linux/mm/swap_state.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/swap_state.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 *
   8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
   9 */
  10#include <linux/mm.h>
  11#include <linux/gfp.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/init.h>
  16#include <linux/pagemap.h>
  17#include <linux/backing-dev.h>
  18#include <linux/blkdev.h>
  19#include <linux/pagevec.h>
  20#include <linux/migrate.h>
  21#include <linux/vmalloc.h>
  22#include <linux/swap_slots.h>
  23#include <linux/huge_mm.h>
  24
  25#include <asm/pgtable.h>
  26
  27/*
  28 * swapper_space is a fiction, retained to simplify the path through
  29 * vmscan's shrink_page_list.
  30 */
  31static const struct address_space_operations swap_aops = {
  32        .writepage      = swap_writepage,
  33        .set_page_dirty = swap_set_page_dirty,
  34#ifdef CONFIG_MIGRATION
  35        .migratepage    = migrate_page,
  36#endif
  37};
  38
  39struct address_space *swapper_spaces[MAX_SWAPFILES];
  40static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
  41bool swap_vma_readahead = true;
  42
  43#define SWAP_RA_WIN_SHIFT       (PAGE_SHIFT / 2)
  44#define SWAP_RA_HITS_MASK       ((1UL << SWAP_RA_WIN_SHIFT) - 1)
  45#define SWAP_RA_HITS_MAX        SWAP_RA_HITS_MASK
  46#define SWAP_RA_WIN_MASK        (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
  47
  48#define SWAP_RA_HITS(v)         ((v) & SWAP_RA_HITS_MASK)
  49#define SWAP_RA_WIN(v)          (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
  50#define SWAP_RA_ADDR(v)         ((v) & PAGE_MASK)
  51
  52#define SWAP_RA_VAL(addr, win, hits)                            \
  53        (((addr) & PAGE_MASK) |                                 \
  54         (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |    \
  55         ((hits) & SWAP_RA_HITS_MASK))
  56
  57/* Initial readahead hits is 4 to start up with a small window */
  58#define GET_SWAP_RA_VAL(vma)                                    \
  59        (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
  60
  61#define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
  62#define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
  63
  64static struct {
  65        unsigned long add_total;
  66        unsigned long del_total;
  67        unsigned long find_success;
  68        unsigned long find_total;
  69} swap_cache_info;
  70
  71unsigned long total_swapcache_pages(void)
  72{
  73        unsigned int i, j, nr;
  74        unsigned long ret = 0;
  75        struct address_space *spaces;
  76
  77        rcu_read_lock();
  78        for (i = 0; i < MAX_SWAPFILES; i++) {
  79                /*
  80                 * The corresponding entries in nr_swapper_spaces and
  81                 * swapper_spaces will be reused only after at least
  82                 * one grace period.  So it is impossible for them
  83                 * belongs to different usage.
  84                 */
  85                nr = nr_swapper_spaces[i];
  86                spaces = rcu_dereference(swapper_spaces[i]);
  87                if (!nr || !spaces)
  88                        continue;
  89                for (j = 0; j < nr; j++)
  90                        ret += spaces[j].nrpages;
  91        }
  92        rcu_read_unlock();
  93        return ret;
  94}
  95
  96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
  97
  98void show_swap_cache_info(void)
  99{
 100        printk("%lu pages in swap cache\n", total_swapcache_pages());
 101        printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
 102                swap_cache_info.add_total, swap_cache_info.del_total,
 103                swap_cache_info.find_success, swap_cache_info.find_total);
 104        printk("Free swap  = %ldkB\n",
 105                get_nr_swap_pages() << (PAGE_SHIFT - 10));
 106        printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 107}
 108
 109/*
 110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 111 * but sets SwapCache flag and private instead of mapping and index.
