linux/mm/swapfile.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/task.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mman.h>
  13#include <linux/slab.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/swap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/pagemap.h>
  18#include <linux/namei.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/random.h>
  22#include <linux/writeback.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/init.h>
  26#include <linux/ksm.h>
  27#include <linux/rmap.h>
  28#include <linux/security.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mutex.h>
  31#include <linux/capability.h>
  32#include <linux/syscalls.h>
  33#include <linux/memcontrol.h>
  34#include <linux/poll.h>
  35#include <linux/oom.h>
  36#include <linux/frontswap.h>
  37#include <linux/swapfile.h>
  38#include <linux/export.h>
  39#include <linux/swap_slots.h>
  40#include <linux/sort.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48                                 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static inline unsigned char swap_count(unsigned char ent)
 102{
 103        return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
 104}
 105
 106/* returns 1 if swap entry is freed */
 107static int
 108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 109{
 110        swp_entry_t entry = swp_entry(si->type, offset);
 111        struct page *page;
 112        int ret = 0;
 113
 114        page = find_get_page(swap_address_space(entry), swp_offset(entry));
 115        if (!page)
 116                return 0;
 117        /*
 118         * This function is called from scan_swap_map() and it's called
 119         * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 120         * We have to use trylock for avoiding deadlock. This is a special
 121         * case and you should use try_to_free_swap() with explicit lock_page()
 122         * in usual operations.
 123         */
 124        if (trylock_page(page)) {
 125                ret = try_to_free_swap(page);
 126                unlock_page(page);
 127        }
 128        put_page(page);
 129        return ret;
 130}
 131
 132/*
 133 * swapon tell device that all the old swap contents can be discarded,
 134 * to allow the swap device to optimize its wear-levelling.
 135 */
 136static int discard_swap(struct swap_info_struct *si)
 137{
 138        struct swap_extent *se;
 139        sector_t start_block;
 140        sector_t nr_blocks;
 141        int err = 0;
 142
 143        /* Do not discard the swap header page! */
 144        se = &si->first_swap_extent;
 145        start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 146        nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 147        if (nr_blocks) {
 148                err = blkdev_issue_discard(si->bdev, start_block,
 149                                nr_blocks, GFP_KERNEL, 0);
 150                if (err)
 151                        return err;
 152                cond_resched();
 153        }
 154
 155        list_for_each_entry(se, &si->first_swap_extent.list, list) {
 156                start_block = se->start_block << (PAGE_SHIFT - 9);
 157                nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 158
 159                err = blkdev_issue_discard(si->bdev, start_block,
 160                                nr_blocks, GFP_KERNEL, 0);
 161                if (err)
 162                        break;
 163
 164                cond_resched();
 165        }
 166        return err;             /* That will often be -EOPNOTSUPP */
 167}
 168
 169/*
 170 * swap allocation tell device that a cluster of swap can now be discarded,
 171 * to allow the swap device to optimize its wear-levelling.
 172 */
 173static void discard_swap_cluster(struct swap_info_struct *si,
 174                                 pgoff_t start_page, pgoff_t nr_pages)
 175{
 176        struct swap_extent *se = si->curr_swap_extent;
 177        int found_extent = 0;
 178
 179        while (nr_pages) {
 180                if (se->start_page <= start_page &&
 181                    start_page < se->start_page + se->nr_pages) {
 182                        pgoff_t offset = start_page - se->start_page;
 183                        sector_t start_block = se->start_block + offset;
 184                        sector_t nr_blocks = se->nr_pages - offset;
 185
 186                        if (nr_blocks > nr_pages)
 187                                nr_blocks = nr_pages;
 188                        start_page += nr_blocks;
 189                        nr_pages -= nr_blocks;
 190
 191                        if (!found_extent++)
 192                                si->curr_swap_extent = se;
 193
 194                        start_block <<= PAGE_SHIFT - 9;
 195                        nr_blocks <<= PAGE_SHIFT - 9;
 196                        if (blkdev_issue_discard(si->bdev, start_block,
 197                                    nr_blocks, GFP_NOIO, 0))
 198                                break;
 199                }
 200
 201                se = list_next_entry(se, list);
 202        }
 203}
 204
 205#ifdef CONFIG_THP_SWAP
 206#define SWAPFILE_CLUSTER        HPAGE_PMD_NR
 207#else
 208#define SWAPFILE_CLUSTER        256
 209#endif
 210#define LATENCY_LIMIT           256
 211
 212static inline void cluster_set_flag(struct swap_cluster_info *info,
 213        unsigned int flag)
 214{
 215        info->flags = flag;
 216}
 217
 218static inline unsigned int cluster_count(struct swap_cluster_info *info)
 219{
 220        return info->data;
 221}
 222
 223static inline void cluster_set_count(struct swap_cluster_info *info,
 224                                     unsigned int c)
 225{
 226        info->data = c;
 227}
 228
 229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 230                                         unsigned int c, unsigned int f)
 231{
 232        info->flags = f;
 233        info->data = c;
 234}
 235
 236static inline unsigned int cluster_next(struct swap_cluster_info *info)
 237{
 238        return info->data;
 239}
 240
 241static inline void cluster_set_next(struct swap_cluster_info *info,
 242                                    unsigned int n)
 243{
 244        info->data = n;
 245}
 246
 247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 248                                         unsigned int n, unsigned int f)
 249{
 250        info->flags = f;
 251        info->data = n;
 252}
 253
 254static inline bool cluster_is_free(struct swap_cluster_info *info)
 255{
 256        return info->flags & CLUSTER_FLAG_FREE;
 257}
 258
 259static inline bool cluster_is_null(struct swap_cluster_info *info)
 260{
 261        return info->flags & CLUSTER_FLAG_NEXT_NULL;
 262}
 263
 264static inline void cluster_set_null(struct swap_cluster_info *info)
 265{
 266        info->flags = CLUSTER_FLAG_NEXT_NULL;
 267        info->data = 0;
 268}
 269
 270static inline bool cluster_is_huge(struct swap_cluster_info *info)
 271{
 272        return info->flags & CLUSTER_FLAG_HUGE;
 273}
 274
 275static inline void cluster_clear_huge(struct swap_cluster_info *info)
 276{
 277        info->flags &= ~CLUSTER_FLAG_HUGE;
 278}
 279
 280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 281                                                     unsigned long offset)
 282{
 283        struct swap_cluster_info *ci;
 284
 285        ci = si->cluster_info;
 286        if (ci) {
 287                ci += offset / SWAPFILE_CLUSTER;
 288                spin_lock(&ci->lock);
 289        }
 290        return ci;
 291}
 292
 293static inline void unlock_cluster(struct swap_cluster_info *ci)
 294{
 295        if (ci)
 296                spin_unlock(&ci->lock);
 297}
 298
 299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 300        struct swap_info_struct *si,
 301        unsigned long offset)
 302{
 303        struct swap_cluster_info *ci;
 304
 305        ci = lock_cluster(si, offset);
 306        if (!ci)
 307                spin_lock(&si->lock);
 308
 309        return ci;
 310}
 311
 312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 313                                               struct swap_cluster_info *ci)
 314{
 315        if (ci)
 316                unlock_cluster(ci);
 317        else
 318                spin_unlock(&si->lock);
 319}
 320
 321static inline bool cluster_list_empty(struct swap_cluster_list *list)
 322{
 323        return cluster_is_null(&list->head);
 324}
 325
 326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 327{
 328        return cluster_next(&list->head);
 329}
 330
 331static void cluster_list_init(struct swap_cluster_list *list)
 332{
 333        cluster_set_null(&list->head);
 334        cluster_set_null(&list->tail);
 335}
 336
 337static void cluster_list_add_tail(struct swap_cluster_list *list,
 338                                  struct swap_cluster_info *ci,
 339                                  unsigned int idx)
 340{
 341        if (cluster_list_empty(list)) {
 342                cluster_set_next_flag(&list->head, idx, 0);
 343                cluster_set_next_flag(&list->tail, idx, 0);
 344        } else {
 345                struct swap_cluster_info *ci_tail;
 346                unsigned int tail = cluster_next(&list->tail);
 347
 348                /*
 349                 * Nested cluster lock, but both cluster locks are
 350                 * only acquired when we held swap_info_struct->lock
 351                 */
 352                ci_tail = ci + tail;
 353                spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 354                cluster_set_next(ci_tail, idx);
 355                spin_unlock(&ci_tail->lock);
 356                cluster_set_next_flag(&list->tail, idx, 0);
 357        }
 358}
 359
 360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 361                                           struct swap_cluster_info *ci)
 362{
 363        unsigned int idx;
 364
 365        idx = cluster_next(&list->head);
 366        if (cluster_next(&list->tail) == idx) {
 367                cluster_set_null(&list->head);
 368                cluster_set_null(&list->tail);
 369        } else
 370                cluster_set_next_flag(&list->head,
 371                                      cluster_next(&ci[idx]), 0);
 372
 373        return idx;
 374}
 375
 376/* Add a cluster to discard list and schedule it to do discard */
 377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 378                unsigned int idx)
 379{
 380        /*
 381         * If scan_swap_map() can't find a free cluster, it will check
 382         * si->swap_map directly. To make sure the discarding cluster isn't
 383         * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 384         * will be cleared after discard
 385         */
 386        memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 387                        SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 388
 389        cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 390
 391        schedule_work(&si->discard_work);
 392}
 393
 394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 395{
 396        struct swap_cluster_info *ci = si->cluster_info;
 397
 398        cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 399        cluster_list_add_tail(&si->free_clusters, ci, idx);
 400}
 401
 402/*
 403 * Doing discard actually. After a cluster discard is finished, the cluster
 404 * will be added to free cluster list. caller should hold si->lock.
 405*/
 406static void swap_do_scheduled_discard(struct swap_info_struct *si)
 407{
 408        struct swap_cluster_info *info, *ci;
 409        unsigned int idx;
 410
 411        info = si->cluster_info;
 412
 413        while (!cluster_list_empty(&si->discard_clusters)) {
 414                idx = cluster_list_del_first(&si->discard_clusters, info);
 415                spin_unlock(&si->lock);
 416
 417                discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 418                                SWAPFILE_CLUSTER);
 419
 420                spin_lock(&si->lock);
 421                ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 422                __free_cluster(si, idx);
 423                memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 424                                0, SWAPFILE_CLUSTER);
 425                unlock_cluster(ci);
 426        }
 427}
 428
 429static void swap_discard_work(struct work_struct *work)
 430{
 431        struct swap_info_struct *si;
 432
 433        si = container_of(work, struct swap_info_struct, discard_work);
 434
 435        spin_lock(&si->lock);
 436        swap_do_scheduled_discard(si);
 437        spin_unlock(&si->lock);
 438}
 439
 440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 441{
 442        struct swap_cluster_info *ci = si->cluster_info;
 443
 444        VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 445        cluster_list_del_first(&si->free_clusters, ci);
 446        cluster_set_count_flag(ci + idx, 0, 0);
 447}
 448
 449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 450{
 451        struct swap_cluster_info *ci = si->cluster_info + idx;
 452
 453        VM_BUG_ON(cluster_count(ci) != 0);
 454        /*
 455         * If the swap is discardable, prepare discard the cluster
 456         * instead of free it immediately. The cluster will be freed
 457         * after discard.
 458         */
 459        if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 460            (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 461                swap_cluster_schedule_discard(si, idx);
 462                return;
 463        }
 464
 465        __free_cluster(si, idx);
 466}
 467
 468/*
 469 * The cluster corresponding to page_nr will be used. The cluster will be
 470 * removed from free cluster list and its usage counter will be increased.
 471 */
 472static void inc_cluster_info_page(struct swap_info_struct *p,
 473        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 474{
 475        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 476
 477        if (!cluster_info)
 478                return;
 479        if (cluster_is_free(&cluster_info[idx]))
 480                alloc_cluster(p, idx);
 481
 482        VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 483        cluster_set_count(&cluster_info[idx],
 484                cluster_count(&cluster_info[idx]) + 1);
 485}
 486
 487/*
 488 * The cluster corresponding to page_nr decreases one usage. If the usage
 489 * counter becomes 0, which means no page in the cluster is in using, we can
 490 * optionally discard the cluster and add it to free cluster list.
 491 */
 492static void dec_cluster_info_page(struct swap_info_struct *p,
 493        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 494{
 495        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 496
 497        if (!cluster_info)
 498                return;
 499
 500        VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 501        cluster_set_count(&cluster_info[idx],
 502                cluster_count(&cluster_info[idx]) - 1);
 503
 504        if (cluster_count(&cluster_info[idx]) == 0)
 505                free_cluster(p, idx);
 506}
 507
 508/*
 509 * It's possible scan_swap_map() uses a free cluster in the middle of free
 510 * cluster list. Avoiding such abuse to avoid list corruption.
 511 */
 512static bool
 513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 514        unsigned long offset)
 515{
 516        struct percpu_cluster *percpu_cluster;
 517        bool conflict;
 518
 519        offset /= SWAPFILE_CLUSTER;
 520        conflict = !cluster_list_empty(&si->free_clusters) &&
 521                offset != cluster_list_first(&si->free_clusters) &&
 522                cluster_is_free(&si->cluster_info[offset]);
 523
 524        if (!conflict)
 525                return false;
 526
 527        percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 528        cluster_set_null(&percpu_cluster->index);
 529        return true;
 530}
 531
 532/*
 533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 534 * might involve allocating a new cluster for current CPU too.
