linux/net/core/sock.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Generic socket support routines. Memory allocators, socket lock/release
   7 *              handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Numerous verify_area() problems
  17 *              Alan Cox        :       Connecting on a connecting socket
  18 *                                      now returns an error for tcp.
  19 *              Alan Cox        :       sock->protocol is set correctly.
  20 *                                      and is not sometimes left as 0.
  21 *              Alan Cox        :       connect handles icmp errors on a
  22 *                                      connect properly. Unfortunately there
  23 *                                      is a restart syscall nasty there. I
  24 *                                      can't match BSD without hacking the C
  25 *                                      library. Ideas urgently sought!
  26 *              Alan Cox        :       Disallow bind() to addresses that are
  27 *                                      not ours - especially broadcast ones!!
  28 *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
  29 *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
  30 *                                      instead they leave that for the DESTROY timer.
  31 *              Alan Cox        :       Clean up error flag in accept
  32 *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
  33 *                                      was buggy. Put a remove_sock() in the handler
  34 *                                      for memory when we hit 0. Also altered the timer
  35 *                                      code. The ACK stuff can wait and needs major
  36 *                                      TCP layer surgery.
  37 *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
  38 *                                      and fixed timer/inet_bh race.
  39 *              Alan Cox        :       Added zapped flag for TCP
  40 *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
  41 *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
  46 *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
  47 *      Pauline Middelink       :       identd support
  48 *              Alan Cox        :       Fixed connect() taking signals I think.
  49 *              Alan Cox        :       SO_LINGER supported
  50 *              Alan Cox        :       Error reporting fixes
  51 *              Anonymous       :       inet_create tidied up (sk->reuse setting)
  52 *              Alan Cox        :       inet sockets don't set sk->type!
  53 *              Alan Cox        :       Split socket option code
  54 *              Alan Cox        :       Callbacks
  55 *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
  56 *              Alex            :       Removed restriction on inet fioctl
  57 *              Alan Cox        :       Splitting INET from NET core
  58 *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
  59 *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *              Alan Cox        :       Split IP from generic code
  61 *              Alan Cox        :       New kfree_skbmem()
  62 *              Alan Cox        :       Make SO_DEBUG superuser only.
  63 *              Alan Cox        :       Allow anyone to clear SO_DEBUG
  64 *                                      (compatibility fix)
  65 *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
  66 *              Alan Cox        :       Allocator for a socket is settable.
  67 *              Alan Cox        :       SO_ERROR includes soft errors.
  68 *              Alan Cox        :       Allow NULL arguments on some SO_ opts
  69 *              Alan Cox        :       Generic socket allocation to make hooks
  70 *                                      easier (suggested by Craig Metz).
  71 *              Michael Pall    :       SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
  79 *              Andi Kleen      :       Fix write_space callback
  80 *              Chris Evans     :       Security fixes - signedness again
  81 *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *              This program is free software; you can redistribute it and/or
  87 *              modify it under the terms of the GNU General Public License
  88 *              as published by the Free Software Foundation; either version
  89 *              2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 139
 140#include <trace/events/sock.h>
 141
 142#include <net/tcp.h>
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148/**
 149 * sk_ns_capable - General socket capability test
 150 * @sk: Socket to use a capability on or through
 151 * @user_ns: The user namespace of the capability to use
 152 * @cap: The capability to use
 153 *
 154 * Test to see if the opener of the socket had when the socket was
 155 * created and the current process has the capability @cap in the user
 156 * namespace @user_ns.
 157 */
 158bool sk_ns_capable(const struct sock *sk,
 159                   struct user_namespace *user_ns, int cap)
 160{
 161        return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 162                ns_capable(user_ns, cap);
 163}
 164EXPORT_SYMBOL(sk_ns_capable);
 165
 166/**
 167 * sk_capable - Socket global capability test
 168 * @sk: Socket to use a capability on or through
 169 * @cap: The global capability to use
 170 *
 171 * Test to see if the opener of the socket had when the socket was
 172 * created and the current process has the capability @cap in all user
 173 * namespaces.