 112 */
 113int __add_to_swap_cache(struct page *page, swp_entry_t entry)
 114{
 115        int error, i, nr = hpage_nr_pages(page);
 116        struct address_space *address_space;
 117        pgoff_t idx = swp_offset(entry);
 118
 119        VM_BUG_ON_PAGE(!PageLocked(page), page);
 120        VM_BUG_ON_PAGE(PageSwapCache(page), page);
 121        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 122
 123        page_ref_add(page, nr);
 124        SetPageSwapCache(page);
 125
 126        address_space = swap_address_space(entry);
 127        spin_lock_irq(&address_space->tree_lock);
 128        for (i = 0; i < nr; i++) {
 129                set_page_private(page + i, entry.val + i);
 130                error = radix_tree_insert(&address_space->page_tree,
 131                                          idx + i, page + i);
 132                if (unlikely(error))
 133                        break;
 134        }
 135        if (likely(!error)) {
 136                address_space->nrpages += nr;
 137                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 138                ADD_CACHE_INFO(add_total, nr);
 139        } else {
 140                /*
 141                 * Only the context which have set SWAP_HAS_CACHE flag
 142                 * would call add_to_swap_cache().
 143                 * So add_to_swap_cache() doesn't returns -EEXIST.
 144                 */
 145                VM_BUG_ON(error == -EEXIST);
 146                set_page_private(page + i, 0UL);
 147                while (i--) {
 148                        radix_tree_delete(&address_space->page_tree, idx + i);
 149                        set_page_private(page + i, 0UL);
 150                }
 151                ClearPageSwapCache(page);
 152                page_ref_sub(page, nr);
 153        }
 154        spin_unlock_irq(&address_space->tree_lock);
 155
 156        return error;
 157}
 158
 159
 160int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
 161{
 162        int error;
 163
 164        error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
 165        if (!error) {
 166                error = __add_to_swap_cache(page, entry);
 167                radix_tree_preload_end();
 168        }
 169        return error;
 170}
 171
 172/*
 173 * This must be called only on pages that have
 174 * been verified to be in the swap cache.
 175 */
 176void __delete_from_swap_cache(struct page *page)
 177{
 178        struct address_space *address_space;
 179        int i, nr = hpage_nr_pages(page);
 180        swp_entry_t entry;
 181        pgoff_t idx;
 182
 183        VM_BUG_ON_PAGE(!PageLocked(page), page);
 184        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 185        VM_BUG_ON_PAGE(PageWriteback(page), page);
 186
 187        entry.val = page_private(page);
 188        address_space = swap_address_space(entry);
 189        idx = swp_offset(entry);
 190        for (i = 0; i < nr; i++) {
 191                radix_tree_delete(&address_space->page_tree, idx + i);
 192                set_page_private(page + i, 0);
 193        }
 194        ClearPageSwapCache(page);
 195        address_space->nrpages -= nr;
 196        __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 197        ADD_CACHE_INFO(del_total, nr);
 198}
 199
 200/**
 201 * add_to_swap - allocate swap space for a page
 202 * @page: page we want to move to swap
 203 *
 204 * Allocate swap space for the page and add the page to the
 205 * swap cache.  Caller needs to hold the page lock. 
 206 */
 207int add_to_swap(struct page *page)
 208{
 209        swp_entry_t entry;
 210        int err;
 211
 212        VM_BUG_ON_PAGE(!PageLocked(page), page);
 213        VM_BUG_ON_PAGE(!PageUptodate(page), page);
 214
 215        entry = get_swap_page(page);
 216        if (!entry.val)
 217                return 0;
 218
 219        if (mem_cgroup_try_charge_swap(page, entry))
 220                goto fail;
 221
 222        /*
 223         * Radix-tree node allocations from PF_MEMALLOC contexts could
 224         * completely exhaust the page allocator. __GFP_NOMEMALLOC
 225         * stops emergency reserves from being allocated.
 226         *
 227         * TODO: this could cause a theoretical memory reclaim
 228         * deadlock in the swap out path.
 229         */
 230        /*
 231         * Add it to the swap cache.