 535 */
 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 537        unsigned long *offset, unsigned long *scan_base)
 538{
 539        struct percpu_cluster *cluster;
 540        struct swap_cluster_info *ci;
 541        bool found_free;
 542        unsigned long tmp, max;
 543
 544new_cluster:
 545        cluster = this_cpu_ptr(si->percpu_cluster);
 546        if (cluster_is_null(&cluster->index)) {
 547                if (!cluster_list_empty(&si->free_clusters)) {
 548                        cluster->index = si->free_clusters.head;
 549                        cluster->next = cluster_next(&cluster->index) *
 550                                        SWAPFILE_CLUSTER;
 551                } else if (!cluster_list_empty(&si->discard_clusters)) {
 552                        /*
 553                         * we don't have free cluster but have some clusters in
 554                         * discarding, do discard now and reclaim them
 555                         */
 556                        swap_do_scheduled_discard(si);
 557                        *scan_base = *offset = si->cluster_next;
 558                        goto new_cluster;
 559                } else
 560                        return false;
 561        }
 562
 563        found_free = false;
 564
 565        /*
 566         * Other CPUs can use our cluster if they can't find a free cluster,
 567         * check if there is still free entry in the cluster
 568         */
 569        tmp = cluster->next;
 570        max = min_t(unsigned long, si->max,
 571                    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 572        if (tmp >= max) {
 573                cluster_set_null(&cluster->index);
 574                goto new_cluster;
 575        }
 576        ci = lock_cluster(si, tmp);
 577        while (tmp < max) {
 578                if (!si->swap_map[tmp]) {
 579                        found_free = true;
 580                        break;
 581                }
 582                tmp++;
 583        }
 584        unlock_cluster(ci);
 585        if (!found_free) {
 586                cluster_set_null(&cluster->index);
 587                goto new_cluster;
 588        }
 589        cluster->next = tmp + 1;
 590        *offset = tmp;
 591        *scan_base = tmp;
 592        return found_free;
 593}
 594
 595static void __del_from_avail_list(struct swap_info_struct *p)
 596{
 597        int nid;
 598
 599        for_each_node(nid)
 600                plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 601}
 602
 603static void del_from_avail_list(struct swap_info_struct *p)
 604{
 605        spin_lock(&swap_avail_lock);
 606        __del_from_avail_list(p);
 607        spin_unlock(&swap_avail_lock);
 608}
 609
 610static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 611                             unsigned int nr_entries)
 612{
 613        unsigned int end = offset + nr_entries - 1;
 614
 615        if (offset == si->lowest_bit)
 616                si->lowest_bit += nr_entries;
 617        if (end == si->highest_bit)
 618                si->highest_bit -= nr_entries;
 619        si->inuse_pages += nr_entries;
 620        if (si->inuse_pages == si->pages) {
 621                si->lowest_bit = si->max;
 622                si->highest_bit = 0;
 623                del_from_avail_list(si);
 624        }
 625}
 626
 627static void add_to_avail_list(struct swap_info_struct *p)
 628{
 629        int nid;
 630
 631        spin_lock(&swap_avail_lock);
 632        for_each_node(nid) {
 633                WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 634                plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 635        }
 636        spin_unlock(&swap_avail_lock);
 637}
 638
 639static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 640                            unsigned int nr_entries)
 641{
 642        unsigned long end = offset + nr_entries - 1;
 643        void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 644
 645        if (offset < si->lowest_bit)
 646                si->lowest_bit = offset;
 647        if (end > si->highest_bit) {
 648                bool was_full = !si->highest_bit;
 649
 650                si->highest_bit = end;
 651                if (was_full && (si->flags & SWP_WRITEOK))
 652                        add_to_avail_list(si);
 653        }
 654        atomic_long_add(nr_entries, &nr_swap_pages);
 655        si->inuse_pages -= nr_entries;
 656        if (si->flags & SWP_BLKDEV)
 657                swap_slot_free_notify =
 658                        si->bdev->bd_disk->fops->swap_slot_free_notify;
 659        else
 660                swap_slot_free_notify = NULL;
 661        while (offset <= end) {
 662                frontswap_invalidate_page(si->type, offset);
 663                if (swap_slot_free_notify)
 664                        swap_slot_free_notify(si->bdev, offset);
 665                offset++;
 666        }
 667}
 668
 669static int scan_swap_map_slots(struct swap_info_struct *si,
 670                               unsigned char usage, int nr,
 671                               swp_entry_t slots[])
 672{
 673        struct swap_cluster_info *ci;
 674        unsigned long offset;
 675        unsigned long scan_base;
 676        unsigned long last_in_cluster = 0;
 677        int latency_ration = LATENCY_LIMIT;
 678        int n_ret = 0;
 679
 680        if (nr > SWAP_BATCH)
 681                nr = SWAP_BATCH;
 682
 683        /*
 684         * We try to cluster swap pages by allocating them sequentially
 685         * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 686         * way, however, we resort to first-free allocation, starting
 687         * a new cluster.  This prevents us from scattering swap pages
 688         * all over the entire swap partition, so that we reduce
 689         * overall disk seek times between swap pages.  -- sct
 690         * But we do now try to find an empty cluster.  -Andrea
 691         * And we let swap pages go all over an SSD partition.  Hugh
 692         */
 693
 694        si->flags += SWP_SCANNING;
 695        scan_base = offset = si->cluster_next;
 696
 697        /* SSD algorithm */
 698        if (si->cluster_info) {
 699                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 700                        goto checks;
 701                else
 702                        goto scan;
 703        }
 704
 705        if (unlikely(!si->cluster_nr--)) {
 706                if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 707                        si->cluster_nr = SWAPFILE_CLUSTER - 1;
 708                        goto checks;
 709                }
 710
 711                spin_unlock(&si->lock);
 712
 713                /*
 714                 * If seek is expensive, start searching for new cluster from
 715                 * start of partition, to minimize the span of allocated swap.
 716                 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 717                 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 718                 */
 719                scan_base = offset = si->lowest_bit;
 720                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 721
 722                /* Locate the first empty (unaligned) cluster */
 723                for (; last_in_cluster <= si->highest_bit; offset++) {
 724                        if (si->swap_map[offset])
 725                                last_in_cluster = offset + SWAPFILE_CLUSTER;
 726                        else if (offset == last_in_cluster) {
 727                                spin_lock(&si->lock);
 728                                offset -= SWAPFILE_CLUSTER - 1;
 729                                si->cluster_next = offset;
 730                                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 731                                goto checks;
 732                        }
 733                        if (unlikely(--latency_ration < 0)) {
 734                                cond_resched();
 735                                latency_ration = LATENCY_LIMIT;
 736                        }
 737                }
 738
 739                offset = scan_base;
 740                spin_lock(&si->lock);
 741                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 742        }
 743
 744checks:
 745        if (si->cluster_info) {
 746                while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 747                /* take a break if we already got some slots */
 748                        if (n_ret)
 749                                goto done;
 750                        if (!scan_swap_map_try_ssd_cluster(si, &offset,
 751                                                        &scan_base))
 752                                goto scan;
 753                }
 754        }
 755        if (!(si->flags & SWP_WRITEOK))
 756                goto no_page;
 757        if (!si->highest_bit)
 758                goto no_page;
 759        if (offset > si->highest_bit)
 760                scan_base = offset = si->lowest_bit;
 761
 762        ci = lock_cluster(si, offset);
 763        /* reuse swap entry of cache-only swap if not busy. */
 764        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 765                int swap_was_freed;
 766                unlock_cluster(ci);
 767                spin_unlock(&si->lock);
 768                swap_was_freed = __try_to_reclaim_swap(si, offset);
 769                spin_lock(&si->lock);
 770                /* entry was freed successfully, try to use this again */
 771                if (swap_was_freed)
 772                        goto checks;
 773                goto scan; /* check next one */
 774        }
 775
 776        if (si->swap_map[offset]) {
 777                unlock_cluster(ci);
 778                if (!n_ret)
 779                        goto scan;
 780                else
 781                        goto done;
 782        }
 783        si->swap_map[offset] = usage;
 784        inc_cluster_info_page(si, si->cluster_info, offset);
 785        unlock_cluster(ci);
 786
 787        swap_range_alloc(si, offset, 1);
 788        si->cluster_next = offset + 1;
 789        slots[n_ret++] = swp_entry(si->type, offset);
 790
 791        /* got enough slots or reach max slots? */
 792        if ((n_ret == nr) || (offset >= si->highest_bit))
 793                goto done;
 794
 795        /* search for next available slot */
 796
 797        /* time to take a break? */
 798        if (unlikely(--latency_ration < 0)) {
 799                if (n_ret)
 800                        goto done;
 801                spin_unlock(&si->lock);
 802                cond_resched();
 803                spin_lock(&si->lock);
 804                latency_ration = LATENCY_LIMIT;
 805        }
 806
 807        /* try to get more slots in cluster */
 808        if (si->cluster_info) {
 809                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 810                        goto checks;
 811                else
 812                        goto done;
 813        }
 814        /* non-ssd case */
 815        ++offset;
 816
 817        /* non-ssd case, still more slots in cluster? */
 818        if (si->cluster_nr && !si->swap_map[offset]) {
 819                --si->cluster_nr;
 820                goto checks;
 821        }
 822
 823done:
 824        si->flags -= SWP_SCANNING;
 825        return n_ret;
 826
 827scan:
 828        spin_unlock(&si->lock);
 829        while (++offset <= si->highest_bit) {
 830                if (!si->swap_map[offset]) {
 831                        spin_lock(&si->lock);
 832                        goto checks;
 833                }
 834                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 835                        spin_lock(&si->lock);
 836                        goto checks;
 837                }
 838                if (unlikely(--latency_ration < 0)) {
 839                        cond_resched();
 840                        latency_ration = LATENCY_LIMIT;
 841                }
 842        }
 843        offset = si->lowest_bit;
 844        while (offset < scan_base) {
 845                if (!si->swap_map[offset]) {
 846                        spin_lock(&si->lock);
 847                        goto checks;
 848                }
 849                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 850                        spin_lock(&si->lock);
 851                        goto checks;
 852                }
 853                if (unlikely(--latency_ration < 0)) {
 854                        cond_resched();
 855                        latency_ration = LATENCY_LIMIT;
 856                }
 857                offset++;
 858        }
 859        spin_lock(&si->lock);
 860
 861no_page:
 862        si->flags -= SWP_SCANNING;
 863        return n_ret;
 864}
 865
 866#ifdef CONFIG_THP_SWAP
 867static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 868{
 869        unsigned long idx;
 870        struct swap_cluster_info *ci;
 871        unsigned long offset, i;
 872        unsigned char *map;
 873
 874        if (cluster_list_empty(&si->free_clusters))
 875                return 0;
 876
 877        idx = cluster_list_first(&si->free_clusters);
 878        offset = idx * SWAPFILE_CLUSTER;
 879        ci = lock_cluster(si, offset);
 880        alloc_cluster(si, idx);
 881        cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 882
 883        map = si->swap_map + offset;
 884        for (i = 0; i < SWAPFILE_CLUSTER; i++)
 885                map[i] = SWAP_HAS_CACHE;
 886        unlock_cluster(ci);
 887        swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 888        *slot = swp_entry(si->type, offset);
 889
 890        return 1;
 891}
 892
 893static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 894{
 895        unsigned long offset = idx * SWAPFILE_CLUSTER;
 896        struct swap_cluster_info *ci;
 897
 898        ci = lock_cluster(si, offset);
 899        cluster_set_count_flag(ci, 0, 0);
 900        free_cluster(si, idx);
 901        unlock_cluster(ci);
 902        swap_range_free(si, offset, SWAPFILE_CLUSTER);
 903}
 904#else
 905static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 906{
 907        VM_WARN_ON_ONCE(1);
 908        return 0;
 909}
 910#endif /* CONFIG_THP_SWAP */
 911
 912static unsigned long scan_swap_map(struct swap_info_struct *si,
 913                                   unsigned char usage)
 914{
 915        swp_entry_t entry;
 916        int n_ret;
 917
 918        n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 919
 920        if (n_ret)
 921                return swp_offset(entry);
 922        else
 923                return 0;
 924
 925}
 926
 927int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
 928{
 929        unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
 930        struct swap_info_struct *si, *next;
 931        long avail_pgs;
 932        int n_ret = 0;
 933        int node;
 934
 935        /* Only single cluster request supported */
 936        WARN_ON_ONCE(n_goal > 1 && cluster);
 937
 938        avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
 939        if (avail_pgs <= 0)
 940                goto noswap;
 941
 942        if (n_goal > SWAP_BATCH)
 943                n_goal = SWAP_BATCH;
 944
 945        if (n_goal > avail_pgs)
 946                n_goal = avail_pgs;
 947
 948        atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
 949
 950        spin_lock(&swap_avail_lock);
 951
 952start_over:
 953        node = numa_node_id();
 954        plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
 955                /* requeue si to after same-priority siblings */
 956                plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
 957                spin_unlock(&swap_avail_lock);
 958                spin_lock(&si->lock);
 959                if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 960                        spin_lock(&swap_avail_lock);
 961                        if (plist_node_empty(&si->avail_lists[node])) {
 962                                spin_unlock(&si->lock);
 963                                goto nextsi;
 964                        }
 965                        WARN(!si->highest_bit,
 966                             "swap_info %d in list but !highest_bit\n",
 967                             si->type);
 968                        WARN(!(si->flags & SWP_WRITEOK),
 969                             "swap_info %d in list but !SWP_WRITEOK\n",
 970                             si->type);
 971                        __del_from_avail_list(si);
 972                        spin_unlock(&si->lock);
 973                        goto nextsi;
 974                }
 975                if (cluster) {
 976                        if (!(si->flags & SWP_FILE))
 977                                n_ret = swap_alloc_cluster(si, swp_entries);
 978                } else
 979                        n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 980                                                    n_goal, swp_entries);
 981                spin_unlock(&si->lock);
 982                if (n_ret || cluster)
 983                        goto check_out;
 984                pr_debug("scan_swap_map of si %d failed to find offset\n",
 985                        si->type);
 986
 987                spin_lock(&swap_avail_lock);
 988nextsi:
 989                /*
 990                 * if we got here, it's likely that si was almost full before,
 991                 * and since scan_swap_map() can drop the si->lock, multiple
 992                 * callers probably all tried to get a page from the same si
 993                 * and it filled up before we could get one; or, the si filled
 994                 * up between us dropping swap_avail_lock and taking si->lock.
 995                 * Since we dropped the swap_avail_lock, the swap_avail_head
 996                 * list may have been modified; so if next is still in the
 997                 * swap_avail_head list then try it, otherwise start over
 998                 * if we have not gotten any slots.
