linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/sched/signal.h>
  22#include <linux/rmap.h>
  23#include <linux/string_helpers.h>
  24#include <linux/swap.h>
  25#include <linux/swapops.h>
  26#include <linux/jhash.h>
  27
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31
  32#include <linux/io.h>
  33#include <linux/hugetlb.h>
  34#include <linux/hugetlb_cgroup.h>
  35#include <linux/node.h>
  36#include <linux/userfaultfd_k.h>
  37#include "internal.h"
  38
  39int hugepages_treat_as_movable;
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78        spin_unlock(&spool->lock);
  79
  80        /* If no pages are used, and no other handles to the subpool
  81         * remain, give up any reservations mased on minimum size and
  82         * free the subpool */
  83        if (free) {
  84                if (spool->min_hpages != -1)
  85                        hugetlb_acct_memory(spool->hstate,
  86                                                -spool->min_hpages);
  87                kfree(spool);
  88        }
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92                                                long min_hpages)
  93{
  94        struct hugepage_subpool *spool;
  95
  96        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97        if (!spool)
  98                return NULL;
  99
 100        spin_lock_init(&spool->lock);
 101        spool->count = 1;
 102        spool->max_hpages = max_hpages;
 103        spool->hstate = h;
 104        spool->min_hpages = min_hpages;
 105
 106        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107                kfree(spool);
 108                return NULL;
 109        }
 110        spool->rsv_hpages = min_hpages;
 111
 112        return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117        spin_lock(&spool->lock);
 118        BUG_ON(!spool->count);
 119        spool->count--;
 120        unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132                                      long delta)
 133{
 134        long ret = delta;
 135
 136        if (!spool)
 137                return ret;
 138
 139        spin_lock(&spool->lock);
 140
 141        if (spool->max_hpages != -1) {          /* maximum size accounting */
 142                if ((spool->used_hpages + delta) <= spool->max_hpages)
 143                        spool->used_hpages += delta;
 144                else {
 145                        ret = -ENOMEM;
 146                        goto unlock_ret;
 147                }
 148        }
 149
 150        /* minimum size accounting */
 151        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152                if (delta > spool->rsv_hpages) {
 153                        /*
 154                         * Asking for more reserves than those already taken on
 155                         * behalf of subpool.  Return difference.
 156                         */
 157                        ret = delta - spool->rsv_hpages;
 158                        spool->rsv_hpages = 0;
 159                } else {
 160                        ret = 0;        /* reserves already accounted for */
 161                        spool->rsv_hpages -= delta;
 162                }
 163        }
 164
 165unlock_ret:
 166        spin_unlock(&spool->lock);
 167        return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177                                       long delta)
 178{
 179        long ret = delta;
 180
 181        if (!spool)
 182                return delta;
 183
 184        spin_lock(&spool->lock);
 185
 186        if (spool->max_hpages != -1)            /* maximum size accounting */
 187                spool->used_hpages -= delta;
 188
 189         /* minimum size accounting */
 190        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191                if (spool->rsv_hpages + delta <= spool->min_hpages)
 192                        ret = 0;
 193                else
 194                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196                spool->rsv_hpages += delta;
 197                if (spool->rsv_hpages > spool->min_hpages)
 198                        spool->rsv_hpages = spool->min_hpages;
 199        }
 200
 201        /*
 202         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203         * quota reference, free it now.
 204         */
 205        unlock_or_release_subpool(spool);
 206
 207        return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212        return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217        return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240        struct list_head link;
 241        long from;
 242        long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261        struct list_head *head = &resv->regions;
 262        struct file_region *rg, *nrg, *trg;
 263        long add = 0;
 264
 265        spin_lock(&resv->lock);
 266        /* Locate the region we are either in or before. */
 267        list_for_each_entry(rg, head, link)
 268                if (f <= rg->to)
 269                        break;
 270
 271        /*
 272         * If no region exists which can be expanded to include the
 273         * specified range, the list must have been modified by an
 274         * interleving call to region_del().  Pull a region descriptor
 275         * from the cache and use it for this range.
 276         */
 277        if (&rg->link == head || t < rg->from) {
 278                VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280                resv->region_cache_count--;
 281                nrg = list_first_entry(&resv->region_cache, struct file_region,
 282                                        link);
 283                list_del(&nrg->link);
 284
 285                nrg->from = f;
 286                nrg->to = t;
 287                list_add(&nrg->link, rg->link.prev);
 288
 289                add += t - f;
 290                goto out_locked;
 291        }
 292
 293        /* Round our left edge to the current segment if it encloses us. */
 294        if (f > rg->from)
 295                f = rg->from;
 296
 297        /* Check for and consume any regions we now overlap with. */
 298        nrg = rg;
 299        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300                if (&rg->link == head)
 301                        break;
 302                if (rg->from > t)
 303                        break;
 304
 305                /* If this area reaches higher then extend our area to
 306                 * include it completely.  If this is not the first area
 307                 * which we intend to reuse, free it. */
 308                if (rg->to > t)
 309                        t = rg->to;
 310                if (rg != nrg) {
 311                        /* Decrement return value by the deleted range.
 312                         * Another range will span this area so that by
 313                         * end of routine add will be >= zero
 314                         */
 315                        add -= (rg->to - rg->from);
 316                        list_del(&rg->link);
 317                        kfree(rg);
 318                }
 319        }
 320
 321        add += (nrg->from - f);         /* Added to beginning of region */
 322        nrg->from = f;
 323        add += t - nrg->to;             /* Added to end of region */
 324        nrg->to = t;
 325
 326out_locked:
 327        resv->adds_in_progress--;
 328        spin_unlock(&resv->lock);
 329        VM_BUG_ON(add < 0);
 330        return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357        struct list_head *head = &resv->regions;
 358        struct file_region *rg, *nrg = NULL;
 359        long chg = 0;
 360
 361retry:
 362        spin_lock(&resv->lock);
 363retry_locked:
 364        resv->adds_in_progress++;
 365
 366        /*
 367         * Check for sufficient descriptors in the cache to accommodate
 368         * the number of in progress add operations.
 369         */
 370        if (resv->adds_in_progress > resv->region_cache_count) {
 371                struct file_region *trg;
 372
 373                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374                /* Must drop lock to allocate a new descriptor. */
 375                resv->adds_in_progress--;
 376                spin_unlock(&resv->lock);
 377
 378                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379                if (!trg) {
 380                        kfree(nrg);
 381                        return -ENOMEM;
 382                }
 383
 384                spin_lock(&resv->lock);
 385                list_add(&trg->link, &resv->region_cache);
 386                resv->region_cache_count++;
 387                goto retry_locked;
 388        }
 389
 390        /* Locate the region we are before or in. */
 391        list_for_each_entry(rg, head, link)
 392                if (f <= rg->to)
 393                        break;
 394
 395        /* If we are below the current region then a new region is required.
 396         * Subtle, allocate a new region at the position but make it zero
 397         * size such that we can guarantee to record the reservation. */
 398        if (&rg->link == head || t < rg->from) {
 399                if (!nrg) {
 400                        resv->adds_in_progress--;
 401                        spin_unlock(&resv->lock);
 402                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403                        if (!nrg)
 404                                return -ENOMEM;
 405
 406                        nrg->from = f;
 407                        nrg->to   = f;
 408                        INIT_LIST_HEAD(&nrg->link);
 409                        goto retry;
 410                }
 411
 412                list_add(&nrg->link, rg->link.prev);
 413                chg = t - f;
 414                goto out_nrg;
 415        }
 416
 417        /* Round our left edge to the current segment if it encloses us. */
 418        if (f > rg->from)
 419                f = rg->from;
 420        chg = t - f;
 421
 422        /* Check for and consume any regions we now overlap with. */
 423        list_for_each_entry(rg, rg->link.prev, link) {
 424                if (&rg->link == head)
 425                        break;
 426                if (rg->from > t)
 427                        goto out;
 428
 429                /* We overlap with this area, if it extends further than
 430                 * us then we must extend ourselves.  Account for its
 431                 * existing reservation. */
 432                if (rg->to > t) {
 433                        chg += rg->to - t;
 434                        t = rg->to;
 435                }
 436                chg -= rg->to - rg->from;
 437        }
 438
 439out:
 440        spin_unlock(&resv->lock);
 441        /*  We already know we raced and no longer need the new region */
 442        kfree(nrg);
 443        return chg;
 444out_nrg:
 445        spin_unlock(&resv->lock);
 446        return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462        spin_lock(&resv->lock);
 463        VM_BUG_ON(!resv->region_cache_count);
 464        resv->adds_in_progress--;
 465        spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484        struct list_head *head = &resv->regions;
 485        struct file_region *rg, *trg;
 486        struct file_region *nrg = NULL;
 487        long del = 0;
 488
 489retry:
 490        spin_lock(&resv->lock);
 491        list_for_each_entry_safe(rg, trg, head, link) {
 492                /*
 493                 * Skip regions before the range to be deleted.  file_region
 494                 * ranges are normally of the form [from, to).  However, there
 495                 * may be a "placeholder" entry in the map which is of the form
 496                 * (from, to) with from == to.  Check for placeholder entries
 497                 * at the beginning of the range to be deleted.
 498                 */
 499                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500                        continue;
 501
 502                if (rg->from >= t)
 503                        break;
 504
 505                if (f > rg->from && t < rg->to) { /* Must split region */
 506                        /*
 507                         * Check for an entry in the cache before dropping
 508                         * lock and attempting allocation.
 509                         */
 510                        if (!nrg &&
 511                            resv->region_cache_count > resv->adds_in_progress) {
 512                                nrg = list_first_entry(&resv->region_cache,
 513                                                        struct file_region,
 514                                                        link);
 515                                list_del(&nrg->link);
 516                                resv->region_cache_count--;
 517                        }
 518
 519                        if (!nrg) {
 520                                spin_unlock(&resv->lock);
 521                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522                                if (!nrg)
 523                                        return -ENOMEM;
 524                                goto retry;
 525                        }
 526
 527                        del += t - f;
 528
 529                        /* New entry for end of split region */
 530                        nrg->from = t;
 531                        nrg->to = rg->to;
 532                        INIT_LIST_HEAD(&nrg->link);
 533
 534                        /* Original entry is trimmed */
 535                        rg->to = f;
 536
 537                        list_add(&nrg->link, &rg->link);
 538                        nrg = NULL;
 539                        break;
 540                }
 541
 542                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543                        del += rg->to - rg->from;
 544                        list_del(&rg->link);
 545                        kfree(rg);
 546                        continue;
 547                }
 548
 549                if (f <= rg->from) {    /* Trim beginning of region */
 550                        del += t - rg->from;
 551                        rg->from = t;
 552                } else {                /* Trim end of region */
 553                        del += rg->to - f;
 554                        rg->to = f;
 555                }
 556        }
 557
 558        spin_unlock(&resv->lock);
 559        kfree(nrg);
 560        return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574        struct hugepage_subpool *spool = subpool_inode(inode);
 575        long rsv_adjust;
 576
 577        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578        if (rsv_adjust) {
 579                struct hstate *h = hstate_inode(inode);
 580
 581                hugetlb_acct_memory(h, 1);
 582        }
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591        struct list_head *head = &resv->regions;
 592        struct file_region *rg;
 593        long chg = 0;
 594
 595        spin_lock(&resv->lock);
 596        /* Locate each segment we overlap with, and count that overlap. */
 597        list_for_each_entry(rg, head, link) {
 598                long seg_from;
 599                long seg_to;
 600
 601                if (rg->to <= f)
 602                        continue;
 603                if (rg->from >= t)
 604                        break;
 605
 606                seg_from = max(rg->from, f);
 607                seg_to = min(rg->to, t);
 608
 609                chg += seg_to - seg_from;
 610        }
 611        spin_unlock(&resv->lock);
 612
 613        return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621                        struct vm_area_struct *vma, unsigned long address)
 622{
 623        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624                        (vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628                                     unsigned long address)
 629{
 630        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640        struct hstate *hstate;
 641
 642        if (!is_vm_hugetlb_page(vma))
 643                return PAGE_SIZE;
 644
 645        hstate = hstate_vma(vma);
 646
 647        return 1UL << huge_page_shift(hstate);
 648}
 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 650
 651/*
 652 * Return the page size being used by the MMU to back a VMA. In the majority
 653 * of cases, the page size used by the kernel matches the MMU size. On
 654 * architectures where it differs, an architecture-specific version of this
 655 * function is required.
 656 */
 657#ifndef vma_mmu_pagesize
 658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 659{
 660        return vma_kernel_pagesize(vma);
 661}
 662#endif
 663
 664/*
 665 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 666 * bits of the reservation map pointer, which are always clear due to
 667 * alignment.
 668 */
 669#define HPAGE_RESV_OWNER    (1UL << 0)
 670#define HPAGE_RESV_UNMAPPED (1UL << 1)
 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 672
 673/*
 674 * These helpers are used to track how many pages are reserved for
 675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 676 * is guaranteed to have their future faults succeed.
 677 *
 678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 679 * the reserve counters are updated with the hugetlb_lock held. It is safe
 680 * to reset the VMA at fork() time as it is not in use yet and there is no
 681 * chance of the global counters getting corrupted as a result of the values.
 682 *
 683 * The private mapping reservation is represented in a subtly different
 684 * manner to a shared mapping.  A shared mapping has a region map associated
 685 * with the underlying file, this region map represents the backing file
 686 * pages which have ever had a reservation assigned which this persists even
 687 * after the page is instantiated.  A private mapping has a region map
 688 * associated with the original mmap which is attached to all VMAs which
 689 * reference it, this region map represents those offsets which have consumed
 690 * reservation ie. where pages have been instantiated.
 691 */
 692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 693{
 694        return (unsigned long)vma->vm_private_data;
 695}
 696
 697static void set_vma_private_data(struct vm_area_struct *vma,
 698                                                        unsigned long value)
 699{
 700        vma->vm_private_data = (void *)value;
 701}
 702
 703struct resv_map *resv_map_alloc(void)
 704{
 705        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 706        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 707
 708        if (!resv_map || !rg) {
 709                kfree(resv_map);
 710                kfree(rg);
 711                return NULL;
 712        }
 713
 714        kref_init(&resv_map->refs);
 715        spin_lock_init(&resv_map->lock);
 716        INIT_LIST_HEAD(&resv_map->regions);
 717
 718        resv_map->adds_in_progress = 0;
 719
 720        INIT_LIST_HEAD(&resv_map->region_cache);
 721        list_add(&rg->link, &resv_map->region_cache);
 722        resv_map->region_cache_count = 1;
 723
 724        return resv_map;
 725}
 726
 727void resv_map_release(struct kref *ref)
 728{
 729        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 730        struct list_head *head = &resv_map->region_cache;
 731        struct file_region *rg, *trg;
 732
 733        /* Clear out any active regions before we release the map. */
 734        region_del(resv_map, 0, LONG_MAX);
 735
 736        /* ... and any entries left in the cache */
 737        list_for_each_entry_safe(rg, trg, head, link) {
 738                list_del(&rg->link);
 739                kfree(rg);
 740        }
 741
 742        VM_BUG_ON(resv_map->adds_in_progress);
 743
 744        kfree(resv_map);
 745}
 746
 747static inline struct resv_map *inode_resv_map(struct inode *inode)
 748{
 749        return inode->i_mapping->private_data;
 750}
 751
 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 753{
 754        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 755        if (vma->vm_flags & VM_MAYSHARE) {
 756                struct address_space *mapping = vma->vm_file->f_mapping;
 757                struct inode *inode = mapping->host;
 758
 759                return inode_resv_map(inode);
 760
 761        } else {
 762                return (struct resv_map *)(get_vma_private_data(vma) &
 763                                                        ~HPAGE_RESV_MASK);
 764        }
 765}
 766
 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 768{
 769        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 770        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 771
 772        set_vma_private_data(vma, (get_vma_private_data(vma) &
 773                                HPAGE_RESV_MASK) | (unsigned long)map);
 774}
 775
 776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 777{
 778        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 779        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 780
 781        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 782}
 783
 784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 785{
 786        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 787
 788        return (get_vma_private_data(vma) & flag) != 0;
 789}
 790
 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 793{
 794        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 795        if (!(vma->vm_flags & VM_MAYSHARE))
 796                vma->vm_private_data = (void *)0;
 797}
 798
 799/* Returns true if the VMA has associated reserve pages */
 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 801{
 802        if (vma->vm_flags & VM_NORESERVE) {
 803                /*
 804                 * This address is already reserved by other process(chg == 0),
 805                 * so, we should decrement reserved count. Without decrementing,
 806                 * reserve count remains after releasing inode, because this
 807                 * allocated page will go into page cache and is regarded as
 808                 * coming from reserved pool in releasing step.  Currently, we
 809                 * don't have any other solution to deal with this situation
 810                 * properly, so add work-around here.
 811                 */
 812                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 813                        return true;
 814                else
 815                        return false;
 816        }
 817
 818        /* Shared mappings always use reserves */
 819        if (vma->vm_flags & VM_MAYSHARE) {
 820                /*
 821                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 822                 * be a region map for all pages.  The only situation where
 823                 * there is no region map is if a hole was punched via
 824                 * fallocate.  In this case, there really are no reverves to
 825                 * use.  This situation is indicated if chg != 0.
