linux/mm/slab_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/compiler.h>
  14#include <linux/module.h>
  15#include <linux/cpu.h>
  16#include <linux/uaccess.h>
  17#include <linux/seq_file.h>
  18#include <linux/proc_fs.h>
  19#include <asm/cacheflush.h>
  20#include <asm/tlbflush.h>
  21#include <asm/page.h>
  22#include <linux/memcontrol.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/kmem.h>
  26
  27#include "slab.h"
  28
  29enum slab_state slab_state;
  30LIST_HEAD(slab_caches);
  31DEFINE_MUTEX(slab_mutex);
  32struct kmem_cache *kmem_cache;
  33
  34static LIST_HEAD(slab_caches_to_rcu_destroy);
  35static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  36static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  37                    slab_caches_to_rcu_destroy_workfn);
  38
  39/*
  40 * Set of flags that will prevent slab merging
  41 */
  42#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  43                SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  44                SLAB_FAILSLAB | SLAB_KASAN)
  45
  46#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  47                         SLAB_NOTRACK | SLAB_ACCOUNT)
  48
  49/*
  50 * Merge control. If this is set then no merging of slab caches will occur.
  51 */
  52static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  53
  54static int __init setup_slab_nomerge(char *str)
  55{
  56        slab_nomerge = true;
  57        return 1;
  58}
  59
  60#ifdef CONFIG_SLUB
  61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  62#endif
  63
  64__setup("slab_nomerge", setup_slab_nomerge);
  65
  66/*
  67 * Determine the size of a slab object
  68 */
  69unsigned int kmem_cache_size(struct kmem_cache *s)
  70{
  71        return s->object_size;
  72}
  73EXPORT_SYMBOL(kmem_cache_size);
  74
  75#ifdef CONFIG_DEBUG_VM
  76static int kmem_cache_sanity_check(const char *name, size_t size)
  77{
  78        struct kmem_cache *s = NULL;
  79
  80        if (!name || in_interrupt() || size < sizeof(void *) ||
  81                size > KMALLOC_MAX_SIZE) {
  82                pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  83                return -EINVAL;
  84        }
  85
  86        list_for_each_entry(s, &slab_caches, list) {
  87                char tmp;
  88                int res;
  89
  90                /*
  91                 * This happens when the module gets unloaded and doesn't
  92                 * destroy its slab cache and no-one else reuses the vmalloc
  93                 * area of the module.  Print a warning.
  94                 */
  95                res = probe_kernel_address(s->name, tmp);
  96                if (res) {
  97                        pr_err("Slab cache with size %d has lost its name\n",
  98                               s->object_size);
  99                        continue;
 100                }
 101        }
 102
 103        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
 104        return 0;
 105}
 106#else
 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
 108{
 109        return 0;
 110}
 111#endif
 112
 113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 114{
 115        size_t i;
 116
 117        for (i = 0; i < nr; i++) {
 118                if (s)
 119                        kmem_cache_free(s, p[i]);
 120                else
 121                        kfree(p[i]);
 122        }
 123}
 124
 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 126                                                                void **p)
 127{
 128        size_t i;
 129
 130        for (i = 0; i < nr; i++) {
 131                void *x = p[i] = kmem_cache_alloc(s, flags);
 132                if (!x) {
 133                        __kmem_cache_free_bulk(s, i, p);
 134                        return 0;
 135                }
 136        }
 137        return i;
 138}
 139
 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 141
 142LIST_HEAD(slab_root_caches);
 143
 144void slab_init_memcg_params(struct kmem_cache *s)
 145{
 146        s->memcg_params.root_cache = NULL;
 147        RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 148        INIT_LIST_HEAD(&s->memcg_params.children);
 149}
 150
 151static int init_memcg_params(struct kmem_cache *s,
 152                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 153{
 154        struct memcg_cache_array *arr;
 155
 156        if (root_cache) {
 157                s->memcg_params.root_cache = root_cache;
 158                s->memcg_params.memcg = memcg;
 159                INIT_LIST_HEAD(&s->memcg_params.children_node);
 160                INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 161                return 0;
 162        }
 163
 164        slab_init_memcg_params(s);
 165
 166        if (!memcg_nr_cache_ids)
 167                return 0;
 168
 169        arr = kvzalloc(sizeof(struct memcg_cache_array) +
 170                       memcg_nr_cache_ids * sizeof(void *),
 171                       GFP_KERNEL);
 172        if (!arr)
 173                return -ENOMEM;
 174
 175        RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 176        return 0;
 177}
 178
 179static void destroy_memcg_params(struct kmem_cache *s)
 180{
 181        if (is_root_cache(s))
 182                kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 183}
 184
 185static void free_memcg_params(struct rcu_head *rcu)
 186{
 187        struct memcg_cache_array *old;
 188
 189        old = container_of(rcu, struct memcg_cache_array, rcu);
 190        kvfree(old);
 191}
 192
 193static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 194{
 195        struct memcg_cache_array *old, *new;
 196
 197        new = kvzalloc(sizeof(struct memcg_cache_array) +
 198                       new_array_size * sizeof(void *), GFP_KERNEL);
 199        if (!new)
 200                return -ENOMEM;
 201
 202        old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 203                                        lockdep_is_held(&slab_mutex));
 204        if (old)
 205                memcpy(new->entries, old->entries,
 206                       memcg_nr_cache_ids * sizeof(void *));
 207
 208        rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 209        if (old)
 210                call_rcu(&old->rcu, free_memcg_params);
 211        return 0;
 212}
 213
 214int memcg_update_all_caches(int num_memcgs)
 215{
 216        struct kmem_cache *s;
 217        int ret = 0;
 218
 219        mutex_lock(&slab_mutex);
 220        list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 221                ret = update_memcg_params(s, num_memcgs);
 222                /*
 223                 * Instead of freeing the memory, we'll just leave the caches
 224                 * up to this point in an updated state.