 999                 */
1000                if (plist_node_empty(&next->avail_lists[node]))
1001                        goto start_over;
1002        }
1003
1004        spin_unlock(&swap_avail_lock);
1005
1006check_out:
1007        if (n_ret < n_goal)
1008                atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009                                &nr_swap_pages);
1010noswap:
1011        return n_ret;
1012}
1013
1014/* The only caller of this function is now suspend routine */
1015swp_entry_t get_swap_page_of_type(int type)
1016{
1017        struct swap_info_struct *si;
1018        pgoff_t offset;
1019
1020        si = swap_info[type];
1021        spin_lock(&si->lock);
1022        if (si && (si->flags & SWP_WRITEOK)) {
1023                atomic_long_dec(&nr_swap_pages);
1024                /* This is called for allocating swap entry, not cache */
1025                offset = scan_swap_map(si, 1);
1026                if (offset) {
1027                        spin_unlock(&si->lock);
1028                        return swp_entry(type, offset);
1029                }
1030                atomic_long_inc(&nr_swap_pages);
1031        }
1032        spin_unlock(&si->lock);
1033        return (swp_entry_t) {0};
1034}
1035
1036static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037{
1038        struct swap_info_struct *p;
1039        unsigned long offset, type;
1040
1041        if (!entry.val)
1042                goto out;
1043        type = swp_type(entry);
1044        if (type >= nr_swapfiles)
1045                goto bad_nofile;
1046        p = swap_info[type];
1047        if (!(p->flags & SWP_USED))
1048                goto bad_device;
1049        offset = swp_offset(entry);
1050        if (offset >= p->max)
1051                goto bad_offset;
1052        return p;
1053
1054bad_offset:
1055        pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056        goto out;
1057bad_device:
1058        pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059        goto out;
1060bad_nofile:
1061        pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062out:
1063        return NULL;
1064}
1065
1066static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067{
1068        struct swap_info_struct *p;
1069
1070        p = __swap_info_get(entry);
1071        if (!p)
1072                goto out;
1073        if (!p->swap_map[swp_offset(entry)])
1074                goto bad_free;
1075        return p;
1076
1077bad_free:
1078        pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079        goto out;
1080out:
1081        return NULL;
1082}
1083
1084static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085{
1086        struct swap_info_struct *p;
1087
1088        p = _swap_info_get(entry);
1089        if (p)
1090                spin_lock(&p->lock);
1091        return p;
1092}
1093
1094static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095                                        struct swap_info_struct *q)
1096{
1097        struct swap_info_struct *p;
1098
1099        p = _swap_info_get(entry);
1100
1101        if (p != q) {
1102                if (q != NULL)
1103                        spin_unlock(&q->lock);
1104                if (p != NULL)
1105                        spin_lock(&p->lock);
1106        }
1107        return p;
1108}
1109
1110static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111                                       swp_entry_t entry, unsigned char usage)
1112{
1113        struct swap_cluster_info *ci;
1114        unsigned long offset = swp_offset(entry);
1115        unsigned char count;
1116        unsigned char has_cache;
1117
1118        ci = lock_cluster_or_swap_info(p, offset);
1119
1120        count = p->swap_map[offset];
1121
1122        has_cache = count & SWAP_HAS_CACHE;
1123        count &= ~SWAP_HAS_CACHE;
1124
1125        if (usage == SWAP_HAS_CACHE) {
1126                VM_BUG_ON(!has_cache);
1127                has_cache = 0;
1128        } else if (count == SWAP_MAP_SHMEM) {
1129                /*
1130                 * Or we could insist on shmem.c using a special
1131                 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132                 */
1133                count = 0;
1134        } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135                if (count == COUNT_CONTINUED) {
1136                        if (swap_count_continued(p, offset, count))
1137                                count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138                        else
1139                                count = SWAP_MAP_MAX;
1140                } else
1141                        count--;
1142        }
1143
1144        usage = count | has_cache;
1145        p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147        unlock_cluster_or_swap_info(p, ci);
1148
1149        return usage;
1150}
1151
1152static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153{
1154        struct swap_cluster_info *ci;
1155        unsigned long offset = swp_offset(entry);
1156        unsigned char count;
1157
1158        ci = lock_cluster(p, offset);
1159        count = p->swap_map[offset];
1160        VM_BUG_ON(count != SWAP_HAS_CACHE);
1161        p->swap_map[offset] = 0;
1162        dec_cluster_info_page(p, p->cluster_info, offset);
1163        unlock_cluster(ci);
1164
1165        mem_cgroup_uncharge_swap(entry, 1);
1166        swap_range_free(p, offset, 1);
1167}
1168
1169/*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173void swap_free(swp_entry_t entry)
1174{
1175        struct swap_info_struct *p;
1176
1177        p = _swap_info_get(entry);
1178        if (p) {
1179                if (!__swap_entry_free(p, entry, 1))
1180                        free_swap_slot(entry);
1181        }
1182}
1183
1184/*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
1187static void swapcache_free(swp_entry_t entry)
1188{
1189        struct swap_info_struct *p;
1190
1191        p = _swap_info_get(entry);
1192        if (p) {
1193                if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194                        free_swap_slot(entry);
1195        }
1196}
1197
1198#ifdef CONFIG_THP_SWAP
1199static void swapcache_free_cluster(swp_entry_t entry)
1200{
1201        unsigned long offset = swp_offset(entry);
1202        unsigned long idx = offset / SWAPFILE_CLUSTER;
1203        struct swap_cluster_info *ci;
1204        struct swap_info_struct *si;
1205        unsigned char *map;
1206        unsigned int i, free_entries = 0;
1207        unsigned char val;
1208
1209        si = _swap_info_get(entry);
1210        if (!si)
1211                return;
1212
1213        ci = lock_cluster(si, offset);
1214        VM_BUG_ON(!cluster_is_huge(ci));
1215        map = si->swap_map + offset;
1216        for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217                val = map[i];
1218                VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219                if (val == SWAP_HAS_CACHE)
1220                        free_entries++;
1221        }
1222        if (!free_entries) {
1223                for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224                        map[i] &= ~SWAP_HAS_CACHE;
1225        }
1226        cluster_clear_huge(ci);
1227        unlock_cluster(ci);
1228        if (free_entries == SWAPFILE_CLUSTER) {
1229                spin_lock(&si->lock);
1230                ci = lock_cluster(si, offset);
1231                memset(map, 0, SWAPFILE_CLUSTER);
1232                unlock_cluster(ci);
1233                mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234                swap_free_cluster(si, idx);
1235                spin_unlock(&si->lock);
1236        } else if (free_entries) {
1237                for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238                        if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239                                free_swap_slot(entry);
1240                }
1241        }
1242}
1243
1244int split_swap_cluster(swp_entry_t entry)
1245{
1246        struct swap_info_struct *si;
1247        struct swap_cluster_info *ci;
1248        unsigned long offset = swp_offset(entry);
1249
1250        si = _swap_info_get(entry);
1251        if (!si)
1252                return -EBUSY;
1253        ci = lock_cluster(si, offset);
1254        cluster_clear_huge(ci);
1255        unlock_cluster(ci);
1256        return 0;
1257}
1258#else
1259static inline void swapcache_free_cluster(swp_entry_t entry)
1260{
1261}
1262#endif /* CONFIG_THP_SWAP */
1263
1264void put_swap_page(struct page *page, swp_entry_t entry)
1265{
1266        if (!PageTransHuge(page))
1267                swapcache_free(entry);
1268        else
1269                swapcache_free_cluster(entry);
1270}
1271
1272static int swp_entry_cmp(const void *ent1, const void *ent2)
1273{
1274        const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276        return (int)swp_type(*e1) - (int)swp_type(*e2);
1277}
1278
1279void swapcache_free_entries(swp_entry_t *entries, int n)
1280{
1281        struct swap_info_struct *p, *prev;
1282        int i;
1283
1284        if (n <= 0)
1285                return;
1286
1287        prev = NULL;
1288        p = NULL;
1289
1290        /*
1291         * Sort swap entries by swap device, so each lock is only taken once.
1292         * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293         * so low that it isn't necessary to optimize further.
1294         */
1295        if (nr_swapfiles > 1)
1296                sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297        for (i = 0; i < n; ++i) {
1298                p = swap_info_get_cont(entries[i], prev);
1299                if (p)
1300                        swap_entry_free(p, entries[i]);
1301                prev = p;
1302        }
1303        if (p)
1304                spin_unlock(&p->lock);
1305}
1306
1307/*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312int page_swapcount(struct page *page)
1313{
1314        int count = 0;
1315        struct swap_info_struct *p;
1316        struct swap_cluster_info *ci;
1317        swp_entry_t entry;
1318        unsigned long offset;
1319
1320        entry.val = page_private(page);
1321        p = _swap_info_get(entry);
1322        if (p) {
1323                offset = swp_offset(entry);
1324                ci = lock_cluster_or_swap_info(p, offset);
1325                count = swap_count(p->swap_map[offset]);
1326                unlock_cluster_or_swap_info(p, ci);
1327        }
1328        return count;
1329}
1330
1331static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1332{
1333        int count = 0;
1334        pgoff_t offset = swp_offset(entry);
1335        struct swap_cluster_info *ci;
1336
1337        ci = lock_cluster_or_swap_info(si, offset);
1338        count = swap_count(si->swap_map[offset]);
1339        unlock_cluster_or_swap_info(si, ci);
1340        return count;
1341}
1342
1343/*
1344 * How many references to @entry are currently swapped out?
1345 * This does not give an exact answer when swap count is continued,
1346 * but does include the high COUNT_CONTINUED flag to allow for that.
1347 */
1348int __swp_swapcount(swp_entry_t entry)
1349{
1350        int count = 0;
1351        struct swap_info_struct *si;
1352
1353        si = __swap_info_get(entry);
1354        if (si)
1355                count = swap_swapcount(si, entry);
1356        return count;
1357}
1358
1359/*
1360 * How many references to @entry are currently swapped out?
1361 * This considers COUNT_CONTINUED so it returns exact answer.
1362 */
1363int swp_swapcount(swp_entry_t entry)
1364{
1365        int count, tmp_count, n;
1366        struct swap_info_struct *p;
1367        struct swap_cluster_info *ci;
1368        struct page *page;
1369        pgoff_t offset;
1370        unsigned char *map;
1371
1372        p = _swap_info_get(entry);
1373        if (!p)
1374                return 0;
1375
1376        offset = swp_offset(entry);
1377
1378        ci = lock_cluster_or_swap_info(p, offset);
1379
1380        count = swap_count(p->swap_map[offset]);
1381        if (!(count & COUNT_CONTINUED))
1382                goto out;
1383
1384        count &= ~COUNT_CONTINUED;
1385        n = SWAP_MAP_MAX + 1;
1386
1387        page = vmalloc_to_page(p->swap_map + offset);
1388        offset &= ~PAGE_MASK;
1389        VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1390
1391        do {
1392                page = list_next_entry(page, lru);
1393                map = kmap_atomic(page);
1394                tmp_count = map[offset];
1395                kunmap_atomic(map);
1396
1397                count += (tmp_count & ~COUNT_CONTINUED) * n;
1398                n *= (SWAP_CONT_MAX + 1);
1399        } while (tmp_count & COUNT_CONTINUED);
1400out:
1401        unlock_cluster_or_swap_info(p, ci);
1402        return count;
1403}
1404
1405#ifdef CONFIG_THP_SWAP
1406static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1407                                         swp_entry_t entry)
1408{
1409        struct swap_cluster_info *ci;
1410        unsigned char *map = si->swap_map;
1411        unsigned long roffset = swp_offset(entry);
1412        unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1413        int i;
1414        bool ret = false;
1415
1416        ci = lock_cluster_or_swap_info(si, offset);
1417        if (!ci || !cluster_is_huge(ci)) {
1418                if (map[roffset] != SWAP_HAS_CACHE)
1419                        ret = true;
1420                goto unlock_out;
1421        }
1422        for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1423                if (map[offset + i] != SWAP_HAS_CACHE) {
1424                        ret = true;
1425                        break;
1426                }
1427        }
1428unlock_out:
1429        unlock_cluster_or_swap_info(si, ci);
1430        return ret;
1431}
1432
1433static bool page_swapped(struct page *page)
1434{
1435        swp_entry_t entry;
1436        struct swap_info_struct *si;
1437
1438        if (likely(!PageTransCompound(page)))
1439                return page_swapcount(page) != 0;
1440
1441        page = compound_head(page);
1442        entry.val = page_private(page);
1443        si = _swap_info_get(entry);
1444        if (si)
1445                return swap_page_trans_huge_swapped(si, entry);
1446        return false;
1447}
1448
1449static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1450                                         int *total_swapcount)
1451{
1452        int i, map_swapcount, _total_mapcount, _total_swapcount;
1453        unsigned long offset = 0;
1454        struct swap_info_struct *si;
1455        struct swap_cluster_info *ci = NULL;
1456        unsigned char *map = NULL;
1457        int mapcount, swapcount = 0;
1458
1459        /* hugetlbfs shouldn't call it */
1460        VM_BUG_ON_PAGE(PageHuge(page), page);
1461
1462        if (likely(!PageTransCompound(page))) {
1463                mapcount = atomic_read(&page->_mapcount) + 1;
1464                if (total_mapcount)
1465                        *total_mapcount = mapcount;
1466                if (PageSwapCache(page))
1467                        swapcount = page_swapcount(page);
1468                if (total_swapcount)
1469                        *total_swapcount = swapcount;
1470                return mapcount + swapcount;
1471        }
1472
1473        page = compound_head(page);
1474
1475        _total_mapcount = _total_swapcount = map_swapcount = 0;
1476        if (PageSwapCache(page)) {
1477                swp_entry_t entry;
1478
1479                entry.val = page_private(page);
1480                si = _swap_info_get(entry);
1481                if (si) {
1482                        map = si->swap_map;
1483                        offset = swp_offset(entry);
1484                }
1485        }
1486        if (map)
1487                ci = lock_cluster(si, offset);
1488        for (i = 0; i < HPAGE_PMD_NR; i++) {
1489                mapcount = atomic_read(&page[i]._mapcount) + 1;
1490                _total_mapcount += mapcount;
1491                if (map) {
1492                        swapcount = swap_count(map[offset + i]);
1493                        _total_swapcount += swapcount;
1494                }
1495                map_swapcount = max(map_swapcount, mapcount + swapcount);
1496        }
1497        unlock_cluster(ci);
1498        if (PageDoubleMap(page)) {
1499                map_swapcount -= 1;
1500                _total_mapcount -= HPAGE_PMD_NR;
1501        }
1502        mapcount = compound_mapcount(page);
1503        map_swapcount += mapcount;
1504        _total_mapcount += mapcount;
1505        if (total_mapcount)
1506                *total_mapcount = _total_mapcount;
1507        if (total_swapcount)
1508                *total_swapcount = _total_swapcount;
1509
1510        return map_swapcount;
1511}
1512#else
1513#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1514#define page_swapped(page)                      (page_swapcount(page) != 0)
1515
1516static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1517                                         int *total_swapcount)
1518{
1519        int mapcount, swapcount = 0;
1520
1521        /* hugetlbfs shouldn't call it */
1522        VM_BUG_ON_PAGE(PageHuge(page), page);
1523
1524        mapcount = page_trans_huge_mapcount(page, total_mapcount);
1525        if (PageSwapCache(page))
1526                swapcount = page_swapcount(page);
1527        if (total_swapcount)
1528                *total_swapcount = swapcount;
1529        return mapcount + swapcount;
1530}
1531#endif
1532
1533/*
1534 * We can write to an anon page without COW if there are no other references
1535 * to it.  And as a side-effect, free up its swap: because the old content
1536 * on disk will never be read, and seeking back there to write new content
1537 * later would only waste time away from clustering.
