->ptl);
1534        if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1535                unlock_page(page);
1536                put_page(page);
1537                page_nid = -1;
1538                goto out_unlock;
1539        }
1540
1541        /* Bail if we fail to protect against THP splits for any reason */
1542        if (unlikely(!anon_vma)) {
1543                put_page(page);
1544                page_nid = -1;
1545                goto clear_pmdnuma;
1546        }
1547
1548        /*
1549         * Since we took the NUMA fault, we must have observed the !accessible
1550         * bit. Make sure all other CPUs agree with that, to avoid them
1551         * modifying the page we're about to migrate.
1552         *
1553         * Must be done under PTL such that we'll observe the relevant
1554         * inc_tlb_flush_pending().
1555         *
1556         * We are not sure a pending tlb flush here is for a huge page
1557         * mapping or not. Hence use the tlb range variant
1558         */
1559        if (mm_tlb_flush_pending(vma->vm_mm))
1560                flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1561
1562        /*
1563         * Migrate the THP to the requested node, returns with page unlocked
1564         * and access rights restored.
1565         */
1566        spin_unlock(vmf->ptl);
1567
1568        migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1569                                vmf->pmd, pmd, vmf->address, page, target_nid);
1570        if (migrated) {
1571                flags |= TNF_MIGRATED;
1572                page_nid = target_nid;
1573        } else
1574                flags |= TNF_MIGRATE_FAIL;
1575
1576        goto out;
1577clear_pmdnuma:
1578        BUG_ON(!PageLocked(page));
1579        was_writable = pmd_savedwrite(pmd);
1580        pmd = pmd_modify(pmd, vma->vm_page_prot);
1581        pmd = pmd_mkyoung(pmd);
1582        if (was_writable)
1583                pmd = pmd_mkwrite(pmd);
1584        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1585        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586        unlock_page(page);
1587out_unlock:
1588        spin_unlock(vmf->ptl);
1589
1590out:
1591        if (anon_vma)
1592                page_unlock_anon_vma_read(anon_vma);
1593
1594        if (page_nid != -1)
1595                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1596                                flags);
1597
1598        return 0;
1599}
1600
1601/*
1602 * Return true if we do MADV_FREE successfully on entire pmd page.
1603 * Otherwise, return false.
1604 */
1605bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1606                pmd_t *pmd, unsigned long addr, unsigned long next)
1607{
1608        spinlock_t *ptl;
1609        pmd_t orig_pmd;
1610        struct page *page;
1611        struct mm_struct *mm = tlb->mm;
1612        bool ret = false;
1613
1614        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1615
1616        ptl = pmd_trans_huge_lock(pmd, vma);
1617        if (!ptl)
1618                goto out_unlocked;
1619
1620        orig_pmd = *pmd;
1621        if (is_huge_zero_pmd(orig_pmd))
1622                goto out;
1623
1624        if (unlikely(!pmd_present(orig_pmd))) {
1625                VM_BUG_ON(thp_migration_supported() &&
1626                                  !is_pmd_migration_entry(orig_pmd));
1627                goto out;
1628        }
1629
1630        page = pmd_page(orig_pmd);
1631        /*
1632         * If other processes are mapping this page, we couldn't discard
1633         * the page unless they all do MADV_FREE so let's skip the page.
1634         */
1635        if (page_mapcount(page) != 1)
1636                goto out;
1637
1638        if (!trylock_page(page))
1639                goto out;
1640
1641        /*
1642         * If user want to discard part-pages of THP, split it so MADV_FREE
1643         * will deactivate only them.
1644         */
1645        if (next - addr != HPAGE_PMD_SIZE) {
1646                get_page(page);
1647                spin_unlock(ptl);
1648                split_huge_page(page);
1649                unlock_page(page);
1650                put_page(page);
1651                goto out_unlocked;
1652        }
1653
1654        if (PageDirty(page))
1655                ClearPageDirty(page);
1656        unlock_page(page);
1657
1658        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1659                pmdp_invalidate(vma, addr, pmd);
1660                orig_pmd = pmd_mkold(orig_pmd);
1661                orig_pmd = pmd_mkclean(orig_pmd);
1662
1663                set_pmd_at(mm, addr, pmd, orig_pmd);
1664                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1665        }
1666
1667        mark_page_lazyfree(page);
1668        ret = true;
1669out:
1670        spin_unlock(ptl);
1671out_unlocked:
1672        return ret;
1673}
1674
1675static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1676{
1677        pgtable_t pgtable;
1678
1679        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1680        pte_free(mm, pgtable);
1681        atomic_long_dec(&mm->nr_ptes);
1682}
1683
1684int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1685                 pmd_t *pmd, unsigned long addr)
1686{
1687        pmd_t orig_pmd;
1688        spinlock_t *ptl;
1689
1690        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1691
1692        ptl = __pmd_trans_huge_lock(pmd, vma);
1693        if (!ptl)
1694                return 0;
1695        /*
1696         * For architectures like ppc64 we look at deposited pgtable
1697         * when calling pmdp_huge_get_and_clear. So do the
1698         * pgtable_trans_huge_withdraw after finishing pmdp related
1699         * operations.
