linux/mm/util.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/slab.h>
   3#include <linux/string.h>
   4#include <linux/compiler.h>
   5#include <linux/export.h>
   6#include <linux/err.h>
   7#include <linux/sched.h>
   8#include <linux/sched/mm.h>
   9#include <linux/sched/task_stack.h>
  10#include <linux/security.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/mman.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/userfaultfd_k.h>
  17
  18#include <asm/sections.h>
  19#include <linux/uaccess.h>
  20
  21#include "internal.h"
  22
  23static inline int is_kernel_rodata(unsigned long addr)
  24{
  25        return addr >= (unsigned long)__start_rodata &&
  26                addr < (unsigned long)__end_rodata;
  27}
  28
  29/**
  30 * kfree_const - conditionally free memory
  31 * @x: pointer to the memory
  32 *
  33 * Function calls kfree only if @x is not in .rodata section.
  34 */
  35void kfree_const(const void *x)
  36{
  37        if (!is_kernel_rodata((unsigned long)x))
  38                kfree(x);
  39}
  40EXPORT_SYMBOL(kfree_const);
  41
  42/**
  43 * kstrdup - allocate space for and copy an existing string
  44 * @s: the string to duplicate
  45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  46 */
  47char *kstrdup(const char *s, gfp_t gfp)
  48{
  49        size_t len;
  50        char *buf;
  51
  52        if (!s)
  53                return NULL;
  54
  55        len = strlen(s) + 1;
  56        buf = kmalloc_track_caller(len, gfp);
  57        if (buf)
  58                memcpy(buf, s, len);
  59        return buf;
  60}
  61EXPORT_SYMBOL(kstrdup);
  62
  63/**
  64 * kstrdup_const - conditionally duplicate an existing const string
  65 * @s: the string to duplicate
  66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  67 *
  68 * Function returns source string if it is in .rodata section otherwise it
  69 * fallbacks to kstrdup.
  70 * Strings allocated by kstrdup_const should be freed by kfree_const.
  71 */
  72const char *kstrdup_const(const char *s, gfp_t gfp)
  73{
  74        if (is_kernel_rodata((unsigned long)s))
  75                return s;
  76
  77        return kstrdup(s, gfp);
  78}
  79EXPORT_SYMBOL(kstrdup_const);
  80
  81/**
  82 * kstrndup - allocate space for and copy an existing string
  83 * @s: the string to duplicate
  84 * @max: read at most @max chars from @s
  85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  86 *
  87 * Note: Use kmemdup_nul() instead if the size is known exactly.
  88 */
  89char *kstrndup(const char *s, size_t max, gfp_t gfp)
  90{
  91        size_t len;
  92        char *buf;
  93
  94        if (!s)
  95                return NULL;
  96
  97        len = strnlen(s, max);
  98        buf = kmalloc_track_caller(len+1, gfp);
  99        if (buf) {
 100                memcpy(buf, s, len);
 101                buf[len] = '\0';
 102        }
 103        return buf;
 104}
 105EXPORT_SYMBOL(kstrndup);
 106
 107/**
 108 * kmemdup - duplicate region of memory
 109 *
 110 * @src: memory region to duplicate
 111 * @len: memory region length
 112 * @gfp: GFP mask to use
 113 */
 114void *kmemdup(const void *src, size_t len, gfp_t gfp)
 115{
 116        void *p;
 117
 118        p = kmalloc_track_caller(len, gfp);
 119        if (p)
 120                memcpy(p, src, len);
 121        return p;
 122}
 123EXPORT_SYMBOL(kmemdup);
 124
 125/**
 126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 127 * @s: The data to stringify
 128 * @len: The size of the data
 129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 130 */
 131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 132{
 133        char *buf;
 134
 135        if (!s)
 136                return NULL;
 137
 138        buf = kmalloc_track_caller(len + 1, gfp);
 139        if (buf) {
 140                memcpy(buf, s, len);
 141                buf[len] = '\0';
 142        }
 143        return buf;
 144}
 145EXPORT_SYMBOL(kmemdup_nul);
 146
 147/**
 148 * memdup_user - duplicate memory region from user space
 149 *
 150 * @src: source address in user space
 151 * @len: number of bytes to copy
 152 *
 153 * Returns an ERR_PTR() on failure.