 225                 */
 226                if (ret)
 227                        break;
 228        }
 229        mutex_unlock(&slab_mutex);
 230        return ret;
 231}
 232
 233void memcg_link_cache(struct kmem_cache *s)
 234{
 235        if (is_root_cache(s)) {
 236                list_add(&s->root_caches_node, &slab_root_caches);
 237        } else {
 238                list_add(&s->memcg_params.children_node,
 239                         &s->memcg_params.root_cache->memcg_params.children);
 240                list_add(&s->memcg_params.kmem_caches_node,
 241                         &s->memcg_params.memcg->kmem_caches);
 242        }
 243}
 244
 245static void memcg_unlink_cache(struct kmem_cache *s)
 246{
 247        if (is_root_cache(s)) {
 248                list_del(&s->root_caches_node);
 249        } else {
 250                list_del(&s->memcg_params.children_node);
 251                list_del(&s->memcg_params.kmem_caches_node);
 252        }
 253}
 254#else
 255static inline int init_memcg_params(struct kmem_cache *s,
 256                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 257{
 258        return 0;
 259}
 260
 261static inline void destroy_memcg_params(struct kmem_cache *s)
 262{
 263}
 264
 265static inline void memcg_unlink_cache(struct kmem_cache *s)
 266{
 267}
 268#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 269
 270/*
 271 * Find a mergeable slab cache
 272 */
 273int slab_unmergeable(struct kmem_cache *s)
 274{
 275        if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 276                return 1;
 277
 278        if (!is_root_cache(s))
 279                return 1;
 280
 281        if (s->ctor)
 282                return 1;
 283
 284        /*
 285         * We may have set a slab to be unmergeable during bootstrap.
 286         */
 287        if (s->refcount < 0)
 288                return 1;
 289
 290        return 0;
 291}
 292
 293struct kmem_cache *find_mergeable(size_t size, size_t align,
 294                unsigned long flags, const char *name, void (*ctor)(void *))
 295{
 296        struct kmem_cache *s;
 297
 298        if (slab_nomerge)
 299                return NULL;
 300
 301        if (ctor)
 302                return NULL;
 303
 304        size = ALIGN(size, sizeof(void *));
 305        align = calculate_alignment(flags, align, size);
 306        size = ALIGN(size, align);
 307        flags = kmem_cache_flags(size, flags, name, NULL);
 308
 309        if (flags & SLAB_NEVER_MERGE)
 310                return NULL;
 311
 312        list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 313                if (slab_unmergeable(s))
 314                        continue;
 315
 316                if (size > s->size)
 317                        continue;
 318
 319                if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 320                        continue;
 321                /*
 322                 * Check if alignment is compatible.
 323                 * Courtesy of Adrian Drzewiecki
 324                 */
 325                if ((s->size & ~(align - 1)) != s->size)
 326                        continue;
 327
 328                if (s->size - size >= sizeof(void *))
 329                        continue;
 330
 331                if (IS_ENABLED(CONFIG_SLAB) && align &&
 332                        (align > s->align || s->align % align))
 333                        continue;
 334
 335                return s;
 336        }
 337        return NULL;
 338}
 339
 340/*
 341 * Figure out what the alignment of the objects will be given a set of
 342 * flags, a user specified alignment and the size of the objects.
 343 */
 344unsigned long calculate_alignment(unsigned long flags,
 345                unsigned long align, unsigned long size)
 346{
 347        /*
 348         * If the user wants hardware cache aligned objects then follow that
 349         * suggestion if the object is sufficiently large.
 350         *
 351         * The hardware cache alignment cannot override the specified
 352         * alignment though. If that is greater then use it.
 353         */
 354        if (flags & SLAB_HWCACHE_ALIGN) {
 355                unsigned long ralign = cache_line_size();
 356                while (size <= ralign / 2)
 357                        ralign /= 2;
 358                align = max(align, ralign);
 359        }
 360
 361        if (align < ARCH_SLAB_MINALIGN)
 362                align = ARCH_SLAB_MINALIGN;
 363
 364        return ALIGN(align, sizeof(void *));
 365}
 366
 367static struct kmem_cache *create_cache(const char *name,
 368                size_t object_size, size_t size, size_t align,
 369                unsigned long flags, void (*ctor)(void *),
 370                struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 371{
 372        struct kmem_cache *s;
 373        int err;
 374
 375        err = -ENOMEM;
 376        s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 377        if (!s)
 378                goto out;
 379
 380        s->name = name;
 381        s->object_size = object_size;
 382        s->size = size;
 383        s->align = align;
 384        s->ctor = ctor;
 385
 386        err = init_memcg_params(s, memcg, root_cache);
 387        if (err)
 388                goto out_free_cache;
 389
 390        err = __kmem_cache_create(s, flags);
 391        if (err)
 392                goto out_free_cache;
 393
 394        s->refcount = 1;
 395        list_add(&s->list, &slab_caches);
 396        memcg_link_cache(s);
 397out:
 398        if (err)
 399                return ERR_PTR(err);
 400        return s;
 401
 402out_free_cache:
 403        destroy_memcg_params(s);
 404        kmem_cache_free(kmem_cache, s);
 405        goto out;
 406}
 407
 408/*
 409 * kmem_cache_create - Create a cache.