1700         */
1701        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1702                        tlb->fullmm);
1703        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1704        if (vma_is_dax(vma)) {
1705                if (arch_needs_pgtable_deposit())
1706                        zap_deposited_table(tlb->mm, pmd);
1707                spin_unlock(ptl);
1708                if (is_huge_zero_pmd(orig_pmd))
1709                        tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1710        } else if (is_huge_zero_pmd(orig_pmd)) {
1711                zap_deposited_table(tlb->mm, pmd);
1712                spin_unlock(ptl);
1713                tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1714        } else {
1715                struct page *page = NULL;
1716                int flush_needed = 1;
1717
1718                if (pmd_present(orig_pmd)) {
1719                        page = pmd_page(orig_pmd);
1720                        page_remove_rmap(page, true);
1721                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1722                        VM_BUG_ON_PAGE(!PageHead(page), page);
1723                } else if (thp_migration_supported()) {
1724                        swp_entry_t entry;
1725
1726                        VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1727                        entry = pmd_to_swp_entry(orig_pmd);
1728                        page = pfn_to_page(swp_offset(entry));
1729                        flush_needed = 0;
1730                } else
1731                        WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1732
1733                if (PageAnon(page)) {
1734                        zap_deposited_table(tlb->mm, pmd);
1735                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1736                } else {
1737                        if (arch_needs_pgtable_deposit())
1738                                zap_deposited_table(tlb->mm, pmd);
1739                        add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1740                }
1741
1742                spin_unlock(ptl);
1743                if (flush_needed)
1744                        tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1745        }
1746        return 1;
1747}
1748
1749#ifndef pmd_move_must_withdraw
1750static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1751                                         spinlock_t *old_pmd_ptl,
1752                                         struct vm_area_struct *vma)
1753{
1754        /*
1755         * With split pmd lock we also need to move preallocated
1756         * PTE page table if new_pmd is on different PMD page table.
1757         *
1758         * We also don't deposit and withdraw tables for file pages.
1759         */
1760        return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1761}
1762#endif
1763
1764static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1765{
1766#ifdef CONFIG_MEM_SOFT_DIRTY
1767        if (unlikely(is_pmd_migration_entry(pmd)))
1768                pmd = pmd_swp_mksoft_dirty(pmd);
1769        else if (pmd_present(pmd))
1770                pmd = pmd_mksoft_dirty(pmd);
1771#endif
1772        return pmd;
1773}
1774
1775bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1776                  unsigned long new_addr, unsigned long old_end,
1777                  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1778{
1779        spinlock_t *old_ptl, *new_ptl;
1780        pmd_t pmd;
1781        struct mm_struct *mm = vma->vm_mm;
1782        bool force_flush = false;
1783
1784        if ((old_addr & ~HPAGE_PMD_MASK) ||
1785            (new_addr & ~HPAGE_PMD_MASK) ||
1786            old_end - old_addr < HPAGE_PMD_SIZE)
1787                return false;
1788
1789        /*
1790         * The destination pmd shouldn't be established, free_pgtables()
1791         * should have release it.
1792         */
1793        if (WARN_ON(!pmd_none(*new_pmd))) {
1794                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1795                return false;
1796        }
1797
1798        /*
1799         * We don't have to worry about the ordering of src and dst
1800         * ptlocks because exclusive mmap_sem prevents deadlock.
1801         */
1802        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1803        if (old_ptl) {
1804                new_ptl = pmd_lockptr(mm, new_pmd);
1805                if (new_ptl != old_ptl)
1806                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1807                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1808                if (pmd_present(pmd) && pmd_dirty(pmd))
1809                        force_flush = true;
1810                VM_BUG_ON(!pmd_none(*new_pmd));
1811
1812                if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1813                        pgtable_t pgtable;
1814                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1815                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1816                }
1817                pmd = move_soft_dirty_pmd(pmd);
1818                set_pmd_at(mm, new_addr, new_pmd, pmd);
1819                if (new_ptl != old_ptl)
1820                        spin_unlock(new_ptl);
1821                if (force_flush)
1822                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1823                else
1824                        *need_flush = true;
1825                spin_unlock(old_ptl);
1826                return true;
1827        }
1828        return false;
1829}
1830
1831/*
1832 * Returns
1833 *  - 0 if PMD could not be locked
1834 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1835 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1836 */
1837int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1838                unsigned long addr, pgprot_t newprot, int prot_numa)
1839{
1840        struct mm_struct *mm = vma->vm_mm;
1841        spinlock_t *ptl;
1842        pmd_t entry;
1843        bool preserve_write;
1844        int ret;
1845
1846        ptl = __pmd_trans_huge_lock(pmd, vma);
1847        if (!ptl)
1848                return 0;
1849
1850        preserve_write = prot_numa && pmd_write(*pmd);
1851        ret = 1;
1852
1853#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1854        if (is_swap_pmd(*pmd)) {
1855                swp_entry_t entry = pmd_to_swp_entry(*pmd);
1856
1857                VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1858                if (is_write_migration_entry(entry)) {
1859                        pmd_t newpmd;
1860                        /*
1861                         * A protection check is difficult so
1862                         * just be safe and disable write
1863                         */
1864                        make_migration_entry_read(&entry);
1865                        newpmd = swp_entry_to_pmd(entry);
1866                        if (pmd_swp_soft_dirty(*pmd))
1867                                newpmd = pmd_swp_mksoft_dirty(newpmd);
1868                        set_pmd_at(mm, addr, pmd, newpmd);
1869                }
1870                goto unlock;
1871        }
1872#endif
1873
1874        /*
1875         * Avoid trapping faults against the zero page. The read-only
1876         * data is likely to be read-cached on the local CPU and
1877         * local/remote hits to the zero page are not interesting.