 154 */
 155void *memdup_user(const void __user *src, size_t len)
 156{
 157        void *p;
 158
 159        /*
 160         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 161         * cause pagefault, which makes it pointless to use GFP_NOFS
 162         * or GFP_ATOMIC.
 163         */
 164        p = kmalloc_track_caller(len, GFP_KERNEL);
 165        if (!p)
 166                return ERR_PTR(-ENOMEM);
 167
 168        if (copy_from_user(p, src, len)) {
 169                kfree(p);
 170                return ERR_PTR(-EFAULT);
 171        }
 172
 173        return p;
 174}
 175EXPORT_SYMBOL(memdup_user);
 176
 177/*
 178 * strndup_user - duplicate an existing string from user space
 179 * @s: The string to duplicate
 180 * @n: Maximum number of bytes to copy, including the trailing NUL.
 181 */
 182char *strndup_user(const char __user *s, long n)
 183{
 184        char *p;
 185        long length;
 186
 187        length = strnlen_user(s, n);
 188
 189        if (!length)
 190                return ERR_PTR(-EFAULT);
 191
 192        if (length > n)
 193                return ERR_PTR(-EINVAL);
 194
 195        p = memdup_user(s, length);
 196
 197        if (IS_ERR(p))
 198                return p;
 199
 200        p[length - 1] = '\0';
 201
 202        return p;
 203}
 204EXPORT_SYMBOL(strndup_user);
 205
 206/**
 207 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 208 *
 209 * @src: source address in user space
 210 * @len: number of bytes to copy
 211 *
 212 * Returns an ERR_PTR() on failure.
 213 */
 214void *memdup_user_nul(const void __user *src, size_t len)
 215{
 216        char *p;
 217
 218        /*
 219         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 220         * cause pagefault, which makes it pointless to use GFP_NOFS
 221         * or GFP_ATOMIC.
 222         */
 223        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 224        if (!p)
 225                return ERR_PTR(-ENOMEM);
 226
 227        if (copy_from_user(p, src, len)) {
 228                kfree(p);
 229                return ERR_PTR(-EFAULT);
 230        }
 231        p[len] = '\0';
 232
 233        return p;
 234}
 235EXPORT_SYMBOL(memdup_user_nul);
 236
 237void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 238                struct vm_area_struct *prev, struct rb_node *rb_parent)
 239{
 240        struct vm_area_struct *next;
 241
 242        vma->vm_prev = prev;
 243        if (prev) {
 244                next = prev->vm_next;
 245                prev->vm_next = vma;
 246        } else {
 247                mm->mmap = vma;
 248                if (rb_parent)
 249                        next = rb_entry(rb_parent,
 250                                        struct vm_area_struct, vm_rb);
 251                else
 252                        next = NULL;
 253        }
 254        vma->vm_next = next;
 255        if (next)
 256                next->vm_prev = vma;
 257}
 258
 259/* Check if the vma is being used as a stack by this task */
 260int vma_is_stack_for_current(struct vm_area_struct *vma)
 261{
 262        struct task_struct * __maybe_unused t = current;
 263
 264        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 265}
 266
 267#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 268void arch_pick_mmap_layout(struct mm_struct *mm)
 269{
 270        mm->mmap_base = TASK_UNMAPPED_BASE;
 271        mm->get_unmapped_area = arch_get_unmapped_area;
 272}
 273#endif
 274
 275/*
 276 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 277 * back to the regular GUP.
 278 * If the architecture not support this function, simply return with no
 279 * page pinned
 280 */
 281int __weak __get_user_pages_fast(unsigned long start,
 282                                 int nr_pages, int write, struct page **pages)
 283{
 284        return 0;
 285}
 286EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 287
 288/**
 289 * get_user_pages_fast() - pin user pages in memory
 290 * @start:      starting user address
 291 * @nr_pages:   number of pages from start to pin
 292 * @write:      whether pages will be written to
 293 * @pages:      array that receives pointers to the pages pinned.
 294 *              Should be at least nr_pages long.
 295 *
 296 * Returns number of pages pinned. This may be fewer than the number
 297 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 298 * were pinned, returns -errno.
 299 *
 300 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 301 * operating on current and current->mm, with force=0 and vma=NULL. However
 302 * unlike get_user_pages, it must be called without mmap_sem held.