 826                 */
 827                if (chg)
 828                        return false;
 829                else
 830                        return true;
 831        }
 832
 833        /*
 834         * Only the process that called mmap() has reserves for
 835         * private mappings.
 836         */
 837        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 838                /*
 839                 * Like the shared case above, a hole punch or truncate
 840                 * could have been performed on the private mapping.
 841                 * Examine the value of chg to determine if reserves
 842                 * actually exist or were previously consumed.
 843                 * Very Subtle - The value of chg comes from a previous
 844                 * call to vma_needs_reserves().  The reserve map for
 845                 * private mappings has different (opposite) semantics
 846                 * than that of shared mappings.  vma_needs_reserves()
 847                 * has already taken this difference in semantics into
 848                 * account.  Therefore, the meaning of chg is the same
 849                 * as in the shared case above.  Code could easily be
 850                 * combined, but keeping it separate draws attention to
 851                 * subtle differences.
 852                 */
 853                if (chg)
 854                        return false;
 855                else
 856                        return true;
 857        }
 858
 859        return false;
 860}
 861
 862static void enqueue_huge_page(struct hstate *h, struct page *page)
 863{
 864        int nid = page_to_nid(page);
 865        list_move(&page->lru, &h->hugepage_freelists[nid]);
 866        h->free_huge_pages++;
 867        h->free_huge_pages_node[nid]++;
 868}
 869
 870static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 871{
 872        struct page *page;
 873
 874        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 875                if (!PageHWPoison(page))
 876                        break;
 877        /*
 878         * if 'non-isolated free hugepage' not found on the list,
 879         * the allocation fails.
 880         */
 881        if (&h->hugepage_freelists[nid] == &page->lru)
 882                return NULL;
 883        list_move(&page->lru, &h->hugepage_activelist);
 884        set_page_refcounted(page);
 885        h->free_huge_pages--;
 886        h->free_huge_pages_node[nid]--;
 887        return page;
 888}
 889
 890static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 891                nodemask_t *nmask)
 892{
 893        unsigned int cpuset_mems_cookie;
 894        struct zonelist *zonelist;
 895        struct zone *zone;
 896        struct zoneref *z;
 897        int node = -1;
 898
 899        zonelist = node_zonelist(nid, gfp_mask);
 900
 901retry_cpuset:
 902        cpuset_mems_cookie = read_mems_allowed_begin();
 903        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 904                struct page *page;
 905
 906                if (!cpuset_zone_allowed(zone, gfp_mask))
 907                        continue;
 908                /*
 909                 * no need to ask again on the same node. Pool is node rather than
 910                 * zone aware
 911                 */
 912                if (zone_to_nid(zone) == node)
 913                        continue;
 914                node = zone_to_nid(zone);
 915
 916                page = dequeue_huge_page_node_exact(h, node);
 917                if (page)
 918                        return page;
 919        }
 920        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 921                goto retry_cpuset;
 922
 923        return NULL;
 924}
 925
 926/* Movability of hugepages depends on migration support. */
 927static inline gfp_t htlb_alloc_mask(struct hstate *h)
 928{
 929        if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 930                return GFP_HIGHUSER_MOVABLE;
 931        else
 932                return GFP_HIGHUSER;
 933}
 934
 935static struct page *dequeue_huge_page_vma(struct hstate *h,
 936                                struct vm_area_struct *vma,
 937                                unsigned long address, int avoid_reserve,
 938                                long chg)
 939{
 940        struct page *page;
 941        struct mempolicy *mpol;
 942        gfp_t gfp_mask;
 943        nodemask_t *nodemask;
 944        int nid;
 945
 946        /*
 947         * A child process with MAP_PRIVATE mappings created by their parent
 948         * have no page reserves. This check ensures that reservations are
 949         * not "stolen". The child may still get SIGKILLed
 950         */
 951        if (!vma_has_reserves(vma, chg) &&
 952                        h->free_huge_pages - h->resv_huge_pages == 0)
 953                goto err;
 954
 955        /* If reserves cannot be used, ensure enough pages are in the pool */
 956        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 957                goto err;
 958
 959        gfp_mask = htlb_alloc_mask(h);
 960        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 961        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 962        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 963                SetPagePrivate(page);
 964                h->resv_huge_pages--;
 965        }
 966
 967        mpol_cond_put(mpol);
 968        return page;
 969
 970err:
 971        return NULL;
 972}
 973
 974/*
 975 * common helper functions for hstate_next_node_to_{alloc|free}.
 976 * We may have allocated or freed a huge page based on a different
 977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 978 * be outside of *nodes_allowed.  Ensure that we use an allowed
 979 * node for alloc or free.
 980 */
 981static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 982{
 983        nid = next_node_in(nid, *nodes_allowed);
 984        VM_BUG_ON(nid >= MAX_NUMNODES);
 985
 986        return nid;
 987}
 988
 989static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 990{
 991        if (!node_isset(nid, *nodes_allowed))
 992                nid = next_node_allowed(nid, nodes_allowed);
 993        return nid;
 994}
 995
 996/*
 997 * returns the previously saved node ["this node"] from which to
 998 * allocate a persistent huge page for the pool and advance the
 999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002static int hstate_next_node_to_alloc(struct hstate *h,
1003                                        nodemask_t *nodes_allowed)
1004{
1005        int nid;
1006
1007        VM_BUG_ON(!nodes_allowed);
1008
1009        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012        return nid;
1013}
1014
1015/*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page.  Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022{
1023        int nid;
1024
1025        VM_BUG_ON(!nodes_allowed);
1026
1027        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030        return nid;
1031}
1032
1033#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1034        for (nr_nodes = nodes_weight(*mask);                            \
1035                nr_nodes > 0 &&                                         \
1036                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1037                nr_nodes--)
1038
1039#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1040        for (nr_nodes = nodes_weight(*mask);                            \
1041                nr_nodes > 0 &&                                         \
1042                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1043                nr_nodes--)
1044
1045#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046static void destroy_compound_gigantic_page(struct page *page,
1047                                        unsigned int order)
1048{
1049        int i;
1050        int nr_pages = 1 << order;
1051        struct page *p = page + 1;
1052
1053        atomic_set(compound_mapcount_ptr(page), 0);
1054        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055                clear_compound_head(p);
1056                set_page_refcounted(p);
1057        }
1058
1059        set_compound_order(page, 0);
1060        __ClearPageHead(page);
1061}
1062
1063static void free_gigantic_page(struct page *page, unsigned int order)
1064{
1065        free_contig_range(page_to_pfn(page), 1 << order);
1066}
1067
1068static int __alloc_gigantic_page(unsigned long start_pfn,
1069                                unsigned long nr_pages, gfp_t gfp_mask)
1070{
1071        unsigned long end_pfn = start_pfn + nr_pages;
1072        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073                                  gfp_mask);
1074}
1075
1076static bool pfn_range_valid_gigantic(struct zone *z,
1077                        unsigned long start_pfn, unsigned long nr_pages)
1078{
1079        unsigned long i, end_pfn = start_pfn + nr_pages;
1080        struct page *page;
1081
1082        for (i = start_pfn; i < end_pfn; i++) {
1083                if (!pfn_valid(i))
1084                        return false;
1085
1086                page = pfn_to_page(i);
1087
1088                if (page_zone(page) != z)
1089                        return false;
1090
1091                if (PageReserved(page))
1092                        return false;
1093
1094                if (page_count(page) > 0)
1095                        return false;
1096
1097                if (PageHuge(page))
1098                        return false;
1099        }
1100
1101        return true;
1102}
1103
1104static bool zone_spans_last_pfn(const struct zone *zone,
1105                        unsigned long start_pfn, unsigned long nr_pages)
1106{
1107        unsigned long last_pfn = start_pfn + nr_pages - 1;
1108        return zone_spans_pfn(zone, last_pfn);
1109}
1110
1111static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1112{
1113        unsigned int order = huge_page_order(h);
1114        unsigned long nr_pages = 1 << order;
1115        unsigned long ret, pfn, flags;
1116        struct zonelist *zonelist;
1117        struct zone *zone;
1118        struct zoneref *z;
1119        gfp_t gfp_mask;
1120
1121        gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122        zonelist = node_zonelist(nid, gfp_mask);
1123        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124                spin_lock_irqsave(&zone->lock, flags);
1125
1126                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1129                                /*
1130                                 * We release the zone lock here because
1131                                 * alloc_contig_range() will also lock the zone
1132                                 * at some point. If there's an allocation
1133                                 * spinning on this lock, it may win the race
1134                                 * and cause alloc_contig_range() to fail...
1135                                 */
1136                                spin_unlock_irqrestore(&zone->lock, flags);
1137                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1138                                if (!ret)
1139                                        return pfn_to_page(pfn);
1140                                spin_lock_irqsave(&zone->lock, flags);
1141                        }
1142                        pfn += nr_pages;
1143                }
1144
1145                spin_unlock_irqrestore(&zone->lock, flags);
1146        }
1147
1148        return NULL;
1149}
1150
1151static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1152static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1153
1154static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1155{
1156        struct page *page;
1157
1158        page = alloc_gigantic_page(nid, h);
1159        if (page) {
1160                prep_compound_gigantic_page(page, huge_page_order(h));
1161                prep_new_huge_page(h, page, nid);
1162        }
1163
1164        return page;
1165}
1166
1167static int alloc_fresh_gigantic_page(struct hstate *h,
1168                                nodemask_t *nodes_allowed)
1169{
1170        struct page *page = NULL;
1171        int nr_nodes, node;
1172
1173        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174                page = alloc_fresh_gigantic_page_node(h, node);
1175                if (page)
1176                        return 1;
1177        }
1178
1179        return 0;
1180}
1181
1182#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183static inline bool gigantic_page_supported(void) { return false; }
1184static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1185static inline void destroy_compound_gigantic_page(struct page *page,
1186                                                unsigned int order) { }
1187static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188                                        nodemask_t *nodes_allowed) { return 0; }
1189#endif
1190
1191static void update_and_free_page(struct hstate *h, struct page *page)
1192{
1193        int i;
1194
1195        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196                return;
1197
1198        h->nr_huge_pages--;
1199        h->nr_huge_pages_node[page_to_nid(page)]--;
1200        for (i = 0; i < pages_per_huge_page(h); i++) {
1201                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202                                1 << PG_referenced | 1 << PG_dirty |
1203                                1 << PG_active | 1 << PG_private |
1204                                1 << PG_writeback);
1205        }
1206        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1207        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1208        set_page_refcounted(page);
1209        if (hstate_is_gigantic(h)) {
1210                destroy_compound_gigantic_page(page, huge_page_order(h));
1211                free_gigantic_page(page, huge_page_order(h));
1212        } else {
1213                __free_pages(page, huge_page_order(h));
1214        }
1215}
1216
1217struct hstate *size_to_hstate(unsigned long size)
1218{
1219        struct hstate *h;
1220
1221        for_each_hstate(h) {
1222                if (huge_page_size(h) == size)
1223                        return h;
1224        }
1225        return NULL;
1226}
1227
1228/*
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1231 *
1232 * This function can be called for tail pages, but never returns true for them.
1233 */
1234bool page_huge_active(struct page *page)
1235{
1236        VM_BUG_ON_PAGE(!PageHuge(page), page);
1237        return PageHead(page) && PagePrivate(&page[1]);
1238}
1239
1240/* never called for tail page */
1241static void set_page_huge_active(struct page *page)
1242{
1243        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244        SetPagePrivate(&page[1]);
1245}
1246
1247static void clear_page_huge_active(struct page *page)
1248{
1249        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250        ClearPagePrivate(&page[1]);
1251}
1252
1253void free_huge_page(struct page *page)
1254{
1255        /*
1256         * Can't pass hstate in here because it is called from the
1257         * compound page destructor.
1258         */
1259        struct hstate *h = page_hstate(page);
1260        int nid = page_to_nid(page);
1261        struct hugepage_subpool *spool =
1262                (struct hugepage_subpool *)page_private(page);
1263        bool restore_reserve;
1264
1265        set_page_private(page, 0);
1266        page->mapping = NULL;
1267        VM_BUG_ON_PAGE(page_count(page), page);
1268        VM_BUG_ON_PAGE(page_mapcount(page), page);
1269        restore_reserve = PagePrivate(page);
1270        ClearPagePrivate(page);
1271
1272        /*
1273         * A return code of zero implies that the subpool will be under its
1274         * minimum size if the reservation is not restored after page is free.
1275         * Therefore, force restore_reserve operation.
1276         */
1277        if (hugepage_subpool_put_pages(spool, 1) == 0)
1278                restore_reserve = true;
1279
1280        spin_lock(&hugetlb_lock);
1281        clear_page_huge_active(page);
1282        hugetlb_cgroup_uncharge_page(hstate_index(h),
1283                                     pages_per_huge_page(h), page);
1284        if (restore_reserve)
1285                h->resv_huge_pages++;
1286
1287        if (h->surplus_huge_pages_node[nid]) {
1288                /* remove the page from active list */
1289                list_del(&page->lru);
1290                update_and_free_page(h, page);
1291                h->surplus_huge_pages--;
1292                h->surplus_huge_pages_node[nid]--;
1293        } else {
1294                arch_clear_hugepage_flags(page);
1295                enqueue_huge_page(h, page);
1296        }
1297        spin_unlock(&hugetlb_lock);
1298}
1299
1300static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1301{
1302        INIT_LIST_HEAD(&page->lru);
1303        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304        spin_lock(&hugetlb_lock);
1305        set_hugetlb_cgroup(page, NULL);
1306        h->nr_huge_pages++;
1307        h->nr_huge_pages_node[nid]++;
1308        spin_unlock(&hugetlb_lock);
1309        put_page(page); /* free it into the hugepage allocator */
1310}
1311
1312static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1313{
1314        int i;
1315        int nr_pages = 1 << order;
1316        struct page *p = page + 1;
1317
1318        /* we rely on prep_new_huge_page to set the destructor */
1319        set_compound_order(page, order);
1320        __ClearPageReserved(page);
1321        __SetPageHead(page);
1322        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323                /*
1324                 * For gigantic hugepages allocated through bootmem at
1325                 * boot, it's safer to be consistent with the not-gigantic
1326                 * hugepages and clear the PG_reserved bit from all tail pages
1327                 * too.  Otherwse drivers using get_user_pages() to access tail
1328                 * pages may get the reference counting wrong if they see
1329                 * PG_reserved set on a tail page (despite the head page not
1330                 * having PG_reserved set).  Enforcing this consistency between
1331                 * head and tail pages allows drivers to optimize away a check
1332                 * on the head page when they need know if put_page() is needed
1333                 * after get_user_pages().
1334                 */
1335                __ClearPageReserved(p);
1336                set_page_count(p, 0);
1337                set_compound_head(p, page);
1338        }
1339        atomic_set(compound_mapcount_ptr(page), -1);
1340}
1341
1342/*
1343 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1344 * transparent huge pages.  See the PageTransHuge() documentation for more
1345 * details.
1346 */
1347int PageHuge(struct page *page)
1348{
1349        if (!PageCompound(page))
1350                return 0;
1351
1352        page = compound_head(page);
1353        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1354}
1355EXPORT_SYMBOL_GPL(PageHuge);
1356
1357/*
1358 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1359 * normal or transparent huge pages.
1360 */
1361int PageHeadHuge(struct page *page_head)
1362{
1363        if (!PageHead(page_head))
1364                return 0;
1365
1366        return get_compound_page_dtor(page_head) == free_huge_page;
1367}
1368
1369pgoff_t __basepage_index(struct page *page)
1370{
1371        struct page *page_head = compound_head(page);
1372        pgoff_t index = page_index(page_head);
1373        unsigned long compound_idx;
1374
1375        if (!PageHuge(page_head))
1376                return page_index(page);
1377
1378        if (compound_order(page_head) >= MAX_ORDER)
1379                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1380        else
1381                compound_idx = page - page_head;
1382
1383        return (index << compound_order(page_head)) + compound_idx;
1384}
1385
1386static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1387{
1388        struct page *page;
1389
1390        page = __alloc_pages_node(nid,
1391                htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1392                                                __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1393                huge_page_order(h));
1394        if (page) {
1395                prep_new_huge_page(h, page, nid);
1396        }
1397
1398        return page;
1399}
1400
1401static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1402{
1403        struct page *page;
1404        int nr_nodes, node;
1405        int ret = 0;
1406
1407        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1408                page = alloc_fresh_huge_page_node(h, node);
1409                if (page) {
1410                        ret = 1;
1411                        break;
1412                }
1413        }
1414
1415        if (ret)
1416                count_vm_event(HTLB_BUDDY_PGALLOC);
1417        else
1418                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1419
1420        return ret;
1421}
1422
1423/*
1424 * Free huge page from pool from next node to free.
1425 * Attempt to keep persistent huge pages more or less
1426 * balanced over allowed nodes.
1427 * Called with hugetlb_lock locked.
1428 */
1429static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1430                                                         bool acct_surplus)
1431{
1432        int nr_nodes, node;
1433        int ret = 0;
1434
1435        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436                /*
1437                 * If we're returning unused surplus pages, only examine
1438                 * nodes with surplus pages.