 232         */
 233        err = add_to_swap_cache(page, entry,
 234                        __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
 235        /* -ENOMEM radix-tree allocation failure */
 236        if (err)
 237                /*
 238                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 239                 * clear SWAP_HAS_CACHE flag.
 240                 */
 241                goto fail;
 242        /*
 243         * Normally the page will be dirtied in unmap because its pte should be
 244         * dirty. A special case is MADV_FREE page. The page'e pte could have
 245         * dirty bit cleared but the page's SwapBacked bit is still set because
 246         * clearing the dirty bit and SwapBacked bit has no lock protected. For
 247         * such page, unmap will not set dirty bit for it, so page reclaim will
 248         * not write the page out. This can cause data corruption when the page
 249         * is swap in later. Always setting the dirty bit for the page solves
 250         * the problem.
 251         */
 252        set_page_dirty(page);
 253
 254        return 1;
 255
 256fail:
 257        put_swap_page(page, entry);
 258        return 0;
 259}
 260
 261/*
 262 * This must be called only on pages that have
 263 * been verified to be in the swap cache and locked.
 264 * It will never put the page into the free list,
 265 * the caller has a reference on the page.
 266 */
 267void delete_from_swap_cache(struct page *page)
 268{
 269        swp_entry_t entry;
 270        struct address_space *address_space;
 271
 272        entry.val = page_private(page);
 273
 274        address_space = swap_address_space(entry);
 275        spin_lock_irq(&address_space->tree_lock);
 276        __delete_from_swap_cache(page);
 277        spin_unlock_irq(&address_space->tree_lock);
 278
 279        put_swap_page(page, entry);
 280        page_ref_sub(page, hpage_nr_pages(page));
 281}
 282
 283/* 
 284 * If we are the only user, then try to free up the swap cache. 
 285 * 
 286 * Its ok to check for PageSwapCache without the page lock
 287 * here because we are going to recheck again inside
 288 * try_to_free_swap() _with_ the lock.
 289 *                                      - Marcelo
 290 */
 291static inline void free_swap_cache(struct page *page)
 292{
 293        if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
 294                try_to_free_swap(page);
 295                unlock_page(page);
 296        }
 297}
 298
 299/* 
 300 * Perform a free_page(), also freeing any swap cache associated with
 301 * this page if it is the last user of the page.
 302 */
 303void free_page_and_swap_cache(struct page *page)
 304{
 305        free_swap_cache(page);
 306        if (!is_huge_zero_page(page))
 307                put_page(page);
 308}
 309
 310/*
 311 * Passed an array of pages, drop them all from swapcache and then release
 312 * them.  They are removed from the LRU and freed if this is their last use.
 313 */
 314void free_pages_and_swap_cache(struct page **pages, int nr)
 315{
 316        struct page **pagep = pages;
 317        int i;
 318
 319        lru_add_drain();
 320        for (i = 0; i < nr; i++)
 321                free_swap_cache(pagep[i]);
 322        release_pages(pagep, nr, false);
 323}
 324
 325/*
 326 * Lookup a swap entry in the swap cache. A found page will be returned
 327 * unlocked and with its refcount incremented - we rely on the kernel
 328 * lock getting page table operations atomic even if we drop the page
 329 * lock before returning.
