linux/mm/page_ext.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/mmzone.h>
   4#include <linux/bootmem.h>
   5#include <linux/page_ext.h>
   6#include <linux/memory.h>
   7#include <linux/vmalloc.h>
   8#include <linux/kmemleak.h>
   9#include <linux/page_owner.h>
  10#include <linux/page_idle.h>
  11
  12/*
  13 * struct page extension
  14 *
  15 * This is the feature to manage memory for extended data per page.
  16 *
  17 * Until now, we must modify struct page itself to store extra data per page.
  18 * This requires rebuilding the kernel and it is really time consuming process.
  19 * And, sometimes, rebuild is impossible due to third party module dependency.
  20 * At last, enlarging struct page could cause un-wanted system behaviour change.
  21 *
  22 * This feature is intended to overcome above mentioned problems. This feature
  23 * allocates memory for extended data per page in certain place rather than
  24 * the struct page itself. This memory can be accessed by the accessor
  25 * functions provided by this code. During the boot process, it checks whether
  26 * allocation of huge chunk of memory is needed or not. If not, it avoids
  27 * allocating memory at all. With this advantage, we can include this feature
  28 * into the kernel in default and can avoid rebuild and solve related problems.
  29 *
  30 * To help these things to work well, there are two callbacks for clients. One
  31 * is the need callback which is mandatory if user wants to avoid useless
  32 * memory allocation at boot-time. The other is optional, init callback, which
  33 * is used to do proper initialization after memory is allocated.
  34 *
  35 * The need callback is used to decide whether extended memory allocation is
  36 * needed or not. Sometimes users want to deactivate some features in this
  37 * boot and extra memory would be unneccessary. In this case, to avoid
  38 * allocating huge chunk of memory, each clients represent their need of
  39 * extra memory through the need callback. If one of the need callbacks
  40 * returns true, it means that someone needs extra memory so that
  41 * page extension core should allocates memory for page extension. If
  42 * none of need callbacks return true, memory isn't needed at all in this boot
  43 * and page extension core can skip to allocate memory. As result,
  44 * none of memory is wasted.
  45 *
  46 * When need callback returns true, page_ext checks if there is a request for
  47 * extra memory through size in struct page_ext_operations. If it is non-zero,
  48 * extra space is allocated for each page_ext entry and offset is returned to
  49 * user through offset in struct page_ext_operations.
  50 *
  51 * The init callback is used to do proper initialization after page extension
  52 * is completely initialized. In sparse memory system, extra memory is
  53 * allocated some time later than memmap is allocated. In other words, lifetime
  54 * of memory for page extension isn't same with memmap for struct page.
  55 * Therefore, clients can't store extra data until page extension is
  56 * initialized, even if pages are allocated and used freely. This could
  57 * cause inadequate state of extra data per page, so, to prevent it, client
  58 * can utilize this callback to initialize the state of it correctly.
  59 */
  60
  61static struct page_ext_operations *page_ext_ops[] = {
  62        &debug_guardpage_ops,
  63#ifdef CONFIG_PAGE_OWNER
  64        &page_owner_ops,
  65#endif
  66#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  67        &page_idle_ops,
  68#endif
  69};
  70
  71static unsigned long total_usage;
  72static unsigned long extra_mem;
  73
  74static bool __init invoke_need_callbacks(void)
  75{
  76        int i;
  77        int entries = ARRAY_SIZE(page_ext_ops);
  78        bool need = false;
  79
  80        for (i = 0; i < entries; i++) {
  81                if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  82                        page_ext_ops[i]->offset = sizeof(struct page_ext) +
  83                                                extra_mem;
  84                        extra_mem += page_ext_ops[i]->size;
  85                        need = true;
  86                }
  87        }
  88
  89        return need;
  90}
  91
  92static void __init invoke_init_callbacks(void)
  93{
  94        int i;
  95        int entries = ARRAY_SIZE(page_ext_ops);
  96
  97        for (i = 0; i < entries; i++) {
  98                if (page_ext_ops[i]->init)
  99                        page_ext_ops[i]->init();
 100        }
 101}
 102
 103static unsigned long get_entry_size(void)
 104{
 105        return sizeof(struct page_ext) + extra_mem;
 106}
 107
 108static inline struct page_ext *get_entry(void *base, unsigned long index)
 109{
 110        return base + get_entry_size() * index;
 111}
 112
 113#if !defined(CONFIG_SPARSEMEM)
 114
 115
 116void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 117{
 118        pgdat->node_page_ext = NULL;
 119}
 120
 121struct page_ext *lookup_page_ext(struct page *page)
 122{
 123        unsigned long pfn = page_to_pfn(page);
 124        unsigned long index;
 125        struct page_ext *base;
 126
 127        base = NODE_DATA(page_to_nid(page))->node_page_ext;
 128#if defined(CONFIG_DEBUG_VM)
 129        /*
 130         * The sanity checks the page allocator does upon freeing a
 131         * page can reach here before the page_ext arrays are
 132         * allocated when feeding a range of pages to the allocator
 133         * for the first time during bootup or memory hotplug.