1439                 */
1440                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1441                    !list_empty(&h->hugepage_freelists[node])) {
1442                        struct page *page =
1443                                list_entry(h->hugepage_freelists[node].next,
1444                                          struct page, lru);
1445                        list_del(&page->lru);
1446                        h->free_huge_pages--;
1447                        h->free_huge_pages_node[node]--;
1448                        if (acct_surplus) {
1449                                h->surplus_huge_pages--;
1450                                h->surplus_huge_pages_node[node]--;
1451                        }
1452                        update_and_free_page(h, page);
1453                        ret = 1;
1454                        break;
1455                }
1456        }
1457
1458        return ret;
1459}
1460
1461/*
1462 * Dissolve a given free hugepage into free buddy pages. This function does
1463 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1464 * number of free hugepages would be reduced below the number of reserved
1465 * hugepages.
1466 */
1467int dissolve_free_huge_page(struct page *page)
1468{
1469        int rc = 0;
1470
1471        spin_lock(&hugetlb_lock);
1472        if (PageHuge(page) && !page_count(page)) {
1473                struct page *head = compound_head(page);
1474                struct hstate *h = page_hstate(head);
1475                int nid = page_to_nid(head);
1476                if (h->free_huge_pages - h->resv_huge_pages == 0) {
1477                        rc = -EBUSY;
1478                        goto out;
1479                }
1480                /*
1481                 * Move PageHWPoison flag from head page to the raw error page,
1482                 * which makes any subpages rather than the error page reusable.
1483                 */
1484                if (PageHWPoison(head) && page != head) {
1485                        SetPageHWPoison(page);
1486                        ClearPageHWPoison(head);
1487                }
1488                list_del(&head->lru);
1489                h->free_huge_pages--;
1490                h->free_huge_pages_node[nid]--;
1491                h->max_huge_pages--;
1492                update_and_free_page(h, head);
1493        }
1494out:
1495        spin_unlock(&hugetlb_lock);
1496        return rc;
1497}
1498
1499/*
1500 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1501 * make specified memory blocks removable from the system.
1502 * Note that this will dissolve a free gigantic hugepage completely, if any
1503 * part of it lies within the given range.
1504 * Also note that if dissolve_free_huge_page() returns with an error, all
1505 * free hugepages that were dissolved before that error are lost.
1506 */
1507int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1508{
1509        unsigned long pfn;
1510        struct page *page;
1511        int rc = 0;
1512
1513        if (!hugepages_supported())
1514                return rc;
1515
1516        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1517                page = pfn_to_page(pfn);
1518                if (PageHuge(page) && !page_count(page)) {
1519                        rc = dissolve_free_huge_page(page);
1520                        if (rc)
1521                                break;
1522                }
1523        }
1524
1525        return rc;
1526}
1527
1528static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1529                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1530{
1531        int order = huge_page_order(h);
1532
1533        gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1534        if (nid == NUMA_NO_NODE)
1535                nid = numa_mem_id();
1536        return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1537}
1538
1539static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1540                int nid, nodemask_t *nmask)
1541{
1542        struct page *page;
1543        unsigned int r_nid;
1544
1545        if (hstate_is_gigantic(h))
1546                return NULL;
1547
1548        /*
1549         * Assume we will successfully allocate the surplus page to
1550         * prevent racing processes from causing the surplus to exceed
1551         * overcommit
1552         *
1553         * This however introduces a different race, where a process B
1554         * tries to grow the static hugepage pool while alloc_pages() is
1555         * called by process A. B will only examine the per-node
1556         * counters in determining if surplus huge pages can be
1557         * converted to normal huge pages in adjust_pool_surplus(). A
1558         * won't be able to increment the per-node counter, until the
1559         * lock is dropped by B, but B doesn't drop hugetlb_lock until
1560         * no more huge pages can be converted from surplus to normal
1561         * state (and doesn't try to convert again). Thus, we have a
1562         * case where a surplus huge page exists, the pool is grown, and
1563         * the surplus huge page still exists after, even though it
1564         * should just have been converted to a normal huge page. This
1565         * does not leak memory, though, as the hugepage will be freed
1566         * once it is out of use. It also does not allow the counters to
1567         * go out of whack in adjust_pool_surplus() as we don't modify
1568         * the node values until we've gotten the hugepage and only the
1569         * per-node value is checked there.
1570         */
1571        spin_lock(&hugetlb_lock);
1572        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1573                spin_unlock(&hugetlb_lock);
1574                return NULL;
1575        } else {
1576                h->nr_huge_pages++;
1577                h->surplus_huge_pages++;
1578        }
1579        spin_unlock(&hugetlb_lock);
1580
1581        page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1582
1583        spin_lock(&hugetlb_lock);
1584        if (page) {
1585                INIT_LIST_HEAD(&page->lru);
1586                r_nid = page_to_nid(page);
1587                set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1588                set_hugetlb_cgroup(page, NULL);
1589                /*
1590                 * We incremented the global counters already
1591                 */
1592                h->nr_huge_pages_node[r_nid]++;
1593                h->surplus_huge_pages_node[r_nid]++;
1594                __count_vm_event(HTLB_BUDDY_PGALLOC);
1595        } else {
1596                h->nr_huge_pages--;
1597                h->surplus_huge_pages--;
1598                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1599        }
1600        spin_unlock(&hugetlb_lock);
1601
1602        return page;
1603}
1604
1605/*
1606 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1607 */
1608static
1609struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1610                struct vm_area_struct *vma, unsigned long addr)
1611{
1612        struct page *page;
1613        struct mempolicy *mpol;
1614        gfp_t gfp_mask = htlb_alloc_mask(h);
1615        int nid;
1616        nodemask_t *nodemask;
1617
1618        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1619        page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1620        mpol_cond_put(mpol);
1621
1622        return page;
1623}
1624
1625/*
1626 * This allocation function is useful in the context where vma is irrelevant.
1627 * E.g. soft-offlining uses this function because it only cares physical
1628 * address of error page.
1629 */
1630struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631{
1632        gfp_t gfp_mask = htlb_alloc_mask(h);
1633        struct page *page = NULL;
1634
1635        if (nid != NUMA_NO_NODE)
1636                gfp_mask |= __GFP_THISNODE;
1637
1638        spin_lock(&hugetlb_lock);
1639        if (h->free_huge_pages - h->resv_huge_pages > 0)
1640                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641        spin_unlock(&hugetlb_lock);
1642
1643        if (!page)
1644                page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1645
1646        return page;
1647}
1648
1649
1650struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651                nodemask_t *nmask)
1652{
1653        gfp_t gfp_mask = htlb_alloc_mask(h);
1654
1655        spin_lock(&hugetlb_lock);
1656        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657                struct page *page;
1658
1659                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660                if (page) {
1661                        spin_unlock(&hugetlb_lock);
1662                        return page;
1663                }
1664        }
1665        spin_unlock(&hugetlb_lock);
1666
1667        /* No reservations, try to overcommit */
1668
1669        return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1670}
1671
1672/*
1673 * Increase the hugetlb pool such that it can accommodate a reservation
1674 * of size 'delta'.
1675 */
1676static int gather_surplus_pages(struct hstate *h, int delta)
1677{
1678        struct list_head surplus_list;
1679        struct page *page, *tmp;
1680        int ret, i;
1681        int needed, allocated;
1682        bool alloc_ok = true;
1683
1684        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1685        if (needed <= 0) {
1686                h->resv_huge_pages += delta;
1687                return 0;
1688        }
1689
1690        allocated = 0;
1691        INIT_LIST_HEAD(&surplus_list);
1692
1693        ret = -ENOMEM;
1694retry:
1695        spin_unlock(&hugetlb_lock);
1696        for (i = 0; i < needed; i++) {
1697                page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1698                                NUMA_NO_NODE, NULL);
1699                if (!page) {
1700                        alloc_ok = false;
1701                        break;
1702                }
1703                list_add(&page->lru, &surplus_list);
1704                cond_resched();
1705        }
1706        allocated += i;
1707
1708        /*
1709         * After retaking hugetlb_lock, we need to recalculate 'needed'
1710         * because either resv_huge_pages or free_huge_pages may have changed.
1711         */
1712        spin_lock(&hugetlb_lock);
1713        needed = (h->resv_huge_pages + delta) -
1714                        (h->free_huge_pages + allocated);
1715        if (needed > 0) {
1716                if (alloc_ok)
1717                        goto retry;
1718                /*
1719                 * We were not able to allocate enough pages to
1720                 * satisfy the entire reservation so we free what
1721                 * we've allocated so far.
1722                 */
1723                goto free;
1724        }
1725        /*
1726         * The surplus_list now contains _at_least_ the number of extra pages
1727         * needed to accommodate the reservation.  Add the appropriate number
1728         * of pages to the hugetlb pool and free the extras back to the buddy
1729         * allocator.  Commit the entire reservation here to prevent another
1730         * process from stealing the pages as they are added to the pool but
1731         * before they are reserved.
1732         */
1733        needed += allocated;
1734        h->resv_huge_pages += delta;
1735        ret = 0;
1736
1737        /* Free the needed pages to the hugetlb pool */
1738        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1739                if ((--needed) < 0)
1740                        break;
1741                /*
1742                 * This page is now managed by the hugetlb allocator and has
1743                 * no users -- drop the buddy allocator's reference.
1744                 */
1745                put_page_testzero(page);
1746                VM_BUG_ON_PAGE(page_count(page), page);
1747                enqueue_huge_page(h, page);
1748        }
1749free:
1750        spin_unlock(&hugetlb_lock);
1751
1752        /* Free unnecessary surplus pages to the buddy allocator */
1753        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1754                put_page(page);
1755        spin_lock(&hugetlb_lock);
1756
1757        return ret;
1758}
1759
1760/*
1761 * This routine has two main purposes:
1762 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1763 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1764 *    to the associated reservation map.
1765 * 2) Free any unused surplus pages that may have been allocated to satisfy
1766 *    the reservation.  As many as unused_resv_pages may be freed.
1767 *
1768 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1769 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1770 * we must make sure nobody else can claim pages we are in the process of
1771 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1772 * number of huge pages we plan to free when dropping the lock.
1773 */
1774static void return_unused_surplus_pages(struct hstate *h,
1775                                        unsigned long unused_resv_pages)
1776{
1777        unsigned long nr_pages;
1778
1779        /* Cannot return gigantic pages currently */
1780        if (hstate_is_gigantic(h))
1781                goto out;
1782
1783        /*
1784         * Part (or even all) of the reservation could have been backed
1785         * by pre-allocated pages. Only free surplus pages.
1786         */
1787        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1788
1789        /*
1790         * We want to release as many surplus pages as possible, spread
1791         * evenly across all nodes with memory. Iterate across these nodes
1792         * until we can no longer free unreserved surplus pages. This occurs
1793         * when the nodes with surplus pages have no free pages.
1794         * free_pool_huge_page() will balance the the freed pages across the
1795         * on-line nodes with memory and will handle the hstate accounting.
1796         *
1797         * Note that we decrement resv_huge_pages as we free the pages.  If
1798         * we drop the lock, resv_huge_pages will still be sufficiently large
1799         * to cover subsequent pages we may free.
1800         */
1801        while (nr_pages--) {
1802                h->resv_huge_pages--;
1803                unused_resv_pages--;
1804                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1805                        goto out;
1806                cond_resched_lock(&hugetlb_lock);
1807        }
1808
1809out:
1810        /* Fully uncommit the reservation */
1811        h->resv_huge_pages -= unused_resv_pages;
1812}
1813
1814
1815/*
1816 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1817 * are used by the huge page allocation routines to manage reservations.
1818 *
1819 * vma_needs_reservation is called to determine if the huge page at addr
1820 * within the vma has an associated reservation.  If a reservation is
1821 * needed, the value 1 is returned.  The caller is then responsible for
1822 * managing the global reservation and subpool usage counts.  After
1823 * the huge page has been allocated, vma_commit_reservation is called
1824 * to add the page to the reservation map.  If the page allocation fails,
1825 * the reservation must be ended instead of committed.  vma_end_reservation
1826 * is called in such cases.
1827 *
1828 * In the normal case, vma_commit_reservation returns the same value
1829 * as the preceding vma_needs_reservation call.  The only time this
1830 * is not the case is if a reserve map was changed between calls.  It
1831 * is the responsibility of the caller to notice the difference and
1832 * take appropriate action.
1833 *
1834 * vma_add_reservation is used in error paths where a reservation must
1835 * be restored when a newly allocated huge page must be freed.  It is
1836 * to be called after calling vma_needs_reservation to determine if a
1837 * reservation exists.
1838 */
1839enum vma_resv_mode {
1840        VMA_NEEDS_RESV,
1841        VMA_COMMIT_RESV,
1842        VMA_END_RESV,
1843        VMA_ADD_RESV,
1844};
1845static long __vma_reservation_common(struct hstate *h,
1846                                struct vm_area_struct *vma, unsigned long addr,
1847                                enum vma_resv_mode mode)
1848{
1849        struct resv_map *resv;
1850        pgoff_t idx;
1851        long ret;
1852
1853        resv = vma_resv_map(vma);
1854        if (!resv)
1855                return 1;
1856
1857        idx = vma_hugecache_offset(h, vma, addr);
1858        switch (mode) {
1859        case VMA_NEEDS_RESV:
1860                ret = region_chg(resv, idx, idx + 1);
1861                break;
1862        case VMA_COMMIT_RESV:
1863                ret = region_add(resv, idx, idx + 1);
1864                break;
1865        case VMA_END_RESV:
1866                region_abort(resv, idx, idx + 1);
1867                ret = 0;
1868                break;
1869        case VMA_ADD_RESV:
1870                if (vma->vm_flags & VM_MAYSHARE)
1871                        ret = region_add(resv, idx, idx + 1);
1872                else {
1873                        region_abort(resv, idx, idx + 1);
1874                        ret = region_del(resv, idx, idx + 1);
1875                }
1876                break;
1877        default:
1878                BUG();
1879        }
1880
1881        if (vma->vm_flags & VM_MAYSHARE)
1882                return ret;
1883        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1884                /*
1885                 * In most cases, reserves always exist for private mappings.
1886                 * However, a file associated with mapping could have been
1887                 * hole punched or truncated after reserves were consumed.
1888                 * As subsequent fault on such a range will not use reserves.
1889                 * Subtle - The reserve map for private mappings has the
1890                 * opposite meaning than that of shared mappings.  If NO
1891                 * entry is in the reserve map, it means a reservation exists.
1892                 * If an entry exists in the reserve map, it means the
1893                 * reservation has already been consumed.  As a result, the
1894                 * return value of this routine is the opposite of the
1895                 * value returned from reserve map manipulation routines above.
1896                 */
1897                if (ret)
1898                        return 0;
1899                else
1900                        return 1;
1901        }
1902        else
1903                return ret < 0 ? ret : 0;
1904}
1905
1906static long vma_needs_reservation(struct hstate *h,
1907                        struct vm_area_struct *vma, unsigned long addr)
1908{
1909        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1910}
1911
1912static long vma_commit_reservation(struct hstate *h,
1913                        struct vm_area_struct *vma, unsigned long addr)
1914{
1915        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1916}
1917
1918static void vma_end_reservation(struct hstate *h,
1919                        struct vm_area_struct *vma, unsigned long addr)
1920{
1921        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1922}
1923
1924static long vma_add_reservation(struct hstate *h,
1925                        struct vm_area_struct *vma, unsigned long addr)
1926{
1927        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1928}
1929
1930/*
1931 * This routine is called to restore a reservation on error paths.  In the
1932 * specific error paths, a huge page was allocated (via alloc_huge_page)
1933 * and is about to be freed.  If a reservation for the page existed,
1934 * alloc_huge_page would have consumed the reservation and set PagePrivate
1935 * in the newly allocated page.  When the page is freed via free_huge_page,
1936 * the global reservation count will be incremented if PagePrivate is set.
1937 * However, free_huge_page can not adjust the reserve map.  Adjust the
1938 * reserve map here to be consistent with global reserve count adjustments
1939 * to be made by free_huge_page.
1940 */
1941static void restore_reserve_on_error(struct hstate *h,
1942                        struct vm_area_struct *vma, unsigned long address,
1943                        struct page *page)
1944{
1945        if (unlikely(PagePrivate(page))) {
1946                long rc = vma_needs_reservation(h, vma, address);
1947
1948                if (unlikely(rc < 0)) {
1949                        /*
1950                         * Rare out of memory condition in reserve map
1951                         * manipulation.  Clear PagePrivate so that
1952                         * global reserve count will not be incremented
1953                         * by free_huge_page.  This will make it appear
1954                         * as though the reservation for this page was
1955                         * consumed.  This may prevent the task from
1956                         * faulting in the page at a later time.  This
1957                         * is better than inconsistent global huge page
1958                         * accounting of reserve counts.
1959                         */
1960                        ClearPagePrivate(page);
1961                } else if (rc) {
1962                        rc = vma_add_reservation(h, vma, address);
1963                        if (unlikely(rc < 0))
1964                                /*
1965                                 * See above comment about rare out of
1966                                 * memory condition.
1967                                 */
1968                                ClearPagePrivate(page);
1969                } else
1970                        vma_end_reservation(h, vma, address);
1971        }
1972}
1973
1974struct page *alloc_huge_page(struct vm_area_struct *vma,
1975                                    unsigned long addr, int avoid_reserve)
1976{
1977        struct hugepage_subpool *spool = subpool_vma(vma);
1978        struct hstate *h = hstate_vma(vma);
1979        struct page *page;
1980        long map_chg, map_commit;
1981        long gbl_chg;
1982        int ret, idx;
1983        struct hugetlb_cgroup *h_cg;
1984
1985        idx = hstate_index(h);
1986        /*
1987         * Examine the region/reserve map to determine if the process
1988         * has a reservation for the page to be allocated.  A return
1989         * code of zero indicates a reservation exists (no change).