1538 *
1539 * NOTE: total_map_swapcount should not be relied upon by the caller if
1540 * reuse_swap_page() returns false, but it may be always overwritten
1541 * (see the other implementation for CONFIG_SWAP=n).
1542 */
1543bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1544{
1545        int count, total_mapcount, total_swapcount;
1546
1547        VM_BUG_ON_PAGE(!PageLocked(page), page);
1548        if (unlikely(PageKsm(page)))
1549                return false;
1550        count = page_trans_huge_map_swapcount(page, &total_mapcount,
1551                                              &total_swapcount);
1552        if (total_map_swapcount)
1553                *total_map_swapcount = total_mapcount + total_swapcount;
1554        if (count == 1 && PageSwapCache(page) &&
1555            (likely(!PageTransCompound(page)) ||
1556             /* The remaining swap count will be freed soon */
1557             total_swapcount == page_swapcount(page))) {
1558                if (!PageWriteback(page)) {
1559                        page = compound_head(page);
1560                        delete_from_swap_cache(page);
1561                        SetPageDirty(page);
1562                } else {
1563                        swp_entry_t entry;
1564                        struct swap_info_struct *p;
1565
1566                        entry.val = page_private(page);
1567                        p = swap_info_get(entry);
1568                        if (p->flags & SWP_STABLE_WRITES) {
1569                                spin_unlock(&p->lock);
1570                                return false;
1571                        }
1572                        spin_unlock(&p->lock);
1573                }
1574        }
1575
1576        return count <= 1;
1577}
1578
1579/*
1580 * If swap is getting full, or if there are no more mappings of this page,
1581 * then try_to_free_swap is called to free its swap space.
1582 */
1583int try_to_free_swap(struct page *page)
1584{
1585        VM_BUG_ON_PAGE(!PageLocked(page), page);
1586
1587        if (!PageSwapCache(page))
1588                return 0;
1589        if (PageWriteback(page))
1590                return 0;
1591        if (page_swapped(page))
1592                return 0;
1593
1594        /*
1595         * Once hibernation has begun to create its image of memory,
1596         * there's a danger that one of the calls to try_to_free_swap()
1597         * - most probably a call from __try_to_reclaim_swap() while
1598         * hibernation is allocating its own swap pages for the image,
1599         * but conceivably even a call from memory reclaim - will free
1600         * the swap from a page which has already been recorded in the
1601         * image as a clean swapcache page, and then reuse its swap for
1602         * another page of the image.  On waking from hibernation, the
1603         * original page might be freed under memory pressure, then
1604         * later read back in from swap, now with the wrong data.
1605         *
1606         * Hibernation suspends storage while it is writing the image
1607         * to disk so check that here.
1608         */
1609        if (pm_suspended_storage())
1610                return 0;
1611
1612        page = compound_head(page);
1613        delete_from_swap_cache(page);
1614        SetPageDirty(page);
1615        return 1;
1616}
1617
1618/*
1619 * Free the swap entry like above, but also try to
1620 * free the page cache entry if it is the last user.
1621 */
1622int free_swap_and_cache(swp_entry_t entry)
1623{
1624        struct swap_info_struct *p;
1625        struct page *page = NULL;
1626        unsigned char count;
1627
1628        if (non_swap_entry(entry))
1629                return 1;
1630
1631        p = _swap_info_get(entry);
1632        if (p) {
1633                count = __swap_entry_free(p, entry, 1);
1634                if (count == SWAP_HAS_CACHE &&
1635                    !swap_page_trans_huge_swapped(p, entry)) {
1636                        page = find_get_page(swap_address_space(entry),
1637                                             swp_offset(entry));
1638                        if (page && !trylock_page(page)) {
1639                                put_page(page);
1640                                page = NULL;
1641                        }
1642                } else if (!count)
1643                        free_swap_slot(entry);
1644        }
1645        if (page) {
1646                /*
1647                 * Not mapped elsewhere, or swap space full? Free it!
1648                 * Also recheck PageSwapCache now page is locked (above).
1649                 */
1650                if (PageSwapCache(page) && !PageWriteback(page) &&
1651                    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1652                    !swap_page_trans_huge_swapped(p, entry)) {
1653                        page = compound_head(page);
1654                        delete_from_swap_cache(page);
1655                        SetPageDirty(page);
1656                }
1657                unlock_page(page);
1658                put_page(page);
1659        }
1660        return p != NULL;
1661}
1662
1663#ifdef CONFIG_HIBERNATION
1664/*
1665 * Find the swap type that corresponds to given device (if any).
1666 *
1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1668 * from 0, in which the swap header is expected to be located.
1669 *
1670 * This is needed for the suspend to disk (aka swsusp).
1671 */
1672int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1673{
1674        struct block_device *bdev = NULL;
1675        int type;
1676
1677        if (device)
1678                bdev = bdget(device);
1679
1680        spin_lock(&swap_lock);
1681        for (type = 0; type < nr_swapfiles; type++) {
1682                struct swap_info_struct *sis = swap_info[type];
1683
1684                if (!(sis->flags & SWP_WRITEOK))
1685                        continue;
1686
1687                if (!bdev) {
1688                        if (bdev_p)
1689                                *bdev_p = bdgrab(sis->bdev);
1690
1691                        spin_unlock(&swap_lock);
1692                        return type;
1693                }
1694                if (bdev == sis->bdev) {
1695                        struct swap_extent *se = &sis->first_swap_extent;
1696
1697                        if (se->start_block == offset) {
1698                                if (bdev_p)
1699                                        *bdev_p = bdgrab(sis->bdev);
1700
1701                                spin_unlock(&swap_lock);
1702                                bdput(bdev);
1703                                return type;
1704                        }
1705                }
1706        }
1707        spin_unlock(&swap_lock);
1708        if (bdev)
1709                bdput(bdev);
1710
1711        return -ENODEV;
1712}
1713
1714/*
1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1716 * corresponding to given index in swap_info (swap type).
1717 */
1718sector_t swapdev_block(int type, pgoff_t offset)
1719{
1720        struct block_device *bdev;
1721
1722        if ((unsigned int)type >= nr_swapfiles)
1723                return 0;
1724        if (!(swap_info[type]->flags & SWP_WRITEOK))
1725                return 0;
1726        return map_swap_entry(swp_entry(type, offset), &bdev);
1727}
1728
1729/*
1730 * Return either the total number of swap pages of given type, or the number
1731 * of free pages of that type (depending on @free)
1732 *
1733 * This is needed for software suspend
1734 */
1735unsigned int count_swap_pages(int type, int free)
1736{
1737        unsigned int n = 0;
1738
1739        spin_lock(&swap_lock);
1740        if ((unsigned int)type < nr_swapfiles) {
1741                struct swap_info_struct *sis = swap_info[type];
1742
1743                spin_lock(&sis->lock);
1744                if (sis->flags & SWP_WRITEOK) {
1745                        n = sis->pages;
1746                        if (free)
1747                                n -= sis->inuse_pages;
1748                }
1749                spin_unlock(&sis->lock);
1750        }
1751        spin_unlock(&swap_lock);
1752        return n;
1753}
1754#endif /* CONFIG_HIBERNATION */
1755
1756static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1757{
1758        return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1759}
1760
1761/*
1762 * No need to decide whether this PTE shares the swap entry with others,
1763 * just let do_wp_page work it out if a write is requested later - to
1764 * force COW, vm_page_prot omits write permission from any private vma.
1765 */
1766static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1767                unsigned long addr, swp_entry_t entry, struct page *page)
1768{
1769        struct page *swapcache;
1770        struct mem_cgroup *memcg;
1771        spinlock_t *ptl;
1772        pte_t *pte;
1773        int ret = 1;
1774
1775        swapcache = page;
1776        page = ksm_might_need_to_copy(page, vma, addr);
1777        if (unlikely(!page))
1778                return -ENOMEM;
1779
1780        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1781                                &memcg, false)) {
1782                ret = -ENOMEM;
1783                goto out_nolock;
1784        }
1785
1786        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1787        if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1788                mem_cgroup_cancel_charge(page, memcg, false);
1789                ret = 0;
1790                goto out;
1791        }
1792
1793        dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794        inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795        get_page(page);
1796        set_pte_at(vma->vm_mm, addr, pte,
1797                   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1798        if (page == swapcache) {
1799                page_add_anon_rmap(page, vma, addr, false);
1800                mem_cgroup_commit_charge(page, memcg, true, false);
1801        } else { /* ksm created a completely new copy */
1802                page_add_new_anon_rmap(page, vma, addr, false);
1803                mem_cgroup_commit_charge(page, memcg, false, false);
1804                lru_cache_add_active_or_unevictable(page, vma);
1805        }
1806        swap_free(entry);
1807        /*
1808         * Move the page to the active list so it is not
1809         * immediately swapped out again after swapon.
1810         */
1811        activate_page(page);
1812out:
1813        pte_unmap_unlock(pte, ptl);
1814out_nolock:
1815        if (page != swapcache) {
1816                unlock_page(page);
1817                put_page(page);
1818        }
1819        return ret;
1820}
1821
1822static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1823                                unsigned long addr, unsigned long end,
1824                                swp_entry_t entry, struct page *page)
1825{
1826        pte_t swp_pte = swp_entry_to_pte(entry);
1827        pte_t *pte;
1828        int ret = 0;
1829
1830        /*
1831         * We don't actually need pte lock while scanning for swp_pte: since
1832         * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1833         * page table while we're scanning; though it could get zapped, and on
1834         * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1835         * of unmatched parts which look like swp_pte, so unuse_pte must
1836         * recheck under pte lock.  Scanning without pte lock lets it be
1837         * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1838         */
1839        pte = pte_offset_map(pmd, addr);
1840        do {
1841                /*
1842                 * swapoff spends a _lot_ of time in this loop!
1843                 * Test inline before going to call unuse_pte.
1844                 */
1845                if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1846                        pte_unmap(pte);
1847                        ret = unuse_pte(vma, pmd, addr, entry, page);
1848                        if (ret)
1849                                goto out;
1850                        pte = pte_offset_map(pmd, addr);
1851                }
1852        } while (pte++, addr += PAGE_SIZE, addr != end);
1853        pte_unmap(pte - 1);
1854out:
1855        return ret;
1856}
1857
1858static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1859                                unsigned long addr, unsigned long end,
1860                                swp_entry_t entry, struct page *page)
1861{
1862        pmd_t *pmd;
1863        unsigned long next;
1864        int ret;
1865
1866        pmd = pmd_offset(pud, addr);
1867        do {
1868                cond_resched();
1869                next = pmd_addr_end(addr, end);
1870                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1871                        continue;
1872                ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1873                if (ret)
1874                        return ret;
1875        } while (pmd++, addr = next, addr != end);
1876        return 0;
1877}
1878
1879static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1880                                unsigned long addr, unsigned long end,
1881                                swp_entry_t entry, struct page *page)
1882{
1883        pud_t *pud;
1884        unsigned long next;
1885        int ret;
1886
1887        pud = pud_offset(p4d, addr);
1888        do {
1889                next = pud_addr_end(addr, end);
1890                if (pud_none_or_clear_bad(pud))
1891                        continue;
1892                ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1893                if (ret)
1894                        return ret;
1895        } while (pud++, addr = next, addr != end);
1896        return 0;
1897}
1898
1899static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1900                                unsigned long addr, unsigned long end,
1901                                swp_entry_t entry, struct page *page)
1902{
1903        p4d_t *p4d;
1904        unsigned long next;
1905        int ret;
1906
1907        p4d = p4d_offset(pgd, addr);
1908        do {
1909                next = p4d_addr_end(addr, end);
1910                if (p4d_none_or_clear_bad(p4d))
1911                        continue;
1912                ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1913                if (ret)
1914                        return ret;
1915        } while (p4d++, addr = next, addr != end);
1916        return 0;
1917}
1918
1919static int unuse_vma(struct vm_area_struct *vma,
1920                                swp_entry_t entry, struct page *page)
1921{
1922        pgd_t *pgd;
1923        unsigned long addr, end, next;
1924        int ret;
1925
1926        if (page_anon_vma(page)) {
1927                addr = page_address_in_vma(page, vma);
1928                if (addr == -EFAULT)
1929                        return 0;
1930                else
1931                        end = addr + PAGE_SIZE;
1932        } else {
1933                addr = vma->vm_start;
1934                end = vma->vm_end;
1935        }
1936
1937        pgd = pgd_offset(vma->vm_mm, addr);
1938        do {
1939                next = pgd_addr_end(addr, end);
1940                if (pgd_none_or_clear_bad(pgd))
1941                        continue;
1942                ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1943                if (ret)
1944                        return ret;
1945        } while (pgd++, addr = next, addr != end);
1946        return 0;
1947}
1948
1949static int unuse_mm(struct mm_struct *mm,
1950                                swp_entry_t entry, struct page *page)
1951{
1952        struct vm_area_struct *vma;
1953        int ret = 0;
1954
1955        if (!down_read_trylock(&mm->mmap_sem)) {
1956                /*
1957                 * Activate page so shrink_inactive_list is unlikely to unmap
1958                 * its ptes while lock is dropped, so swapoff can make progress.