 410 * @name: A string which is used in /proc/slabinfo to identify this cache.
 411 * @size: The size of objects to be created in this cache.
 412 * @align: The required alignment for the objects.
 413 * @flags: SLAB flags
 414 * @ctor: A constructor for the objects.
 415 *
 416 * Returns a ptr to the cache on success, NULL on failure.
 417 * Cannot be called within a interrupt, but can be interrupted.
 418 * The @ctor is run when new pages are allocated by the cache.
 419 *
 420 * The flags are
 421 *
 422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 423 * to catch references to uninitialised memory.
 424 *
 425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 426 * for buffer overruns.
 427 *
 428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 429 * cacheline.  This can be beneficial if you're counting cycles as closely
 430 * as davem.
 431 */
 432struct kmem_cache *
 433kmem_cache_create(const char *name, size_t size, size_t align,
 434                  unsigned long flags, void (*ctor)(void *))
 435{
 436        struct kmem_cache *s = NULL;
 437        const char *cache_name;
 438        int err;
 439
 440        get_online_cpus();
 441        get_online_mems();
 442        memcg_get_cache_ids();
 443
 444        mutex_lock(&slab_mutex);
 445
 446        err = kmem_cache_sanity_check(name, size);
 447        if (err) {
 448                goto out_unlock;
 449        }
 450
 451        /* Refuse requests with allocator specific flags */
 452        if (flags & ~SLAB_FLAGS_PERMITTED) {
 453                err = -EINVAL;
 454                goto out_unlock;
 455        }
 456
 457        /*
 458         * Some allocators will constraint the set of valid flags to a subset
 459         * of all flags. We expect them to define CACHE_CREATE_MASK in this
 460         * case, and we'll just provide them with a sanitized version of the
 461         * passed flags.
 462         */
 463        flags &= CACHE_CREATE_MASK;
 464
 465        s = __kmem_cache_alias(name, size, align, flags, ctor);
 466        if (s)
 467                goto out_unlock;
 468
 469        cache_name = kstrdup_const(name, GFP_KERNEL);
 470        if (!cache_name) {
 471                err = -ENOMEM;
 472                goto out_unlock;
 473        }
 474
 475        s = create_cache(cache_name, size, size,
 476                         calculate_alignment(flags, align, size),
 477                         flags, ctor, NULL, NULL);
 478        if (IS_ERR(s)) {
 479                err = PTR_ERR(s);
 480                kfree_const(cache_name);
 481        }
 482
 483out_unlock:
 484        mutex_unlock(&slab_mutex);
 485
 486        memcg_put_cache_ids();
 487        put_online_mems();
 488        put_online_cpus();
 489
 490        if (err) {
 491                if (flags & SLAB_PANIC)
 492                        panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 493                                name, err);
 494                else {
 495                        pr_warn("kmem_cache_create(%s) failed with error %d\n",
 496                                name, err);
 497                        dump_stack();
 498                }
 499                return NULL;
 500        }
 501        return s;
 502}
 503EXPORT_SYMBOL(kmem_cache_create);
 504
 505static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 506{
 507        LIST_HEAD(to_destroy);
 508        struct kmem_cache *s, *s2;
 509
 510        /*
 511         * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 512         * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 513         * through RCU and and the associated kmem_cache are dereferenced
 514         * while freeing the pages, so the kmem_caches should be freed only
 515         * after the pending RCU operations are finished.  As rcu_barrier()
 516         * is a pretty slow operation, we batch all pending destructions
 517         * asynchronously.
 518         */
 519        mutex_lock(&slab_mutex);
 520        list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 521        mutex_unlock(&slab_mutex);
 522
 523        if (list_empty(&to_destroy))
 524                return;
 525
 526        rcu_barrier();
 527
 528        list_for_each_entry_safe(s, s2, &to_destroy, list) {
 529#ifdef SLAB_SUPPORTS_SYSFS
 530                sysfs_slab_release(s);
 531#else
 532                slab_kmem_cache_release(s);
 533#endif
 534        }
 535}
 536
 537static int shutdown_cache(struct kmem_cache *s)
 538{
 539        /* free asan quarantined objects */
 540        kasan_cache_shutdown(s);
 541
 542        if (__kmem_cache_shutdown(s) != 0)
 543                return -EBUSY;
 544
 545        memcg_unlink_cache(s);
 546        list_del(&s->list);
 547
 548        if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 549                list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 550                schedule_work(&slab_caches_to_rcu_destroy_work);
 551        } else {
 552#ifdef SLAB_SUPPORTS_SYSFS
 553                sysfs_slab_release(s);
 554#else
 555                slab_kmem_cache_release(s);
 556#endif
 557        }
 558
 559        return 0;
 560}
 561
 562#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 563/*
 564 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 565 * @memcg: The memory cgroup the new cache is for.
 566 * @root_cache: The parent of the new cache.
 567 *
 568 * This function attempts to create a kmem cache that will serve allocation
 569 * requests going from @memcg to @root_cache. The new cache inherits properties
 570 * from its parent.