1878         */
1879        if (prot_numa && is_huge_zero_pmd(*pmd))
1880                goto unlock;
1881
1882        if (prot_numa && pmd_protnone(*pmd))
1883                goto unlock;
1884
1885        /*
1886         * In case prot_numa, we are under down_read(mmap_sem). It's critical
1887         * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1888         * which is also under down_read(mmap_sem):
1889         *
1890         *      CPU0:                           CPU1:
1891         *                              change_huge_pmd(prot_numa=1)
1892         *                               pmdp_huge_get_and_clear_notify()
1893         * madvise_dontneed()
1894         *  zap_pmd_range()
1895         *   pmd_trans_huge(*pmd) == 0 (without ptl)
1896         *   // skip the pmd
1897         *                               set_pmd_at();
1898         *                               // pmd is re-established
1899         *
1900         * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1901         * which may break userspace.
1902         *
1903         * pmdp_invalidate() is required to make sure we don't miss
1904         * dirty/young flags set by hardware.
1905         */
1906        entry = *pmd;
1907        pmdp_invalidate(vma, addr, pmd);
1908
1909        /*
1910         * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1911         * corrupt them.
1912         */
1913        if (pmd_dirty(*pmd))
1914                entry = pmd_mkdirty(entry);
1915        if (pmd_young(*pmd))
1916                entry = pmd_mkyoung(entry);
1917
1918        entry = pmd_modify(entry, newprot);
1919        if (preserve_write)
1920                entry = pmd_mk_savedwrite(entry);
1921        ret = HPAGE_PMD_NR;
1922        set_pmd_at(mm, addr, pmd, entry);
1923        BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1924unlock:
1925        spin_unlock(ptl);
1926        return ret;
1927}
1928
1929/*
1930 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1931 *
1932 * Note that if it returns page table lock pointer, this routine returns without
1933 * unlocking page table lock. So callers must unlock it.
1934 */
1935spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1936{
1937        spinlock_t *ptl;
1938        ptl = pmd_lock(vma->vm_mm, pmd);
1939        if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1940                        pmd_devmap(*pmd)))
1941                return ptl;
1942        spin_unlock(ptl);
1943        return NULL;
1944}
1945
1946/*
1947 * Returns true if a given pud maps a thp, false otherwise.
1948 *
1949 * Note that if it returns true, this routine returns without unlocking page
1950 * table lock. So callers must unlock it.
1951 */
1952spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1953{
1954        spinlock_t *ptl;
1955
1956        ptl = pud_lock(vma->vm_mm, pud);
1957        if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1958                return ptl;
1959        spin_unlock(ptl);
1960        return NULL;
1961}
1962
1963#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1964int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1965                 pud_t *pud, unsigned long addr)
1966{
1967        pud_t orig_pud;
1968        spinlock_t *ptl;
1969
1970        ptl = __pud_trans_huge_lock(pud, vma);
1971        if (!ptl)
1972                return 0;
1973        /*
1974         * For architectures like ppc64 we look at deposited pgtable
1975         * when calling pudp_huge_get_and_clear. So do the
1976         * pgtable_trans_huge_withdraw after finishing pudp related
1977         * operations.
1978         */
1979        orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1980                        tlb->fullmm);
1981        tlb_remove_pud_tlb_entry(tlb, pud, addr);
1982        if (vma_is_dax(vma)) {
1983                spin_unlock(ptl);
1984                /* No zero page support yet */
1985        } else {
1986                /* No support for anonymous PUD pages yet */
1987                BUG();
1988        }
1989        return 1;
1990}
1991
1992static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1993                unsigned long haddr)
1994{
1995        VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1996        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1998        VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1999
2000        count_vm_event(THP_SPLIT_PUD);
2001
2002        pudp_huge_clear_flush_notify(vma, haddr, pud);
2003}
2004
2005void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2006                unsigned long address)
2007{
2008        spinlock_t *ptl;
2009        struct mm_struct *mm = vma->vm_mm;
2010        unsigned long haddr = address & HPAGE_PUD_MASK;
2011
2012        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2013        ptl = pud_lock(mm, pud);
2014        if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2015                goto out;
2016        __split_huge_pud_locked(vma, pud, haddr);
2017
2018out:
2019        spin_unlock(ptl);
2020        mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2021}
2022#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2023
2024static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2025                unsigned long haddr, pmd_t *pmd)
2026{
2027        struct mm_struct *mm = vma->vm_mm;
2028        pgtable_t pgtable;
2029        pmd_t _pmd;
2030        int i;
2031
2032        /* leave pmd empty until pte is filled */
2033        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2034
2035        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2036        pmd_populate(mm, &_pmd, pgtable);
2037
2038        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2039                pte_t *pte, entry;
2040                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2041                entry = pte_mkspecial(entry);
2042                pte = pte_offset_map(&_pmd, haddr);
2043                VM_BUG_ON(!pte_none(*pte));
2044                set_pte_at(mm, haddr, pte, entry);
2045                pte_unmap(pte);
2046        }
2047        smp_wmb(); /* make pte visible before pmd */
2048        pmd_populate(mm, pmd, pgtable);
2049}
2050
2051static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2052                unsigned long haddr, bool freeze)
2053{
2054        struct mm_struct *mm = vma->vm_mm;
2055        struct page *page;
2056        pgtable_t pgtable;
2057        pmd_t _pmd;
2058        bool young, write, dirty, soft_dirty, pmd_migration = false;
2059        unsigned long addr;
2060        int i;
2061
2062        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2063        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2064        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2065        VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2066                                && !pmd_devmap(*pmd));
2067
2068        count_vm_event(THP_SPLIT_PMD);
2069
2070        if (!vma_is_anonymous(vma)) {
2071                _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2072                /*
2073                 * We are going to unmap this huge page. So
2074                 * just go ahead and zap it
2075                 */
2076                if (arch_needs_pgtable_deposit())
2077                        zap_deposited_table(mm, pmd);
2078                if (vma_is_dax(vma))
2079                        return;
2080                page = pmd_page(_pmd);
2081                if (!PageReferenced(page) && pmd_young(_pmd))
2082                        SetPageReferenced(page);
2083                page_remove_rmap(page, true);
2084                put_page(page);
2085                add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2086                return;
2087        } else if (is_huge_zero_pmd(*pmd)) {
2088                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2089        }
2090
2091#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2092        pmd_migration = is_pmd_migration_entry(*pmd);
2093        if (pmd_migration) {
2094                swp_entry_t entry;
2095
2096                entry = pmd_to_swp_entry(*pmd);
2097                page = pfn_to_page(swp_offset(entry));
2098        } else
2099#endif
2100                page = pmd_page(*pmd);
2101        VM_BUG_ON_PAGE(!page_count(page), page);
2102        page_ref_add(page, HPAGE_PMD_NR - 1);
2103        write = pmd_write(*pmd);
2104        young = pmd_young(*pmd);
2105        dirty = pmd_dirty(*pmd);
2106        soft_dirty = pmd_soft_dirty(*pmd);
2107
2108        pmdp_huge_split_prepare(vma, haddr, pmd);
2109        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2110        pmd_populate(mm, &_pmd, pgtable);
2111
2112        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2113                pte_t entry, *pte;
2114                /*
2115                 * Note that NUMA hinting access restrictions are not
2116                 * transferred to avoid any possibility of altering
2117                 * permissions across VMAs.