 174 */
 175bool sk_capable(const struct sock *sk, int cap)
 176{
 177        return sk_ns_capable(sk, &init_user_ns, cap);
 178}
 179EXPORT_SYMBOL(sk_capable);
 180
 181/**
 182 * sk_net_capable - Network namespace socket capability test
 183 * @sk: Socket to use a capability on or through
 184 * @cap: The capability to use
 185 *
 186 * Test to see if the opener of the socket had when the socket was created
 187 * and the current process has the capability @cap over the network namespace
 188 * the socket is a member of.
 189 */
 190bool sk_net_capable(const struct sock *sk, int cap)
 191{
 192        return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 193}
 194EXPORT_SYMBOL(sk_net_capable);
 195
 196/*
 197 * Each address family might have different locking rules, so we have
 198 * one slock key per address family and separate keys for internal and
 199 * userspace sockets.
 200 */
 201static struct lock_class_key af_family_keys[AF_MAX];
 202static struct lock_class_key af_family_kern_keys[AF_MAX];
 203static struct lock_class_key af_family_slock_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 205
 206/*
 207 * Make lock validator output more readable. (we pre-construct these
 208 * strings build-time, so that runtime initialization of socket
 209 * locks is fast):
 210 */
 211
 212#define _sock_locks(x)                                            \
 213  x "AF_UNSPEC",        x "AF_UNIX"     ,       x "AF_INET"     , \
 214  x "AF_AX25"  ,        x "AF_IPX"      ,       x "AF_APPLETALK", \
 215  x "AF_NETROM",        x "AF_BRIDGE"   ,       x "AF_ATMPVC"   , \
 216  x "AF_X25"   ,        x "AF_INET6"    ,       x "AF_ROSE"     , \
 217  x "AF_DECnet",        x "AF_NETBEUI"  ,       x "AF_SECURITY" , \
 218  x "AF_KEY"   ,        x "AF_NETLINK"  ,       x "AF_PACKET"   , \
 219  x "AF_ASH"   ,        x "AF_ECONET"   ,       x "AF_ATMSVC"   , \
 220  x "AF_RDS"   ,        x "AF_SNA"      ,       x "AF_IRDA"     , \
 221  x "AF_PPPOX" ,        x "AF_WANPIPE"  ,       x "AF_LLC"      , \
 222  x "27"       ,        x "28"          ,       x "AF_CAN"      , \
 223  x "AF_TIPC"  ,        x "AF_BLUETOOTH",       x "IUCV"        , \
 224  x "AF_RXRPC" ,        x "AF_ISDN"     ,       x "AF_PHONET"   , \
 225  x "AF_IEEE802154",    x "AF_CAIF"     ,       x "AF_ALG"      , \
 226  x "AF_NFC"   ,        x "AF_VSOCK"    ,       x "AF_KCM"      , \
 227  x "AF_QIPCRTR",       x "AF_SMC"      ,       x "AF_MAX"
 228
 229static const char *const af_family_key_strings[AF_MAX+1] = {
 230        _sock_locks("sk_lock-")
 231};
 232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 233        _sock_locks("slock-")
 234};
 235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 236        _sock_locks("clock-")
 237};
 238
 239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 240        _sock_locks("k-sk_lock-")
 241};
 242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 243        _sock_locks("k-slock-")
 244};
 245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 246        _sock_locks("k-clock-")
 247};
 248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 249  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 250  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 251  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 252  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 253  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 254  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 255  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 256  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 257  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 258  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 259  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 260  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 261  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 262  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 263  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 264};
 265static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 266  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 267  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 268  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 269  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 270  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 271  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 272  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 273  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 274  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 275  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 276  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 277  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 278  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 279  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 280  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 281};