 571 */
 572void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 573                             struct kmem_cache *root_cache)
 574{
 575        static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 576        struct cgroup_subsys_state *css = &memcg->css;
 577        struct memcg_cache_array *arr;
 578        struct kmem_cache *s = NULL;
 579        char *cache_name;
 580        int idx;
 581
 582        get_online_cpus();
 583        get_online_mems();
 584
 585        mutex_lock(&slab_mutex);
 586
 587        /*
 588         * The memory cgroup could have been offlined while the cache
 589         * creation work was pending.
 590         */
 591        if (memcg->kmem_state != KMEM_ONLINE)
 592                goto out_unlock;
 593
 594        idx = memcg_cache_id(memcg);
 595        arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 596                                        lockdep_is_held(&slab_mutex));
 597
 598        /*
 599         * Since per-memcg caches are created asynchronously on first
 600         * allocation (see memcg_kmem_get_cache()), several threads can try to
 601         * create the same cache, but only one of them may succeed.
 602         */
 603        if (arr->entries[idx])
 604                goto out_unlock;
 605
 606        cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 607        cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 608                               css->serial_nr, memcg_name_buf);
 609        if (!cache_name)
 610                goto out_unlock;
 611
 612        s = create_cache(cache_name, root_cache->object_size,
 613                         root_cache->size, root_cache->align,
 614                         root_cache->flags & CACHE_CREATE_MASK,
 615                         root_cache->ctor, memcg, root_cache);
 616        /*
 617         * If we could not create a memcg cache, do not complain, because
 618         * that's not critical at all as we can always proceed with the root
 619         * cache.
 620         */
 621        if (IS_ERR(s)) {
 622                kfree(cache_name);
 623                goto out_unlock;
 624        }
 625
 626        /*
 627         * Since readers won't lock (see cache_from_memcg_idx()), we need a
 628         * barrier here to ensure nobody will see the kmem_cache partially
 629         * initialized.
 630         */
 631        smp_wmb();
 632        arr->entries[idx] = s;
 633
 634out_unlock:
 635        mutex_unlock(&slab_mutex);
 636
 637        put_online_mems();
 638        put_online_cpus();
 639}
 640
 641static void kmemcg_deactivate_workfn(struct work_struct *work)
 642{
 643        struct kmem_cache *s = container_of(work, struct kmem_cache,
 644                                            memcg_params.deact_work);
 645
 646        get_online_cpus();
 647        get_online_mems();
 648
 649        mutex_lock(&slab_mutex);
 650
 651        s->memcg_params.deact_fn(s);
 652
 653        mutex_unlock(&slab_mutex);
 654
 655        put_online_mems();
 656        put_online_cpus();
 657
 658        /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
 659        css_put(&s->memcg_params.memcg->css);
 660}
 661
 662static void kmemcg_deactivate_rcufn(struct rcu_head *head)
 663{
 664        struct kmem_cache *s = container_of(head, struct kmem_cache,
 665                                            memcg_params.deact_rcu_head);
 666
 667        /*
 668         * We need to grab blocking locks.  Bounce to ->deact_work.  The
 669         * work item shares the space with the RCU head and can't be
 670         * initialized eariler.
 671         */
 672        INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
 673        queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
 674}
 675
 676/**
 677 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 678 *                                         sched RCU grace period
 679 * @s: target kmem_cache
 680 * @deact_fn: deactivation function to call
 681 *
 682 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 683 * held after a sched RCU grace period.  The slab is guaranteed to stay
 684 * alive until @deact_fn is finished.  This is to be used from
 685 * __kmemcg_cache_deactivate().
 686 */
 687void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
 688                                           void (*deact_fn)(struct kmem_cache *))
 689{
 690        if (WARN_ON_ONCE(is_root_cache(s)) ||
 691            WARN_ON_ONCE(s->memcg_params.deact_fn))
 692                return;
 693
 694        /* pin memcg so that @s doesn't get destroyed in the middle */
 695        css_get(&s->memcg_params.memcg->css);
 696
 697        s->memcg_params.deact_fn = deact_fn;
 698        call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
 699}
 700
 701void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 702{
 703        int idx;
 704        struct memcg_cache_array *arr;
 705        struct kmem_cache *s, *c;
 706
 707        idx = memcg_cache_id(memcg);
 708
 709        get_online_cpus();
 710        get_online_mems();
 711
 712        mutex_lock(&slab_mutex);
 713        list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 714                arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 715                                                lockdep_is_held(&slab_mutex));
 716                c = arr->entries[idx];
 717                if (!c)
 718                        continue;
 719
 720                __kmemcg_cache_deactivate(c);
 721                arr->entries[idx] = NULL;
 722        }
 723        mutex_unlock(&slab_mutex);
 724
 725        put_online_mems();
 726        put_online_cpus();
 727}
 728
 729void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 730{
 731        struct kmem_cache *s, *s2;
 732
 733        get_online_cpus();
 734        get_online_mems();
 735
 736        mutex_lock(&slab_mutex);
 737        list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
 738                                 memcg_params.kmem_caches_node) {
 739                /*
 740                 * The cgroup is about to be freed and therefore has no charges
 741                 * left. Hence, all its caches must be empty by now.