2118                 */
2119                if (freeze || pmd_migration) {
2120                        swp_entry_t swp_entry;
2121                        swp_entry = make_migration_entry(page + i, write);
2122                        entry = swp_entry_to_pte(swp_entry);
2123                        if (soft_dirty)
2124                                entry = pte_swp_mksoft_dirty(entry);
2125                } else {
2126                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2127                        entry = maybe_mkwrite(entry, vma);
2128                        if (!write)
2129                                entry = pte_wrprotect(entry);
2130                        if (!young)
2131                                entry = pte_mkold(entry);
2132                        if (soft_dirty)
2133                                entry = pte_mksoft_dirty(entry);
2134                }
2135                if (dirty)
2136                        SetPageDirty(page + i);
2137                pte = pte_offset_map(&_pmd, addr);
2138                BUG_ON(!pte_none(*pte));
2139                set_pte_at(mm, addr, pte, entry);
2140                atomic_inc(&page[i]._mapcount);
2141                pte_unmap(pte);
2142        }
2143
2144        /*
2145         * Set PG_double_map before dropping compound_mapcount to avoid
2146         * false-negative page_mapped().
2147         */
2148        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2149                for (i = 0; i < HPAGE_PMD_NR; i++)
2150                        atomic_inc(&page[i]._mapcount);
2151        }
2152
2153        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2154                /* Last compound_mapcount is gone. */
2155                __dec_node_page_state(page, NR_ANON_THPS);
2156                if (TestClearPageDoubleMap(page)) {
2157                        /* No need in mapcount reference anymore */
2158                        for (i = 0; i < HPAGE_PMD_NR; i++)
2159                                atomic_dec(&page[i]._mapcount);
2160                }
2161        }
2162
2163        smp_wmb(); /* make pte visible before pmd */
2164        /*
2165         * Up to this point the pmd is present and huge and userland has the
2166         * whole access to the hugepage during the split (which happens in
2167         * place). If we overwrite the pmd with the not-huge version pointing
2168         * to the pte here (which of course we could if all CPUs were bug
2169         * free), userland could trigger a small page size TLB miss on the
2170         * small sized TLB while the hugepage TLB entry is still established in
2171         * the huge TLB. Some CPU doesn't like that.
2172         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2173         * 383 on page 93. Intel should be safe but is also warns that it's
2174         * only safe if the permission and cache attributes of the two entries
2175         * loaded in the two TLB is identical (which should be the case here).
2176         * But it is generally safer to never allow small and huge TLB entries
2177         * for the same virtual address to be loaded simultaneously. So instead
2178         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2179         * current pmd notpresent (atomically because here the pmd_trans_huge
2180         * and pmd_trans_splitting must remain set at all times on the pmd
2181         * until the split is complete for this pmd), then we flush the SMP TLB
2182         * and finally we write the non-huge version of the pmd entry with
2183         * pmd_populate.
2184         */
2185        pmdp_invalidate(vma, haddr, pmd);
2186        pmd_populate(mm, pmd, pgtable);
2187
2188        if (freeze) {
2189                for (i = 0; i < HPAGE_PMD_NR; i++) {
2190                        page_remove_rmap(page + i, false);
2191                        put_page(page + i);
2192                }
2193        }
2194}
2195
2196void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2197                unsigned long address, bool freeze, struct page *page)
2198{
2199        spinlock_t *ptl;
2200        struct mm_struct *mm = vma->vm_mm;
2201        unsigned long haddr = address & HPAGE_PMD_MASK;
2202
2203        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2204        ptl = pmd_lock(mm, pmd);
2205
2206        /*
2207         * If caller asks to setup a migration entries, we need a page to check
2208         * pmd against. Otherwise we can end up replacing wrong page.