 330 */
 331struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
 332                               unsigned long addr)
 333{
 334        struct page *page;
 335        unsigned long ra_info;
 336        int win, hits, readahead;
 337
 338        page = find_get_page(swap_address_space(entry), swp_offset(entry));
 339
 340        INC_CACHE_INFO(find_total);
 341        if (page) {
 342                INC_CACHE_INFO(find_success);
 343                if (unlikely(PageTransCompound(page)))
 344                        return page;
 345                readahead = TestClearPageReadahead(page);
 346                if (vma) {
 347                        ra_info = GET_SWAP_RA_VAL(vma);
 348                        win = SWAP_RA_WIN(ra_info);
 349                        hits = SWAP_RA_HITS(ra_info);
 350                        if (readahead)
 351                                hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
 352                        atomic_long_set(&vma->swap_readahead_info,
 353                                        SWAP_RA_VAL(addr, win, hits));
 354                }
 355                if (readahead) {
 356                        count_vm_event(SWAP_RA_HIT);
 357                        if (!vma)
 358                                atomic_inc(&swapin_readahead_hits);
 359                }
 360        }
 361        return page;
 362}
 363
 364struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 365                        struct vm_area_struct *vma, unsigned long addr,
 366                        bool *new_page_allocated)
 367{
 368        struct page *found_page, *new_page = NULL;
 369        struct address_space *swapper_space = swap_address_space(entry);
 370        int err;
 371        *new_page_allocated = false;
 372
 373        do {
 374                /*
 375                 * First check the swap cache.  Since this is normally
 376                 * called after lookup_swap_cache() failed, re-calling
 377                 * that would confuse statistics.
 378                 */
 379                found_page = find_get_page(swapper_space, swp_offset(entry));
 380                if (found_page)
 381                        break;
 382
 383                /*
 384                 * Just skip read ahead for unused swap slot.
 385                 * During swap_off when swap_slot_cache is disabled,
 386                 * we have to handle the race between putting
 387                 * swap entry in swap cache and marking swap slot
 388                 * as SWAP_HAS_CACHE.  That's done in later part of code or
 389                 * else swap_off will be aborted if we return NULL.
 390                 */
 391                if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
 392                        break;
 393
 394                /*
 395                 * Get a new page to read into from swap.
 396                 */
 397                if (!new_page) {
 398                        new_page = alloc_page_vma(gfp_mask, vma, addr);
 399                        if (!new_page)
 400                                break;          /* Out of memory */
 401                }
 402
 403                /*
 404                 * call radix_tree_preload() while we can wait.
 405                 */
 406                err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
 407                if (err)
 408                        break;
 409
 410                /*
 411                 * Swap entry may have been freed since our caller observed it.
 412                 */
 413                err = swapcache_prepare(entry);
 414                if (err == -EEXIST) {
 415                        radix_tree_preload_end();
 416                        /*
 417                         * We might race against get_swap_page() and stumble
 418                         * across a SWAP_HAS_CACHE swap_map entry whose page
 419                         * has not been brought into the swapcache yet.
 420                         */
 421                        cond_resched();
 422                        continue;
 423                }
 424                if (err) {              /* swp entry is obsolete ? */
 425                        radix_tree_preload_end();
 426                        break;
 427                }
 428
 429                /* May fail (-ENOMEM) if radix-tree node allocation failed. */
 430                __SetPageLocked(new_page);
 431                __SetPageSwapBacked(new_page);
 432                err = __add_to_swap_cache(new_page, entry);
 433                if (likely(!err)) {
 434                        radix_tree_preload_end();
 435                        /*
 436                         * Initiate read into locked page and return.
 437                         */
 438                        lru_cache_add_anon(new_page);
 439                        *new_page_allocated = true;
 440                        return new_page;
 441                }
 442                radix_tree_preload_end();
 443                __ClearPageLocked(new_page);
 444                /*
 445                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 446                 * clear SWAP_HAS_CACHE flag.
 447                 */
 448                put_swap_page(new_page, entry);
 449        } while (err != -ENOMEM);
 450
 451        if (new_page)
 452                put_page(new_page);
 453        return found_page;
 454}
 455
 456/*
 457 * Locate a page of swap in physical memory, reserving swap cache space
 458 * and reading the disk if it is not already cached.
 459 * A failure return means that either the page allocation failed or that
 460 * the swap entry is no longer in use.