 742                 */
 743                BUG_ON(shutdown_cache(s));
 744        }
 745        mutex_unlock(&slab_mutex);
 746
 747        put_online_mems();
 748        put_online_cpus();
 749}
 750
 751static int shutdown_memcg_caches(struct kmem_cache *s)
 752{
 753        struct memcg_cache_array *arr;
 754        struct kmem_cache *c, *c2;
 755        LIST_HEAD(busy);
 756        int i;
 757
 758        BUG_ON(!is_root_cache(s));
 759
 760        /*
 761         * First, shutdown active caches, i.e. caches that belong to online
 762         * memory cgroups.
 763         */
 764        arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 765                                        lockdep_is_held(&slab_mutex));
 766        for_each_memcg_cache_index(i) {
 767                c = arr->entries[i];
 768                if (!c)
 769                        continue;
 770                if (shutdown_cache(c))
 771                        /*
 772                         * The cache still has objects. Move it to a temporary
 773                         * list so as not to try to destroy it for a second
 774                         * time while iterating over inactive caches below.
 775                         */
 776                        list_move(&c->memcg_params.children_node, &busy);
 777                else
 778                        /*
 779                         * The cache is empty and will be destroyed soon. Clear
 780                         * the pointer to it in the memcg_caches array so that
 781                         * it will never be accessed even if the root cache
 782                         * stays alive.
 783                         */
 784                        arr->entries[i] = NULL;
 785        }
 786
 787        /*
 788         * Second, shutdown all caches left from memory cgroups that are now
 789         * offline.
 790         */
 791        list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 792                                 memcg_params.children_node)
 793                shutdown_cache(c);
 794
 795        list_splice(&busy, &s->memcg_params.children);
 796
 797        /*
 798         * A cache being destroyed must be empty. In particular, this means
 799         * that all per memcg caches attached to it must be empty too.
 800         */
 801        if (!list_empty(&s->memcg_params.children))
 802                return -EBUSY;
 803        return 0;
 804}
 805#else
 806static inline int shutdown_memcg_caches(struct kmem_cache *s)
 807{
 808        return 0;
 809}
 810#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 811
 812void slab_kmem_cache_release(struct kmem_cache *s)
 813{
 814        __kmem_cache_release(s);
 815        destroy_memcg_params(s);
 816        kfree_const(s->name);
 817        kmem_cache_free(kmem_cache, s);
 818}
 819
 820void kmem_cache_destroy(struct kmem_cache *s)
 821{
 822        int err;
 823
 824        if (unlikely(!s))
 825                return;
 826
 827        get_online_cpus();
 828        get_online_mems();
 829
 830        mutex_lock(&slab_mutex);
 831
 832        s->refcount--;
 833        if (s->refcount)
 834                goto out_unlock;
 835
 836        err = shutdown_memcg_caches(s);
 837        if (!err)
 838                err = shutdown_cache(s);
 839
 840        if (err) {
 841                pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 842                       s->name);
 843                dump_stack();
 844        }
 845out_unlock:
 846        mutex_unlock(&slab_mutex);
 847
 848        put_online_mems();
 849        put_online_cpus();
 850}
 851EXPORT_SYMBOL(kmem_cache_destroy);
 852
 853/**
 854 * kmem_cache_shrink - Shrink a cache.
 855 * @cachep: The cache to shrink.
 856 *
 857 * Releases as many slabs as possible for a cache.
 858 * To help debugging, a zero exit status indicates all slabs were released.
 859 */
 860int kmem_cache_shrink(struct kmem_cache *cachep)
 861{
 862        int ret;
 863
 864        get_online_cpus();
 865        get_online_mems();
 866        kasan_cache_shrink(cachep);
 867        ret = __kmem_cache_shrink(cachep);
 868        put_online_mems();
 869        put_online_cpus();
 870        return ret;
 871}
 872EXPORT_SYMBOL(kmem_cache_shrink);
 873
 874bool slab_is_available(void)
 875{
 876        return slab_state >= UP;
 877}
 878
 879#ifndef CONFIG_SLOB
 880/* Create a cache during boot when no slab services are available yet */
 881void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
 882                unsigned long flags)
 883{
 884        int err;
 885
 886        s->name = name;
 887        s->size = s->object_size = size;
 888        s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 889
 890        slab_init_memcg_params(s);
 891
 892        err = __kmem_cache_create(s, flags);
 893
 894        if (err)
 895                panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 896                                        name, size, err);
 897
 898        s->refcount = -1;       /* Exempt from merging for now */
 899}
 900
 901struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
 902                                unsigned long flags)
 903{
 904        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 905
 906        if (!s)
 907                panic("Out of memory when creating slab %s\n", name);
 908
 909        create_boot_cache(s, name, size, flags);
 910        list_add(&s->list, &slab_caches);
 911        memcg_link_cache(s);
 912        s->refcount = 1;
 913        return s;
 914}
 915
 916struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 917EXPORT_SYMBOL(kmalloc_caches);
 918
 919#ifdef CONFIG_ZONE_DMA
 920struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 921EXPORT_SYMBOL(kmalloc_dma_caches);
 922#endif
 923
 924/*
 925 * Conversion table for small slabs sizes / 8 to the index in the
 926 * kmalloc array. This is necessary for slabs < 192 since we have non power
 927 * of two cache sizes there. The size of larger slabs can be determined using
 928 * fls.