1959                 */
1960                activate_page(page);
1961                unlock_page(page);
1962                down_read(&mm->mmap_sem);
1963                lock_page(page);
1964        }
1965        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1966                if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1967                        break;
1968                cond_resched();
1969        }
1970        up_read(&mm->mmap_sem);
1971        return (ret < 0)? ret: 0;
1972}
1973
1974/*
1975 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1976 * from current position to next entry still in use.
1977 * Recycle to start on reaching the end, returning 0 when empty.
1978 */
1979static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1980                                        unsigned int prev, bool frontswap)
1981{
1982        unsigned int max = si->max;
1983        unsigned int i = prev;
1984        unsigned char count;
1985
1986        /*
1987         * No need for swap_lock here: we're just looking
1988         * for whether an entry is in use, not modifying it; false
1989         * hits are okay, and sys_swapoff() has already prevented new
1990         * allocations from this area (while holding swap_lock).
1991         */
1992        for (;;) {
1993                if (++i >= max) {
1994                        if (!prev) {
1995                                i = 0;
1996                                break;
1997                        }
1998                        /*
1999                         * No entries in use at top of swap_map,
2000                         * loop back to start and recheck there.
2001                         */
2002                        max = prev + 1;
2003                        prev = 0;
2004                        i = 1;
2005                }
2006                count = READ_ONCE(si->swap_map[i]);
2007                if (count && swap_count(count) != SWAP_MAP_BAD)
2008                        if (!frontswap || frontswap_test(si, i))
2009                                break;
2010                if ((i % LATENCY_LIMIT) == 0)
2011                        cond_resched();
2012        }
2013        return i;
2014}
2015
2016/*
2017 * We completely avoid races by reading each swap page in advance,
2018 * and then search for the process using it.  All the necessary
2019 * page table adjustments can then be made atomically.
2020 *
2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2023 */
2024int try_to_unuse(unsigned int type, bool frontswap,
2025                 unsigned long pages_to_unuse)
2026{
2027        struct swap_info_struct *si = swap_info[type];
2028        struct mm_struct *start_mm;
2029        volatile unsigned char *swap_map; /* swap_map is accessed without
2030                                           * locking. Mark it as volatile
2031                                           * to prevent compiler doing
2032                                           * something odd.
2033                                           */
2034        unsigned char swcount;
2035        struct page *page;
2036        swp_entry_t entry;
2037        unsigned int i = 0;
2038        int retval = 0;
2039
2040        /*
2041         * When searching mms for an entry, a good strategy is to
2042         * start at the first mm we freed the previous entry from
2043         * (though actually we don't notice whether we or coincidence
2044         * freed the entry).  Initialize this start_mm with a hold.
2045         *
2046         * A simpler strategy would be to start at the last mm we
2047         * freed the previous entry from; but that would take less
2048         * advantage of mmlist ordering, which clusters forked mms
2049         * together, child after parent.  If we race with dup_mmap(), we
2050         * prefer to resolve parent before child, lest we miss entries
2051         * duplicated after we scanned child: using last mm would invert
2052         * that.
2053         */
2054        start_mm = &init_mm;
2055        mmget(&init_mm);
2056
2057        /*
2058         * Keep on scanning until all entries have gone.  Usually,
2059         * one pass through swap_map is enough, but not necessarily:
2060         * there are races when an instance of an entry might be missed.
2061         */
2062        while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2063                if (signal_pending(current)) {
2064                        retval = -EINTR;
2065                        break;
2066                }
2067
2068                /*
2069                 * Get a page for the entry, using the existing swap
2070                 * cache page if there is one.  Otherwise, get a clean
2071                 * page and read the swap into it.
2072                 */
2073                swap_map = &si->swap_map[i];
2074                entry = swp_entry(type, i);
2075                page = read_swap_cache_async(entry,
2076                                        GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2077                if (!page) {
2078                        /*
2079                         * Either swap_duplicate() failed because entry
2080                         * has been freed independently, and will not be
2081                         * reused since sys_swapoff() already disabled
2082                         * allocation from here, or alloc_page() failed.
2083                         */
2084                        swcount = *swap_map;
2085                        /*
2086                         * We don't hold lock here, so the swap entry could be
2087                         * SWAP_MAP_BAD (when the cluster is discarding).
2088                         * Instead of fail out, We can just skip the swap
2089                         * entry because swapoff will wait for discarding
2090                         * finish anyway.
2091                         */
2092                        if (!swcount || swcount == SWAP_MAP_BAD)
2093                                continue;
2094                        retval = -ENOMEM;
2095                        break;
2096                }
2097
2098                /*
2099                 * Don't hold on to start_mm if it looks like exiting.
2100                 */
2101                if (atomic_read(&start_mm->mm_users) == 1) {
2102                        mmput(start_mm);
2103                        start_mm = &init_mm;
2104                        mmget(&init_mm);
2105                }
2106
2107                /*
2108                 * Wait for and lock page.  When do_swap_page races with
2109                 * try_to_unuse, do_swap_page can handle the fault much
2110                 * faster than try_to_unuse can locate the entry.  This
2111                 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2112                 * defer to do_swap_page in such a case - in some tests,
2113                 * do_swap_page and try_to_unuse repeatedly compete.
2114                 */
2115                wait_on_page_locked(page);
2116                wait_on_page_writeback(page);
2117                lock_page(page);
2118                wait_on_page_writeback(page);
2119
2120                /*
2121                 * Remove all references to entry.
2122                 */
2123                swcount = *swap_map;
2124                if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2125                        retval = shmem_unuse(entry, page);
2126                        /* page has already been unlocked and released */
2127                        if (retval < 0)
2128                                break;
2129                        continue;
2130                }
2131                if (swap_count(swcount) && start_mm != &init_mm)
2132                        retval = unuse_mm(start_mm, entry, page);
2133
2134                if (swap_count(*swap_map)) {
2135                        int set_start_mm = (*swap_map >= swcount);
2136                        struct list_head *p = &start_mm->mmlist;
2137                        struct mm_struct *new_start_mm = start_mm;
2138                        struct mm_struct *prev_mm = start_mm;
2139                        struct mm_struct *mm;
2140
2141                        mmget(new_start_mm);
2142                        mmget(prev_mm);
2143                        spin_lock(&mmlist_lock);
2144                        while (swap_count(*swap_map) && !retval &&
2145                                        (p = p->next) != &start_mm->mmlist) {
2146                                mm = list_entry(p, struct mm_struct, mmlist);
2147                                if (!mmget_not_zero(mm))
2148                                        continue;
2149                                spin_unlock(&mmlist_lock);
2150                                mmput(prev_mm);
2151                                prev_mm = mm;
2152
2153                                cond_resched();
2154
2155                                swcount = *swap_map;
2156                                if (!swap_count(swcount)) /* any usage ? */
2157                                        ;
2158                                else if (mm == &init_mm)
2159                                        set_start_mm = 1;
2160                                else
2161                                        retval = unuse_mm(mm, entry, page);
2162
2163                                if (set_start_mm && *swap_map < swcount) {
2164                                        mmput(new_start_mm);
2165                                        mmget(mm);
2166                                        new_start_mm = mm;
2167                                        set_start_mm = 0;
2168                                }
2169                                spin_lock(&mmlist_lock);
2170                        }
2171                        spin_unlock(&mmlist_lock);
2172                        mmput(prev_mm);
2173                        mmput(start_mm);
2174                        start_mm = new_start_mm;
2175                }
2176                if (retval) {
2177                        unlock_page(page);
2178                        put_page(page);
2179                        break;
2180                }
2181
2182                /*
2183                 * If a reference remains (rare), we would like to leave
2184                 * the page in the swap cache; but try_to_unmap could
2185                 * then re-duplicate the entry once we drop page lock,
2186                 * so we might loop indefinitely; also, that page could
2187                 * not be swapped out to other storage meanwhile.  So:
2188                 * delete from cache even if there's another reference,
2189                 * after ensuring that the data has been saved to disk -
2190                 * since if the reference remains (rarer), it will be
2191                 * read from disk into another page.  Splitting into two
2192                 * pages would be incorrect if swap supported "shared
2193                 * private" pages, but they are handled by tmpfs files.
2194                 *
2195                 * Given how unuse_vma() targets one particular offset
2196                 * in an anon_vma, once the anon_vma has been determined,
2197                 * this splitting happens to be just what is needed to
2198                 * handle where KSM pages have been swapped out: re-reading
2199                 * is unnecessarily slow, but we can fix that later on.
2200                 */
2201                if (swap_count(*swap_map) &&
2202                     PageDirty(page) && PageSwapCache(page)) {
2203                        struct writeback_control wbc = {
2204                                .sync_mode = WB_SYNC_NONE,
2205                        };
2206
2207                        swap_writepage(compound_head(page), &wbc);
2208                        lock_page(page);
2209                        wait_on_page_writeback(page);
2210                }
2211
2212                /*
2213                 * It is conceivable that a racing task removed this page from
2214                 * swap cache just before we acquired the page lock at the top,
2215                 * or while we dropped it in unuse_mm().  The page might even
2216                 * be back in swap cache on another swap area: that we must not
2217                 * delete, since it may not have been written out to swap yet.
2218                 */
2219                if (PageSwapCache(page) &&
2220                    likely(page_private(page) == entry.val) &&
2221                    !page_swapped(page))
2222                        delete_from_swap_cache(compound_head(page));
2223
2224                /*
2225                 * So we could skip searching mms once swap count went
2226                 * to 1, we did not mark any present ptes as dirty: must
2227                 * mark page dirty so shrink_page_list will preserve it.
2228                 */
2229                SetPageDirty(page);
2230                unlock_page(page);
2231                put_page(page);
2232
2233                /*
2234                 * Make sure that we aren't completely killing
2235                 * interactive performance.
2236                 */
2237                cond_resched();
2238                if (frontswap && pages_to_unuse > 0) {
2239                        if (!--pages_to_unuse)
2240                                break;
2241                }
2242        }
2243
2244        mmput(start_mm);
2245        return retval;
2246}
2247
2248/*
2249 * After a successful try_to_unuse, if no swap is now in use, we know
2250 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2251 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2252 * added to the mmlist just after page_duplicate - before would be racy.
2253 */
2254static void drain_mmlist(void)
2255{
2256        struct list_head *p, *next;
2257        unsigned int type;
2258
2259        for (type = 0; type < nr_swapfiles; type++)
2260                if (swap_info[type]->inuse_pages)
2261                        return;
2262        spin_lock(&mmlist_lock);
2263        list_for_each_safe(p, next, &init_mm.mmlist)
2264                list_del_init(p);
2265        spin_unlock(&mmlist_lock);
2266}
2267
2268/*
2269 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2270 * corresponds to page offset for the specified swap entry.
2271 * Note that the type of this function is sector_t, but it returns page offset
2272 * into the bdev, not sector offset.
2273 */
2274static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2275{
2276        struct swap_info_struct *sis;
2277        struct swap_extent *start_se;
2278        struct swap_extent *se;
2279        pgoff_t offset;
2280
2281        sis = swap_info[swp_type(entry)];
2282        *bdev = sis->bdev;
2283
2284        offset = swp_offset(entry);
2285        start_se = sis->curr_swap_extent;
2286        se = start_se;
2287
2288        for ( ; ; ) {
2289                if (se->start_page <= offset &&
2290                                offset < (se->start_page + se->nr_pages)) {
2291                        return se->start_block + (offset - se->start_page);
2292                }
2293                se = list_next_entry(se, list);
2294                sis->curr_swap_extent = se;
2295                BUG_ON(se == start_se);         /* It *must* be present */
2296        }
2297}
2298
2299/*
2300 * Returns the page offset into bdev for the specified page's swap entry.
2301 */
2302sector_t map_swap_page(struct page *page, struct block_device **bdev)
2303{
2304        swp_entry_t entry;
2305        entry.val = page_private(page);
2306        return map_swap_entry(entry, bdev);
2307}
2308
2309/*
2310 * Free all of a swapdev's extent information
2311 */
2312static void destroy_swap_extents(struct swap_info_struct *sis)
2313{
2314        while (!list_empty(&sis->first_swap_extent.list)) {
2315                struct swap_extent *se;
2316
2317                se = list_first_entry(&sis->first_swap_extent.list,
2318                                struct swap_extent, list);
2319                list_del(&se->list);
2320                kfree(se);
2321        }
2322
2323        if (sis->flags & SWP_FILE) {
2324                struct file *swap_file = sis->swap_file;
2325                struct address_space *mapping = swap_file->f_mapping;
2326
2327                sis->flags &= ~SWP_FILE;
2328                mapping->a_ops->swap_deactivate(swap_file);
2329        }
2330}
2331
2332/*
2333 * Add a block range (and the corresponding page range) into this swapdev's
2334 * extent list.  The extent list is kept sorted in page order.
2335 *
2336 * This function rather assumes that it is called in ascending page order.
2337 */
2338int
2339add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2340                unsigned long nr_pages, sector_t start_block)
2341{
2342        struct swap_extent *se;
2343        struct swap_extent *new_se;
2344        struct list_head *lh;
2345
2346        if (start_page == 0) {
2347                se = &sis->first_swap_extent;
2348                sis->curr_swap_extent = se;
2349                se->start_page = 0;
2350                se->nr_pages = nr_pages;
2351                se->start_block = start_block;
2352                return 1;
2353        } else {
2354                lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2355                se = list_entry(lh, struct swap_extent, list);
2356                BUG_ON(se->start_page + se->nr_pages != start_page);
2357                if (se->start_block + se->nr_pages == start_block) {
2358                        /* Merge it */
2359                        se->nr_pages += nr_pages;
2360                        return 0;
2361                }
2362        }
2363
2364        /*
2365         * No merge.  Insert a new extent, preserving ordering.