 303 *
 304 * get_user_pages_fast may take mmap_sem and page table locks, so no
 305 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 306 * implemented in a way that is advantageous (vs get_user_pages()) when the
 307 * user memory area is already faulted in and present in ptes. However if the
 308 * pages have to be faulted in, it may turn out to be slightly slower so
 309 * callers need to carefully consider what to use. On many architectures,
 310 * get_user_pages_fast simply falls back to get_user_pages.
 311 */
 312int __weak get_user_pages_fast(unsigned long start,
 313                                int nr_pages, int write, struct page **pages)
 314{
 315        return get_user_pages_unlocked(start, nr_pages, pages,
 316                                       write ? FOLL_WRITE : 0);
 317}
 318EXPORT_SYMBOL_GPL(get_user_pages_fast);
 319
 320unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 321        unsigned long len, unsigned long prot,
 322        unsigned long flag, unsigned long pgoff)
 323{
 324        unsigned long ret;
 325        struct mm_struct *mm = current->mm;
 326        unsigned long populate;
 327        LIST_HEAD(uf);
 328
 329        ret = security_mmap_file(file, prot, flag);
 330        if (!ret) {
 331                if (down_write_killable(&mm->mmap_sem))
 332                        return -EINTR;
 333                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 334                                    &populate, &uf);
 335                up_write(&mm->mmap_sem);
 336                userfaultfd_unmap_complete(mm, &uf);
 337                if (populate)
 338                        mm_populate(ret, populate);
 339        }
 340        return ret;
 341}
 342
 343unsigned long vm_mmap(struct file *file, unsigned long addr,
 344        unsigned long len, unsigned long prot,
 345        unsigned long flag, unsigned long offset)
 346{
 347        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 348                return -EINVAL;
 349        if (unlikely(offset_in_page(offset)))
 350                return -EINVAL;
 351
 352        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 353}
 354EXPORT_SYMBOL(vm_mmap);
 355
 356/**
 357 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 358 * failure, fall back to non-contiguous (vmalloc) allocation.
 359 * @size: size of the request.
 360 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 361 * @node: numa node to allocate from
 362 *
 363 * Uses kmalloc to get the memory but if the allocation fails then falls back
 364 * to the vmalloc allocator. Use kvfree for freeing the memory.
 365 *
 366 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 367 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 368 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 369 *
 370 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
 371 */
 372void *kvmalloc_node(size_t size, gfp_t flags, int node)
 373{
 374        gfp_t kmalloc_flags = flags;
 375        void *ret;
 376
 377        /*
 378         * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 379         * so the given set of flags has to be compatible.
 380         */
 381        WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
 382
 383        /*
 384         * We want to attempt a large physically contiguous block first because
 385         * it is less likely to fragment multiple larger blocks and therefore
 386         * contribute to a long term fragmentation less than vmalloc fallback.
 387         * However make sure that larger requests are not too disruptive - no
 388         * OOM killer and no allocation failure warnings as we have a fallback.
 389         */
 390        if (size > PAGE_SIZE) {
 391                kmalloc_flags |= __GFP_NOWARN;
 392
 393                if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 394                        kmalloc_flags |= __GFP_NORETRY;
 395        }
 396
 397        ret = kmalloc_node(size, kmalloc_flags, node);
 398
 399        /*
 400         * It doesn't really make sense to fallback to vmalloc for sub page
 401         * requests
 402         */
 403        if (ret || size <= PAGE_SIZE)
 404                return ret;
 405
 406        return __vmalloc_node_flags_caller(size, node, flags,
 407                        __builtin_return_address(0));
 408}
 409EXPORT_SYMBOL(kvmalloc_node);
 410
 411void kvfree(const void *addr)
 412{
 413        if (is_vmalloc_addr(addr))
 414                vfree(addr);
 415        else
 416                kfree(addr);
 417}
 418EXPORT_SYMBOL(kvfree);
 419
 420static inline void *__page_rmapping(struct page *page)
 421{
 422        unsigned long mapping;
 423
 424        mapping = (unsigned long)page->mapping;
 425        mapping &= ~PAGE_MAPPING_FLAGS;
 426
 427        return (void *)mapping;
 428}
 429
 430/* Neutral page->mapping pointer to address_space or anon_vma or other */
 431void *page_rmapping(struct page *page)
 432{
 433        page = compound_head(page);
 434        return __page_rmapping(page);
 435}
 436
 437/*
 438 * Return true if this page is mapped into pagetables.