 282static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 283  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 284  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 285  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 286  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 287  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 288  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 289  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 290  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 291  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 292  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 293  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 294  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 295  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 296  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 297  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 298};
 299
 300/*
 301 * sk_callback_lock and sk queues locking rules are per-address-family,
 302 * so split the lock classes by using a per-AF key:
 303 */
 304static struct lock_class_key af_callback_keys[AF_MAX];
 305static struct lock_class_key af_rlock_keys[AF_MAX];
 306static struct lock_class_key af_wlock_keys[AF_MAX];
 307static struct lock_class_key af_elock_keys[AF_MAX];
 308static struct lock_class_key af_kern_callback_keys[AF_MAX];
 309
 310/* Run time adjustable parameters. */
 311__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 312EXPORT_SYMBOL(sysctl_wmem_max);
 313__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 314EXPORT_SYMBOL(sysctl_rmem_max);
 315__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 316__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 317
 318/* Maximal space eaten by iovec or ancillary data plus some space */
 319int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 320EXPORT_SYMBOL(sysctl_optmem_max);
 321
 322int sysctl_tstamp_allow_data __read_mostly = 1;
 323
 324struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 325EXPORT_SYMBOL_GPL(memalloc_socks);
 326
 327/**
 328 * sk_set_memalloc - sets %SOCK_MEMALLOC
 329 * @sk: socket to set it on
 330 *
 331 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 332 * It's the responsibility of the admin to adjust min_free_kbytes
 333 * to meet the requirements
 334 */
 335void sk_set_memalloc(struct sock *sk)
 336{
 337        sock_set_flag(sk, SOCK_MEMALLOC);
 338        sk->sk_allocation |= __GFP_MEMALLOC;
 339        static_key_slow_inc(&memalloc_socks);
 340}
 341EXPORT_SYMBOL_GPL(sk_set_memalloc);
 342
 343void sk_clear_memalloc(struct sock *sk)
 344{
 345        sock_reset_flag(sk, SOCK_MEMALLOC);
 346        sk->sk_allocation &= ~__GFP_MEMALLOC;
 347        static_key_slow_dec(&memalloc_socks);
 348
 349        /*
 350         * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 351         * progress of swapping. SOCK_MEMALLOC may be cleared while
 352         * it has rmem allocations due to the last swapfile being deactivated
 353         * but there is a risk that the socket is unusable due to exceeding
 354         * the rmem limits. Reclaim the reserves and obey rmem limits again.
 355         */
 356        sk_mem_reclaim(sk);
 357}
 358EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 359
 360int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 361{
 362        int ret;
 363        unsigned int noreclaim_flag;
 364
 365        /* these should have been dropped before queueing */
 366        BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 367
 368        noreclaim_flag = memalloc_noreclaim_save();
 369        ret = sk->sk_backlog_rcv(sk, skb);
 370        memalloc_noreclaim_restore(noreclaim_flag);
 371
 372        return ret;
 373}
 374EXPORT_SYMBOL(__sk_backlog_rcv);
 375
 376static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 377{
 378        struct timeval tv;
 379
 380        if (optlen < sizeof(tv))
 381                return -EINVAL;
 382        if (copy_from_user(&tv, optval, sizeof(tv)))
 383                return -EFAULT;
 384        if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 385                return -EDOM;
 386
 387        if (tv.tv_sec < 0) {
 388                static int warned __read_mostly;
 389
 390                *timeo_p = 0;
 391                if (warned < 10 && net_ratelimit()) {
 392                        warned++;
 393                        pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 394                                __func__, current->comm, task_pid_nr(current));
 395                }
 396                return 0;
 397        }
 398        *timeo_p = MAX_SCHEDULE_TIMEOUT;
 399        if (tv.tv_sec == 0 && tv.tv_usec == 0)
 400                return 0;
 401        if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 402                *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 403        return 0;
 404}
 405
 406static void sock_warn_obsolete_bsdism(const char *name)
 407{
 408        static int warned;
 409        static char warncomm[TASK_COMM_LEN];
 410        if (strcmp(warncomm, current->comm) && warned < 5) {
 411                strcpy(warncomm,  current->comm);
 412                pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 413                        warncomm, name);
 414                warned++;
 415        }