 461 */
 462struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 463                struct vm_area_struct *vma, unsigned long addr, bool do_poll)
 464{
 465        bool page_was_allocated;
 466        struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
 467                        vma, addr, &page_was_allocated);
 468
 469        if (page_was_allocated)
 470                swap_readpage(retpage, do_poll);
 471
 472        return retpage;
 473}
 474
 475static unsigned int __swapin_nr_pages(unsigned long prev_offset,
 476                                      unsigned long offset,
 477                                      int hits,
 478                                      int max_pages,
 479                                      int prev_win)
 480{
 481        unsigned int pages, last_ra;
 482
 483        /*
 484         * This heuristic has been found to work well on both sequential and
 485         * random loads, swapping to hard disk or to SSD: please don't ask
 486         * what the "+ 2" means, it just happens to work well, that's all.
 487         */
 488        pages = hits + 2;
 489        if (pages == 2) {
 490                /*
 491                 * We can have no readahead hits to judge by: but must not get
 492                 * stuck here forever, so check for an adjacent offset instead
 493                 * (and don't even bother to check whether swap type is same).
 494                 */
 495                if (offset != prev_offset + 1 && offset != prev_offset - 1)
 496                        pages = 1;
 497        } else {
 498                unsigned int roundup = 4;
 499                while (roundup < pages)
 500                        roundup <<= 1;
 501                pages = roundup;
 502        }
 503
 504        if (pages > max_pages)
 505                pages = max_pages;
 506
 507        /* Don't shrink readahead too fast */
 508        last_ra = prev_win / 2;
 509        if (pages < last_ra)
 510                pages = last_ra;
 511
 512        return pages;
 513}
 514
 515static unsigned long swapin_nr_pages(unsigned long offset)
 516{
 517        static unsigned long prev_offset;
 518        unsigned int hits, pages, max_pages;
 519        static atomic_t last_readahead_pages;
 520
 521        max_pages = 1 << READ_ONCE(page_cluster);
 522        if (max_pages <= 1)
 523                return 1;
 524
 525        hits = atomic_xchg(&swapin_readahead_hits, 0);
 526        pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
 527                                  atomic_read(&last_readahead_pages));
 528        if (!hits)
 529                prev_offset = offset;
 530        atomic_set(&last_readahead_pages, pages);
 531
 532        return pages;
 533}
 534
 535/**
 536 * swapin_readahead - swap in pages in hope we need them soon
 537 * @entry: swap entry of this memory
 538 * @gfp_mask: memory allocation flags
 539 * @vma: user vma this address belongs to
 540 * @addr: target address for mempolicy
 541 *
 542 * Returns the struct page for entry and addr, after queueing swapin.
 543 *
 544 * Primitive swap readahead code. We simply read an aligned block of
 545 * (1 << page_cluster) entries in the swap area. This method is chosen
 546 * because it doesn't cost us any seek time.  We also make sure to queue
 547 * the 'original' request together with the readahead ones...
 548 *
 549 * This has been extended to use the NUMA policies from the mm triggering
 550 * the readahead.