2366         */
2367        new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2368        if (new_se == NULL)
2369                return -ENOMEM;
2370        new_se->start_page = start_page;
2371        new_se->nr_pages = nr_pages;
2372        new_se->start_block = start_block;
2373
2374        list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2375        return 1;
2376}
2377
2378/*
2379 * A `swap extent' is a simple thing which maps a contiguous range of pages
2380 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2381 * is built at swapon time and is then used at swap_writepage/swap_readpage
2382 * time for locating where on disk a page belongs.
2383 *
2384 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2385 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2386 * swap files identically.
2387 *
2388 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2389 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2390 * swapfiles are handled *identically* after swapon time.
2391 *
2392 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2393 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2394 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2395 * requirements, they are simply tossed out - we will never use those blocks
2396 * for swapping.
2397 *
2398 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2399 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2400 * which will scribble on the fs.
2401 *
2402 * The amount of disk space which a single swap extent represents varies.
2403 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2404 * extents in the list.  To avoid much list walking, we cache the previous
2405 * search location in `curr_swap_extent', and start new searches from there.
2406 * This is extremely effective.  The average number of iterations in
2407 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2408 */
2409static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2410{
2411        struct file *swap_file = sis->swap_file;
2412        struct address_space *mapping = swap_file->f_mapping;
2413        struct inode *inode = mapping->host;
2414        int ret;
2415
2416        if (S_ISBLK(inode->i_mode)) {
2417                ret = add_swap_extent(sis, 0, sis->max, 0);
2418                *span = sis->pages;
2419                return ret;
2420        }
2421
2422        if (mapping->a_ops->swap_activate) {
2423                ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2424                if (!ret) {
2425                        sis->flags |= SWP_FILE;
2426                        ret = add_swap_extent(sis, 0, sis->max, 0);
2427                        *span = sis->pages;
2428                }
2429                return ret;
2430        }
2431
2432        return generic_swapfile_activate(sis, swap_file, span);
2433}
2434
2435static int swap_node(struct swap_info_struct *p)
2436{
2437        struct block_device *bdev;
2438
2439        if (p->bdev)
2440                bdev = p->bdev;
2441        else
2442                bdev = p->swap_file->f_inode->i_sb->s_bdev;
2443
2444        return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2445}
2446
2447static void _enable_swap_info(struct swap_info_struct *p, int prio,
2448                                unsigned char *swap_map,
2449                                struct swap_cluster_info *cluster_info)
2450{
2451        int i;
2452
2453        if (prio >= 0)
2454                p->prio = prio;
2455        else
2456                p->prio = --least_priority;
2457        /*
2458         * the plist prio is negated because plist ordering is
2459         * low-to-high, while swap ordering is high-to-low
2460         */
2461        p->list.prio = -p->prio;
2462        for_each_node(i) {
2463                if (p->prio >= 0)
2464                        p->avail_lists[i].prio = -p->prio;
2465                else {
2466                        if (swap_node(p) == i)
2467                                p->avail_lists[i].prio = 1;
2468                        else
2469                                p->avail_lists[i].prio = -p->prio;
2470                }
2471        }
2472        p->swap_map = swap_map;
2473        p->cluster_info = cluster_info;
2474        p->flags |= SWP_WRITEOK;
2475        atomic_long_add(p->pages, &nr_swap_pages);
2476        total_swap_pages += p->pages;
2477
2478        assert_spin_locked(&swap_lock);
2479        /*
2480         * both lists are plists, and thus priority ordered.
2481         * swap_active_head needs to be priority ordered for swapoff(),
2482         * which on removal of any swap_info_struct with an auto-assigned
2483         * (i.e. negative) priority increments the auto-assigned priority
2484         * of any lower-priority swap_info_structs.
2485         * swap_avail_head needs to be priority ordered for get_swap_page(),
2486         * which allocates swap pages from the highest available priority
2487         * swap_info_struct.
2488         */
2489        plist_add(&p->list, &swap_active_head);
2490        add_to_avail_list(p);
2491}
2492
2493static void enable_swap_info(struct swap_info_struct *p, int prio,
2494                                unsigned char *swap_map,
2495                                struct swap_cluster_info *cluster_info,
2496                                unsigned long *frontswap_map)
2497{
2498        frontswap_init(p->type, frontswap_map);
2499        spin_lock(&swap_lock);
2500        spin_lock(&p->lock);
2501         _enable_swap_info(p, prio, swap_map, cluster_info);
2502        spin_unlock(&p->lock);
2503        spin_unlock(&swap_lock);
2504}
2505
2506static void reinsert_swap_info(struct swap_info_struct *p)
2507{
2508        spin_lock(&swap_lock);
2509        spin_lock(&p->lock);
2510        _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2511        spin_unlock(&p->lock);
2512        spin_unlock(&swap_lock);
2513}
2514
2515bool has_usable_swap(void)
2516{
2517        bool ret = true;
2518
2519        spin_lock(&swap_lock);
2520        if (plist_head_empty(&swap_active_head))
2521                ret = false;
2522        spin_unlock(&swap_lock);
2523        return ret;
2524}
2525
2526SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2527{
2528        struct swap_info_struct *p = NULL;
2529        unsigned char *swap_map;
2530        struct swap_cluster_info *cluster_info;
2531        unsigned long *frontswap_map;
2532        struct file *swap_file, *victim;
2533        struct address_space *mapping;
2534        struct inode *inode;
2535        struct filename *pathname;
2536        int err, found = 0;
2537        unsigned int old_block_size;
2538
2539        if (!capable(CAP_SYS_ADMIN))
2540                return -EPERM;
2541
2542        BUG_ON(!current->mm);
2543
2544        pathname = getname(specialfile);
2545        if (IS_ERR(pathname))
2546                return PTR_ERR(pathname);
2547
2548        victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2549        err = PTR_ERR(victim);
2550        if (IS_ERR(victim))
2551                goto out;
2552
2553        mapping = victim->f_mapping;
2554        spin_lock(&swap_lock);
2555        plist_for_each_entry(p, &swap_active_head, list) {
2556                if (p->flags & SWP_WRITEOK) {
2557                        if (p->swap_file->f_mapping == mapping) {
2558                                found = 1;
2559                                break;
2560                        }
2561                }
2562        }
2563        if (!found) {
2564                err = -EINVAL;
2565                spin_unlock(&swap_lock);
2566                goto out_dput;
2567        }
2568        if (!security_vm_enough_memory_mm(current->mm, p->pages))
2569                vm_unacct_memory(p->pages);
2570        else {
2571                err = -ENOMEM;
2572                spin_unlock(&swap_lock);
2573                goto out_dput;
2574        }
2575        del_from_avail_list(p);
2576        spin_lock(&p->lock);
2577        if (p->prio < 0) {
2578                struct swap_info_struct *si = p;
2579                int nid;
2580
2581                plist_for_each_entry_continue(si, &swap_active_head, list) {
2582                        si->prio++;
2583                        si->list.prio--;
2584                        for_each_node(nid) {
2585                                if (si->avail_lists[nid].prio != 1)
2586                                        si->avail_lists[nid].prio--;
2587                        }
2588                }
2589                least_priority++;
2590        }
2591        plist_del(&p->list, &swap_active_head);
2592        atomic_long_sub(p->pages, &nr_swap_pages);
2593        total_swap_pages -= p->pages;
2594        p->flags &= ~SWP_WRITEOK;
2595        spin_unlock(&p->lock);
2596        spin_unlock(&swap_lock);
2597
2598        disable_swap_slots_cache_lock();
2599
2600        set_current_oom_origin();
2601        err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2602        clear_current_oom_origin();
2603
2604        if (err) {
2605                /* re-insert swap space back into swap_list */
2606                reinsert_swap_info(p);
2607                reenable_swap_slots_cache_unlock();
2608                goto out_dput;
2609        }
2610
2611        reenable_swap_slots_cache_unlock();
2612
2613        flush_work(&p->discard_work);
2614
2615        destroy_swap_extents(p);
2616        if (p->flags & SWP_CONTINUED)
2617                free_swap_count_continuations(p);
2618
2619        if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620                atomic_dec(&nr_rotate_swap);
2621
2622        mutex_lock(&swapon_mutex);
2623        spin_lock(&swap_lock);
2624        spin_lock(&p->lock);
2625        drain_mmlist();
2626
2627        /* wait for anyone still in scan_swap_map */
2628        p->highest_bit = 0;             /* cuts scans short */
2629        while (p->flags >= SWP_SCANNING) {
2630                spin_unlock(&p->lock);
2631                spin_unlock(&swap_lock);
2632                schedule_timeout_uninterruptible(1);
2633                spin_lock(&swap_lock);
2634                spin_lock(&p->lock);
2635        }
2636
2637        swap_file = p->swap_file;
2638        old_block_size = p->old_block_size;
2639        p->swap_file = NULL;
2640        p->max = 0;
2641        swap_map = p->swap_map;
2642        p->swap_map = NULL;
2643        cluster_info = p->cluster_info;
2644        p->cluster_info = NULL;
2645        frontswap_map = frontswap_map_get(p);
2646        spin_unlock(&p->lock);
2647        spin_unlock(&swap_lock);
2648        frontswap_invalidate_area(p->type);
2649        frontswap_map_set(p, NULL);
2650        mutex_unlock(&swapon_mutex);
2651        free_percpu(p->percpu_cluster);
2652        p->percpu_cluster = NULL;
2653        vfree(swap_map);
2654        kvfree(cluster_info);
2655        kvfree(frontswap_map);
2656        /* Destroy swap account information */
2657        swap_cgroup_swapoff(p->type);
2658        exit_swap_address_space(p->type);
2659
2660        inode = mapping->host;
2661        if (S_ISBLK(inode->i_mode)) {
2662                struct block_device *bdev = I_BDEV(inode);
2663                set_blocksize(bdev, old_block_size);
2664                blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2665        } else {
2666                inode_lock(inode);
2667                inode->i_flags &= ~S_SWAPFILE;
2668                inode_unlock(inode);
2669        }
2670        filp_close(swap_file, NULL);
2671
2672        /*
2673         * Clear the SWP_USED flag after all resources are freed so that swapon
2674         * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2675         * not hold p->lock after we cleared its SWP_WRITEOK.
2676         */
2677        spin_lock(&swap_lock);
2678        p->flags = 0;
2679        spin_unlock(&swap_lock);
2680
2681        err = 0;
2682        atomic_inc(&proc_poll_event);
2683        wake_up_interruptible(&proc_poll_wait);
2684
2685out_dput:
2686        filp_close(victim, NULL);
2687out:
2688        putname(pathname);
2689        return err;
2690}
2691
2692#ifdef CONFIG_PROC_FS
2693static unsigned swaps_poll(struct file *file, poll_table *wait)
2694{
2695        struct seq_file *seq = file->private_data;
2696
2697        poll_wait(file, &proc_poll_wait, wait);
2698
2699        if (seq->poll_event != atomic_read(&proc_poll_event)) {
2700                seq->poll_event = atomic_read(&proc_poll_event);
2701                return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2702        }
2703
2704        return POLLIN | POLLRDNORM;
2705}
2706
2707/* iterator */
2708static void *swap_start(struct seq_file *swap, loff_t *pos)
2709{
2710        struct swap_info_struct *si;
2711        int type;
2712        loff_t l = *pos;
2713
2714        mutex_lock(&swapon_mutex);
2715
2716        if (!l)
2717                return SEQ_START_TOKEN;
2718
2719        for (type = 0; type < nr_swapfiles; type++) {
2720                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2721                si = swap_info[type];
2722                if (!(si->flags & SWP_USED) || !si->swap_map)
2723                        continue;
2724                if (!--l)
2725                        return si;
2726        }
2727
2728        return NULL;
2729}
2730
2731static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732{
2733        struct swap_info_struct *si = v;
2734        int type;
2735
2736        if (v == SEQ_START_TOKEN)
2737                type = 0;
2738        else
2739                type = si->type + 1;
2740
2741        for (; type < nr_swapfiles; type++) {
2742                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2743                si = swap_info[type];
2744                if (!(si->flags & SWP_USED) || !si->swap_map)
2745                        continue;
2746                ++*pos;
2747                return si;
2748        }
2749
2750        return NULL;
2751}
2752
2753static void swap_stop(struct seq_file *swap, void *v)
2754{
2755        mutex_unlock(&swapon_mutex);
2756}
2757
2758static int swap_show(struct seq_file *swap, void *v)
2759{
2760        struct swap_info_struct *si = v;
2761        struct file *file;
2762        int len;
2763
2764        if (si == SEQ_START_TOKEN) {
2765                seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2766                return 0;
2767        }
2768
2769        file = si->swap_file;
2770        len = seq_file_path(swap, file, " \t\n\\");
2771        seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2772                        len < 40 ? 40 - len : 1, " ",
2773                        S_ISBLK(file_inode(file)->i_mode) ?
2774                                "partition" : "file\t",
2775                        si->pages << (PAGE_SHIFT - 10),
2776                        si->inuse_pages << (PAGE_SHIFT - 10),
2777                        si->prio);
2778        return 0;
2779}
2780
2781static const struct seq_operations swaps_op = {
2782        .start =        swap_start,
2783        .next =         swap_next,
2784        .stop =         swap_stop,
2785        .show =         swap_show
2786};
2787
2788static int swaps_open(struct inode *inode, struct file *file)
2789{
2790        struct seq_file *seq;
2791        int ret;
2792
2793        ret = seq_open(file, &swaps_op);
2794        if (ret)
2795                return ret;
2796
2797        seq = file->private_data;
2798        seq->poll_event = atomic_read(&proc_poll_event);
2799        return 0;
2800}
2801
2802static const struct file_operations proc_swaps_operations = {
2803        .open           = swaps_open,
2804        .read           = seq_read,
2805        .llseek         = seq_lseek,
2806        .release        = seq_release,
2807        .poll           = swaps_poll,
2808};
2809
2810static int __init procswaps_init(void)
2811{
2812        proc_create("swaps", 0, NULL, &proc_swaps_operations);
2813        return 0;
2814}
2815__initcall(procswaps_init);
2816#endif /* CONFIG_PROC_FS */
2817
2818#ifdef MAX_SWAPFILES_CHECK
2819static int __init max_swapfiles_check(void)
2820{
2821        MAX_SWAPFILES_CHECK();
2822        return 0;
2823}
2824late_initcall(max_swapfiles_check);
2825#endif
2826
2827static struct swap_info_struct *alloc_swap_info(void)
2828{
2829        struct swap_info_struct *p;
2830        unsigned int type;
2831        int i;
2832
2833        p = kzalloc(sizeof(*p), GFP_KERNEL);
2834        if (!p)
2835                return ERR_PTR(-ENOMEM);
2836
2837        spin_lock(&swap_lock);
2838        for (type = 0; type < nr_swapfiles; type++) {
2839                if (!(swap_info[type]->flags & SWP_USED))
2840                        break;
2841        }
2842        if (type >= MAX_SWAPFILES) {
2843                spin_unlock(&swap_lock);
2844                kfree(p);
2845                return ERR_PTR(-EPERM);
2846        }
2847        if (type >= nr_swapfiles) {
2848                p->type = type;
2849                swap_info[type] = p;
2850                /*
2851                 * Write swap_info[type] before nr_swapfiles, in case a
2852                 * racing procfs swap_start() or swap_next() is reading them.