 416}
 417
 418static bool sock_needs_netstamp(const struct sock *sk)
 419{
 420        switch (sk->sk_family) {
 421        case AF_UNSPEC:
 422        case AF_UNIX:
 423                return false;
 424        default:
 425                return true;
 426        }
 427}
 428
 429static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 430{
 431        if (sk->sk_flags & flags) {
 432                sk->sk_flags &= ~flags;
 433                if (sock_needs_netstamp(sk) &&
 434                    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 435                        net_disable_timestamp();
 436        }
 437}
 438
 439
 440int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 441{
 442        unsigned long flags;
 443        struct sk_buff_head *list = &sk->sk_receive_queue;
 444
 445        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 446                atomic_inc(&sk->sk_drops);
 447                trace_sock_rcvqueue_full(sk, skb);
 448                return -ENOMEM;
 449        }
 450
 451        if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 452                atomic_inc(&sk->sk_drops);
 453                return -ENOBUFS;
 454        }
 455
 456        skb->dev = NULL;
 457        skb_set_owner_r(skb, sk);
 458
 459        /* we escape from rcu protected region, make sure we dont leak
 460         * a norefcounted dst
 461         */
 462        skb_dst_force(skb);
 463
 464        spin_lock_irqsave(&list->lock, flags);
 465        sock_skb_set_dropcount(sk, skb);
 466        __skb_queue_tail(list, skb);
 467        spin_unlock_irqrestore(&list->lock, flags);
 468
 469        if (!sock_flag(sk, SOCK_DEAD))
 470                sk->sk_data_ready(sk);
 471        return 0;
 472}
 473EXPORT_SYMBOL(__sock_queue_rcv_skb);
 474
 475int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 476{
 477        int err;
 478
 479        err = sk_filter(sk, skb);
 480        if (err)
 481                return err;
 482
 483        return __sock_queue_rcv_skb(sk, skb);
 484}
 485EXPORT_SYMBOL(sock_queue_rcv_skb);
 486
 487int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 488                     const int nested, unsigned int trim_cap, bool refcounted)
 489{
 490        int rc = NET_RX_SUCCESS;
 491
 492        if (sk_filter_trim_cap(sk, skb, trim_cap))
 493                goto discard_and_relse;
 494
 495        skb->dev = NULL;
 496
 497        if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 498                atomic_inc(&sk->sk_drops);
 499                goto discard_and_relse;
 500        }
 501        if (nested)
 502                bh_lock_sock_nested(sk);
 503        else
 504                bh_lock_sock(sk);
 505        if (!sock_owned_by_user(sk)) {
 506                /*
 507                 * trylock + unlock semantics:
 508                 */
 509                mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 510
 511                rc = sk_backlog_rcv(sk, skb);
 512
 513                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 514        } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 515                bh_unlock_sock(sk);
 516                atomic_inc(&sk->sk_drops);
 517                goto discard_and_relse;
 518        }
 519
 520        bh_unlock_sock(sk);
 521out:
 522        if (refcounted)
 523                sock_put(sk);
 524        return rc;
 525discard_and_relse:
 526        kfree_skb(skb);
 527        goto out;
 528}
 529EXPORT_SYMBOL(__sk_receive_skb);
 530
 531struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 532{
 533        struct dst_entry *dst = __sk_dst_get(sk);
 534
 535        if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 536                sk_tx_queue_clear(sk);
 537                sk->sk_dst_pending_confirm = 0;
 538                RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 539                dst_release(dst);
 540                return NULL;
 541        }
 542
 543        return dst;
 544}
 545EXPORT_SYMBOL(__sk_dst_check);
 546
 547struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 548{
 549        struct dst_entry *dst = sk_dst_get(sk);
 550
 551        if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 552                sk_dst_reset(sk);
 553                dst_release(dst);
 554                return NULL;
 555        }
 556
 557        return dst;
 558}
 559EXPORT_SYMBOL(sk_dst_check);
 560
 561static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 562                                int optlen)
 563{
 564        int ret = -ENOPROTOOPT;
 565#ifdef CONFIG_NETDEVICES
 566        struct net *net = sock_net(sk);
 567        char devname[IFNAMSIZ];
 568        int index;
 569
 570        /* Sorry... */
 571        ret = -EPERM;
 572        if (!ns_capable(net->user_ns, CAP_NET_RAW))
 573                goto out;
 574
 575        ret = -EINVAL;
 576        if (optlen < 0)
 577                goto out;
 578
 579        /* Bind this socket to a particular device like "eth0",
 580         * as specified in the passed interface name. If the
 581         * name is "" or the option length is zero the socket
 582         * is not bound.