 134         */
 135        if (unlikely(!base))
 136                return NULL;
 137#endif
 138        index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 139                                        MAX_ORDER_NR_PAGES);
 140        return get_entry(base, index);
 141}
 142
 143static int __init alloc_node_page_ext(int nid)
 144{
 145        struct page_ext *base;
 146        unsigned long table_size;
 147        unsigned long nr_pages;
 148
 149        nr_pages = NODE_DATA(nid)->node_spanned_pages;
 150        if (!nr_pages)
 151                return 0;
 152
 153        /*
 154         * Need extra space if node range is not aligned with
 155         * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 156         * checks buddy's status, range could be out of exact node range.
 157         */
 158        if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 159                !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 160                nr_pages += MAX_ORDER_NR_PAGES;
 161
 162        table_size = get_entry_size() * nr_pages;
 163
 164        base = memblock_virt_alloc_try_nid_nopanic(
 165                        table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 166                        BOOTMEM_ALLOC_ACCESSIBLE, nid);
 167        if (!base)
 168                return -ENOMEM;
 169        NODE_DATA(nid)->node_page_ext = base;
 170        total_usage += table_size;
 171        return 0;
 172}
 173
 174void __init page_ext_init_flatmem(void)
 175{
 176
 177        int nid, fail;
 178
 179        if (!invoke_need_callbacks())
 180                return;
 181
 182        for_each_online_node(nid)  {
 183                fail = alloc_node_page_ext(nid);
 184                if (fail)
 185                        goto fail;
 186        }
 187        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 188        invoke_init_callbacks();
 189        return;
 190
 191fail:
 192        pr_crit("allocation of page_ext failed.\n");
 193        panic("Out of memory");
 194}
 195
 196#else /* CONFIG_FLAT_NODE_MEM_MAP */
 197
 198struct page_ext *lookup_page_ext(struct page *page)
 199{
 200        unsigned long pfn = page_to_pfn(page);
 201        struct mem_section *section = __pfn_to_section(pfn);
 202#if defined(CONFIG_DEBUG_VM)
 203        /*
 204         * The sanity checks the page allocator does upon freeing a
 205         * page can reach here before the page_ext arrays are
 206         * allocated when feeding a range of pages to the allocator
 207         * for the first time during bootup or memory hotplug.
 208         */
 209        if (!section->page_ext)
 210                return NULL;
 211#endif
 212        return get_entry(section->page_ext, pfn);
 213}
 214
 215static void *__meminit alloc_page_ext(size_t size, int nid)
 216{
 217        gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 218        void *addr = NULL;
 219
 220        addr = alloc_pages_exact_nid(nid, size, flags);
 221        if (addr) {
 222                kmemleak_alloc(addr, size, 1, flags);
 223                return addr;
 224        }
 225
 226        addr = vzalloc_node(size, nid);
 227
 228        return addr;
 229}
 230
 231static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 232{
 233        struct mem_section *section;
 234        struct page_ext *base;
 235        unsigned long table_size;
 236
 237        section = __pfn_to_section(pfn);
 238
 239        if (section->page_ext)
 240                return 0;
 241
 242        table_size = get_entry_size() * PAGES_PER_SECTION;
 243        base = alloc_page_ext(table_size, nid);
 244
 245        /*
 246         * The value stored in section->page_ext is (base - pfn)
 247         * and it does not point to the memory block allocated above,
 248         * causing kmemleak false positives.
 249         */
 250        kmemleak_not_leak(base);
 251
 252        if (!base) {
 253                pr_err("page ext allocation failure\n");
 254                return -ENOMEM;
 255        }
 256
 257        /*
 258         * The passed "pfn" may not be aligned to SECTION.  For the calculation
 259         * we need to apply a mask.