2209         */
2210        VM_BUG_ON(freeze && !page);
2211        if (page && page != pmd_page(*pmd))
2212                goto out;
2213
2214        if (pmd_trans_huge(*pmd)) {
2215                page = pmd_page(*pmd);
2216                if (PageMlocked(page))
2217                        clear_page_mlock(page);
2218        } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2219                goto out;
2220        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2221out:
2222        spin_unlock(ptl);
2223        mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224}
2225
2226void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2227                bool freeze, struct page *page)
2228{
2229        pgd_t *pgd;
2230        p4d_t *p4d;
2231        pud_t *pud;
2232        pmd_t *pmd;
2233
2234        pgd = pgd_offset(vma->vm_mm, address);
2235        if (!pgd_present(*pgd))
2236                return;
2237
2238        p4d = p4d_offset(pgd, address);
2239        if (!p4d_present(*p4d))
2240                return;
2241
2242        pud = pud_offset(p4d, address);
2243        if (!pud_present(*pud))
2244                return;
2245
2246        pmd = pmd_offset(pud, address);
2247
2248        __split_huge_pmd(vma, pmd, address, freeze, page);
2249}
2250
2251void vma_adjust_trans_huge(struct vm_area_struct *vma,
2252                             unsigned long start,
2253                             unsigned long end,
2254                             long adjust_next)
2255{
2256        /*
2257         * If the new start address isn't hpage aligned and it could
2258         * previously contain an hugepage: check if we need to split
2259         * an huge pmd.
2260         */
2261        if (start & ~HPAGE_PMD_MASK &&
2262            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2263            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2264                split_huge_pmd_address(vma, start, false, NULL);
2265
2266        /*
2267         * If the new end address isn't hpage aligned and it could
2268         * previously contain an hugepage: check if we need to split
2269         * an huge pmd.
2270         */
2271        if (end & ~HPAGE_PMD_MASK &&
2272            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2273            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2274                split_huge_pmd_address(vma, end, false, NULL);
2275
2276        /*
2277         * If we're also updating the vma->vm_next->vm_start, if the new
2278         * vm_next->vm_start isn't page aligned and it could previously
2279         * contain an hugepage: check if we need to split an huge pmd.
2280         */
2281        if (adjust_next > 0) {
2282                struct vm_area_struct *next = vma->vm_next;
2283                unsigned long nstart = next->vm_start;
2284                nstart += adjust_next << PAGE_SHIFT;
2285                if (nstart & ~HPAGE_PMD_MASK &&
2286                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2287                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2288                        split_huge_pmd_address(next, nstart, false, NULL);
2289        }
2290}
2291
2292static void freeze_page(struct page *page)
2293{
2294        enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2295                TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2296        bool unmap_success;
2297
2298        VM_BUG_ON_PAGE(!PageHead(page), page);
2299
2300        if (PageAnon(page))
2301                ttu_flags |= TTU_SPLIT_FREEZE;
2302
2303        unmap_success = try_to_unmap(page, ttu_flags);
2304        VM_BUG_ON_PAGE(!unmap_success, page);
2305}
2306
2307static void unfreeze_page(struct page *page)
2308{
2309        int i;
2310        if (PageTransHuge(page)) {
2311                remove_migration_ptes(page, page, true);
2312        } else {
2313                for (i = 0; i < HPAGE_PMD_NR; i++)
2314                        remove_migration_ptes(page + i, page + i, true);
2315        }
2316}
2317
2318static void __split_huge_page_tail(struct page *head, int tail,
2319                struct lruvec *lruvec, struct list_head *list)
2320{
2321        struct page *page_tail = head + tail;
2322
2323        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2324        VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2325
2326        /*
2327         * tail_page->_refcount is zero and not changing from under us. But
2328         * get_page_unless_zero() may be running from under us on the
2329         * tail_page. If we used atomic_set() below instead of atomic_inc() or
2330         * atomic_add(), we would then run atomic_set() concurrently with
2331         * get_page_unless_zero(), and atomic_set() is implemented in C not
2332         * using locked ops. spin_unlock on x86 sometime uses locked ops
2333         * because of PPro errata 66, 92, so unless somebody can guarantee
2334         * atomic_set() here would be safe on all archs (and not only on x86),
2335         * it's safer to use atomic_inc()/atomic_add().
2336         */
2337        if (PageAnon(head) && !PageSwapCache(head)) {
2338                page_ref_inc(page_tail);
2339        } else {
2340                /* Additional pin to radix tree */
2341                page_ref_add(page_tail, 2);
2342        }
2343
2344        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2345        page_tail->flags |= (head->flags &
2346                        ((1L << PG_referenced) |
2347                         (1L << PG_swapbacked) |
2348                         (1L << PG_swapcache) |
2349                         (1L << PG_mlocked) |
2350                         (1L << PG_uptodate) |
2351                         (1L << PG_active) |
2352                         (1L << PG_locked) |
2353                         (1L << PG_unevictable) |
2354                         (1L << PG_dirty)));
2355
2356        /*
2357         * After clearing PageTail the gup refcount can be released.
2358         * Page flags also must be visible before we make the page non-compound.