 583         */
 584        if (optlen > IFNAMSIZ - 1)
 585                optlen = IFNAMSIZ - 1;
 586        memset(devname, 0, sizeof(devname));
 587
 588        ret = -EFAULT;
 589        if (copy_from_user(devname, optval, optlen))
 590                goto out;
 591
 592        index = 0;
 593        if (devname[0] != '\0') {
 594                struct net_device *dev;
 595
 596                rcu_read_lock();
 597                dev = dev_get_by_name_rcu(net, devname);
 598                if (dev)
 599                        index = dev->ifindex;
 600                rcu_read_unlock();
 601                ret = -ENODEV;
 602                if (!dev)
 603                        goto out;
 604        }
 605
 606        lock_sock(sk);
 607        sk->sk_bound_dev_if = index;
 608        sk_dst_reset(sk);
 609        release_sock(sk);
 610
 611        ret = 0;
 612
 613out:
 614#endif
 615
 616        return ret;
 617}
 618
 619static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 620                                int __user *optlen, int len)
 621{
 622        int ret = -ENOPROTOOPT;
 623#ifdef CONFIG_NETDEVICES
 624        struct net *net = sock_net(sk);
 625        char devname[IFNAMSIZ];
 626
 627        if (sk->sk_bound_dev_if == 0) {
 628                len = 0;
 629                goto zero;
 630        }
 631
 632        ret = -EINVAL;
 633        if (len < IFNAMSIZ)
 634                goto out;
 635
 636        ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 637        if (ret)
 638                goto out;
 639
 640        len = strlen(devname) + 1;
 641
 642        ret = -EFAULT;
 643        if (copy_to_user(optval, devname, len))
 644                goto out;
 645
 646zero:
 647        ret = -EFAULT;
 648        if (put_user(len, optlen))
 649                goto out;
 650
 651        ret = 0;
 652
 653out:
 654#endif
 655
 656        return ret;
 657}
 658
 659static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 660{
 661        if (valbool)
 662                sock_set_flag(sk, bit);
 663        else
 664                sock_reset_flag(sk, bit);
 665}
 666
 667bool sk_mc_loop(struct sock *sk)
 668{
 669        if (dev_recursion_level())
 670                return false;
 671        if (!sk)
 672                return true;
 673        switch (sk->sk_family) {
 674        case AF_INET:
 675                return inet_sk(sk)->mc_loop;
 676#if IS_ENABLED(CONFIG_IPV6)
 677        case AF_INET6:
 678                return inet6_sk(sk)->mc_loop;
 679#endif
 680        }
 681        WARN_ON(1);
 682        return true;
 683}
 684EXPORT_SYMBOL(sk_mc_loop);
 685
 686/*
 687 *      This is meant for all protocols to use and covers goings on
 688 *      at the socket level. Everything here is generic.