 929 */
 930static s8 size_index[24] = {
 931        3,      /* 8 */
 932        4,      /* 16 */
 933        5,      /* 24 */
 934        5,      /* 32 */
 935        6,      /* 40 */
 936        6,      /* 48 */
 937        6,      /* 56 */
 938        6,      /* 64 */
 939        1,      /* 72 */
 940        1,      /* 80 */
 941        1,      /* 88 */
 942        1,      /* 96 */
 943        7,      /* 104 */
 944        7,      /* 112 */
 945        7,      /* 120 */
 946        7,      /* 128 */
 947        2,      /* 136 */
 948        2,      /* 144 */
 949        2,      /* 152 */
 950        2,      /* 160 */
 951        2,      /* 168 */
 952        2,      /* 176 */
 953        2,      /* 184 */
 954        2       /* 192 */
 955};
 956
 957static inline int size_index_elem(size_t bytes)
 958{
 959        return (bytes - 1) / 8;
 960}
 961
 962/*
 963 * Find the kmem_cache structure that serves a given size of
 964 * allocation
 965 */
 966struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 967{
 968        int index;
 969
 970        if (unlikely(size > KMALLOC_MAX_SIZE)) {
 971                WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 972                return NULL;
 973        }
 974
 975        if (size <= 192) {
 976                if (!size)
 977                        return ZERO_SIZE_PTR;
 978
 979                index = size_index[size_index_elem(size)];
 980        } else
 981                index = fls(size - 1);
 982
 983#ifdef CONFIG_ZONE_DMA
 984        if (unlikely((flags & GFP_DMA)))
 985                return kmalloc_dma_caches[index];
 986
 987#endif
 988        return kmalloc_caches[index];
 989}
 990
 991/*
 992 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 993 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 994 * kmalloc-67108864.
 995 */
 996const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 997        {NULL,                      0},         {"kmalloc-96",             96},
 998        {"kmalloc-192",           192},         {"kmalloc-8",               8},
 999        {"kmalloc-16",             16},         {"kmalloc-32",             32},
1000        {"kmalloc-64",             64},         {"kmalloc-128",           128},
1001        {"kmalloc-256",           256},         {"kmalloc-512",           512},
1002        {"kmalloc-1024",         1024},         {"kmalloc-2048",         2048},
1003        {"kmalloc-4096",         4096},         {"kmalloc-8192",         8192},
1004        {"kmalloc-16384",       16384},         {"kmalloc-32768",       32768},
1005        {"kmalloc-65536",       65536},         {"kmalloc-131072",     131072},
1006        {"kmalloc-262144",     262144},         {"kmalloc-524288",     524288},
1007        {"kmalloc-1048576",   1048576},         {"kmalloc-2097152",   2097152},
1008        {"kmalloc-4194304",   4194304},         {"kmalloc-8388608",   8388608},
1009        {"kmalloc-16777216", 16777216},         {"kmalloc-33554432", 33554432},
1010        {"kmalloc-67108864", 67108864}
1011};
1012
1013/*
1014 * Patch up the size_index table if we have strange large alignment
1015 * requirements for the kmalloc array. This is only the case for
1016 * MIPS it seems. The standard arches will not generate any code here.
1017 *
1018 * Largest permitted alignment is 256 bytes due to the way we
1019 * handle the index determination for the smaller caches.
1020 *
1021 * Make sure that nothing crazy happens if someone starts tinkering
1022 * around with ARCH_KMALLOC_MINALIGN
1023 */
1024void __init setup_kmalloc_cache_index_table(void)
1025{
1026        int i;
1027
1028        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1029                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1030
1031        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1032                int elem = size_index_elem(i);
1033
1034                if (elem >= ARRAY_SIZE(size_index))
1035                        break;
1036                size_index[elem] = KMALLOC_SHIFT_LOW;
1037        }
1038
1039        if (KMALLOC_MIN_SIZE >= 64) {
1040                /*
1041                 * The 96 byte size cache is not used if the alignment
1042                 * is 64 byte.
1043                 */
1044                for (i = 64 + 8; i <= 96; i += 8)
1045                        size_index[size_index_elem(i)] = 7;
1046
1047        }
1048
1049        if (KMALLOC_MIN_SIZE >= 128) {
1050                /*
1051                 * The 192 byte sized cache is not used if the alignment
1052                 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1053                 * instead.
1054                 */
1055                for (i = 128 + 8; i <= 192; i += 8)
1056                        size_index[size_index_elem(i)] = 8;
1057        }
1058}
1059
1060static void __init new_kmalloc_cache(int idx, unsigned long flags)
1061{
1062        kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1063                                        kmalloc_info[idx].size, flags);
1064}
1065
1066/*
1067 * Create the kmalloc array. Some of the regular kmalloc arrays
1068 * may already have been created because they were needed to
1069 * enable allocations for slab creation.
1070 */
1071void __init create_kmalloc_caches(unsigned long flags)
1072{
1073        int i;
1074
1075        for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1076                if (!kmalloc_caches[i])
1077                        new_kmalloc_cache(i, flags);
1078
1079                /*
1080                 * Caches that are not of the two-to-the-power-of size.