1990         */
1991        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1992        if (map_chg < 0)
1993                return ERR_PTR(-ENOMEM);
1994
1995        /*
1996         * Processes that did not create the mapping will have no
1997         * reserves as indicated by the region/reserve map. Check
1998         * that the allocation will not exceed the subpool limit.
1999         * Allocations for MAP_NORESERVE mappings also need to be
2000         * checked against any subpool limit.
2001         */
2002        if (map_chg || avoid_reserve) {
2003                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2004                if (gbl_chg < 0) {
2005                        vma_end_reservation(h, vma, addr);
2006                        return ERR_PTR(-ENOSPC);
2007                }
2008
2009                /*
2010                 * Even though there was no reservation in the region/reserve
2011                 * map, there could be reservations associated with the
2012                 * subpool that can be used.  This would be indicated if the
2013                 * return value of hugepage_subpool_get_pages() is zero.
2014                 * However, if avoid_reserve is specified we still avoid even
2015                 * the subpool reservations.
2016                 */
2017                if (avoid_reserve)
2018                        gbl_chg = 1;
2019        }
2020
2021        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2022        if (ret)
2023                goto out_subpool_put;
2024
2025        spin_lock(&hugetlb_lock);
2026        /*
2027         * glb_chg is passed to indicate whether or not a page must be taken
2028         * from the global free pool (global change).  gbl_chg == 0 indicates
2029         * a reservation exists for the allocation.
2030         */
2031        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2032        if (!page) {
2033                spin_unlock(&hugetlb_lock);
2034                page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2035                if (!page)
2036                        goto out_uncharge_cgroup;
2037                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2038                        SetPagePrivate(page);
2039                        h->resv_huge_pages--;
2040                }
2041                spin_lock(&hugetlb_lock);
2042                list_move(&page->lru, &h->hugepage_activelist);
2043                /* Fall through */
2044        }
2045        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2046        spin_unlock(&hugetlb_lock);
2047
2048        set_page_private(page, (unsigned long)spool);
2049
2050        map_commit = vma_commit_reservation(h, vma, addr);
2051        if (unlikely(map_chg > map_commit)) {
2052                /*
2053                 * The page was added to the reservation map between
2054                 * vma_needs_reservation and vma_commit_reservation.
2055                 * This indicates a race with hugetlb_reserve_pages.
2056                 * Adjust for the subpool count incremented above AND
2057                 * in hugetlb_reserve_pages for the same page.  Also,
2058                 * the reservation count added in hugetlb_reserve_pages
2059                 * no longer applies.
2060                 */
2061                long rsv_adjust;
2062
2063                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2064                hugetlb_acct_memory(h, -rsv_adjust);
2065        }
2066        return page;
2067
2068out_uncharge_cgroup:
2069        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2070out_subpool_put:
2071        if (map_chg || avoid_reserve)
2072                hugepage_subpool_put_pages(spool, 1);
2073        vma_end_reservation(h, vma, addr);
2074        return ERR_PTR(-ENOSPC);
2075}
2076
2077/*
2078 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2079 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2080 * where no ERR_VALUE is expected to be returned.
2081 */
2082struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2083                                unsigned long addr, int avoid_reserve)
2084{
2085        struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2086        if (IS_ERR(page))
2087                page = NULL;
2088        return page;
2089}
2090
2091int alloc_bootmem_huge_page(struct hstate *h)
2092        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2093int __alloc_bootmem_huge_page(struct hstate *h)
2094{
2095        struct huge_bootmem_page *m;
2096        int nr_nodes, node;
2097
2098        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2099                void *addr;
2100
2101                addr = memblock_virt_alloc_try_nid_nopanic(
2102                                huge_page_size(h), huge_page_size(h),
2103                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2104                if (addr) {
2105                        /*
2106                         * Use the beginning of the huge page to store the
2107                         * huge_bootmem_page struct (until gather_bootmem
2108                         * puts them into the mem_map).
2109                         */
2110                        m = addr;
2111                        goto found;
2112                }
2113        }
2114        return 0;
2115
2116found:
2117        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2118        /* Put them into a private list first because mem_map is not up yet */
2119        list_add(&m->list, &huge_boot_pages);
2120        m->hstate = h;
2121        return 1;
2122}
2123
2124static void __init prep_compound_huge_page(struct page *page,
2125                unsigned int order)
2126{
2127        if (unlikely(order > (MAX_ORDER - 1)))
2128                prep_compound_gigantic_page(page, order);
2129        else
2130                prep_compound_page(page, order);
2131}
2132
2133/* Put bootmem huge pages into the standard lists after mem_map is up */
2134static void __init gather_bootmem_prealloc(void)
2135{
2136        struct huge_bootmem_page *m;
2137
2138        list_for_each_entry(m, &huge_boot_pages, list) {
2139                struct hstate *h = m->hstate;
2140                struct page *page;
2141
2142#ifdef CONFIG_HIGHMEM
2143                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2144                memblock_free_late(__pa(m),
2145                                   sizeof(struct huge_bootmem_page));
2146#else
2147                page = virt_to_page(m);
2148#endif
2149                WARN_ON(page_count(page) != 1);
2150                prep_compound_huge_page(page, h->order);
2151                WARN_ON(PageReserved(page));
2152                prep_new_huge_page(h, page, page_to_nid(page));
2153                /*
2154                 * If we had gigantic hugepages allocated at boot time, we need
2155                 * to restore the 'stolen' pages to totalram_pages in order to
2156                 * fix confusing memory reports from free(1) and another
2157                 * side-effects, like CommitLimit going negative.
2158                 */
2159                if (hstate_is_gigantic(h))
2160                        adjust_managed_page_count(page, 1 << h->order);
2161        }
2162}
2163
2164static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2165{
2166        unsigned long i;
2167
2168        for (i = 0; i < h->max_huge_pages; ++i) {
2169                if (hstate_is_gigantic(h)) {
2170                        if (!alloc_bootmem_huge_page(h))
2171                                break;
2172                } else if (!alloc_fresh_huge_page(h,
2173                                         &node_states[N_MEMORY]))
2174                        break;
2175                cond_resched();
2176        }
2177        if (i < h->max_huge_pages) {
2178                char buf[32];
2179
2180                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2182                        h->max_huge_pages, buf, i);
2183                h->max_huge_pages = i;
2184        }
2185}
2186
2187static void __init hugetlb_init_hstates(void)
2188{
2189        struct hstate *h;
2190
2191        for_each_hstate(h) {
2192                if (minimum_order > huge_page_order(h))
2193                        minimum_order = huge_page_order(h);
2194
2195                /* oversize hugepages were init'ed in early boot */
2196                if (!hstate_is_gigantic(h))
2197                        hugetlb_hstate_alloc_pages(h);
2198        }
2199        VM_BUG_ON(minimum_order == UINT_MAX);
2200}
2201
2202static void __init report_hugepages(void)
2203{
2204        struct hstate *h;
2205
2206        for_each_hstate(h) {
2207                char buf[32];
2208
2209                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211                        buf, h->free_huge_pages);
2212        }
2213}
2214
2215#ifdef CONFIG_HIGHMEM
2216static void try_to_free_low(struct hstate *h, unsigned long count,
2217                                                nodemask_t *nodes_allowed)
2218{
2219        int i;
2220
2221        if (hstate_is_gigantic(h))
2222                return;
2223
2224        for_each_node_mask(i, *nodes_allowed) {
2225                struct page *page, *next;
2226                struct list_head *freel = &h->hugepage_freelists[i];
2227                list_for_each_entry_safe(page, next, freel, lru) {
2228                        if (count >= h->nr_huge_pages)
2229                                return;
2230                        if (PageHighMem(page))
2231                                continue;
2232                        list_del(&page->lru);
2233                        update_and_free_page(h, page);
2234                        h->free_huge_pages--;
2235                        h->free_huge_pages_node[page_to_nid(page)]--;
2236                }
2237        }
2238}
2239#else
2240static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241                                                nodemask_t *nodes_allowed)
2242{
2243}
2244#endif
2245
2246/*
2247 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2250 */
2251static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252                                int delta)
2253{
2254        int nr_nodes, node;
2255
2256        VM_BUG_ON(delta != -1 && delta != 1);
2257
2258        if (delta < 0) {
2259                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260                        if (h->surplus_huge_pages_node[node])
2261                                goto found;
2262                }
2263        } else {
2264                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265                        if (h->surplus_huge_pages_node[node] <
2266                                        h->nr_huge_pages_node[node])
2267                                goto found;
2268                }
2269        }
2270        return 0;
2271
2272found:
2273        h->surplus_huge_pages += delta;
2274        h->surplus_huge_pages_node[node] += delta;
2275        return 1;
2276}
2277
2278#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280                                                nodemask_t *nodes_allowed)
2281{
2282        unsigned long min_count, ret;
2283
2284        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285                return h->max_huge_pages;
2286
2287        /*
2288         * Increase the pool size
2289         * First take pages out of surplus state.  Then make up the
2290         * remaining difference by allocating fresh huge pages.
2291         *
2292         * We might race with __alloc_buddy_huge_page() here and be unable
2293         * to convert a surplus huge page to a normal huge page. That is
2294         * not critical, though, it just means the overall size of the
2295         * pool might be one hugepage larger than it needs to be, but
2296         * within all the constraints specified by the sysctls.
2297         */
2298        spin_lock(&hugetlb_lock);
2299        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301                        break;
2302        }
2303
2304        while (count > persistent_huge_pages(h)) {
2305                /*
2306                 * If this allocation races such that we no longer need the
2307                 * page, free_huge_page will handle it by freeing the page
2308                 * and reducing the surplus.
2309                 */
2310                spin_unlock(&hugetlb_lock);
2311
2312                /* yield cpu to avoid soft lockup */
2313                cond_resched();
2314
2315                if (hstate_is_gigantic(h))
2316                        ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2317                else
2318                        ret = alloc_fresh_huge_page(h, nodes_allowed);
2319                spin_lock(&hugetlb_lock);
2320                if (!ret)
2321                        goto out;
2322
2323                /* Bail for signals. Probably ctrl-c from user */
2324                if (signal_pending(current))
2325                        goto out;
2326        }
2327
2328        /*
2329         * Decrease the pool size
2330         * First return free pages to the buddy allocator (being careful
2331         * to keep enough around to satisfy reservations).  Then place
2332         * pages into surplus state as needed so the pool will shrink
2333         * to the desired size as pages become free.
2334         *
2335         * By placing pages into the surplus state independent of the
2336         * overcommit value, we are allowing the surplus pool size to
2337         * exceed overcommit. There are few sane options here. Since
2338         * __alloc_buddy_huge_page() is checking the global counter,
2339         * though, we'll note that we're not allowed to exceed surplus
2340         * and won't grow the pool anywhere else. Not until one of the
2341         * sysctls are changed, or the surplus pages go out of use.
2342         */
2343        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2344        min_count = max(count, min_count);
2345        try_to_free_low(h, min_count, nodes_allowed);
2346        while (min_count < persistent_huge_pages(h)) {
2347                if (!free_pool_huge_page(h, nodes_allowed, 0))
2348                        break;
2349                cond_resched_lock(&hugetlb_lock);
2350        }
2351        while (count < persistent_huge_pages(h)) {
2352                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2353                        break;
2354        }
2355out:
2356        ret = persistent_huge_pages(h);
2357        spin_unlock(&hugetlb_lock);
2358        return ret;
2359}
2360
2361#define HSTATE_ATTR_RO(_name) \
2362        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2363
2364#define HSTATE_ATTR(_name) \
2365        static struct kobj_attribute _name##_attr = \
2366                __ATTR(_name, 0644, _name##_show, _name##_store)
2367
2368static struct kobject *hugepages_kobj;
2369static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2370
2371static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2372
2373static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2374{
2375        int i;
2376
2377        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2378                if (hstate_kobjs[i] == kobj) {
2379                        if (nidp)
2380                                *nidp = NUMA_NO_NODE;
2381                        return &hstates[i];
2382                }
2383
2384        return kobj_to_node_hstate(kobj, nidp);
2385}
2386
2387static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2388                                        struct kobj_attribute *attr, char *buf)
2389{
2390        struct hstate *h;
2391        unsigned long nr_huge_pages;
2392        int nid;
2393
2394        h = kobj_to_hstate(kobj, &nid);
2395        if (nid == NUMA_NO_NODE)
2396                nr_huge_pages = h->nr_huge_pages;
2397        else
2398                nr_huge_pages = h->nr_huge_pages_node[nid];
2399
2400        return sprintf(buf, "%lu\n", nr_huge_pages);
2401}
2402
2403static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2404                                           struct hstate *h, int nid,
2405                                           unsigned long count, size_t len)
2406{
2407        int err;
2408        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2409
2410        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2411                err = -EINVAL;
2412                goto out;
2413        }
2414
2415        if (nid == NUMA_NO_NODE) {
2416                /*
2417                 * global hstate attribute
2418                 */
2419                if (!(obey_mempolicy &&
2420                                init_nodemask_of_mempolicy(nodes_allowed))) {
2421                        NODEMASK_FREE(nodes_allowed);
2422                        nodes_allowed = &node_states[N_MEMORY];
2423                }
2424        } else if (nodes_allowed) {
2425                /*
2426                 * per node hstate attribute: adjust count to global,
2427                 * but restrict alloc/free to the specified node.
2428                 */
2429                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2430                init_nodemask_of_node(nodes_allowed, nid);
2431        } else
2432                nodes_allowed = &node_states[N_MEMORY];
2433
2434        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2435
2436        if (nodes_allowed != &node_states[N_MEMORY])
2437                NODEMASK_FREE(nodes_allowed);
2438
2439        return len;
2440out:
2441        NODEMASK_FREE(nodes_allowed);
2442        return err;
2443}
2444
2445static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2446                                         struct kobject *kobj, const char *buf,
2447                                         size_t len)
2448{
2449        struct hstate *h;
2450        unsigned long count;
2451        int nid;
2452        int err;
2453
2454        err = kstrtoul(buf, 10, &count);
2455        if (err)
2456                return err;
2457
2458        h = kobj_to_hstate(kobj, &nid);
2459        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2460}
2461
2462static ssize_t nr_hugepages_show(struct kobject *kobj,
2463                                       struct kobj_attribute *attr, char *buf)
2464{
2465        return nr_hugepages_show_common(kobj, attr, buf);
2466}
2467
2468static ssize_t nr_hugepages_store(struct kobject *kobj,
2469               struct kobj_attribute *attr, const char *buf, size_t len)
2470{
2471        return nr_hugepages_store_common(false, kobj, buf, len);
2472}
2473HSTATE_ATTR(nr_hugepages);
2474
2475#ifdef CONFIG_NUMA
2476
2477/*
2478 * hstate attribute for optionally mempolicy-based constraint on persistent
2479 * huge page alloc/free.
2480 */
2481static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2482                                       struct kobj_attribute *attr, char *buf)
2483{
2484        return nr_hugepages_show_common(kobj, attr, buf);
2485}
2486
2487static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2488               struct kobj_attribute *attr, const char *buf, size_t len)
2489{
2490        return nr_hugepages_store_common(true, kobj, buf, len);
2491}
2492HSTATE_ATTR(nr_hugepages_mempolicy);
2493#endif
2494
2495
2496static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2497                                        struct kobj_attribute *attr, char *buf)
2498{
2499        struct hstate *h = kobj_to_hstate(kobj, NULL);
2500        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2501}
2502
2503static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2504                struct kobj_attribute *attr, const char *buf, size_t count)
2505{
2506        int err;
2507        unsigned long input;
2508        struct hstate *h = kobj_to_hstate(kobj, NULL);
2509
2510        if (hstate_is_gigantic(h))
2511                return -EINVAL;
2512
2513        err = kstrtoul(buf, 10, &input);
2514        if (err)
2515                return err;
2516
2517        spin_lock(&hugetlb_lock);
2518        h->nr_overcommit_huge_pages = input;
2519        spin_unlock(&hugetlb_lock);
2520
2521        return count;
2522}
2523HSTATE_ATTR(nr_overcommit_hugepages);
2524
2525static ssize_t free_hugepages_show(struct kobject *kobj,
2526                                        struct kobj_attribute *attr, char *buf)
2527{
2528        struct hstate *h;
2529        unsigned long free_huge_pages;
2530        int nid;
2531
2532        h = kobj_to_hstate(kobj, &nid);
2533        if (nid == NUMA_NO_NODE)
2534                free_huge_pages = h->free_huge_pages;
2535        else
2536                free_huge_pages = h->free_huge_pages_node[nid];
2537
2538        return sprintf(buf, "%lu\n", free_huge_pages);
2539}
2540HSTATE_ATTR_RO(free_hugepages);
2541
2542static ssize_t resv_hugepages_show(struct kobject *kobj,
2543                                        struct kobj_attribute *attr, char *buf)
2544{
2545        struct hstate *h = kobj_to_hstate(kobj, NULL);
2546        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2547}
2548HSTATE_ATTR_RO(resv_hugepages);
2549
2550static ssize_t surplus_hugepages_show(struct kobject *kobj,
2551                                        struct kobj_attribute *attr, char *buf)
2552{
2553        struct hstate *h;
2554        unsigned long surplus_huge_pages;
2555        int nid;
2556
2557        h = kobj_to_hstate(kobj, &nid);
2558        if (nid == NUMA_NO_NODE)
2559                surplus_huge_pages = h->surplus_huge_pages;
2560        else
2561                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2562
2563        return sprintf(buf, "%lu\n", surplus_huge_pages);
2564}
2565HSTATE_ATTR_RO(surplus_hugepages);
2566
2567static struct attribute *hstate_attrs[] = {
2568        &nr_hugepages_attr.attr,
2569        &nr_overcommit_hugepages_attr.attr,
2570        &free_hugepages_attr.attr,
2571        &resv_hugepages_attr.attr,
2572        &surplus_hugepages_attr.attr,
2573#ifdef CONFIG_NUMA
2574        &nr_hugepages_mempolicy_attr.attr,
2575#endif
2576        NULL,
2577};
2578
2579static const struct attribute_group hstate_attr_group = {
2580        .attrs = hstate_attrs,
2581};
2582
2583static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2584                                    struct kobject **hstate_kobjs,
2585                                    const struct attribute_group *hstate_attr_group)
2586{
2587        int retval;
2588        int hi = hstate_index(h);
2589
2590        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2591        if (!hstate_kobjs[hi])
2592                return -ENOMEM;
2593
2594        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2595        if (retval)
2596                kobject_put(hstate_kobjs[hi]);
2597
2598        return retval;
2599}
2600
2601static void __init hugetlb_sysfs_init(void)
2602{
2603        struct hstate *h;
2604        int err;
2605
2606        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2607        if (!hugepages_kobj)
2608                return;
2609
2610        for_each_hstate(h) {
2611                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2612                                         hstate_kobjs, &hstate_attr_group);
2613                if (err)
2614                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2615        }
2616}
2617
2618#ifdef CONFIG_NUMA
2619
2620/*
2621 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2622 * with node devices in node_devices[] using a parallel array.  The array
2623 * index of a node device or _hstate == node id.