 689 */
 690
 691int sock_setsockopt(struct socket *sock, int level, int optname,
 692                    char __user *optval, unsigned int optlen)
 693{
 694        struct sock *sk = sock->sk;
 695        int val;
 696        int valbool;
 697        struct linger ling;
 698        int ret = 0;
 699
 700        /*
 701         *      Options without arguments
 702         */
 703
 704        if (optname == SO_BINDTODEVICE)
 705                return sock_setbindtodevice(sk, optval, optlen);
 706
 707        if (optlen < sizeof(int))
 708                return -EINVAL;
 709
 710        if (get_user(val, (int __user *)optval))
 711                return -EFAULT;
 712
 713        valbool = val ? 1 : 0;
 714
 715        lock_sock(sk);
 716
 717        switch (optname) {
 718        case SO_DEBUG:
 719                if (val && !capable(CAP_NET_ADMIN))
 720                        ret = -EACCES;
 721                else
 722                        sock_valbool_flag(sk, SOCK_DBG, valbool);
 723                break;
 724        case SO_REUSEADDR:
 725                sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 726                break;
 727        case SO_REUSEPORT:
 728                sk->sk_reuseport = valbool;
 729                break;
 730        case SO_TYPE:
 731        case SO_PROTOCOL:
 732        case SO_DOMAIN:
 733        case SO_ERROR:
 734                ret = -ENOPROTOOPT;
 735                break;
 736        case SO_DONTROUTE:
 737                sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 738                break;
 739        case SO_BROADCAST:
 740                sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 741                break;
 742        case SO_SNDBUF:
 743                /* Don't error on this BSD doesn't and if you think
 744                 * about it this is right. Otherwise apps have to
 745                 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 746                 * are treated in BSD as hints
 747                 */
 748                val = min_t(u32, val, sysctl_wmem_max);
 749set_sndbuf:
 750                sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 751                sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 752                /* Wake up sending tasks if we upped the value. */
 753                sk->sk_write_space(sk);
 754                break;
 755
 756        case SO_SNDBUFFORCE:
 757                if (!capable(CAP_NET_ADMIN)) {
 758                        ret = -EPERM;
 759                        break;
 760                }
 761                goto set_sndbuf;
 762
 763        case SO_RCVBUF:
 764                /* Don't error on this BSD doesn't and if you think
 765                 * about it this is right. Otherwise apps have to
 766                 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 767                 * are treated in BSD as hints
 768                 */
 769                val = min_t(u32, val, sysctl_rmem_max);
 770set_rcvbuf:
 771                sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 772                /*
 773                 * We double it on the way in to account for
 774                 * "struct sk_buff" etc. overhead.   Applications
 775                 * assume that the SO_RCVBUF setting they make will
 776                 * allow that much actual data to be received on that
 777                 * socket.
 778                 *
 779                 * Applications are unaware that "struct sk_buff" and
 780                 * other overheads allocate from the receive buffer
 781                 * during socket buffer allocation.
 782                 *
 783                 * And after considering the possible alternatives,
 784                 * returning the value we actually used in getsockopt
 785                 * is the most desirable behavior.
 786                 */
 787                sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 788                break;
 789
 790        case SO_RCVBUFFORCE:
 791                if (!capable(CAP_NET_ADMIN)) {
 792                        ret = -EPERM;
 793                        break;
 794                }
 795                goto set_rcvbuf;
 796
 797        case SO_KEEPALIVE:
 798                if (sk->sk_prot->keepalive)
 799                        sk->sk_prot->keepalive(sk, valbool);
 800                sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 801                break;
 802
 803        case SO_OOBINLINE:
 804                sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 805                break;
 806
 807        case SO_NO_CHECK:
 808                sk->sk_no_check_tx = valbool;
 809                break;
 810
 811        case SO_PRIORITY:
 812                if ((val >= 0 && val <= 6) ||
 813                    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 814                        sk->sk_priority = val;
 815                else
 816                        ret = -EPERM;
 817                break;
 818
 819        case SO_LINGER:
 820                if (optlen < sizeof(ling)) {
 821                        ret = -EINVAL;  /* 1003.1g */
 822                        break;
 823                }
 824                if (copy_from_user(&ling, optval, sizeof(ling))) {
 825                        ret = -EFAULT;
 826                        break;
 827                }
 828                if (!ling.l_onoff)
 829                        sock_reset_flag(sk, SOCK_LINGER);
 830                else {
 831#if (BITS_PER_LONG == 32)
 832                        if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 833                                sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 834                        else
 835#endif