1081                 * These have to be created immediately after the
1082                 * earlier power of two caches
1083                 */
1084                if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1085                        new_kmalloc_cache(1, flags);
1086                if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1087                        new_kmalloc_cache(2, flags);
1088        }
1089
1090        /* Kmalloc array is now usable */
1091        slab_state = UP;
1092
1093#ifdef CONFIG_ZONE_DMA
1094        for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1095                struct kmem_cache *s = kmalloc_caches[i];
1096
1097                if (s) {
1098                        int size = kmalloc_size(i);
1099                        char *n = kasprintf(GFP_NOWAIT,
1100                                 "dma-kmalloc-%d", size);
1101
1102                        BUG_ON(!n);
1103                        kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1104                                size, SLAB_CACHE_DMA | flags);
1105                }
1106        }
1107#endif
1108}
1109#endif /* !CONFIG_SLOB */
1110
1111/*
1112 * To avoid unnecessary overhead, we pass through large allocation requests
1113 * directly to the page allocator. We use __GFP_COMP, because we will need to
1114 * know the allocation order to free the pages properly in kfree.
1115 */
1116void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1117{
1118        void *ret;
1119        struct page *page;
1120
1121        flags |= __GFP_COMP;
1122        page = alloc_pages(flags, order);
1123        ret = page ? page_address(page) : NULL;
1124        kmemleak_alloc(ret, size, 1, flags);
1125        kasan_kmalloc_large(ret, size, flags);
1126        return ret;
1127}
1128EXPORT_SYMBOL(kmalloc_order);
1129
1130#ifdef CONFIG_TRACING
1131void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1132{
1133        void *ret = kmalloc_order(size, flags, order);
1134        trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1135        return ret;
1136}
1137EXPORT_SYMBOL(kmalloc_order_trace);
1138#endif
1139
1140#ifdef CONFIG_SLAB_FREELIST_RANDOM
1141/* Randomize a generic freelist */
1142static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1143                        size_t count)
1144{
1145        size_t i;
1146        unsigned int rand;
1147
1148        for (i = 0; i < count; i++)
1149                list[i] = i;
1150
1151        /* Fisher-Yates shuffle */
1152        for (i = count - 1; i > 0; i--) {
1153                rand = prandom_u32_state(state);
1154                rand %= (i + 1);
1155                swap(list[i], list[rand]);
1156        }
1157}
1158
1159/* Create a random sequence per cache */
1160int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1161                                    gfp_t gfp)
1162{
1163        struct rnd_state state;
1164
1165        if (count < 2 || cachep->random_seq)
1166                return 0;
1167
1168        cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1169        if (!cachep->random_seq)
1170                return -ENOMEM;
1171
1172        /* Get best entropy at this stage of boot */
1173        prandom_seed_state(&state, get_random_long());
1174
1175        freelist_randomize(&state, cachep->random_seq, count);
1176        return 0;
1177}
1178
1179/* Destroy the per-cache random freelist sequence */
1180void cache_random_seq_destroy(struct kmem_cache *cachep)
1181{
1182        kfree(cachep->random_seq);
1183        cachep->random_seq = NULL;
1184}
1185#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1186
1187#ifdef CONFIG_SLABINFO
1188
1189#ifdef CONFIG_SLAB
1190#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1191#else
1192#define SLABINFO_RIGHTS S_IRUSR
1193#endif
1194
1195static void print_slabinfo_header(struct seq_file *m)
1196{
1197        /*
1198         * Output format version, so at least we can change it
1199         * without _too_ many complaints.
1200         */
1201#ifdef CONFIG_DEBUG_SLAB
1202        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1203#else
1204        seq_puts(m, "slabinfo - version: 2.1\n");
1205#endif
1206        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1207        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1208        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1209#ifdef CONFIG_DEBUG_SLAB
1210        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1211        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1212#endif
1213        seq_putc(m, '\n');
1214}
1215
1216void *slab_start(struct seq_file *m, loff_t *pos)
1217{
1218        mutex_lock(&slab_mutex);
1219        return seq_list_start(&slab_root_caches, *pos);
1220}
1221
1222void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1223{
1224        return seq_list_next(p, &slab_root_caches, pos);
1225}
1226
1227void slab_stop(struct seq_file *m, void *p)
1228{
1229        mutex_unlock(&slab_mutex);
1230}
1231
1232static void
1233memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1234{
1235        struct kmem_cache *c;
1236        struct slabinfo sinfo;
1237
1238        if (!is_root_cache(s))
1239                return;
1240
1241        for_each_memcg_cache(c, s) {
1242                memset(&sinfo, 0, sizeof(sinfo));
1243                get_slabinfo(c, &sinfo);
1244
1245                info->active_slabs += sinfo.active_slabs;
1246                info->num_slabs += sinfo.num_slabs;
1247                info->shared_avail += sinfo.shared_avail;
1248                info->active_objs += sinfo.active_objs;
1249                info->num_objs += sinfo.num_objs;
1250        }
1251}
1252
1253static void cache_show(struct kmem_cache *s, struct seq_file *m)
1254{
1255        struct slabinfo sinfo;
1256
1257        memset(&sinfo, 0, sizeof(sinfo));
1258        get_slabinfo(s, &sinfo);
1259
1260        memcg_accumulate_slabinfo(s, &sinfo);
1261
1262        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1263                   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1264                   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1265