 551 *
 552 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 553 */
 554struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 555                        struct vm_area_struct *vma, unsigned long addr)
 556{
 557        struct page *page;
 558        unsigned long entry_offset = swp_offset(entry);
 559        unsigned long offset = entry_offset;
 560        unsigned long start_offset, end_offset;
 561        unsigned long mask;
 562        struct blk_plug plug;
 563        bool do_poll = true, page_allocated;
 564
 565        mask = swapin_nr_pages(offset) - 1;
 566        if (!mask)
 567                goto skip;
 568
 569        do_poll = false;
 570        /* Read a page_cluster sized and aligned cluster around offset. */
 571        start_offset = offset & ~mask;
 572        end_offset = offset | mask;
 573        if (!start_offset)      /* First page is swap header. */
 574                start_offset++;
 575
 576        blk_start_plug(&plug);
 577        for (offset = start_offset; offset <= end_offset ; offset++) {
 578                /* Ok, do the async read-ahead now */
 579                page = __read_swap_cache_async(
 580                        swp_entry(swp_type(entry), offset),
 581                        gfp_mask, vma, addr, &page_allocated);
 582                if (!page)
 583                        continue;
 584                if (page_allocated) {
 585                        swap_readpage(page, false);
 586                        if (offset != entry_offset &&
 587                            likely(!PageTransCompound(page))) {
 588                                SetPageReadahead(page);
 589                                count_vm_event(SWAP_RA);
 590                        }
 591                }
 592                put_page(page);
 593        }
 594        blk_finish_plug(&plug);
 595
 596        lru_add_drain();        /* Push any new pages onto the LRU now */
 597skip:
 598        return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
 599}
 600
 601int init_swap_address_space(unsigned int type, unsigned long nr_pages)
 602{
 603        struct address_space *spaces, *space;
 604        unsigned int i, nr;
 605
 606        nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
 607        spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
 608        if (!spaces)
 609                return -ENOMEM;
 610        for (i = 0; i < nr; i++) {
 611                space = spaces + i;
 612                INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
 613                atomic_set(&space->i_mmap_writable, 0);
 614                space->a_ops = &swap_aops;
 615                /* swap cache doesn't use writeback related tags */
 616                mapping_set_no_writeback_tags(space);
 617                spin_lock_init(&space->tree_lock);
 618        }
 619        nr_swapper_spaces[type] = nr;
 620        rcu_assign_pointer(swapper_spaces[type], spaces);
 621
 622        return 0;
 623}
 624
 625void exit_swap_address_space(unsigned int type)
 626{
 627        struct address_space *spaces;
 628
 629        spaces = swapper_spaces[type];
 630        nr_swapper_spaces[type] = 0;
 631        rcu_assign_pointer(swapper_spaces[type], NULL);
 632        synchronize_rcu();
 633        kvfree(spaces);
 634}
 635
 636static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
 637                                     unsigned long faddr,
 638                                     unsigned long lpfn,
 639                                     unsigned long rpfn,
 640                                     unsigned long *start,
 641                                     unsigned long *end)
 642{
 643        *start = max3(lpfn, PFN_DOWN(vma->vm_start),
 644                      PFN_DOWN(faddr & PMD_MASK));
 645        *end = min3(rpfn, PFN_DOWN(vma->vm_end),
 646                    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
 647}
 648
 649struct page *swap_readahead_detect(struct vm_fault *vmf,
 650                                   struct vma_swap_readahead *swap_ra)
 651{
 652        struct vm_area_struct *vma = vmf->vma;
 653        unsigned long swap_ra_info;
 654        struct page *page;
 655        swp_entry_t entry;
 656        unsigned long faddr, pfn, fpfn;
 657        unsigned long start, end;
 658        pte_t *pte;
 659        unsigned int max_win, hits, prev_win, win, left;
 660#ifndef CONFIG_64BIT
 661        pte_t *tpte;
 662#endif
 663
 664        max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
 665                             SWAP_RA_ORDER_CEILING);
 666        if (max_win == 1) {
 667                swap_ra->win = 1;
 668                return NULL;
 669        }
 670
 671        faddr = vmf->address;
 672        entry = pte_to_swp_entry(vmf->orig_pte);
 673        if ((unlikely(non_swap_entry(entry))))
 674                return NULL;
 675        page = lookup_swap_cache(entry, vma, faddr);
 676        if (page)
 677                return page;
 678
 679        fpfn = PFN_DOWN(faddr);
 680        swap_ra_info = GET_SWAP_RA_VAL(vma);
 681        pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