2359         */
2360        smp_wmb();
2361
2362        clear_compound_head(page_tail);
2363
2364        if (page_is_young(head))
2365                set_page_young(page_tail);
2366        if (page_is_idle(head))
2367                set_page_idle(page_tail);
2368
2369        /* ->mapping in first tail page is compound_mapcount */
2370        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2371                        page_tail);
2372        page_tail->mapping = head->mapping;
2373
2374        page_tail->index = head->index + tail;
2375        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2376        lru_add_page_tail(head, page_tail, lruvec, list);
2377}
2378
2379static void __split_huge_page(struct page *page, struct list_head *list,
2380                unsigned long flags)
2381{
2382        struct page *head = compound_head(page);
2383        struct zone *zone = page_zone(head);
2384        struct lruvec *lruvec;
2385        pgoff_t end = -1;
2386        int i;
2387
2388        lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2389
2390        /* complete memcg works before add pages to LRU */
2391        mem_cgroup_split_huge_fixup(head);
2392
2393        if (!PageAnon(page))
2394                end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2395
2396        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2397                __split_huge_page_tail(head, i, lruvec, list);
2398                /* Some pages can be beyond i_size: drop them from page cache */
2399                if (head[i].index >= end) {
2400                        __ClearPageDirty(head + i);
2401                        __delete_from_page_cache(head + i, NULL);
2402                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2403                                shmem_uncharge(head->mapping->host, 1);
2404                        put_page(head + i);
2405                }
2406        }
2407
2408        ClearPageCompound(head);
2409        /* See comment in __split_huge_page_tail() */
2410        if (PageAnon(head)) {
2411                /* Additional pin to radix tree of swap cache */
2412                if (PageSwapCache(head))
2413                        page_ref_add(head, 2);
2414                else
2415                        page_ref_inc(head);
2416        } else {
2417                /* Additional pin to radix tree */
2418                page_ref_add(head, 2);
2419                spin_unlock(&head->mapping->tree_lock);
2420        }
2421
2422        spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2423
2424        unfreeze_page(head);
2425
2426        for (i = 0; i < HPAGE_PMD_NR; i++) {
2427                struct page *subpage = head + i;
2428                if (subpage == page)
2429                        continue;
2430                unlock_page(subpage);
2431
2432                /*
2433                 * Subpages may be freed if there wasn't any mapping
2434                 * like if add_to_swap() is running on a lru page that
2435                 * had its mapping zapped. And freeing these pages
2436                 * requires taking the lru_lock so we do the put_page
2437                 * of the tail pages after the split is complete.
2438                 */
2439                put_page(subpage);
2440        }
2441}
2442
2443int total_mapcount(struct page *page)
2444{
2445        int i, compound, ret;
2446
2447        VM_BUG_ON_PAGE(PageTail(page), page);
2448
2449        if (likely(!PageCompound(page)))
2450                return atomic_read(&page->_mapcount) + 1;
2451
2452        compound = compound_mapcount(page);
2453        if (PageHuge(page))
2454                return compound;
2455        ret = compound;
2456        for (i = 0; i < HPAGE_PMD_NR; i++)
2457                ret += atomic_read(&page[i]._mapcount) + 1;
2458        /* File pages has compound_mapcount included in _mapcount */
2459        if (!PageAnon(page))
2460                return ret - compound * HPAGE_PMD_NR;
2461        if (PageDoubleMap(page))
2462                ret -= HPAGE_PMD_NR;
2463        return ret;
2464}
2465
2466/*
2467 * This calculates accurately how many mappings a transparent hugepage
2468 * has (unlike page_mapcount() which isn't fully accurate). This full
2469 * accuracy is primarily needed to know if copy-on-write faults can
2470 * reuse the page and change the mapping to read-write instead of
2471 * copying them. At the same time this returns the total_mapcount too.
2472 *
2473 * The function returns the highest mapcount any one of the subpages
2474 * has. If the return value is one, even if different processes are
2475 * mapping different subpages of the transparent hugepage, they can
2476 * all reuse it, because each process is reusing a different subpage.
2477 *
2478 * The total_mapcount is instead counting all virtual mappings of the
2479 * subpages. If the total_mapcount is equal to "one", it tells the
2480 * caller all mappings belong to the same "mm" and in turn the
2481 * anon_vma of the transparent hugepage can become the vma->anon_vma
2482 * local one as no other process may be mapping any of the subpages.
2483 *
2484 * It would be more accurate to replace page_mapcount() with
2485 * page_trans_huge_mapcount(), however we only use
2486 * page_trans_huge_mapcount() in the copy-on-write faults where we
2487 * need full accuracy to avoid breaking page pinning, because
2488 * page_trans_huge_mapcount() is slower than page_mapcount().
2489 */
2490int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2491{
2492        int i, ret, _total_mapcount, mapcount;
2493
2494        /* hugetlbfs shouldn't call it */
2495        VM_BUG_ON_PAGE(PageHuge(page), page);
2496
2497        if (likely(!PageTransCompound(page))) {
2498                mapcount = atomic_read(&page->_mapcount) + 1;
2499                if (total_mapcount)
2500                        *total_mapcount = mapcount;
2501                return mapcount;
2502        }
2503
2504        page = compound_head(page);
2505
2506        _total_mapcount = ret = 0;
2507        for (i = 0; i < HPAGE_PMD_NR; i++) {
2508                mapcount = atomic_read(&page[i]._mapcount) + 1;
2509                ret = max(ret, mapcount);
2510                _total_mapcount += mapcount;
2511        }
2512        if (PageDoubleMap(page)) {
2513                ret -= 1;
2514                _total_mapcount -= HPAGE_PMD_NR;
2515        }
2516        mapcount = compound_mapcount(page);
2517        ret += mapcount;
2518        _total_mapcount += mapcount;
2519        if (total_mapcount)
2520                *total_mapcount = _total_mapcount;
2521        return ret;
2522}
2523
2524/* Racy check whether the huge page can be split */
2525bool can_split_huge_page(struct page *page, int *pextra_pins)
2526{
2527        int extra_pins;
2528
2529        /* Additional pins from radix tree */
2530        if (PageAnon(page))
2531                extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2532        else
2533                extra_pins = HPAGE_PMD_NR;
2534        if (pextra_pins)
2535                *pextra_pins = extra_pins;
2536        return total_mapcount(page) == page_count(page) - extra_pins - 1;
2537}
2538
2539/*
2540 * This function splits huge page into normal pages. @page can point to any
2541 * subpage of huge page to split. Split doesn't change the position of @page.
2542 *
2543 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2544 * The huge page must be locked.