 439 * For compound page it returns true if any subpage of compound page is mapped.
 440 */
 441bool page_mapped(struct page *page)
 442{
 443        int i;
 444
 445        if (likely(!PageCompound(page)))
 446                return atomic_read(&page->_mapcount) >= 0;
 447        page = compound_head(page);
 448        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 449                return true;
 450        if (PageHuge(page))
 451                return false;
 452        for (i = 0; i < hpage_nr_pages(page); i++) {
 453                if (atomic_read(&page[i]._mapcount) >= 0)
 454                        return true;
 455        }
 456        return false;
 457}
 458EXPORT_SYMBOL(page_mapped);
 459
 460struct anon_vma *page_anon_vma(struct page *page)
 461{
 462        unsigned long mapping;
 463
 464        page = compound_head(page);
 465        mapping = (unsigned long)page->mapping;
 466        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 467                return NULL;
 468        return __page_rmapping(page);
 469}
 470
 471struct address_space *page_mapping(struct page *page)
 472{
 473        struct address_space *mapping;
 474
 475        page = compound_head(page);
 476
 477        /* This happens if someone calls flush_dcache_page on slab page */
 478        if (unlikely(PageSlab(page)))
 479                return NULL;
 480
 481        if (unlikely(PageSwapCache(page))) {
 482                swp_entry_t entry;
 483
 484                entry.val = page_private(page);
 485                return swap_address_space(entry);
 486        }
 487
 488        mapping = page->mapping;
 489        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 490                return NULL;
 491
 492        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 493}
 494EXPORT_SYMBOL(page_mapping);
 495
 496/* Slow path of page_mapcount() for compound pages */
 497int __page_mapcount(struct page *page)
 498{
 499        int ret;
 500
 501        ret = atomic_read(&page->_mapcount) + 1;
 502        /*
 503         * For file THP page->_mapcount contains total number of mapping
 504         * of the page: no need to look into compound_mapcount.
 505         */
 506        if (!PageAnon(page) && !PageHuge(page))
 507                return ret;
 508        page = compound_head(page);
 509        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 510        if (PageDoubleMap(page))
 511                ret--;
 512        return ret;
 513}
 514EXPORT_SYMBOL_GPL(__page_mapcount);
 515
 516int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 517int sysctl_overcommit_ratio __read_mostly = 50;
 518unsigned long sysctl_overcommit_kbytes __read_mostly;
 519int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 520unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 521unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 522
 523int overcommit_ratio_handler(struct ctl_table *table, int write,
 524                             void __user *buffer, size_t *lenp,
 525                             loff_t *ppos)
 526{
 527        int ret;
 528
 529        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 530        if (ret == 0 && write)
 531                sysctl_overcommit_kbytes = 0;
 532        return ret;
 533}
 534
 535int overcommit_kbytes_handler(struct ctl_table *table, int write,
 536                             void __user *buffer, size_t *lenp,
 537                             loff_t *ppos)
 538{
 539        int ret;
 540
 541        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 542        if (ret == 0 && write)
 543                sysctl_overcommit_ratio = 0;
 544        return ret;
 545}
 546
 547/*
 548 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 549 */
 550unsigned long vm_commit_limit(void)
 551{
 552        unsigned long allowed;
 553
 554        if (sysctl_overcommit_kbytes)
 555                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 556        else
 557                allowed = ((totalram_pages - hugetlb_total_pages())
 558                           * sysctl_overcommit_ratio / 100);
 559        allowed += total_swap_pages;
 560
 561        return allowed;
 562}
 563
 564/*
 565 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 566 * other variables. It can be updated by several CPUs frequently.
 567 */
 568struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 569
 570/*
 571 * The global memory commitment made in the system can be a metric
 572 * that can be used to drive ballooning decisions when Linux is hosted
 573 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 574 * balancing memory across competing virtual machines that are hosted.
 575 * Several metrics drive this policy engine including the guest reported
 576 * memory commitment.
 577 */
 578unsigned long vm_memory_committed(void)
 579{
 580        return percpu_counter_read_positive(&vm_committed_as);
 581}
 582EXPORT_SYMBOL_GPL(vm_memory_committed);
 583
 584/*
 585 * Check that a process has enough memory to allocate a new virtual
 586 * mapping. 0 means there is enough memory for the allocation to
 587 * succeed and -ENOMEM implies there is not.