2624 * This is here to avoid any static dependency of the node device driver, in
2625 * the base kernel, on the hugetlb module.
2626 */
2627struct node_hstate {
2628        struct kobject          *hugepages_kobj;
2629        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2630};
2631static struct node_hstate node_hstates[MAX_NUMNODES];
2632
2633/*
2634 * A subset of global hstate attributes for node devices
2635 */
2636static struct attribute *per_node_hstate_attrs[] = {
2637        &nr_hugepages_attr.attr,
2638        &free_hugepages_attr.attr,
2639        &surplus_hugepages_attr.attr,
2640        NULL,
2641};
2642
2643static const struct attribute_group per_node_hstate_attr_group = {
2644        .attrs = per_node_hstate_attrs,
2645};
2646
2647/*
2648 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2649 * Returns node id via non-NULL nidp.
2650 */
2651static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652{
2653        int nid;
2654
2655        for (nid = 0; nid < nr_node_ids; nid++) {
2656                struct node_hstate *nhs = &node_hstates[nid];
2657                int i;
2658                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2659                        if (nhs->hstate_kobjs[i] == kobj) {
2660                                if (nidp)
2661                                        *nidp = nid;
2662                                return &hstates[i];
2663                        }
2664        }
2665
2666        BUG();
2667        return NULL;
2668}
2669
2670/*
2671 * Unregister hstate attributes from a single node device.
2672 * No-op if no hstate attributes attached.
2673 */
2674static void hugetlb_unregister_node(struct node *node)
2675{
2676        struct hstate *h;
2677        struct node_hstate *nhs = &node_hstates[node->dev.id];
2678
2679        if (!nhs->hugepages_kobj)
2680                return;         /* no hstate attributes */
2681
2682        for_each_hstate(h) {
2683                int idx = hstate_index(h);
2684                if (nhs->hstate_kobjs[idx]) {
2685                        kobject_put(nhs->hstate_kobjs[idx]);
2686                        nhs->hstate_kobjs[idx] = NULL;
2687                }
2688        }
2689
2690        kobject_put(nhs->hugepages_kobj);
2691        nhs->hugepages_kobj = NULL;
2692}
2693
2694
2695/*
2696 * Register hstate attributes for a single node device.
2697 * No-op if attributes already registered.
2698 */
2699static void hugetlb_register_node(struct node *node)
2700{
2701        struct hstate *h;
2702        struct node_hstate *nhs = &node_hstates[node->dev.id];
2703        int err;
2704
2705        if (nhs->hugepages_kobj)
2706                return;         /* already allocated */
2707
2708        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2709                                                        &node->dev.kobj);
2710        if (!nhs->hugepages_kobj)
2711                return;
2712
2713        for_each_hstate(h) {
2714                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2715                                                nhs->hstate_kobjs,
2716                                                &per_node_hstate_attr_group);
2717                if (err) {
2718                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2719                                h->name, node->dev.id);
2720                        hugetlb_unregister_node(node);
2721                        break;
2722                }
2723        }
2724}
2725
2726/*
2727 * hugetlb init time:  register hstate attributes for all registered node
2728 * devices of nodes that have memory.  All on-line nodes should have
2729 * registered their associated device by this time.
2730 */
2731static void __init hugetlb_register_all_nodes(void)
2732{
2733        int nid;
2734
2735        for_each_node_state(nid, N_MEMORY) {
2736                struct node *node = node_devices[nid];
2737                if (node->dev.id == nid)
2738                        hugetlb_register_node(node);
2739        }
2740
2741        /*
2742         * Let the node device driver know we're here so it can
2743         * [un]register hstate attributes on node hotplug.
2744         */
2745        register_hugetlbfs_with_node(hugetlb_register_node,
2746                                     hugetlb_unregister_node);
2747}
2748#else   /* !CONFIG_NUMA */
2749
2750static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2751{
2752        BUG();
2753        if (nidp)
2754                *nidp = -1;
2755        return NULL;
2756}
2757
2758static void hugetlb_register_all_nodes(void) { }
2759
2760#endif
2761
2762static int __init hugetlb_init(void)
2763{
2764        int i;
2765
2766        if (!hugepages_supported())
2767                return 0;
2768
2769        if (!size_to_hstate(default_hstate_size)) {
2770                if (default_hstate_size != 0) {
2771                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2772                               default_hstate_size, HPAGE_SIZE);
2773                }
2774
2775                default_hstate_size = HPAGE_SIZE;
2776                if (!size_to_hstate(default_hstate_size))
2777                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2778        }
2779        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2780        if (default_hstate_max_huge_pages) {
2781                if (!default_hstate.max_huge_pages)
2782                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2783        }
2784
2785        hugetlb_init_hstates();
2786        gather_bootmem_prealloc();
2787        report_hugepages();
2788
2789        hugetlb_sysfs_init();
2790        hugetlb_register_all_nodes();
2791        hugetlb_cgroup_file_init();
2792
2793#ifdef CONFIG_SMP
2794        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2795#else
2796        num_fault_mutexes = 1;
2797#endif
2798        hugetlb_fault_mutex_table =
2799                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2800        BUG_ON(!hugetlb_fault_mutex_table);
2801
2802        for (i = 0; i < num_fault_mutexes; i++)
2803                mutex_init(&hugetlb_fault_mutex_table[i]);
2804        return 0;
2805}
2806subsys_initcall(hugetlb_init);
2807
2808/* Should be called on processing a hugepagesz=... option */
2809void __init hugetlb_bad_size(void)
2810{
2811        parsed_valid_hugepagesz = false;
2812}
2813
2814void __init hugetlb_add_hstate(unsigned int order)
2815{
2816        struct hstate *h;
2817        unsigned long i;
2818
2819        if (size_to_hstate(PAGE_SIZE << order)) {
2820                pr_warn("hugepagesz= specified twice, ignoring\n");
2821                return;
2822        }
2823        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2824        BUG_ON(order == 0);
2825        h = &hstates[hugetlb_max_hstate++];
2826        h->order = order;
2827        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2828        h->nr_huge_pages = 0;
2829        h->free_huge_pages = 0;
2830        for (i = 0; i < MAX_NUMNODES; ++i)
2831                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2832        INIT_LIST_HEAD(&h->hugepage_activelist);
2833        h->next_nid_to_alloc = first_memory_node;
2834        h->next_nid_to_free = first_memory_node;
2835        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2836                                        huge_page_size(h)/1024);
2837
2838        parsed_hstate = h;
2839}
2840
2841static int __init hugetlb_nrpages_setup(char *s)
2842{
2843        unsigned long *mhp;
2844        static unsigned long *last_mhp;
2845
2846        if (!parsed_valid_hugepagesz) {
2847                pr_warn("hugepages = %s preceded by "
2848                        "an unsupported hugepagesz, ignoring\n", s);
2849                parsed_valid_hugepagesz = true;
2850                return 1;
2851        }
2852        /*
2853         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2854         * so this hugepages= parameter goes to the "default hstate".
2855         */
2856        else if (!hugetlb_max_hstate)
2857                mhp = &default_hstate_max_huge_pages;
2858        else
2859                mhp = &parsed_hstate->max_huge_pages;
2860
2861        if (mhp == last_mhp) {
2862                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863                return 1;
2864        }
2865
2866        if (sscanf(s, "%lu", mhp) <= 0)
2867                *mhp = 0;
2868
2869        /*
2870         * Global state is always initialized later in hugetlb_init.
2871         * But we need to allocate >= MAX_ORDER hstates here early to still
2872         * use the bootmem allocator.
2873         */
2874        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2875                hugetlb_hstate_alloc_pages(parsed_hstate);
2876
2877        last_mhp = mhp;
2878
2879        return 1;
2880}
2881__setup("hugepages=", hugetlb_nrpages_setup);
2882
2883static int __init hugetlb_default_setup(char *s)
2884{
2885        default_hstate_size = memparse(s, &s);
2886        return 1;
2887}
2888__setup("default_hugepagesz=", hugetlb_default_setup);
2889
2890static unsigned int cpuset_mems_nr(unsigned int *array)
2891{
2892        int node;
2893        unsigned int nr = 0;
2894
2895        for_each_node_mask(node, cpuset_current_mems_allowed)
2896                nr += array[node];
2897
2898        return nr;
2899}
2900
2901#ifdef CONFIG_SYSCTL
2902static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2903                         struct ctl_table *table, int write,
2904                         void __user *buffer, size_t *length, loff_t *ppos)
2905{
2906        struct hstate *h = &default_hstate;
2907        unsigned long tmp = h->max_huge_pages;
2908        int ret;
2909
2910        if (!hugepages_supported())
2911                return -EOPNOTSUPP;
2912
2913        table->data = &tmp;
2914        table->maxlen = sizeof(unsigned long);
2915        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2916        if (ret)
2917                goto out;
2918
2919        if (write)
2920                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2921                                                  NUMA_NO_NODE, tmp, *length);
2922out:
2923        return ret;
2924}
2925
2926int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2927                          void __user *buffer, size_t *length, loff_t *ppos)
2928{
2929
2930        return hugetlb_sysctl_handler_common(false, table, write,
2931                                                        buffer, length, ppos);
2932}
2933
2934#ifdef CONFIG_NUMA
2935int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2936                          void __user *buffer, size_t *length, loff_t *ppos)
2937{
2938        return hugetlb_sysctl_handler_common(true, table, write,
2939                                                        buffer, length, ppos);
2940}
2941#endif /* CONFIG_NUMA */
2942
2943int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2944                        void __user *buffer,
2945                        size_t *length, loff_t *ppos)
2946{
2947        struct hstate *h = &default_hstate;
2948        unsigned long tmp;
2949        int ret;
2950
2951        if (!hugepages_supported())
2952                return -EOPNOTSUPP;
2953
2954        tmp = h->nr_overcommit_huge_pages;
2955
2956        if (write && hstate_is_gigantic(h))
2957                return -EINVAL;
2958
2959        table->data = &tmp;
2960        table->maxlen = sizeof(unsigned long);
2961        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962        if (ret)
2963                goto out;
2964
2965        if (write) {
2966                spin_lock(&hugetlb_lock);
2967                h->nr_overcommit_huge_pages = tmp;
2968                spin_unlock(&hugetlb_lock);
2969        }
2970out:
2971        return ret;
2972}
2973
2974#endif /* CONFIG_SYSCTL */
2975
2976void hugetlb_report_meminfo(struct seq_file *m)
2977{
2978        struct hstate *h = &default_hstate;
2979        if (!hugepages_supported())
2980                return;
2981        seq_printf(m,
2982                        "HugePages_Total:   %5lu\n"
2983                        "HugePages_Free:    %5lu\n"
2984                        "HugePages_Rsvd:    %5lu\n"
2985                        "HugePages_Surp:    %5lu\n"
2986                        "Hugepagesize:   %8lu kB\n",
2987                        h->nr_huge_pages,
2988                        h->free_huge_pages,
2989                        h->resv_huge_pages,
2990                        h->surplus_huge_pages,
2991                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2992}
2993
2994int hugetlb_report_node_meminfo(int nid, char *buf)
2995{
2996        struct hstate *h = &default_hstate;
2997        if (!hugepages_supported())
2998                return 0;
2999        return sprintf(buf,
3000                "Node %d HugePages_Total: %5u\n"
3001                "Node %d HugePages_Free:  %5u\n"
3002                "Node %d HugePages_Surp:  %5u\n",
3003                nid, h->nr_huge_pages_node[nid],
3004                nid, h->free_huge_pages_node[nid],
3005                nid, h->surplus_huge_pages_node[nid]);
3006}
3007
3008void hugetlb_show_meminfo(void)
3009{
3010        struct hstate *h;
3011        int nid;
3012
3013        if (!hugepages_supported())
3014                return;
3015
3016        for_each_node_state(nid, N_MEMORY)
3017                for_each_hstate(h)
3018                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3019                                nid,
3020                                h->nr_huge_pages_node[nid],
3021                                h->free_huge_pages_node[nid],
3022                                h->surplus_huge_pages_node[nid],
3023                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3024}
3025
3026void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3027{
3028        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3029                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3030}
3031
3032/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3033unsigned long hugetlb_total_pages(void)
3034{
3035        struct hstate *h;
3036        unsigned long nr_total_pages = 0;
3037
3038        for_each_hstate(h)
3039                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3040        return nr_total_pages;
3041}
3042
3043static int hugetlb_acct_memory(struct hstate *h, long delta)
3044{
3045        int ret = -ENOMEM;
3046
3047        spin_lock(&hugetlb_lock);
3048        /*
3049         * When cpuset is configured, it breaks the strict hugetlb page
3050         * reservation as the accounting is done on a global variable. Such
3051         * reservation is completely rubbish in the presence of cpuset because
3052         * the reservation is not checked against page availability for the
3053         * current cpuset. Application can still potentially OOM'ed by kernel
3054         * with lack of free htlb page in cpuset that the task is in.
3055         * Attempt to enforce strict accounting with cpuset is almost
3056         * impossible (or too ugly) because cpuset is too fluid that
3057         * task or memory node can be dynamically moved between cpusets.
3058         *
3059         * The change of semantics for shared hugetlb mapping with cpuset is
3060         * undesirable. However, in order to preserve some of the semantics,
3061         * we fall back to check against current free page availability as
3062         * a best attempt and hopefully to minimize the impact of changing
3063         * semantics that cpuset has.
3064         */
3065        if (delta > 0) {
3066                if (gather_surplus_pages(h, delta) < 0)
3067                        goto out;
3068
3069                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3070                        return_unused_surplus_pages(h, delta);
3071                        goto out;
3072                }
3073        }
3074
3075        ret = 0;
3076        if (delta < 0)
3077                return_unused_surplus_pages(h, (unsigned long) -delta);
3078
3079out:
3080        spin_unlock(&hugetlb_lock);
3081        return ret;
3082}
3083
3084static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3085{
3086        struct resv_map *resv = vma_resv_map(vma);
3087
3088        /*
3089         * This new VMA should share its siblings reservation map if present.
3090         * The VMA will only ever have a valid reservation map pointer where
3091         * it is being copied for another still existing VMA.  As that VMA
3092         * has a reference to the reservation map it cannot disappear until
3093         * after this open call completes.  It is therefore safe to take a
3094         * new reference here without additional locking.
3095         */
3096        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3097                kref_get(&resv->refs);
3098}
3099
3100static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3101{
3102        struct hstate *h = hstate_vma(vma);
3103        struct resv_map *resv = vma_resv_map(vma);
3104        struct hugepage_subpool *spool = subpool_vma(vma);
3105        unsigned long reserve, start, end;
3106        long gbl_reserve;
3107
3108        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109                return;
3110
3111        start = vma_hugecache_offset(h, vma, vma->vm_start);
3112        end = vma_hugecache_offset(h, vma, vma->vm_end);
3113
3114        reserve = (end - start) - region_count(resv, start, end);
3115
3116        kref_put(&resv->refs, resv_map_release);
3117
3118        if (reserve) {
3119                /*
3120                 * Decrement reserve counts.  The global reserve count may be
3121                 * adjusted if the subpool has a minimum size.
3122                 */
3123                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3124                hugetlb_acct_memory(h, -gbl_reserve);
3125        }
3126}
3127
3128/*
3129 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3130 * handle_mm_fault() to try to instantiate regular-sized pages in the
3131 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3132 * this far.