2545 *
2546 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2547 *
2548 * Both head page and tail pages will inherit mapping, flags, and so on from
2549 * the hugepage.
2550 *
2551 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2552 * they are not mapped.
2553 *
2554 * Returns 0 if the hugepage is split successfully.
2555 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2556 * us.
2557 */
2558int split_huge_page_to_list(struct page *page, struct list_head *list)
2559{
2560        struct page *head = compound_head(page);
2561        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2562        struct anon_vma *anon_vma = NULL;
2563        struct address_space *mapping = NULL;
2564        int count, mapcount, extra_pins, ret;
2565        bool mlocked;
2566        unsigned long flags;
2567
2568        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2569        VM_BUG_ON_PAGE(!PageLocked(page), page);
2570        VM_BUG_ON_PAGE(!PageCompound(page), page);
2571
2572        if (PageWriteback(page))
2573                return -EBUSY;
2574
2575        if (PageAnon(head)) {
2576                /*
2577                 * The caller does not necessarily hold an mmap_sem that would
2578                 * prevent the anon_vma disappearing so we first we take a
2579                 * reference to it and then lock the anon_vma for write. This
2580                 * is similar to page_lock_anon_vma_read except the write lock
2581                 * is taken to serialise against parallel split or collapse
2582                 * operations.
2583                 */
2584                anon_vma = page_get_anon_vma(head);
2585                if (!anon_vma) {
2586                        ret = -EBUSY;
2587                        goto out;
2588                }
2589                mapping = NULL;
2590                anon_vma_lock_write(anon_vma);
2591        } else {
2592                mapping = head->mapping;
2593
2594                /* Truncated ? */
2595                if (!mapping) {
2596                        ret = -EBUSY;
2597                        goto out;
2598                }
2599
2600                anon_vma = NULL;
2601                i_mmap_lock_read(mapping);
2602        }
2603
2604        /*
2605         * Racy check if we can split the page, before freeze_page() will
2606         * split PMDs
2607         */
2608        if (!can_split_huge_page(head, &extra_pins)) {
2609                ret = -EBUSY;
2610                goto out_unlock;
2611        }
2612
2613        mlocked = PageMlocked(page);
2614        freeze_page(head);
2615        VM_BUG_ON_PAGE(compound_mapcount(head), head);
2616
2617        /* Make sure the page is not on per-CPU pagevec as it takes pin */
2618        if (mlocked)
2619                lru_add_drain();
2620
2621        /* prevent PageLRU to go away from under us, and freeze lru stats */
2622        spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2623
2624        if (mapping) {
2625                void **pslot;
2626
2627                spin_lock(&mapping->tree_lock);
2628                pslot = radix_tree_lookup_slot(&mapping->page_tree,
2629                                page_index(head));
2630                /*
2631                 * Check if the head page is present in radix tree.
2632                 * We assume all tail are present too, if head is there.
2633                 */
2634                if (radix_tree_deref_slot_protected(pslot,
2635                                        &mapping->tree_lock) != head)
2636                        goto fail;
2637        }
2638
2639        /* Prevent deferred_split_scan() touching ->_refcount */
2640        spin_lock(&pgdata->split_queue_lock);
2641        count = page_count(head);
2642        mapcount = total_mapcount(head);
2643        if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2644                if (!list_empty(page_deferred_list(head))) {
2645                        pgdata->split_queue_len--;
2646                        list_del(page_deferred_list(head));
2647                }
2648                if (mapping)
2649                        __dec_node_page_state(page, NR_SHMEM_THPS);
2650                spin_unlock(&pgdata->split_queue_lock);
2651                __split_huge_page(page, list, flags);
2652                if (PageSwapCache(head)) {
2653                        swp_entry_t entry = { .val = page_private(head) };
2654
2655                        ret = split_swap_cluster(entry);
2656                } else
2657                        ret = 0;
2658        } else {
2659                if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2660                        pr_alert("total_mapcount: %u, page_count(): %u\n",
2661                                        mapcount, count);
2662                        if (PageTail(page))
2663                                dump_page(head, NULL);
2664                        dump_page(page, "total_mapcount(head) > 0");
2665                        BUG();
2666                }
2667                spin_unlock(&pgdata->split_queue_lock);
2668fail:           if (mapping)
2669                        spin_unlock(&mapping->tree_lock);
2670                spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2671                unfreeze_page(head);
2672                ret = -EBUSY;
2673        }
2674
2675out_unlock:
2676        if (anon_vma) {
2677                anon_vma_unlock_write(anon_vma);
2678                put_anon_vma(anon_vma);
2679        }
2680        if (mapping)
2681                i_mmap_unlock_read(mapping);
2682out:
2683        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2684        return ret;
2685}
2686
2687void free_transhuge_page(struct page *page)
2688{
2689        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2690        unsigned long flags;
2691
2692        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2693        if (!list_empty(page_deferred_list(page))) {
2694                pgdata->split_queue_len--;
2695                list_del(page_deferred_list(page));
2696        }
2697        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2698        free_compound_page(page);
2699}
2700
2701void deferred_split_huge_page(struct page *page)
2702{
2703        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2704        unsigned long flags;
2705
2706        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2707
2708        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2709        if (list_empty(page_deferred_list(page))) {
2710                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2711                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2712                pgdata->split_queue_len++;
2713        }
2714        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2715}
2716
2717static unsigned long deferred_split_count(struct shrinker *shrink,
2718                struct shrink_control *sc)
2719{
2720        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2721        return ACCESS_ONCE(pgdata->split_queue_len);
2722}
2723
2724static unsigned long deferred_split_scan(struct shrinker *shrink,
2725                struct shrink_control *sc)
2726{
2727        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2728        unsigned long flags;
2729        LIST_HEAD(list), *pos, *next;
2730        struct page *page;
2731        int split = 0;
2732
2733        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2734        /* Take pin on all head pages to avoid freeing them under us */
2735        list_for_each_safe(pos, next, &pgdata->split_queue) {
2736                page = list_entry((void *)pos, struct page, mapping);
2737                page = compound_head(page);
2738                if (get_page_unless_zero(page)) {
2739                        list_move(page_deferred_list(page), &list);
2740                } else {
2741                        /* We lost race with put_compound_page() */
2742                        list_del_init(page_deferred_list(page));
2743                        pgdata->split_queue_len--;
2744                }
2745                if (!--sc->nr_to_scan)
2746                        break;
2747        }
2748        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749
2750        list_for_each_safe(pos, next, &list) {
2751                page = list_entry((void *)pos, struct page, mapping);
2752                lock_page(page);
2753                /* split_huge_page() removes page from list on success */
2754                if (!split_huge_page(page))
2755                        split++;
2756                unlock_page(page);
2757                put_page(page);
2758        }
2759
2760        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2761        list_splice_tail(&list, &pgdata->split_queue);
2762        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2763
2764        /*
2765         * Stop shrinker if we didn't split any page, but the queue is empty.