2853                 * (We never shrink nr_swapfiles, we never free this entry.)
2854                 */
2855                smp_wmb();
2856                nr_swapfiles++;
2857        } else {
2858                kfree(p);
2859                p = swap_info[type];
2860                /*
2861                 * Do not memset this entry: a racing procfs swap_next()
2862                 * would be relying on p->type to remain valid.
2863                 */
2864        }
2865        INIT_LIST_HEAD(&p->first_swap_extent.list);
2866        plist_node_init(&p->list, 0);
2867        for_each_node(i)
2868                plist_node_init(&p->avail_lists[i], 0);
2869        p->flags = SWP_USED;
2870        spin_unlock(&swap_lock);
2871        spin_lock_init(&p->lock);
2872        spin_lock_init(&p->cont_lock);
2873
2874        return p;
2875}
2876
2877static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878{
2879        int error;
2880
2881        if (S_ISBLK(inode->i_mode)) {
2882                p->bdev = bdgrab(I_BDEV(inode));
2883                error = blkdev_get(p->bdev,
2884                                   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2885                if (error < 0) {
2886                        p->bdev = NULL;
2887                        return error;
2888                }
2889                p->old_block_size = block_size(p->bdev);
2890                error = set_blocksize(p->bdev, PAGE_SIZE);
2891                if (error < 0)
2892                        return error;
2893                p->flags |= SWP_BLKDEV;
2894        } else if (S_ISREG(inode->i_mode)) {
2895                p->bdev = inode->i_sb->s_bdev;
2896                inode_lock(inode);
2897                if (IS_SWAPFILE(inode))
2898                        return -EBUSY;
2899        } else
2900                return -EINVAL;
2901
2902        return 0;
2903}
2904
2905static unsigned long read_swap_header(struct swap_info_struct *p,
2906                                        union swap_header *swap_header,
2907                                        struct inode *inode)
2908{
2909        int i;
2910        unsigned long maxpages;
2911        unsigned long swapfilepages;
2912        unsigned long last_page;
2913
2914        if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2915                pr_err("Unable to find swap-space signature\n");
2916                return 0;
2917        }
2918
2919        /* swap partition endianess hack... */
2920        if (swab32(swap_header->info.version) == 1) {
2921                swab32s(&swap_header->info.version);
2922                swab32s(&swap_header->info.last_page);
2923                swab32s(&swap_header->info.nr_badpages);
2924                if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2925                        return 0;
2926                for (i = 0; i < swap_header->info.nr_badpages; i++)
2927                        swab32s(&swap_header->info.badpages[i]);
2928        }
2929        /* Check the swap header's sub-version */
2930        if (swap_header->info.version != 1) {
2931                pr_warn("Unable to handle swap header version %d\n",
2932                        swap_header->info.version);
2933                return 0;
2934        }
2935
2936        p->lowest_bit  = 1;
2937        p->cluster_next = 1;
2938        p->cluster_nr = 0;
2939
2940        /*
2941         * Find out how many pages are allowed for a single swap
2942         * device. There are two limiting factors: 1) the number
2943         * of bits for the swap offset in the swp_entry_t type, and
2944         * 2) the number of bits in the swap pte as defined by the
2945         * different architectures. In order to find the
2946         * largest possible bit mask, a swap entry with swap type 0
2947         * and swap offset ~0UL is created, encoded to a swap pte,
2948         * decoded to a swp_entry_t again, and finally the swap
2949         * offset is extracted. This will mask all the bits from
2950         * the initial ~0UL mask that can't be encoded in either
2951         * the swp_entry_t or the architecture definition of a
2952         * swap pte.
2953         */
2954        maxpages = swp_offset(pte_to_swp_entry(
2955                        swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2956        last_page = swap_header->info.last_page;
2957        if (last_page > maxpages) {
2958                pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2959                        maxpages << (PAGE_SHIFT - 10),
2960                        last_page << (PAGE_SHIFT - 10));
2961        }
2962        if (maxpages > last_page) {
2963                maxpages = last_page + 1;
2964                /* p->max is an unsigned int: don't overflow it */
2965                if ((unsigned int)maxpages == 0)
2966                        maxpages = UINT_MAX;
2967        }
2968        p->highest_bit = maxpages - 1;
2969
2970        if (!maxpages)
2971                return 0;
2972        swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2973        if (swapfilepages && maxpages > swapfilepages) {
2974                pr_warn("Swap area shorter than signature indicates\n");
2975                return 0;
2976        }
2977        if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2978                return 0;
2979        if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2980                return 0;
2981
2982        return maxpages;
2983}
2984
2985#define SWAP_CLUSTER_INFO_COLS                                          \
2986        DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2987#define SWAP_CLUSTER_SPACE_COLS                                         \
2988        DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2989#define SWAP_CLUSTER_COLS                                               \
2990        max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2991
2992static int setup_swap_map_and_extents(struct swap_info_struct *p,
2993                                        union swap_header *swap_header,
2994                                        unsigned char *swap_map,
2995                                        struct swap_cluster_info *cluster_info,
2996                                        unsigned long maxpages,
2997                                        sector_t *span)
2998{
2999        unsigned int j, k;
3000        unsigned int nr_good_pages;
3001        int nr_extents;
3002        unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3003        unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3004        unsigned long i, idx;
3005
3006        nr_good_pages = maxpages - 1;   /* omit header page */
3007
3008        cluster_list_init(&p->free_clusters);
3009        cluster_list_init(&p->discard_clusters);
3010
3011        for (i = 0; i < swap_header->info.nr_badpages; i++) {
3012                unsigned int page_nr = swap_header->info.badpages[i];
3013                if (page_nr == 0 || page_nr > swap_header->info.last_page)
3014                        return -EINVAL;
3015                if (page_nr < maxpages) {
3016                        swap_map[page_nr] = SWAP_MAP_BAD;
3017                        nr_good_pages--;
3018                        /*
3019                         * Haven't marked the cluster free yet, no list
3020                         * operation involved
3021                         */
3022                        inc_cluster_info_page(p, cluster_info, page_nr);
3023                }
3024        }
3025
3026        /* Haven't marked the cluster free yet, no list operation involved */
3027        for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3028                inc_cluster_info_page(p, cluster_info, i);
3029
3030        if (nr_good_pages) {
3031                swap_map[0] = SWAP_MAP_BAD;
3032                /*
3033                 * Not mark the cluster free yet, no list
3034                 * operation involved
3035                 */
3036                inc_cluster_info_page(p, cluster_info, 0);
3037                p->max = maxpages;
3038                p->pages = nr_good_pages;
3039                nr_extents = setup_swap_extents(p, span);
3040                if (nr_extents < 0)
3041                        return nr_extents;
3042                nr_good_pages = p->pages;
3043        }
3044        if (!nr_good_pages) {
3045                pr_warn("Empty swap-file\n");
3046                return -EINVAL;
3047        }
3048
3049        if (!cluster_info)
3050                return nr_extents;
3051
3052
3053        /*
3054         * Reduce false cache line sharing between cluster_info and
3055         * sharing same address space.
3056         */
3057        for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3058                j = (k + col) % SWAP_CLUSTER_COLS;
3059                for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3060                        idx = i * SWAP_CLUSTER_COLS + j;
3061                        if (idx >= nr_clusters)
3062                                continue;
3063                        if (cluster_count(&cluster_info[idx]))
3064                                continue;
3065                        cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3066                        cluster_list_add_tail(&p->free_clusters, cluster_info,
3067                                              idx);
3068                }
3069        }
3070        return nr_extents;
3071}
3072
3073/*
3074 * Helper to sys_swapon determining if a given swap
3075 * backing device queue supports DISCARD operations.
3076 */
3077static bool swap_discardable(struct swap_info_struct *si)
3078{
3079        struct request_queue *q = bdev_get_queue(si->bdev);
3080
3081        if (!q || !blk_queue_discard(q))
3082                return false;
3083
3084        return true;
3085}
3086
3087SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3088{
3089        struct swap_info_struct *p;
3090        struct filename *name;
3091        struct file *swap_file = NULL;
3092        struct address_space *mapping;
3093        int prio;
3094        int error;
3095        union swap_header *swap_header;
3096        int nr_extents;
3097        sector_t span;
3098        unsigned long maxpages;
3099        unsigned char *swap_map = NULL;
3100        struct swap_cluster_info *cluster_info = NULL;
3101        unsigned long *frontswap_map = NULL;
3102        struct page *page = NULL;
3103        struct inode *inode = NULL;
3104
3105        if (swap_flags & ~SWAP_FLAGS_VALID)
3106                return -EINVAL;
3107
3108        if (!capable(CAP_SYS_ADMIN))
3109                return -EPERM;
3110
3111        if (!swap_avail_heads)
3112                return -ENOMEM;
3113
3114        p = alloc_swap_info();
3115        if (IS_ERR(p))
3116                return PTR_ERR(p);
3117
3118        INIT_WORK(&p->discard_work, swap_discard_work);
3119
3120        name = getname(specialfile);
3121        if (IS_ERR(name)) {
3122                error = PTR_ERR(name);
3123                name = NULL;
3124                goto bad_swap;
3125        }
3126        swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3127        if (IS_ERR(swap_file)) {
3128                error = PTR_ERR(swap_file);
3129                swap_file = NULL;
3130                goto bad_swap;
3131        }
3132
3133        p->swap_file = swap_file;
3134        mapping = swap_file->f_mapping;
3135        inode = mapping->host;
3136
3137        /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3138        error = claim_swapfile(p, inode);
3139        if (unlikely(error))
3140                goto bad_swap;
3141
3142        /*
3143         * Read the swap header.
3144         */
3145        if (!mapping->a_ops->readpage) {
3146                error = -EINVAL;
3147                goto bad_swap;
3148        }
3149        page = read_mapping_page(mapping, 0, swap_file);
3150        if (IS_ERR(page)) {
3151                error = PTR_ERR(page);
3152                goto bad_swap;
3153        }
3154        swap_header = kmap(page);
3155
3156        maxpages = read_swap_header(p, swap_header, inode);
3157        if (unlikely(!maxpages)) {
3158                error = -EINVAL;
3159                goto bad_swap;
3160        }
3161
3162        /* OK, set up the swap map and apply the bad block list */
3163        swap_map = vzalloc(maxpages);
3164        if (!swap_map) {
3165                error = -ENOMEM;
3166                goto bad_swap;
3167        }
3168
3169        if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3170                p->flags |= SWP_STABLE_WRITES;
3171
3172        if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3173                int cpu;
3174                unsigned long ci, nr_cluster;
3175
3176                p->flags |= SWP_SOLIDSTATE;
3177                /*
3178                 * select a random position to start with to help wear leveling
3179                 * SSD
3180                 */
3181                p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3182                nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3183
3184                cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3185                                        GFP_KERNEL);
3186                if (!cluster_info) {
3187                        error = -ENOMEM;
3188                        goto bad_swap;
3189                }
3190
3191                for (ci = 0; ci < nr_cluster; ci++)
3192                        spin_lock_init(&((cluster_info + ci)->lock));
3193
3194                p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3195                if (!p->percpu_cluster) {
3196                        error = -ENOMEM;
3197                        goto bad_swap;
3198                }
3199                for_each_possible_cpu(cpu) {
3200                        struct percpu_cluster *cluster;
3201                        cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3202                        cluster_set_null(&cluster->index);
3203                }
3204        } else
3205                atomic_inc(&nr_rotate_swap);
3206
3207        error = swap_cgroup_swapon(p->type, maxpages);
3208        if (error)
3209                goto bad_swap;
3210
3211        nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3212                cluster_info, maxpages, &span);
3213        if (unlikely(nr_extents < 0)) {
3214                error = nr_extents;
3215                goto bad_swap;
3216        }
3217        /* frontswap enabled? set up bit-per-page map for frontswap */
3218        if (IS_ENABLED(CONFIG_FRONTSWAP))
3219                frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3220                                         GFP_KERNEL);
3221
3222        if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3223                /*
3224                 * When discard is enabled for swap with no particular
3225                 * policy flagged, we set all swap discard flags here in
3226                 * order to sustain backward compatibility with older
3227                 * swapon(8) releases.
3228                 */
3229                p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3230                             SWP_PAGE_DISCARD);
3231
3232                /*
3233                 * By flagging sys_swapon, a sysadmin can tell us to
3234                 * either do single-time area discards only, or to just
3235                 * perform discards for released swap page-clusters.
3236                 * Now it's time to adjust the p->flags accordingly.