3133 */
3134static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3135{
3136        BUG();
3137        return 0;
3138}
3139
3140const struct vm_operations_struct hugetlb_vm_ops = {
3141        .fault = hugetlb_vm_op_fault,
3142        .open = hugetlb_vm_op_open,
3143        .close = hugetlb_vm_op_close,
3144};
3145
3146static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3147                                int writable)
3148{
3149        pte_t entry;
3150
3151        if (writable) {
3152                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3153                                         vma->vm_page_prot)));
3154        } else {
3155                entry = huge_pte_wrprotect(mk_huge_pte(page,
3156                                           vma->vm_page_prot));
3157        }
3158        entry = pte_mkyoung(entry);
3159        entry = pte_mkhuge(entry);
3160        entry = arch_make_huge_pte(entry, vma, page, writable);
3161
3162        return entry;
3163}
3164
3165static void set_huge_ptep_writable(struct vm_area_struct *vma,
3166                                   unsigned long address, pte_t *ptep)
3167{
3168        pte_t entry;
3169
3170        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3171        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3172                update_mmu_cache(vma, address, ptep);
3173}
3174
3175bool is_hugetlb_entry_migration(pte_t pte)
3176{
3177        swp_entry_t swp;
3178
3179        if (huge_pte_none(pte) || pte_present(pte))
3180                return false;
3181        swp = pte_to_swp_entry(pte);
3182        if (non_swap_entry(swp) && is_migration_entry(swp))
3183                return true;
3184        else
3185                return false;
3186}
3187
3188static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3189{
3190        swp_entry_t swp;
3191
3192        if (huge_pte_none(pte) || pte_present(pte))
3193                return 0;
3194        swp = pte_to_swp_entry(pte);
3195        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3196                return 1;
3197        else
3198                return 0;
3199}
3200
3201int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3202                            struct vm_area_struct *vma)
3203{
3204        pte_t *src_pte, *dst_pte, entry;
3205        struct page *ptepage;
3206        unsigned long addr;
3207        int cow;
3208        struct hstate *h = hstate_vma(vma);
3209        unsigned long sz = huge_page_size(h);
3210        unsigned long mmun_start;       /* For mmu_notifiers */
3211        unsigned long mmun_end;         /* For mmu_notifiers */
3212        int ret = 0;
3213
3214        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3215
3216        mmun_start = vma->vm_start;
3217        mmun_end = vma->vm_end;
3218        if (cow)
3219                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3220
3221        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3222                spinlock_t *src_ptl, *dst_ptl;
3223                src_pte = huge_pte_offset(src, addr, sz);
3224                if (!src_pte)
3225                        continue;
3226                dst_pte = huge_pte_alloc(dst, addr, sz);
3227                if (!dst_pte) {
3228                        ret = -ENOMEM;
3229                        break;
3230                }
3231
3232                /* If the pagetables are shared don't copy or take references */
3233                if (dst_pte == src_pte)
3234                        continue;
3235
3236                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3237                src_ptl = huge_pte_lockptr(h, src, src_pte);
3238                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3239                entry = huge_ptep_get(src_pte);
3240                if (huge_pte_none(entry)) { /* skip none entry */
3241                        ;
3242                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3243                                    is_hugetlb_entry_hwpoisoned(entry))) {
3244                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3245
3246                        if (is_write_migration_entry(swp_entry) && cow) {
3247                                /*
3248                                 * COW mappings require pages in both
3249                                 * parent and child to be set to read.
3250                                 */
3251                                make_migration_entry_read(&swp_entry);
3252                                entry = swp_entry_to_pte(swp_entry);
3253                                set_huge_swap_pte_at(src, addr, src_pte,
3254                                                     entry, sz);
3255                        }
3256                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3257                } else {
3258                        if (cow) {
3259                                huge_ptep_set_wrprotect(src, addr, src_pte);
3260                                mmu_notifier_invalidate_range(src, mmun_start,
3261                                                                   mmun_end);
3262                        }
3263                        entry = huge_ptep_get(src_pte);
3264                        ptepage = pte_page(entry);
3265                        get_page(ptepage);
3266                        page_dup_rmap(ptepage, true);
3267                        set_huge_pte_at(dst, addr, dst_pte, entry);
3268                        hugetlb_count_add(pages_per_huge_page(h), dst);
3269                }
3270                spin_unlock(src_ptl);
3271                spin_unlock(dst_ptl);
3272        }
3273
3274        if (cow)
3275                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3276
3277        return ret;
3278}
3279
3280void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3281                            unsigned long start, unsigned long end,
3282                            struct page *ref_page)
3283{
3284        struct mm_struct *mm = vma->vm_mm;
3285        unsigned long address;
3286        pte_t *ptep;
3287        pte_t pte;
3288        spinlock_t *ptl;
3289        struct page *page;
3290        struct hstate *h = hstate_vma(vma);
3291        unsigned long sz = huge_page_size(h);
3292        const unsigned long mmun_start = start; /* For mmu_notifiers */
3293        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3294
3295        WARN_ON(!is_vm_hugetlb_page(vma));
3296        BUG_ON(start & ~huge_page_mask(h));
3297        BUG_ON(end & ~huge_page_mask(h));
3298
3299        /*
3300         * This is a hugetlb vma, all the pte entries should point
3301         * to huge page.
3302         */
3303        tlb_remove_check_page_size_change(tlb, sz);
3304        tlb_start_vma(tlb, vma);
3305        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3306        address = start;
3307        for (; address < end; address += sz) {
3308                ptep = huge_pte_offset(mm, address, sz);
3309                if (!ptep)
3310                        continue;
3311
3312                ptl = huge_pte_lock(h, mm, ptep);
3313                if (huge_pmd_unshare(mm, &address, ptep)) {
3314                        spin_unlock(ptl);
3315                        continue;
3316                }
3317
3318                pte = huge_ptep_get(ptep);
3319                if (huge_pte_none(pte)) {
3320                        spin_unlock(ptl);
3321                        continue;
3322                }
3323
3324                /*
3325                 * Migrating hugepage or HWPoisoned hugepage is already
3326                 * unmapped and its refcount is dropped, so just clear pte here.
3327                 */
3328                if (unlikely(!pte_present(pte))) {
3329                        huge_pte_clear(mm, address, ptep, sz);
3330                        spin_unlock(ptl);
3331                        continue;
3332                }
3333
3334                page = pte_page(pte);
3335                /*
3336                 * If a reference page is supplied, it is because a specific
3337                 * page is being unmapped, not a range. Ensure the page we
3338                 * are about to unmap is the actual page of interest.
3339                 */
3340                if (ref_page) {
3341                        if (page != ref_page) {
3342                                spin_unlock(ptl);
3343                                continue;
3344                        }
3345                        /*
3346                         * Mark the VMA as having unmapped its page so that
3347                         * future faults in this VMA will fail rather than
3348                         * looking like data was lost
3349                         */
3350                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3351                }
3352
3353                pte = huge_ptep_get_and_clear(mm, address, ptep);
3354                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3355                if (huge_pte_dirty(pte))
3356                        set_page_dirty(page);
3357
3358                hugetlb_count_sub(pages_per_huge_page(h), mm);
3359                page_remove_rmap(page, true);
3360
3361                spin_unlock(ptl);
3362                tlb_remove_page_size(tlb, page, huge_page_size(h));
3363                /*
3364                 * Bail out after unmapping reference page if supplied
3365                 */
3366                if (ref_page)
3367                        break;
3368        }
3369        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3370        tlb_end_vma(tlb, vma);
3371}
3372
3373void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3374                          struct vm_area_struct *vma, unsigned long start,
3375                          unsigned long end, struct page *ref_page)
3376{
3377        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3378
3379        /*
3380         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3381         * test will fail on a vma being torn down, and not grab a page table
3382         * on its way out.  We're lucky that the flag has such an appropriate
3383         * name, and can in fact be safely cleared here. We could clear it
3384         * before the __unmap_hugepage_range above, but all that's necessary
3385         * is to clear it before releasing the i_mmap_rwsem. This works
3386         * because in the context this is called, the VMA is about to be
3387         * destroyed and the i_mmap_rwsem is held.
3388         */
3389        vma->vm_flags &= ~VM_MAYSHARE;
3390}
3391
3392void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3393                          unsigned long end, struct page *ref_page)
3394{
3395        struct mm_struct *mm;
3396        struct mmu_gather tlb;
3397
3398        mm = vma->vm_mm;
3399
3400        tlb_gather_mmu(&tlb, mm, start, end);
3401        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3402        tlb_finish_mmu(&tlb, start, end);
3403}
3404
3405/*
3406 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3407 * mappping it owns the reserve page for. The intention is to unmap the page
3408 * from other VMAs and let the children be SIGKILLed if they are faulting the
3409 * same region.
3410 */
3411static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3412                              struct page *page, unsigned long address)
3413{
3414        struct hstate *h = hstate_vma(vma);
3415        struct vm_area_struct *iter_vma;
3416        struct address_space *mapping;
3417        pgoff_t pgoff;
3418
3419        /*
3420         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3421         * from page cache lookup which is in HPAGE_SIZE units.
3422         */
3423        address = address & huge_page_mask(h);
3424        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3425                        vma->vm_pgoff;
3426        mapping = vma->vm_file->f_mapping;
3427
3428        /*
3429         * Take the mapping lock for the duration of the table walk. As
3430         * this mapping should be shared between all the VMAs,
3431         * __unmap_hugepage_range() is called as the lock is already held
3432         */
3433        i_mmap_lock_write(mapping);
3434        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3435                /* Do not unmap the current VMA */
3436                if (iter_vma == vma)
3437                        continue;
3438
3439                /*
3440                 * Shared VMAs have their own reserves and do not affect
3441                 * MAP_PRIVATE accounting but it is possible that a shared
3442                 * VMA is using the same page so check and skip such VMAs.
3443                 */
3444                if (iter_vma->vm_flags & VM_MAYSHARE)
3445                        continue;
3446
3447                /*
3448                 * Unmap the page from other VMAs without their own reserves.
3449                 * They get marked to be SIGKILLed if they fault in these
3450                 * areas. This is because a future no-page fault on this VMA
3451                 * could insert a zeroed page instead of the data existing
3452                 * from the time of fork. This would look like data corruption
3453                 */
3454                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3455                        unmap_hugepage_range(iter_vma, address,
3456                                             address + huge_page_size(h), page);
3457        }
3458        i_mmap_unlock_write(mapping);
3459}
3460
3461/*
3462 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3463 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3464 * cannot race with other handlers or page migration.
3465 * Keep the pte_same checks anyway to make transition from the mutex easier.
3466 */
3467static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3468                       unsigned long address, pte_t *ptep,
3469                       struct page *pagecache_page, spinlock_t *ptl)
3470{
3471        pte_t pte;
3472        struct hstate *h = hstate_vma(vma);
3473        struct page *old_page, *new_page;
3474        int ret = 0, outside_reserve = 0;
3475        unsigned long mmun_start;       /* For mmu_notifiers */
3476        unsigned long mmun_end;         /* For mmu_notifiers */
3477
3478        pte = huge_ptep_get(ptep);
3479        old_page = pte_page(pte);
3480
3481retry_avoidcopy:
3482        /* If no-one else is actually using this page, avoid the copy
3483         * and just make the page writable */
3484        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3485                page_move_anon_rmap(old_page, vma);
3486                set_huge_ptep_writable(vma, address, ptep);
3487                return 0;
3488        }
3489
3490        /*
3491         * If the process that created a MAP_PRIVATE mapping is about to
3492         * perform a COW due to a shared page count, attempt to satisfy
3493         * the allocation without using the existing reserves. The pagecache
3494         * page is used to determine if the reserve at this address was
3495         * consumed or not. If reserves were used, a partial faulted mapping
3496         * at the time of fork() could consume its reserves on COW instead
3497         * of the full address range.
3498         */
3499        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3500                        old_page != pagecache_page)
3501                outside_reserve = 1;
3502
3503        get_page(old_page);
3504
3505        /*
3506         * Drop page table lock as buddy allocator may be called. It will
3507         * be acquired again before returning to the caller, as expected.
3508         */
3509        spin_unlock(ptl);
3510        new_page = alloc_huge_page(vma, address, outside_reserve);
3511
3512        if (IS_ERR(new_page)) {
3513                /*
3514                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3515                 * it is due to references held by a child and an insufficient
3516                 * huge page pool. To guarantee the original mappers
3517                 * reliability, unmap the page from child processes. The child
3518                 * may get SIGKILLed if it later faults.
3519                 */
3520                if (outside_reserve) {
3521                        put_page(old_page);
3522                        BUG_ON(huge_pte_none(pte));
3523                        unmap_ref_private(mm, vma, old_page, address);
3524                        BUG_ON(huge_pte_none(pte));
3525                        spin_lock(ptl);
3526                        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3527                                               huge_page_size(h));
3528                        if (likely(ptep &&
3529                                   pte_same(huge_ptep_get(ptep), pte)))
3530                                goto retry_avoidcopy;
3531                        /*
3532                         * race occurs while re-acquiring page table
3533                         * lock, and our job is done.
3534                         */
3535                        return 0;
3536                }
3537
3538                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3539                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3540                goto out_release_old;
3541        }
3542
3543        /*
3544         * When the original hugepage is shared one, it does not have
3545         * anon_vma prepared.
3546         */
3547        if (unlikely(anon_vma_prepare(vma))) {
3548                ret = VM_FAULT_OOM;
3549                goto out_release_all;
3550        }
3551
3552        copy_user_huge_page(new_page, old_page, address, vma,
3553                            pages_per_huge_page(h));
3554        __SetPageUptodate(new_page);
3555        set_page_huge_active(new_page);
3556
3557        mmun_start = address & huge_page_mask(h);
3558        mmun_end = mmun_start + huge_page_size(h);
3559        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3560
3561        /*
3562         * Retake the page table lock to check for racing updates
3563         * before the page tables are altered
3564         */
3565        spin_lock(ptl);
3566        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3567                               huge_page_size(h));
3568        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3569                ClearPagePrivate(new_page);
3570
3571                /* Break COW */
3572                huge_ptep_clear_flush(vma, address, ptep);
3573                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3574                set_huge_pte_at(mm, address, ptep,
3575                                make_huge_pte(vma, new_page, 1));
3576                page_remove_rmap(old_page, true);
3577                hugepage_add_new_anon_rmap(new_page, vma, address);
3578                /* Make the old page be freed below */
3579                new_page = old_page;
3580        }
3581        spin_unlock(ptl);
3582        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3583out_release_all:
3584        restore_reserve_on_error(h, vma, address, new_page);
3585        put_page(new_page);
3586out_release_old:
3587        put_page(old_page);
3588
3589        spin_lock(ptl); /* Caller expects lock to be held */
3590        return ret;
3591}
3592
3593/* Return the pagecache page at a given address within a VMA */
3594static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3595                        struct vm_area_struct *vma, unsigned long address)
3596{
3597        struct address_space *mapping;
3598        pgoff_t idx;
3599
3600        mapping = vma->vm_file->f_mapping;
3601        idx = vma_hugecache_offset(h, vma, address);
3602
3603        return find_lock_page(mapping, idx);
3604}
3605
3606/*
3607 * Return whether there is a pagecache page to back given address within VMA.
3608 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3609 */
3610static bool hugetlbfs_pagecache_present(struct hstate *h,
3611                        struct vm_area_struct *vma, unsigned long address)
3612{
3613        struct address_space *mapping;
3614        pgoff_t idx;
3615        struct page *page;
3616
3617        mapping = vma->vm_file->f_mapping;
3618        idx = vma_hugecache_offset(h, vma, address);
3619
3620        page = find_get_page(mapping, idx);
3621        if (page)
3622                put_page(page);
3623        return page != NULL;
3624}
3625
3626int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3627                           pgoff_t idx)
3628{
3629        struct inode *inode = mapping->host;
3630        struct hstate *h = hstate_inode(inode);
3631        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3632
3633        if (err)
3634                return err;
3635        ClearPagePrivate(page);
3636
3637        spin_lock(&inode->i_lock);
3638        inode->i_blocks += blocks_per_huge_page(h);
3639        spin_unlock(&inode->i_lock);
3640        return 0;
3641}
3642
3643static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3644                           struct address_space *mapping, pgoff_t idx,
3645                           unsigned long address, pte_t *ptep, unsigned int flags)
3646{
3647        struct hstate *h = hstate_vma(vma);
3648        int ret = VM_FAULT_SIGBUS;
3649        int anon_rmap = 0;
3650        unsigned long size;
3651        struct page *page;
3652        pte_t new_pte;
3653        spinlock_t *ptl;
3654
3655        /*
3656         * Currently, we are forced to kill the process in the event the
3657         * original mapper has unmapped pages from the child due to a failed
3658         * COW. Warn that such a situation has occurred as it may not be obvious
3659         */
3660        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3661                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3662                           current->pid);
3663                return ret;
3664        }
3665
3666        /*
3667         * Use page lock to guard against racing truncation
3668         * before we get page_table_lock.