2766         * This can happen if pages were freed under us.
2767         */
2768        if (!split && list_empty(&pgdata->split_queue))
2769                return SHRINK_STOP;
2770        return split;
2771}
2772
2773static struct shrinker deferred_split_shrinker = {
2774        .count_objects = deferred_split_count,
2775        .scan_objects = deferred_split_scan,
2776        .seeks = DEFAULT_SEEKS,
2777        .flags = SHRINKER_NUMA_AWARE,
2778};
2779
2780#ifdef CONFIG_DEBUG_FS
2781static int split_huge_pages_set(void *data, u64 val)
2782{
2783        struct zone *zone;
2784        struct page *page;
2785        unsigned long pfn, max_zone_pfn;
2786        unsigned long total = 0, split = 0;
2787
2788        if (val != 1)
2789                return -EINVAL;
2790
2791        for_each_populated_zone(zone) {
2792                max_zone_pfn = zone_end_pfn(zone);
2793                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2794                        if (!pfn_valid(pfn))
2795                                continue;
2796
2797                        page = pfn_to_page(pfn);
2798                        if (!get_page_unless_zero(page))
2799                                continue;
2800
2801                        if (zone != page_zone(page))
2802                                goto next;
2803
2804                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2805                                goto next;
2806
2807                        total++;
2808                        lock_page(page);
2809                        if (!split_huge_page(page))
2810                                split++;
2811                        unlock_page(page);
2812next:
2813                        put_page(page);
2814                }
2815        }
2816
2817        pr_info("%lu of %lu THP split\n", split, total);
2818
2819        return 0;
2820}
2821DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2822                "%llu\n");
2823
2824static int __init split_huge_pages_debugfs(void)
2825{
2826        void *ret;
2827
2828        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2829                        &split_huge_pages_fops);
2830        if (!ret)
2831                pr_warn("Failed to create split_huge_pages in debugfs");
2832        return 0;
2833}
2834late_initcall(split_huge_pages_debugfs);
2835#endif
2836
2837#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2838void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2839                struct page *page)
2840{
2841        struct vm_area_struct *vma = pvmw->vma;
2842        struct mm_struct *mm = vma->vm_mm;
2843        unsigned long address = pvmw->address;
2844        pmd_t pmdval;
2845        swp_entry_t entry;
2846        pmd_t pmdswp;
2847
2848        if (!(pvmw->pmd && !pvmw->pte))
2849                return;
2850
2851        mmu_notifier_invalidate_range_start(mm, address,
2852                        address + HPAGE_PMD_SIZE);
2853
2854        flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2855        pmdval = *pvmw->pmd;
2856        pmdp_invalidate(vma, address, pvmw->pmd);
2857        if (pmd_dirty(pmdval))
2858                set_page_dirty(page);
2859        entry = make_migration_entry(page, pmd_write(pmdval));
2860        pmdswp = swp_entry_to_pmd(entry);
2861        if (pmd_soft_dirty(pmdval))
2862                pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2863        set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2864        page_remove_rmap(page, true);
2865        put_page(page);
2866
2867        mmu_notifier_invalidate_range_end(mm, address,
2868                        address + HPAGE_PMD_SIZE);
2869}
2870
2871void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2872{
2873        struct vm_area_struct *vma = pvmw->vma;
2874        struct mm_struct *mm = vma->vm_mm;
2875        unsigned long address = pvmw->address;
2876        unsigned long mmun_start = address & HPAGE_PMD_MASK;
2877        pmd_t pmde;
2878        swp_entry_t entry;
2879
2880        if (!(pvmw->pmd && !pvmw->pte))
2881                return;
2882
2883        entry = pmd_to_swp_entry(*pvmw->pmd);
2884        get_page(new);
2885        pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2886        if (pmd_swp_soft_dirty(*pvmw->pmd))
2887                pmde = pmd_mksoft_dirty(pmde);
2888        if (is_write_migration_entry(entry))
2889                pmde = maybe_pmd_mkwrite(pmde, vma);
2890
2891        flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2892        page_add_anon_rmap(new, vma, mmun_start, true);
2893        set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2894        if (vma->vm_flags & VM_LOCKED)
2895                mlock_vma_page(new);
2896        update_mmu_cache_pmd(vma, address, pvmw->pmd);
2897}
2898#endif
2899