3237                 */
3238                if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3239                        p->flags &= ~SWP_PAGE_DISCARD;
3240                else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3241                        p->flags &= ~SWP_AREA_DISCARD;
3242
3243                /* issue a swapon-time discard if it's still required */
3244                if (p->flags & SWP_AREA_DISCARD) {
3245                        int err = discard_swap(p);
3246                        if (unlikely(err))
3247                                pr_err("swapon: discard_swap(%p): %d\n",
3248                                        p, err);
3249                }
3250        }
3251
3252        error = init_swap_address_space(p->type, maxpages);
3253        if (error)
3254                goto bad_swap;
3255
3256        mutex_lock(&swapon_mutex);
3257        prio = -1;
3258        if (swap_flags & SWAP_FLAG_PREFER)
3259                prio =
3260                  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3261        enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3262
3263        pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3264                p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3265                nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3266                (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3267                (p->flags & SWP_DISCARDABLE) ? "D" : "",
3268                (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3269                (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3270                (frontswap_map) ? "FS" : "");
3271
3272        mutex_unlock(&swapon_mutex);
3273        atomic_inc(&proc_poll_event);
3274        wake_up_interruptible(&proc_poll_wait);
3275
3276        if (S_ISREG(inode->i_mode))
3277                inode->i_flags |= S_SWAPFILE;
3278        error = 0;
3279        goto out;
3280bad_swap:
3281        free_percpu(p->percpu_cluster);
3282        p->percpu_cluster = NULL;
3283        if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3284                set_blocksize(p->bdev, p->old_block_size);
3285                blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3286        }
3287        destroy_swap_extents(p);
3288        swap_cgroup_swapoff(p->type);
3289        spin_lock(&swap_lock);
3290        p->swap_file = NULL;
3291        p->flags = 0;
3292        spin_unlock(&swap_lock);
3293        vfree(swap_map);
3294        kvfree(cluster_info);
3295        kvfree(frontswap_map);
3296        if (swap_file) {
3297                if (inode && S_ISREG(inode->i_mode)) {
3298                        inode_unlock(inode);
3299                        inode = NULL;
3300                }
3301                filp_close(swap_file, NULL);
3302        }
3303out:
3304        if (page && !IS_ERR(page)) {
3305                kunmap(page);
3306                put_page(page);
3307        }
3308        if (name)
3309                putname(name);
3310        if (inode && S_ISREG(inode->i_mode))
3311                inode_unlock(inode);
3312        if (!error)
3313                enable_swap_slots_cache();
3314        return error;
3315}
3316
3317void si_swapinfo(struct sysinfo *val)
3318{
3319        unsigned int type;
3320        unsigned long nr_to_be_unused = 0;
3321
3322        spin_lock(&swap_lock);
3323        for (type = 0; type < nr_swapfiles; type++) {
3324                struct swap_info_struct *si = swap_info[type];
3325
3326                if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3327                        nr_to_be_unused += si->inuse_pages;
3328        }
3329        val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3330        val->totalswap = total_swap_pages + nr_to_be_unused;
3331        spin_unlock(&swap_lock);
3332}
3333
3334/*
3335 * Verify that a swap entry is valid and increment its swap map count.
3336 *
3337 * Returns error code in following case.
3338 * - success -> 0
3339 * - swp_entry is invalid -> EINVAL
3340 * - swp_entry is migration entry -> EINVAL
3341 * - swap-cache reference is requested but there is already one. -> EEXIST
3342 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3343 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3344 */
3345static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3346{
3347        struct swap_info_struct *p;
3348        struct swap_cluster_info *ci;
3349        unsigned long offset, type;
3350        unsigned char count;
3351        unsigned char has_cache;
3352        int err = -EINVAL;
3353
3354        if (non_swap_entry(entry))
3355                goto out;
3356
3357        type = swp_type(entry);
3358        if (type >= nr_swapfiles)
3359                goto bad_file;
3360        p = swap_info[type];
3361        offset = swp_offset(entry);
3362        if (unlikely(offset >= p->max))
3363                goto out;
3364
3365        ci = lock_cluster_or_swap_info(p, offset);
3366
3367        count = p->swap_map[offset];
3368
3369        /*
3370         * swapin_readahead() doesn't check if a swap entry is valid, so the
3371         * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3372         */
3373        if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3374                err = -ENOENT;
3375                goto unlock_out;
3376        }
3377
3378        has_cache = count & SWAP_HAS_CACHE;
3379        count &= ~SWAP_HAS_CACHE;
3380        err = 0;
3381
3382        if (usage == SWAP_HAS_CACHE) {
3383
3384                /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3385                if (!has_cache && count)
3386                        has_cache = SWAP_HAS_CACHE;
3387                else if (has_cache)             /* someone else added cache */
3388                        err = -EEXIST;
3389                else                            /* no users remaining */
3390                        err = -ENOENT;
3391
3392        } else if (count || has_cache) {
3393
3394                if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3395                        count += usage;
3396                else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3397                        err = -EINVAL;
3398                else if (swap_count_continued(p, offset, count))
3399                        count = COUNT_CONTINUED;
3400                else
3401                        err = -ENOMEM;
3402        } else
3403                err = -ENOENT;                  /* unused swap entry */
3404
3405        p->swap_map[offset] = count | has_cache;
3406
3407unlock_out:
3408        unlock_cluster_or_swap_info(p, ci);
3409out:
3410        return err;
3411
3412bad_file:
3413        pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3414        goto out;
3415}
3416
3417/*
3418 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3419 * (in which case its reference count is never incremented).
3420 */
3421void swap_shmem_alloc(swp_entry_t entry)
3422{
3423        __swap_duplicate(entry, SWAP_MAP_SHMEM);
3424}
3425
3426/*
3427 * Increase reference count of swap entry by 1.
3428 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3429 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3430 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3431 * might occur if a page table entry has got corrupted.
3432 */
3433int swap_duplicate(swp_entry_t entry)
3434{
3435        int err = 0;
3436
3437        while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3438                err = add_swap_count_continuation(entry, GFP_ATOMIC);
3439        return err;
3440}
3441
3442/*
3443 * @entry: swap entry for which we allocate swap cache.
3444 *
3445 * Called when allocating swap cache for existing swap entry,
3446 * This can return error codes. Returns 0 at success.
3447 * -EBUSY means there is a swap cache.
3448 * Note: return code is different from swap_duplicate().
3449 */
3450int swapcache_prepare(swp_entry_t entry)
3451{
3452        return __swap_duplicate(entry, SWAP_HAS_CACHE);
3453}
3454
3455struct swap_info_struct *page_swap_info(struct page *page)
3456{
3457        swp_entry_t swap = { .val = page_private(page) };
3458        return swap_info[swp_type(swap)];
3459}
3460
3461/*
3462 * out-of-line __page_file_ methods to avoid include hell.
3463 */
3464struct address_space *__page_file_mapping(struct page *page)
3465{
3466        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3467        return page_swap_info(page)->swap_file->f_mapping;
3468}
3469EXPORT_SYMBOL_GPL(__page_file_mapping);
3470
3471pgoff_t __page_file_index(struct page *page)
3472{
3473        swp_entry_t swap = { .val = page_private(page) };
3474        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3475        return swp_offset(swap);
3476}
3477EXPORT_SYMBOL_GPL(__page_file_index);
3478
3479/*
3480 * add_swap_count_continuation - called when a swap count is duplicated
3481 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3482 * page of the original vmalloc'ed swap_map, to hold the continuation count
3483 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3484 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3485 *
3486 * These continuation pages are seldom referenced: the common paths all work
3487 * on the original swap_map, only referring to a continuation page when the
3488 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3489 *
3490 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3491 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3492 * can be called after dropping locks.
3493 */
3494int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3495{
3496        struct swap_info_struct *si;
3497        struct swap_cluster_info *ci;
3498        struct page *head;
3499        struct page *page;
3500        struct page *list_page;
3501        pgoff_t offset;
3502        unsigned char count;
3503
3504        /*
3505         * When debugging, it's easier to use __GFP_ZERO here; but it's better
3506         * for latency not to zero a page while GFP_ATOMIC and holding locks.
3507         */
3508        page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3509
3510        si = swap_info_get(entry);
3511        if (!si) {
3512                /*
3513                 * An acceptable race has occurred since the failing
3514                 * __swap_duplicate(): the swap entry has been freed,
3515                 * perhaps even the whole swap_map cleared for swapoff.
3516                 */
3517                goto outer;
3518        }
3519
3520        offset = swp_offset(entry);
3521
3522        ci = lock_cluster(si, offset);
3523
3524        count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3525
3526        if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3527                /*
3528                 * The higher the swap count, the more likely it is that tasks
3529                 * will race to add swap count continuation: we need to avoid
3530                 * over-provisioning.
3531                 */
3532                goto out;
3533        }
3534
3535        if (!page) {
3536                unlock_cluster(ci);
3537                spin_unlock(&si->lock);
3538                return -ENOMEM;
3539        }
3540
3541        /*
3542         * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3543         * no architecture is using highmem pages for kernel page tables: so it
3544         * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3545         */
3546        head = vmalloc_to_page(si->swap_map + offset);
3547        offset &= ~PAGE_MASK;
3548
3549        spin_lock(&si->cont_lock);
3550        /*
3551         * Page allocation does not initialize the page's lru field,
3552         * but it does always reset its private field.
3553         */
3554        if (!page_private(head)) {
3555                BUG_ON(count & COUNT_CONTINUED);
3556                INIT_LIST_HEAD(&head->lru);
3557                set_page_private(head, SWP_CONTINUED);
3558                si->flags |= SWP_CONTINUED;
3559        }
3560
3561        list_for_each_entry(list_page, &head->lru, lru) {
3562                unsigned char *map;
3563
3564                /*
3565                 * If the previous map said no continuation, but we've found
3566                 * a continuation page, free our allocation and use this one.
3567                 */
3568                if (!(count & COUNT_CONTINUED))
3569                        goto out_unlock_cont;
3570
3571                map = kmap_atomic(list_page) + offset;
3572                count = *map;
3573                kunmap_atomic(map);
3574
3575                /*
3576                 * If this continuation count now has some space in it,
3577                 * free our allocation and use this one.
3578                 */
3579                if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3580                        goto out_unlock_cont;
3581        }
3582
3583        list_add_tail(&page->lru, &head->lru);
3584        page = NULL;                    /* now it's attached, don't free it */
3585out_unlock_cont:
3586        spin_unlock(&si->cont_lock);
3587out:
3588        unlock_cluster(ci);
3589        spin_unlock(&si->lock);
3590outer:
3591        if (page)
3592                __free_page(page);
3593        return 0;
3594}
3595
3596/*
3597 * swap_count_continued - when the original swap_map count is incremented
3598 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3599 * into, carry if so, or else fail until a new continuation page is allocated;
3600 * when the original swap_map count is decremented from 0 with continuation,
3601 * borrow from the continuation and report whether it still holds more.
3602 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3603 * lock.
3604 */
3605static bool swap_count_continued(struct swap_info_struct *si,
3606                                 pgoff_t offset, unsigned char count)
3607{
3608        struct page *head;
3609        struct page *page;
3610        unsigned char *map;
3611        bool ret;
3612
3613        head = vmalloc_to_page(si->swap_map + offset);
3614        if (page_private(head) != SWP_CONTINUED) {
3615                BUG_ON(count & COUNT_CONTINUED);
3616                return false;           /* need to add count continuation */
3617        }
3618
3619        spin_lock(&si->cont_lock);
3620        offset &= ~PAGE_MASK;
3621        page = list_entry(head->lru.next, struct page, lru);
3622        map = kmap_atomic(page) + offset;
3623
3624        if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3625                goto init_map;          /* jump over SWAP_CONT_MAX checks */
3626
3627        if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3628                /*
3629                 * Think of how you add 1 to 999
3630                 */
3631                while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3632                        kunmap_atomic(map);
3633                        page = list_entry(page->lru.next, struct page, lru);
3634                        BUG_ON(page == head);
3635                        map = kmap_atomic(page) + offset;
3636                }
3637                if (*map == SWAP_CONT_MAX) {
3638                        kunmap_atomic(map);
3639                        page = list_entry(page->lru.next, struct page, lru);
3640                        if (page == head) {
3641                                ret = false;    /* add count continuation */
3642                                goto out;
3643                        }
3644                        map = kmap_atomic(page) + offset;
3645init_map:               *map = 0;               /* we didn't zero the page */
3646                }
3647                *map += 1;
3648                kunmap_atomic(map);
3649                page = list_entry(page->lru.prev, struct page, lru);
3650                while (page != head) {
3651                        map = kmap_atomic(page) + offset;
3652                        *map = COUNT_CONTINUED;
3653                        kunmap_atomic(map);
3654                        page = list_entry(page->lru.prev, struct page, lru);
3655                }
3656                ret = true;                     /* incremented */
3657
3658        } else {                                /* decrementing */
3659                /*
3660                 * Think of how you subtract 1 from 1000
3661                 */
3662                BUG_ON(count != COUNT_CONTINUED);
3663                while (*map == COUNT_CONTINUED) {
3664                        kunmap_atomic(map);
3665                        page = list_entry(page->lru.next, struct page, lru);
3666                        BUG_ON(page == head);
3667                        map = kmap_atomic(page) + offset;
3668                }
3669                BUG_ON(*map == 0);
3670                *map -= 1;
3671                if (*map == 0)
3672                        count = 0;
3673                kunmap_atomic(map);
3674                page = list_entry(page->lru.prev, struct page, lru);
3675                while (page != head) {
3676                        map = kmap_atomic(page) + offset;
3677                        *map = SWAP_CONT_MAX | count;
3678                        count = COUNT_CONTINUED;
3679                        kunmap_atomic(map);
3680                        page = list_entry(page->lru.prev, struct page, lru);
3681                }
3682                ret = count == COUNT_CONTINUED;
3683        }
3684out:
3685        spin_unlock(&si->cont_lock);
3686        return ret;
3687}
3688
3689/*
3690 * free_swap_count_continuations - swapoff free all the continuation pages
3691 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3692 */
3693static void free_swap_count_continuations(struct swap_info_struct *si)
3694{
3695        pgoff_t offset;
3696
3697        for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3698                struct page *head;
3699                head = vmalloc_to_page(si->swap_map + offset);
3700                if (page_private(head)) {
3701                        struct page *page, *next;
3702
3703                        list_for_each_entry_safe(page, next, &head->lru, lru) {
3704                                list_del(&page->lru);
3705                                __free_page(page);
3706                        }
3707                }
3708        }
3709}
3710
3711static int __init swapfile_init(void)
3712{
3713        int nid;
3714
3715        swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3716                                         GFP_KERNEL);
3717        if (!swap_avail_heads) {
3718                pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3719                return -ENOMEM;
3720        }
3721
3722        for_each_node(nid)
3723                plist_head_init(&swap_avail_heads[nid]);
3724
3725        return 0;
3726}
3727subsys_initcall(swapfile_init);
3728