1266        seq_printf(m, " : tunables %4u %4u %4u",
1267                   sinfo.limit, sinfo.batchcount, sinfo.shared);
1268        seq_printf(m, " : slabdata %6lu %6lu %6lu",
1269                   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1270        slabinfo_show_stats(m, s);
1271        seq_putc(m, '\n');
1272}
1273
1274static int slab_show(struct seq_file *m, void *p)
1275{
1276        struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1277
1278        if (p == slab_root_caches.next)
1279                print_slabinfo_header(m);
1280        cache_show(s, m);
1281        return 0;
1282}
1283
1284#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1285void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1286{
1287        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1288
1289        mutex_lock(&slab_mutex);
1290        return seq_list_start(&memcg->kmem_caches, *pos);
1291}
1292
1293void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1294{
1295        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1296
1297        return seq_list_next(p, &memcg->kmem_caches, pos);
1298}
1299
1300void memcg_slab_stop(struct seq_file *m, void *p)
1301{
1302        mutex_unlock(&slab_mutex);
1303}
1304
1305int memcg_slab_show(struct seq_file *m, void *p)
1306{
1307        struct kmem_cache *s = list_entry(p, struct kmem_cache,
1308                                          memcg_params.kmem_caches_node);
1309        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1310
1311        if (p == memcg->kmem_caches.next)
1312                print_slabinfo_header(m);
1313        cache_show(s, m);
1314        return 0;
1315}
1316#endif
1317
1318/*
1319 * slabinfo_op - iterator that generates /proc/slabinfo
1320 *
1321 * Output layout:
1322 * cache-name
1323 * num-active-objs
1324 * total-objs
1325 * object size
1326 * num-active-slabs
1327 * total-slabs
1328 * num-pages-per-slab
1329 * + further values on SMP and with statistics enabled
1330 */
1331static const struct seq_operations slabinfo_op = {
1332        .start = slab_start,
1333        .next = slab_next,
1334        .stop = slab_stop,
1335        .show = slab_show,
1336};
1337
1338static int slabinfo_open(struct inode *inode, struct file *file)
1339{
1340        return seq_open(file, &slabinfo_op);
1341}
1342
1343static const struct file_operations proc_slabinfo_operations = {
1344        .open           = slabinfo_open,
1345        .read           = seq_read,
1346        .write          = slabinfo_write,
1347        .llseek         = seq_lseek,
1348        .release        = seq_release,
1349};
1350
1351static int __init slab_proc_init(void)
1352{
1353        proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1354                                                &proc_slabinfo_operations);
1355        return 0;
1356}
1357module_init(slab_proc_init);
1358#endif /* CONFIG_SLABINFO */
1359
1360static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1361                                           gfp_t flags)
1362{
1363        void *ret;
1364        size_t ks = 0;
1365
1366        if (p)
1367                ks = ksize(p);
1368
1369        if (ks >= new_size) {
1370                kasan_krealloc((void *)p, new_size, flags);
1371                return (void *)p;
1372        }
1373
1374        ret = kmalloc_track_caller(new_size, flags);
1375        if (ret && p)
1376                memcpy(ret, p, ks);
1377
1378        return ret;
1379}
1380
1381/**
1382 * __krealloc - like krealloc() but don't free @p.
1383 * @p: object to reallocate memory for.
1384 * @new_size: how many bytes of memory are required.
1385 * @flags: the type of memory to allocate.
1386 *
1387 * This function is like krealloc() except it never frees the originally
1388 * allocated buffer. Use this if you don't want to free the buffer immediately
1389 * like, for example, with RCU.
1390 */
1391void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1392{
1393        if (unlikely(!new_size))
1394                return ZERO_SIZE_PTR;
1395
1396        return __do_krealloc(p, new_size, flags);
1397
1398}
1399EXPORT_SYMBOL(__krealloc);
1400
1401/**
1402 * krealloc - reallocate memory. The contents will remain unchanged.
1403 * @p: object to reallocate memory for.
1404 * @new_size: how many bytes of memory are required.
1405 * @flags: the type of memory to allocate.
1406 *
1407 * The contents of the object pointed to are preserved up to the
1408 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1409 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1410 * %NULL pointer, the object pointed to is freed.
1411 */
1412void *krealloc(const void *p, size_t new_size, gfp_t flags)
1413{
1414        void *ret;
1415
1416        if (unlikely(!new_size)) {
1417                kfree(p);
1418                return ZERO_SIZE_PTR;
1419        }
1420
1421        ret = __do_krealloc(p, new_size, flags);
1422        if (ret && p != ret)
1423                kfree(p);
1424
1425        return ret;
1426}
1427EXPORT_SYMBOL(krealloc);
1428
1429/**
1430 * kzfree - like kfree but zero memory
1431 * @p: object to free memory of
1432 *
1433 * The memory of the object @p points to is zeroed before freed.
1434 * If @p is %NULL, kzfree() does nothing.
1435 *
1436 * Note: this function zeroes the whole allocated buffer which can be a good
1437 * deal bigger than the requested buffer size passed to kmalloc(). So be
1438 * careful when using this function in performance sensitive code.
1439 */
1440void kzfree(const void *p)
1441{
1442        size_t ks;
1443        void *mem = (void *)p;
1444
1445        if (unlikely(ZERO_OR_NULL_PTR(mem)))
1446                return;
1447        ks = ksize(mem);
1448        memset(mem, 0, ks);
1449        kfree(mem);
1450}
1451EXPORT_SYMBOL(kzfree);
1452
1453/* Tracepoints definitions. */
1454EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1455EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1456EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1457EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1458EXPORT_TRACEPOINT_SYMBOL(kfree);
1459EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1460