3669         */
3670retry:
3671        page = find_lock_page(mapping, idx);
3672        if (!page) {
3673                size = i_size_read(mapping->host) >> huge_page_shift(h);
3674                if (idx >= size)
3675                        goto out;
3676
3677                /*
3678                 * Check for page in userfault range
3679                 */
3680                if (userfaultfd_missing(vma)) {
3681                        u32 hash;
3682                        struct vm_fault vmf = {
3683                                .vma = vma,
3684                                .address = address,
3685                                .flags = flags,
3686                                /*
3687                                 * Hard to debug if it ends up being
3688                                 * used by a callee that assumes
3689                                 * something about the other
3690                                 * uninitialized fields... same as in
3691                                 * memory.c
3692                                 */
3693                        };
3694
3695                        /*
3696                         * hugetlb_fault_mutex must be dropped before
3697                         * handling userfault.  Reacquire after handling
3698                         * fault to make calling code simpler.
3699                         */
3700                        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3701                                                        idx, address);
3702                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3703                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3704                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3705                        goto out;
3706                }
3707
3708                page = alloc_huge_page(vma, address, 0);
3709                if (IS_ERR(page)) {
3710                        ret = PTR_ERR(page);
3711                        if (ret == -ENOMEM)
3712                                ret = VM_FAULT_OOM;
3713                        else
3714                                ret = VM_FAULT_SIGBUS;
3715                        goto out;
3716                }
3717                clear_huge_page(page, address, pages_per_huge_page(h));
3718                __SetPageUptodate(page);
3719                set_page_huge_active(page);
3720
3721                if (vma->vm_flags & VM_MAYSHARE) {
3722                        int err = huge_add_to_page_cache(page, mapping, idx);
3723                        if (err) {
3724                                put_page(page);
3725                                if (err == -EEXIST)
3726                                        goto retry;
3727                                goto out;
3728                        }
3729                } else {
3730                        lock_page(page);
3731                        if (unlikely(anon_vma_prepare(vma))) {
3732                                ret = VM_FAULT_OOM;
3733                                goto backout_unlocked;
3734                        }
3735                        anon_rmap = 1;
3736                }
3737        } else {
3738                /*
3739                 * If memory error occurs between mmap() and fault, some process
3740                 * don't have hwpoisoned swap entry for errored virtual address.
3741                 * So we need to block hugepage fault by PG_hwpoison bit check.
3742                 */
3743                if (unlikely(PageHWPoison(page))) {
3744                        ret = VM_FAULT_HWPOISON |
3745                                VM_FAULT_SET_HINDEX(hstate_index(h));
3746                        goto backout_unlocked;
3747                }
3748        }
3749
3750        /*
3751         * If we are going to COW a private mapping later, we examine the
3752         * pending reservations for this page now. This will ensure that
3753         * any allocations necessary to record that reservation occur outside
3754         * the spinlock.
3755         */
3756        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3757                if (vma_needs_reservation(h, vma, address) < 0) {
3758                        ret = VM_FAULT_OOM;
3759                        goto backout_unlocked;
3760                }
3761                /* Just decrements count, does not deallocate */
3762                vma_end_reservation(h, vma, address);
3763        }
3764
3765        ptl = huge_pte_lock(h, mm, ptep);
3766        size = i_size_read(mapping->host) >> huge_page_shift(h);
3767        if (idx >= size)
3768                goto backout;
3769
3770        ret = 0;
3771        if (!huge_pte_none(huge_ptep_get(ptep)))
3772                goto backout;
3773
3774        if (anon_rmap) {
3775                ClearPagePrivate(page);
3776                hugepage_add_new_anon_rmap(page, vma, address);
3777        } else
3778                page_dup_rmap(page, true);
3779        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3780                                && (vma->vm_flags & VM_SHARED)));
3781        set_huge_pte_at(mm, address, ptep, new_pte);
3782
3783        hugetlb_count_add(pages_per_huge_page(h), mm);
3784        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3785                /* Optimization, do the COW without a second fault */
3786                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3787        }
3788
3789        spin_unlock(ptl);
3790        unlock_page(page);
3791out:
3792        return ret;
3793
3794backout:
3795        spin_unlock(ptl);
3796backout_unlocked:
3797        unlock_page(page);
3798        restore_reserve_on_error(h, vma, address, page);
3799        put_page(page);
3800        goto out;
3801}
3802
3803#ifdef CONFIG_SMP
3804u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3805                            struct vm_area_struct *vma,
3806                            struct address_space *mapping,
3807                            pgoff_t idx, unsigned long address)
3808{
3809        unsigned long key[2];
3810        u32 hash;
3811
3812        if (vma->vm_flags & VM_SHARED) {
3813                key[0] = (unsigned long) mapping;
3814                key[1] = idx;
3815        } else {
3816                key[0] = (unsigned long) mm;
3817                key[1] = address >> huge_page_shift(h);
3818        }
3819
3820        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3821
3822        return hash & (num_fault_mutexes - 1);
3823}
3824#else
3825/*
3826 * For uniprocesor systems we always use a single mutex, so just
3827 * return 0 and avoid the hashing overhead.
3828 */
3829u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3830                            struct vm_area_struct *vma,
3831                            struct address_space *mapping,
3832                            pgoff_t idx, unsigned long address)
3833{
3834        return 0;
3835}
3836#endif
3837
3838int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3839                        unsigned long address, unsigned int flags)
3840{
3841        pte_t *ptep, entry;
3842        spinlock_t *ptl;
3843        int ret;
3844        u32 hash;
3845        pgoff_t idx;
3846        struct page *page = NULL;
3847        struct page *pagecache_page = NULL;
3848        struct hstate *h = hstate_vma(vma);
3849        struct address_space *mapping;
3850        int need_wait_lock = 0;
3851
3852        address &= huge_page_mask(h);
3853
3854        ptep = huge_pte_offset(mm, address, huge_page_size(h));
3855        if (ptep) {
3856                entry = huge_ptep_get(ptep);
3857                if (unlikely(is_hugetlb_entry_migration(entry))) {
3858                        migration_entry_wait_huge(vma, mm, ptep);
3859                        return 0;
3860                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3861                        return VM_FAULT_HWPOISON_LARGE |
3862                                VM_FAULT_SET_HINDEX(hstate_index(h));
3863        } else {
3864                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3865                if (!ptep)
3866                        return VM_FAULT_OOM;
3867        }
3868
3869        mapping = vma->vm_file->f_mapping;
3870        idx = vma_hugecache_offset(h, vma, address);
3871
3872        /*
3873         * Serialize hugepage allocation and instantiation, so that we don't
3874         * get spurious allocation failures if two CPUs race to instantiate
3875         * the same page in the page cache.
3876         */
3877        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3878        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3879
3880        entry = huge_ptep_get(ptep);
3881        if (huge_pte_none(entry)) {
3882                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3883                goto out_mutex;
3884        }
3885
3886        ret = 0;
3887
3888        /*
3889         * entry could be a migration/hwpoison entry at this point, so this
3890         * check prevents the kernel from going below assuming that we have
3891         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3892         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3893         * handle it.
3894         */
3895        if (!pte_present(entry))
3896                goto out_mutex;
3897
3898        /*
3899         * If we are going to COW the mapping later, we examine the pending
3900         * reservations for this page now. This will ensure that any
3901         * allocations necessary to record that reservation occur outside the
3902         * spinlock. For private mappings, we also lookup the pagecache
3903         * page now as it is used to determine if a reservation has been
3904         * consumed.
3905         */
3906        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3907                if (vma_needs_reservation(h, vma, address) < 0) {
3908                        ret = VM_FAULT_OOM;
3909                        goto out_mutex;
3910                }
3911                /* Just decrements count, does not deallocate */
3912                vma_end_reservation(h, vma, address);
3913
3914                if (!(vma->vm_flags & VM_MAYSHARE))
3915                        pagecache_page = hugetlbfs_pagecache_page(h,
3916                                                                vma, address);
3917        }
3918
3919        ptl = huge_pte_lock(h, mm, ptep);
3920
3921        /* Check for a racing update before calling hugetlb_cow */
3922        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3923                goto out_ptl;
3924
3925        /*
3926         * hugetlb_cow() requires page locks of pte_page(entry) and
3927         * pagecache_page, so here we need take the former one
3928         * when page != pagecache_page or !pagecache_page.
3929         */
3930        page = pte_page(entry);
3931        if (page != pagecache_page)
3932                if (!trylock_page(page)) {
3933                        need_wait_lock = 1;
3934                        goto out_ptl;
3935                }
3936
3937        get_page(page);
3938
3939        if (flags & FAULT_FLAG_WRITE) {
3940                if (!huge_pte_write(entry)) {
3941                        ret = hugetlb_cow(mm, vma, address, ptep,
3942                                          pagecache_page, ptl);
3943                        goto out_put_page;
3944                }
3945                entry = huge_pte_mkdirty(entry);
3946        }
3947        entry = pte_mkyoung(entry);
3948        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3949                                                flags & FAULT_FLAG_WRITE))
3950                update_mmu_cache(vma, address, ptep);
3951out_put_page:
3952        if (page != pagecache_page)
3953                unlock_page(page);
3954        put_page(page);
3955out_ptl:
3956        spin_unlock(ptl);
3957
3958        if (pagecache_page) {
3959                unlock_page(pagecache_page);
3960                put_page(pagecache_page);
3961        }
3962out_mutex:
3963        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3964        /*
3965         * Generally it's safe to hold refcount during waiting page lock. But
3966         * here we just wait to defer the next page fault to avoid busy loop and
3967         * the page is not used after unlocked before returning from the current
3968         * page fault. So we are safe from accessing freed page, even if we wait
3969         * here without taking refcount.
3970         */
3971        if (need_wait_lock)
3972                wait_on_page_locked(page);
3973        return ret;
3974}
3975
3976/*
3977 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3978 * modifications for huge pages.
3979 */
3980int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3981                            pte_t *dst_pte,
3982                            struct vm_area_struct *dst_vma,
3983                            unsigned long dst_addr,
3984                            unsigned long src_addr,
3985                            struct page **pagep)
3986{
3987        struct address_space *mapping;
3988        pgoff_t idx;
3989        unsigned long size;
3990        int vm_shared = dst_vma->vm_flags & VM_SHARED;
3991        struct hstate *h = hstate_vma(dst_vma);
3992        pte_t _dst_pte;
3993        spinlock_t *ptl;
3994        int ret;
3995        struct page *page;
3996
3997        if (!*pagep) {
3998                ret = -ENOMEM;
3999                page = alloc_huge_page(dst_vma, dst_addr, 0);
4000                if (IS_ERR(page))
4001                        goto out;
4002
4003                ret = copy_huge_page_from_user(page,
4004                                                (const void __user *) src_addr,
4005                                                pages_per_huge_page(h), false);
4006
4007                /* fallback to copy_from_user outside mmap_sem */
4008                if (unlikely(ret)) {
4009                        ret = -EFAULT;
4010                        *pagep = page;
4011                        /* don't free the page */
4012                        goto out;
4013                }
4014        } else {
4015                page = *pagep;
4016                *pagep = NULL;
4017        }
4018
4019        /*
4020         * The memory barrier inside __SetPageUptodate makes sure that
4021         * preceding stores to the page contents become visible before
4022         * the set_pte_at() write.
4023         */
4024        __SetPageUptodate(page);
4025        set_page_huge_active(page);
4026
4027        mapping = dst_vma->vm_file->f_mapping;
4028        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4029
4030        /*
4031         * If shared, add to page cache
4032         */
4033        if (vm_shared) {
4034                size = i_size_read(mapping->host) >> huge_page_shift(h);
4035                ret = -EFAULT;
4036                if (idx >= size)
4037                        goto out_release_nounlock;
4038
4039                /*
4040                 * Serialization between remove_inode_hugepages() and
4041                 * huge_add_to_page_cache() below happens through the
4042                 * hugetlb_fault_mutex_table that here must be hold by
4043                 * the caller.
4044                 */
4045                ret = huge_add_to_page_cache(page, mapping, idx);
4046                if (ret)
4047                        goto out_release_nounlock;
4048        }
4049
4050        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4051        spin_lock(ptl);
4052
4053        /*
4054         * Recheck the i_size after holding PT lock to make sure not
4055         * to leave any page mapped (as page_mapped()) beyond the end
4056         * of the i_size (remove_inode_hugepages() is strict about
4057         * enforcing that). If we bail out here, we'll also leave a
4058         * page in the radix tree in the vm_shared case beyond the end
4059         * of the i_size, but remove_inode_hugepages() will take care
4060         * of it as soon as we drop the hugetlb_fault_mutex_table.
4061         */
4062        size = i_size_read(mapping->host) >> huge_page_shift(h);
4063        ret = -EFAULT;
4064        if (idx >= size)
4065                goto out_release_unlock;
4066
4067        ret = -EEXIST;
4068        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4069                goto out_release_unlock;
4070
4071        if (vm_shared) {
4072                page_dup_rmap(page, true);
4073        } else {
4074                ClearPagePrivate(page);
4075                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4076        }
4077
4078        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4079        if (dst_vma->vm_flags & VM_WRITE)
4080                _dst_pte = huge_pte_mkdirty(_dst_pte);
4081        _dst_pte = pte_mkyoung(_dst_pte);
4082
4083        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4084
4085        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4086                                        dst_vma->vm_flags & VM_WRITE);
4087        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4088
4089        /* No need to invalidate - it was non-present before */
4090        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4091
4092        spin_unlock(ptl);
4093        if (vm_shared)
4094                unlock_page(page);
4095        ret = 0;
4096out:
4097        return ret;
4098out_release_unlock:
4099        spin_unlock(ptl);
4100        if (vm_shared)
4101                unlock_page(page);
4102out_release_nounlock:
4103        put_page(page);
4104        goto out;
4105}
4106
4107long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4108                         struct page **pages, struct vm_area_struct **vmas,
4109                         unsigned long *position, unsigned long *nr_pages,
4110                         long i, unsigned int flags, int *nonblocking)
4111{
4112        unsigned long pfn_offset;
4113        unsigned long vaddr = *position;
4114        unsigned long remainder = *nr_pages;
4115        struct hstate *h = hstate_vma(vma);
4116        int err = -EFAULT;
4117
4118        while (vaddr < vma->vm_end && remainder) {
4119                pte_t *pte;
4120                spinlock_t *ptl = NULL;
4121                int absent;
4122                struct page *page;
4123
4124                /*
4125                 * If we have a pending SIGKILL, don't keep faulting pages and
4126                 * potentially allocating memory.
4127                 */
4128                if (unlikely(fatal_signal_pending(current))) {
4129                        remainder = 0;
4130                        break;
4131                }
4132
4133                /*
4134                 * Some archs (sparc64, sh*) have multiple pte_ts to
4135                 * each hugepage.  We have to make sure we get the
4136                 * first, for the page indexing below to work.
4137                 *
4138                 * Note that page table lock is not held when pte is null.
4139                 */
4140                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4141                                      huge_page_size(h));
4142                if (pte)
4143                        ptl = huge_pte_lock(h, mm, pte);
4144                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4145
4146                /*
4147                 * When coredumping, it suits get_dump_page if we just return
4148                 * an error where there's an empty slot with no huge pagecache
4149                 * to back it.  This way, we avoid allocating a hugepage, and
4150                 * the sparse dumpfile avoids allocating disk blocks, but its
4151                 * huge holes still show up with zeroes where they need to be.
4152                 */
4153                if (absent && (flags & FOLL_DUMP) &&
4154                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4155                        if (pte)
4156                                spin_unlock(ptl);
4157                        remainder = 0;
4158                        break;
4159                }
4160
4161                /*
4162                 * We need call hugetlb_fault for both hugepages under migration
4163                 * (in which case hugetlb_fault waits for the migration,) and
4164                 * hwpoisoned hugepages (in which case we need to prevent the
4165                 * caller from accessing to them.) In order to do this, we use
4166                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4167                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4168                 * both cases, and because we can't follow correct pages
4169                 * directly from any kind of swap entries.
4170                 */
4171                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4172                    ((flags & FOLL_WRITE) &&
4173                      !huge_pte_write(huge_ptep_get(pte)))) {
4174                        int ret;
4175                        unsigned int fault_flags = 0;
4176
4177                        if (pte)
4178                                spin_unlock(ptl);
4179                        if (flags & FOLL_WRITE)
4180                                fault_flags |= FAULT_FLAG_WRITE;
4181                        if (nonblocking)
4182                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4183                        if (flags & FOLL_NOWAIT)
4184                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4185                                        FAULT_FLAG_RETRY_NOWAIT;
4186                        if (flags & FOLL_TRIED) {
4187                                VM_WARN_ON_ONCE(fault_flags &
4188                                                FAULT_FLAG_ALLOW_RETRY);
4189                                fault_flags |= FAULT_FLAG_TRIED;
4190                        }
4191                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4192                        if (ret & VM_FAULT_ERROR) {
4193                                err = vm_fault_to_errno(ret, flags);
4194                                remainder = 0;
4195                                break;
4196                        }
4197                        if (ret & VM_FAULT_RETRY) {
4198                                if (nonblocking)
4199                                        *nonblocking = 0;
4200                                *nr_pages = 0;
4201                                /*
4202                                 * VM_FAULT_RETRY must not return an
4203                                 * error, it will return zero
4204                                 * instead.
4205                                 *
4206                                 * No need to update "position" as the
4207                                 * caller will not check it after
4208                                 * *nr_pages is set to 0.