 588 *
 589 * We currently support three overcommit policies, which are set via the
 590 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 591 *
 592 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 593 * Additional code 2002 Jul 20 by Robert Love.
 594 *
 595 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 596 *
 597 * Note this is a helper function intended to be used by LSMs which
 598 * wish to use this logic.
 599 */
 600int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 601{
 602        long free, allowed, reserve;
 603
 604        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 605                        -(s64)vm_committed_as_batch * num_online_cpus(),
 606                        "memory commitment underflow");
 607
 608        vm_acct_memory(pages);
 609
 610        /*
 611         * Sometimes we want to use more memory than we have
 612         */
 613        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 614                return 0;
 615
 616        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 617                free = global_zone_page_state(NR_FREE_PAGES);
 618                free += global_node_page_state(NR_FILE_PAGES);
 619
 620                /*
 621                 * shmem pages shouldn't be counted as free in this
 622                 * case, they can't be purged, only swapped out, and
 623                 * that won't affect the overall amount of available
 624                 * memory in the system.
 625                 */
 626                free -= global_node_page_state(NR_SHMEM);
 627
 628                free += get_nr_swap_pages();
 629
 630                /*
 631                 * Any slabs which are created with the
 632                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 633                 * which are reclaimable, under pressure.  The dentry
 634                 * cache and most inode caches should fall into this
 635                 */
 636                free += global_node_page_state(NR_SLAB_RECLAIMABLE);
 637
 638                /*
 639                 * Leave reserved pages. The pages are not for anonymous pages.
 640                 */
 641                if (free <= totalreserve_pages)
 642                        goto error;
 643                else
 644                        free -= totalreserve_pages;
 645
 646                /*
 647                 * Reserve some for root
 648                 */
 649                if (!cap_sys_admin)
 650                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 651
 652                if (free > pages)
 653                        return 0;
 654
 655                goto error;
 656        }
 657
 658        allowed = vm_commit_limit();
 659        /*
 660         * Reserve some for root
 661         */
 662        if (!cap_sys_admin)
 663                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 664
 665        /*
 666         * Don't let a single process grow so big a user can't recover
 667         */
 668        if (mm) {
 669                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 670                allowed -= min_t(long, mm->total_vm / 32, reserve);
 671        }
 672
 673        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 674                return 0;
 675error:
 676        vm_unacct_memory(pages);
 677
 678        return -ENOMEM;
 679}
 680
 681/**
 682 * get_cmdline() - copy the cmdline value to a buffer.
 683 * @task:     the task whose cmdline value to copy.
 684 * @buffer:   the buffer to copy to.
 685 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 686 *            to this length.
 687 * Returns the size of the cmdline field copied. Note that the copy does
 688 * not guarantee an ending NULL byte.
 689 */
 690int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 691{
 692        int res = 0;
 693        unsigned int len;
 694        struct mm_struct *mm = get_task_mm(task);
 695        unsigned long arg_start, arg_end, env_start, env_end;
 696        if (!mm)
 697                goto out;
 698        if (!mm->arg_end)
 699                goto out_mm;    /* Shh! No looking before we're done */
 700
 701        down_read(&mm->mmap_sem);
 702        arg_start = mm->arg_start;
 703        arg_end = mm->arg_end;
 704        env_start = mm->env_start;
 705        env_end = mm->env_end;
 706        up_read(&mm->mmap_sem);
 707
 708        len = arg_end - arg_start;
 709
 710        if (len > buflen)
 711                len = buflen;
 712
 713        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 714
 715        /*
 716         * If the nul at the end of args has been overwritten, then
 717         * assume application is using setproctitle(3).
 718         */
 719        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 720                len = strnlen(buffer, res);
 721                if (len < res) {
 722                        res = len;
 723                } else {
 724                        len = env_end - env_start;
 725                        if (len > buflen - res)
 726                                len = buflen - res;
 727                        res += access_process_vm(task, env_start,
 728                                                 buffer+res, len,
 729                                                 FOLL_FORCE);
 730                        res = strnlen(buffer, res);
 731                }
 732        }
 733out_mm:
 734        mmput(mm);
 735out:
 736        return res;
 737}
 738