 682        prev_win = SWAP_RA_WIN(swap_ra_info);
 683        hits = SWAP_RA_HITS(swap_ra_info);
 684        swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
 685                                               max_win, prev_win);
 686        atomic_long_set(&vma->swap_readahead_info,
 687                        SWAP_RA_VAL(faddr, win, 0));
 688
 689        if (win == 1)
 690                return NULL;
 691
 692        /* Copy the PTEs because the page table may be unmapped */
 693        if (fpfn == pfn + 1)
 694                swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
 695        else if (pfn == fpfn + 1)
 696                swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
 697                                  &start, &end);
 698        else {
 699                left = (win - 1) / 2;
 700                swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
 701                                  &start, &end);
 702        }
 703        swap_ra->nr_pte = end - start;
 704        swap_ra->offset = fpfn - start;
 705        pte = vmf->pte - swap_ra->offset;
 706#ifdef CONFIG_64BIT
 707        swap_ra->ptes = pte;
 708#else
 709        tpte = swap_ra->ptes;
 710        for (pfn = start; pfn != end; pfn++)
 711                *tpte++ = *pte++;
 712#endif
 713
 714        return NULL;
 715}
 716
 717struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
 718                                    struct vm_fault *vmf,
 719                                    struct vma_swap_readahead *swap_ra)
 720{
 721        struct blk_plug plug;
 722        struct vm_area_struct *vma = vmf->vma;
 723        struct page *page;
 724        pte_t *pte, pentry;
 725        swp_entry_t entry;
 726        unsigned int i;
 727        bool page_allocated;
 728
 729        if (swap_ra->win == 1)
 730                goto skip;
 731
 732        blk_start_plug(&plug);
 733        for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
 734             i++, pte++) {
 735                pentry = *pte;
 736                if (pte_none(pentry))
 737                        continue;
 738                if (pte_present(pentry))
 739                        continue;
 740                entry = pte_to_swp_entry(pentry);
 741                if (unlikely(non_swap_entry(entry)))
 742                        continue;
 743                page = __read_swap_cache_async(entry, gfp_mask, vma,
 744                                               vmf->address, &page_allocated);
 745                if (!page)
 746                        continue;
 747                if (page_allocated) {
 748                        swap_readpage(page, false);
 749                        if (i != swap_ra->offset &&
 750                            likely(!PageTransCompound(page))) {
 751                                SetPageReadahead(page);
 752                                count_vm_event(SWAP_RA);
 753                        }
 754                }
 755                put_page(page);
 756        }
 757        blk_finish_plug(&plug);
 758        lru_add_drain();
 759skip:
 760        return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
 761                                     swap_ra->win == 1);
 762}
 763
 764#ifdef CONFIG_SYSFS
 765static ssize_t vma_ra_enabled_show(struct kobject *kobj,
 766                                     struct kobj_attribute *attr, char *buf)
 767{
 768        return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
 769}
 770static ssize_t vma_ra_enabled_store(struct kobject *kobj,
 771                                      struct kobj_attribute *attr,
 772                                      const char *buf, size_t count)
 773{
 774        if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
 775                swap_vma_readahead = true;
 776        else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
 777                swap_vma_readahead = false;
 778        else
 779                return -EINVAL;
 780
 781        return count;
 782}
 783static struct kobj_attribute vma_ra_enabled_attr =
 784        __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
 785               vma_ra_enabled_store);
 786
 787static struct attribute *swap_attrs[] = {
 788        &vma_ra_enabled_attr.attr,
 789        NULL,
 790};
 791
 792static struct attribute_group swap_attr_group = {
 793        .attrs = swap_attrs,
 794};
 795
 796static int __init swap_init_sysfs(void)
 797{
 798        int err;
 799        struct kobject *swap_kobj;
 800
 801        swap_kobj = kobject_create_and_add("swap", mm_kobj);
 802        if (!swap_kobj) {
 803                pr_err("failed to create swap kobject\n");
 804                return -ENOMEM;
 805        }
 806        err = sysfs_create_group(swap_kobj, &swap_attr_group);
 807        if (err) {
 808                pr_err("failed to register swap group\n");
 809                goto delete_obj;
 810        }
 811        return 0;
 812
 813delete_obj:
 814        kobject_put(swap_kobj);
 815        return err;
 816}
 817subsys_initcall(swap_init_sysfs);
 818#endif
 819