4209                                 */
4210                                return i;
4211                        }
4212                        continue;
4213                }
4214
4215                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4216                page = pte_page(huge_ptep_get(pte));
4217same_page:
4218                if (pages) {
4219                        pages[i] = mem_map_offset(page, pfn_offset);
4220                        get_page(pages[i]);
4221                }
4222
4223                if (vmas)
4224                        vmas[i] = vma;
4225
4226                vaddr += PAGE_SIZE;
4227                ++pfn_offset;
4228                --remainder;
4229                ++i;
4230                if (vaddr < vma->vm_end && remainder &&
4231                                pfn_offset < pages_per_huge_page(h)) {
4232                        /*
4233                         * We use pfn_offset to avoid touching the pageframes
4234                         * of this compound page.
4235                         */
4236                        goto same_page;
4237                }
4238                spin_unlock(ptl);
4239        }
4240        *nr_pages = remainder;
4241        /*
4242         * setting position is actually required only if remainder is
4243         * not zero but it's faster not to add a "if (remainder)"
4244         * branch.
4245         */
4246        *position = vaddr;
4247
4248        return i ? i : err;
4249}
4250
4251#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4252/*
4253 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4254 * implement this.
4255 */
4256#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4257#endif
4258
4259unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4260                unsigned long address, unsigned long end, pgprot_t newprot)
4261{
4262        struct mm_struct *mm = vma->vm_mm;
4263        unsigned long start = address;
4264        pte_t *ptep;
4265        pte_t pte;
4266        struct hstate *h = hstate_vma(vma);
4267        unsigned long pages = 0;
4268
4269        BUG_ON(address >= end);
4270        flush_cache_range(vma, address, end);
4271
4272        mmu_notifier_invalidate_range_start(mm, start, end);
4273        i_mmap_lock_write(vma->vm_file->f_mapping);
4274        for (; address < end; address += huge_page_size(h)) {
4275                spinlock_t *ptl;
4276                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4277                if (!ptep)
4278                        continue;
4279                ptl = huge_pte_lock(h, mm, ptep);
4280                if (huge_pmd_unshare(mm, &address, ptep)) {
4281                        pages++;
4282                        spin_unlock(ptl);
4283                        continue;
4284                }
4285                pte = huge_ptep_get(ptep);
4286                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4287                        spin_unlock(ptl);
4288                        continue;
4289                }
4290                if (unlikely(is_hugetlb_entry_migration(pte))) {
4291                        swp_entry_t entry = pte_to_swp_entry(pte);
4292
4293                        if (is_write_migration_entry(entry)) {
4294                                pte_t newpte;
4295
4296                                make_migration_entry_read(&entry);
4297                                newpte = swp_entry_to_pte(entry);
4298                                set_huge_swap_pte_at(mm, address, ptep,
4299                                                     newpte, huge_page_size(h));
4300                                pages++;
4301                        }
4302                        spin_unlock(ptl);
4303                        continue;
4304                }
4305                if (!huge_pte_none(pte)) {
4306                        pte = huge_ptep_get_and_clear(mm, address, ptep);
4307                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4308                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4309                        set_huge_pte_at(mm, address, ptep, pte);
4310                        pages++;
4311                }
4312                spin_unlock(ptl);
4313        }
4314        /*
4315         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4316         * may have cleared our pud entry and done put_page on the page table:
4317         * once we release i_mmap_rwsem, another task can do the final put_page
4318         * and that page table be reused and filled with junk.
4319         */
4320        flush_hugetlb_tlb_range(vma, start, end);
4321        mmu_notifier_invalidate_range(mm, start, end);
4322        i_mmap_unlock_write(vma->vm_file->f_mapping);
4323        mmu_notifier_invalidate_range_end(mm, start, end);
4324
4325        return pages << h->order;
4326}
4327
4328int hugetlb_reserve_pages(struct inode *inode,
4329                                        long from, long to,
4330                                        struct vm_area_struct *vma,
4331                                        vm_flags_t vm_flags)
4332{
4333        long ret, chg;
4334        struct hstate *h = hstate_inode(inode);
4335        struct hugepage_subpool *spool = subpool_inode(inode);
4336        struct resv_map *resv_map;
4337        long gbl_reserve;
4338
4339        /*
4340         * Only apply hugepage reservation if asked. At fault time, an
4341         * attempt will be made for VM_NORESERVE to allocate a page
4342         * without using reserves
4343         */
4344        if (vm_flags & VM_NORESERVE)
4345                return 0;
4346
4347        /*
4348         * Shared mappings base their reservation on the number of pages that
4349         * are already allocated on behalf of the file. Private mappings need
4350         * to reserve the full area even if read-only as mprotect() may be
4351         * called to make the mapping read-write. Assume !vma is a shm mapping
4352         */
4353        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4354                resv_map = inode_resv_map(inode);
4355
4356                chg = region_chg(resv_map, from, to);
4357
4358        } else {
4359                resv_map = resv_map_alloc();
4360                if (!resv_map)
4361                        return -ENOMEM;
4362
4363                chg = to - from;
4364
4365                set_vma_resv_map(vma, resv_map);
4366                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4367        }
4368
4369        if (chg < 0) {
4370                ret = chg;
4371                goto out_err;
4372        }
4373
4374        /*
4375         * There must be enough pages in the subpool for the mapping. If
4376         * the subpool has a minimum size, there may be some global
4377         * reservations already in place (gbl_reserve).
4378         */
4379        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4380        if (gbl_reserve < 0) {
4381                ret = -ENOSPC;
4382                goto out_err;
4383        }
4384
4385        /*
4386         * Check enough hugepages are available for the reservation.
4387         * Hand the pages back to the subpool if there are not
4388         */
4389        ret = hugetlb_acct_memory(h, gbl_reserve);
4390        if (ret < 0) {
4391                /* put back original number of pages, chg */
4392                (void)hugepage_subpool_put_pages(spool, chg);
4393                goto out_err;
4394        }
4395
4396        /*
4397         * Account for the reservations made. Shared mappings record regions
4398         * that have reservations as they are shared by multiple VMAs.
4399         * When the last VMA disappears, the region map says how much
4400         * the reservation was and the page cache tells how much of
4401         * the reservation was consumed. Private mappings are per-VMA and
4402         * only the consumed reservations are tracked. When the VMA
4403         * disappears, the original reservation is the VMA size and the
4404         * consumed reservations are stored in the map. Hence, nothing
4405         * else has to be done for private mappings here
4406         */
4407        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4408                long add = region_add(resv_map, from, to);
4409
4410                if (unlikely(chg > add)) {
4411                        /*
4412                         * pages in this range were added to the reserve
4413                         * map between region_chg and region_add.  This
4414                         * indicates a race with alloc_huge_page.  Adjust
4415                         * the subpool and reserve counts modified above
4416                         * based on the difference.
4417                         */
4418                        long rsv_adjust;
4419
4420                        rsv_adjust = hugepage_subpool_put_pages(spool,
4421                                                                chg - add);
4422                        hugetlb_acct_memory(h, -rsv_adjust);
4423                }
4424        }
4425        return 0;
4426out_err:
4427        if (!vma || vma->vm_flags & VM_MAYSHARE)
4428                /* Don't call region_abort if region_chg failed */
4429                if (chg >= 0)
4430                        region_abort(resv_map, from, to);
4431        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4432                kref_put(&resv_map->refs, resv_map_release);
4433        return ret;
4434}
4435
4436long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4437                                                                long freed)
4438{
4439        struct hstate *h = hstate_inode(inode);
4440        struct resv_map *resv_map = inode_resv_map(inode);
4441        long chg = 0;
4442        struct hugepage_subpool *spool = subpool_inode(inode);
4443        long gbl_reserve;
4444
4445        if (resv_map) {
4446                chg = region_del(resv_map, start, end);
4447                /*
4448                 * region_del() can fail in the rare case where a region
4449                 * must be split and another region descriptor can not be
4450                 * allocated.  If end == LONG_MAX, it will not fail.
4451                 */
4452                if (chg < 0)
4453                        return chg;
4454        }
4455
4456        spin_lock(&inode->i_lock);
4457        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4458        spin_unlock(&inode->i_lock);
4459
4460        /*
4461         * If the subpool has a minimum size, the number of global
4462         * reservations to be released may be adjusted.
4463         */
4464        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4465        hugetlb_acct_memory(h, -gbl_reserve);
4466
4467        return 0;
4468}
4469
4470#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4471static unsigned long page_table_shareable(struct vm_area_struct *svma,
4472                                struct vm_area_struct *vma,
4473                                unsigned long addr, pgoff_t idx)
4474{
4475        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4476                                svma->vm_start;
4477        unsigned long sbase = saddr & PUD_MASK;
4478        unsigned long s_end = sbase + PUD_SIZE;
4479
4480        /* Allow segments to share if only one is marked locked */
4481        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4482        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4483
4484        /*
4485         * match the virtual addresses, permission and the alignment of the
4486         * page table page.
4487         */
4488        if (pmd_index(addr) != pmd_index(saddr) ||
4489            vm_flags != svm_flags ||
4490            sbase < svma->vm_start || svma->vm_end < s_end)
4491                return 0;
4492
4493        return saddr;
4494}
4495
4496static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4497{
4498        unsigned long base = addr & PUD_MASK;
4499        unsigned long end = base + PUD_SIZE;
4500
4501        /*
4502         * check on proper vm_flags and page table alignment
4503         */
4504        if (vma->vm_flags & VM_MAYSHARE &&
4505            vma->vm_start <= base && end <= vma->vm_end)
4506                return true;
4507        return false;
4508}
4509
4510/*
4511 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4512 * and returns the corresponding pte. While this is not necessary for the
4513 * !shared pmd case because we can allocate the pmd later as well, it makes the
4514 * code much cleaner. pmd allocation is essential for the shared case because
4515 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4516 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4517 * bad pmd for sharing.
4518 */
4519pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4520{
4521        struct vm_area_struct *vma = find_vma(mm, addr);
4522        struct address_space *mapping = vma->vm_file->f_mapping;
4523        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4524                        vma->vm_pgoff;
4525        struct vm_area_struct *svma;
4526        unsigned long saddr;
4527        pte_t *spte = NULL;
4528        pte_t *pte;
4529        spinlock_t *ptl;
4530
4531        if (!vma_shareable(vma, addr))
4532                return (pte_t *)pmd_alloc(mm, pud, addr);
4533
4534        i_mmap_lock_write(mapping);
4535        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4536                if (svma == vma)
4537                        continue;
4538
4539                saddr = page_table_shareable(svma, vma, addr, idx);
4540                if (saddr) {
4541                        spte = huge_pte_offset(svma->vm_mm, saddr,
4542                                               vma_mmu_pagesize(svma));
4543                        if (spte) {
4544                                get_page(virt_to_page(spte));
4545                                break;
4546                        }
4547                }
4548        }
4549
4550        if (!spte)
4551                goto out;
4552
4553        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4554        if (pud_none(*pud)) {
4555                pud_populate(mm, pud,
4556                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4557                mm_inc_nr_pmds(mm);
4558        } else {
4559                put_page(virt_to_page(spte));
4560        }
4561        spin_unlock(ptl);
4562out:
4563        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4564        i_mmap_unlock_write(mapping);
4565        return pte;
4566}
4567
4568/*
4569 * unmap huge page backed by shared pte.
4570 *
4571 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4572 * indicated by page_count > 1, unmap is achieved by clearing pud and
4573 * decrementing the ref count. If count == 1, the pte page is not shared.
4574 *
4575 * called with page table lock held.
4576 *
4577 * returns: 1 successfully unmapped a shared pte page
4578 *          0 the underlying pte page is not shared, or it is the last user
4579 */
4580int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4581{
4582        pgd_t *pgd = pgd_offset(mm, *addr);
4583        p4d_t *p4d = p4d_offset(pgd, *addr);
4584        pud_t *pud = pud_offset(p4d, *addr);
4585
4586        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4587        if (page_count(virt_to_page(ptep)) == 1)
4588                return 0;
4589
4590        pud_clear(pud);
4591        put_page(virt_to_page(ptep));
4592        mm_dec_nr_pmds(mm);
4593        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4594        return 1;
4595}
4596#define want_pmd_share()        (1)
4597#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4598pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4599{
4600        return NULL;
4601}
4602
4603int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4604{
4605        return 0;
4606}
4607#define want_pmd_share()        (0)
4608#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4609
4610#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4611pte_t *huge_pte_alloc(struct mm_struct *mm,
4612                        unsigned long addr, unsigned long sz)
4613{
4614        pgd_t *pgd;
4615        p4d_t *p4d;
4616        pud_t *pud;
4617        pte_t *pte = NULL;
4618
4619        pgd = pgd_offset(mm, addr);
4620        p4d = p4d_offset(pgd, addr);
4621        pud = pud_alloc(mm, p4d, addr);
4622        if (pud) {
4623                if (sz == PUD_SIZE) {
4624                        pte = (pte_t *)pud;
4625                } else {
4626                        BUG_ON(sz != PMD_SIZE);
4627                        if (want_pmd_share() && pud_none(*pud))
4628                                pte = huge_pmd_share(mm, addr, pud);
4629                        else
4630                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4631                }
4632        }
4633        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4634
4635        return pte;
4636}
4637
4638/*
4639 * huge_pte_offset() - Walk the page table to resolve the hugepage
4640 * entry at address @addr
4641 *
4642 * Return: Pointer to page table or swap entry (PUD or PMD) for
4643 * address @addr, or NULL if a p*d_none() entry is encountered and the
4644 * size @sz doesn't match the hugepage size at this level of the page
4645 * table.
4646 */
4647pte_t *huge_pte_offset(struct mm_struct *mm,
4648                       unsigned long addr, unsigned long sz)
4649{
4650        pgd_t *pgd;
4651        p4d_t *p4d;
4652        pud_t *pud;
4653        pmd_t *pmd;
4654
4655        pgd = pgd_offset(mm, addr);
4656        if (!pgd_present(*pgd))
4657                return NULL;
4658        p4d = p4d_offset(pgd, addr);
4659        if (!p4d_present(*p4d))
4660                return NULL;
4661
4662        pud = pud_offset(p4d, addr);
4663        if (sz != PUD_SIZE && pud_none(*pud))
4664                return NULL;
4665        /* hugepage or swap? */
4666        if (pud_huge(*pud) || !pud_present(*pud))
4667                return (pte_t *)pud;
4668
4669        pmd = pmd_offset(pud, addr);
4670        if (sz != PMD_SIZE && pmd_none(*pmd))
4671                return NULL;
4672        /* hugepage or swap? */
4673        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4674                return (pte_t *)pmd;
4675
4676        return NULL;
4677}
4678
4679#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4680
4681/*
4682 * These functions are overwritable if your architecture needs its own
4683 * behavior.
4684 */
4685struct page * __weak
4686follow_huge_addr(struct mm_struct *mm, unsigned long address,
4687                              int write)
4688{
4689        return ERR_PTR(-EINVAL);
4690}
4691
4692struct page * __weak
4693follow_huge_pd(struct vm_area_struct *vma,
4694               unsigned long address, hugepd_t hpd, int flags, int pdshift)
4695{
4696        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4697        return NULL;
4698}
4699
4700struct page * __weak
4701follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4702                pmd_t *pmd, int flags)
4703{
4704        struct page *page = NULL;
4705        spinlock_t *ptl;
4706        pte_t pte;
4707retry:
4708        ptl = pmd_lockptr(mm, pmd);
4709        spin_lock(ptl);
4710        /*
4711         * make sure that the address range covered by this pmd is not
4712         * unmapped from other threads.
4713         */
4714        if (!pmd_huge(*pmd))
4715                goto out;
4716        pte = huge_ptep_get((pte_t *)pmd);
4717        if (pte_present(pte)) {
4718                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4719                if (flags & FOLL_GET)
4720                        get_page(page);
4721        } else {
4722                if (is_hugetlb_entry_migration(pte)) {
4723                        spin_unlock(ptl);
4724                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4725                        goto retry;
4726                }
4727                /*
4728                 * hwpoisoned entry is treated as no_page_table in
4729                 * follow_page_mask().
4730                 */
4731        }
4732out:
4733        spin_unlock(ptl);
4734        return page;
4735}
4736
4737struct page * __weak
4738follow_huge_pud(struct mm_struct *mm, unsigned long address,
4739                pud_t *pud, int flags)
4740{
4741        if (flags & FOLL_GET)
4742                return NULL;
4743
4744        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4745}
4746
4747struct page * __weak
4748follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4749{
4750        if (flags & FOLL_GET)
4751                return NULL;
4752
4753        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4754}
4755
4756bool isolate_huge_page(struct page *page, struct list_head *list)
4757{
4758        bool ret = true;
4759
4760        VM_BUG_ON_PAGE(!PageHead(page), page);
4761        spin_lock(&hugetlb_lock);
4762        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4763                ret = false;
4764                goto unlock;
4765        }
4766        clear_page_huge_active(page);
4767        list_move_tail(&page->lru, list);
4768unlock:
4769        spin_unlock(&hugetlb_lock);
4770        return ret;
4771}
4772
4773void putback_active_hugepage(struct page *page)
4774{
4775        VM_BUG_ON_PAGE(!PageHead(page), page);
4776        spin_lock(&hugetlb_lock);
4777        set_page_huge_active(page);
4778        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4779        spin_unlock(&hugetlb_lock);
4780        put_page(page);
4781}
4782