 260         */
 261        pfn &= PAGE_SECTION_MASK;
 262        section->page_ext = (void *)base - get_entry_size() * pfn;
 263        total_usage += table_size;
 264        return 0;
 265}
 266#ifdef CONFIG_MEMORY_HOTPLUG
 267static void free_page_ext(void *addr)
 268{
 269        if (is_vmalloc_addr(addr)) {
 270                vfree(addr);
 271        } else {
 272                struct page *page = virt_to_page(addr);
 273                size_t table_size;
 274
 275                table_size = get_entry_size() * PAGES_PER_SECTION;
 276
 277                BUG_ON(PageReserved(page));
 278                free_pages_exact(addr, table_size);
 279        }
 280}
 281
 282static void __free_page_ext(unsigned long pfn)
 283{
 284        struct mem_section *ms;
 285        struct page_ext *base;
 286
 287        ms = __pfn_to_section(pfn);
 288        if (!ms || !ms->page_ext)
 289                return;
 290        base = get_entry(ms->page_ext, pfn);
 291        free_page_ext(base);
 292        ms->page_ext = NULL;
 293}
 294
 295static int __meminit online_page_ext(unsigned long start_pfn,
 296                                unsigned long nr_pages,
 297                                int nid)
 298{
 299        unsigned long start, end, pfn;
 300        int fail = 0;
 301
 302        start = SECTION_ALIGN_DOWN(start_pfn);
 303        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 304
 305        if (nid == -1) {
 306                /*
 307                 * In this case, "nid" already exists and contains valid memory.
 308                 * "start_pfn" passed to us is a pfn which is an arg for
 309                 * online__pages(), and start_pfn should exist.
 310                 */
 311                nid = pfn_to_nid(start_pfn);
 312                VM_BUG_ON(!node_state(nid, N_ONLINE));
 313        }
 314
 315        for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
 316                if (!pfn_present(pfn))
 317                        continue;
 318                fail = init_section_page_ext(pfn, nid);
 319        }
 320        if (!fail)
 321                return 0;
 322
 323        /* rollback */
 324        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 325                __free_page_ext(pfn);
 326
 327        return -ENOMEM;
 328}
 329
 330static int __meminit offline_page_ext(unsigned long start_pfn,
 331                                unsigned long nr_pages, int nid)
 332{
 333        unsigned long start, end, pfn;
 334
 335        start = SECTION_ALIGN_DOWN(start_pfn);
 336        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 337
 338        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 339                __free_page_ext(pfn);
 340        return 0;
 341
 342}
 343
 344static int __meminit page_ext_callback(struct notifier_block *self,
 345                               unsigned long action, void *arg)
 346{
 347        struct memory_notify *mn = arg;
 348        int ret = 0;
 349
 350        switch (action) {
 351        case MEM_GOING_ONLINE:
 352                ret = online_page_ext(mn->start_pfn,
 353                                   mn->nr_pages, mn->status_change_nid);
 354                break;
 355        case MEM_OFFLINE:
 356                offline_page_ext(mn->start_pfn,
 357                                mn->nr_pages, mn->status_change_nid);
 358                break;
 359        case MEM_CANCEL_ONLINE:
 360                offline_page_ext(mn->start_pfn,
 361                                mn->nr_pages, mn->status_change_nid);
 362                break;
 363        case MEM_GOING_OFFLINE:
 364                break;
 365        case MEM_ONLINE:
 366        case MEM_CANCEL_OFFLINE:
 367                break;
 368        }
 369
 370        return notifier_from_errno(ret);
 371}
 372
 373#endif
 374
 375void __init page_ext_init(void)
 376{
 377        unsigned long pfn;
 378        int nid;
 379
 380        if (!invoke_need_callbacks())
 381                return;
 382
 383        for_each_node_state(nid, N_MEMORY) {
 384                unsigned long start_pfn, end_pfn;
 385
 386                start_pfn = node_start_pfn(nid);
 387                end_pfn = node_end_pfn(nid);
 388                /*
 389                 * start_pfn and end_pfn may not be aligned to SECTION and the
 390                 * page->flags of out of node pages are not initialized.  So we
 391                 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 392                 */
 393                for (pfn = start_pfn; pfn < end_pfn;
 394                        pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 395
 396                        if (!pfn_valid(pfn))
 397                                continue;
 398                        /*
 399                         * Nodes's pfns can be overlapping.
 400                         * We know some arch can have a nodes layout such as
 401                         * -------------pfn-------------->
 402                         * N0 | N1 | N2 | N0 | N1 | N2|....
 403                         *
 404                         * Take into account DEFERRED_STRUCT_PAGE_INIT.
 405                         */
 406                        if (early_pfn_to_nid(pfn) != nid)
 407                                continue;
 408                        if (init_section_page_ext(pfn, nid))
 409                                goto oom;
 410                        cond_resched();
 411                }
 412        }
 413        hotplug_memory_notifier(page_ext_callback, 0);
 414        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 415        invoke_init_callbacks();
 416        return;
 417
 418oom:
 419        panic("Out of memory");
 420}
 421
 422void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 423{
 424}
 425
 426#endif
 427