 836                                sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 837                        sock_set_flag(sk, SOCK_LINGER);
 838                }
 839                break;
 840
 841        case SO_BSDCOMPAT:
 842                sock_warn_obsolete_bsdism("setsockopt");
 843                break;
 844
 845        case SO_PASSCRED:
 846                if (valbool)
 847                        set_bit(SOCK_PASSCRED, &sock->flags);
 848                else
 849                        clear_bit(SOCK_PASSCRED, &sock->flags);
 850                break;
 851
 852        case SO_TIMESTAMP:
 853        case SO_TIMESTAMPNS:
 854                if (valbool)  {
 855                        if (optname == SO_TIMESTAMP)
 856                                sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 857                        else
 858                                sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 859                        sock_set_flag(sk, SOCK_RCVTSTAMP);
 860                        sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 861                } else {
 862                        sock_reset_flag(sk, SOCK_RCVTSTAMP);
 863                        sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 864                }
 865                break;
 866
 867        case SO_TIMESTAMPING:
 868                if (val & ~SOF_TIMESTAMPING_MASK) {
 869                        ret = -EINVAL;
 870                        break;
 871                }
 872
 873                if (val & SOF_TIMESTAMPING_OPT_ID &&
 874                    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 875                        if (sk->sk_protocol == IPPROTO_TCP &&
 876                            sk->sk_type == SOCK_STREAM) {
 877                                if ((1 << sk->sk_state) &
 878                                    (TCPF_CLOSE | TCPF_LISTEN)) {
 879                                        ret = -EINVAL;
 880                                        break;
 881                                }
 882                                sk->sk_tskey = tcp_sk(sk)->snd_una;
 883                        } else {
 884                                sk->sk_tskey = 0;
 885                        }
 886                }
 887
 888                if (val & SOF_TIMESTAMPING_OPT_STATS &&
 889                    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 890                        ret = -EINVAL;
 891                        break;
 892                }
 893
 894                sk->sk_tsflags = val;
 895                if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 896                        sock_enable_timestamp(sk,
 897                                              SOCK_TIMESTAMPING_RX_SOFTWARE);
 898                else
 899                        sock_disable_timestamp(sk,
 900                                               (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 901                break;
 902
 903        case SO_RCVLOWAT:
 904                if (val < 0)
 905                        val = INT_MAX;
 906                sk->sk_rcvlowat = val ? : 1;
 907                break;
 908
 909        case SO_RCVTIMEO:
 910                ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 911                break;
 912
 913        case SO_SNDTIMEO:
 914                ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 915                break;
 916
 917        case SO_ATTACH_FILTER:
 918                ret = -EINVAL;
 919                if (optlen == sizeof(struct sock_fprog)) {
 920                        struct sock_fprog fprog;
 921
 922                        ret = -EFAULT;
 923                        if (copy_from_user(&fprog, optval, sizeof(fprog)))
 924                                break;
 925
 926                        ret = sk_attach_filter(&fprog, sk);
 927                }
 928                break;
 929
 930        case SO_ATTACH_BPF:
 931                ret = -EINVAL;
 932                if (optlen == sizeof(u32)) {
 933                        u32 ufd;
 934
 935                        ret = -EFAULT;
 936                        if (copy_from_user(&ufd, optval, sizeof(ufd)))
 937                                break;
 938
 939                        ret = sk_attach_bpf(ufd, sk);
 940                }
 941                break;
 942
 943        case SO_ATTACH_REUSEPORT_CBPF:
 944                ret = -EINVAL;
 945                if (optlen == sizeof(struct sock_fprog)) {
 946                        struct sock_fprog fprog;
 947
 948                        ret = -EFAULT;
 949                        if (copy_from_user(&fprog, optval, sizeof(fprog)))
 950                                break;
 951
 952                        ret = sk_reuseport_attach_filter(&fprog, sk);
 953                }
 954                break;
 955
 956        case SO_ATTACH_REUSEPORT_EBPF:
 957                ret = -EINVAL;
 958                if (optlen == sizeof(u32)) {
 959                        u32 ufd;
 960
 961                        ret = -EFAULT;
 962                        if (copy_from_user(&ufd, optval, sizeof(ufd)))
 963                                break;
 964
 965                        ret = sk_reuseport_attach_bpf(ufd, sk);
 966                }
 967                break;
 968
 969        case SO_DETACH_FILTER:
 970                ret = sk_detach_filter(sk);
 971                break;
 972
 973        case SO_LOCK_FILTER:
 974                if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 975                        ret = -EPERM;
 976                else
 977                        sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 978                break;
 979
 980        case SO_PASSSEC:
 981                if (valbool)
 982                        set_bit(SOCK_PASSSEC, &sock->flags);
 983                else
 984                        clear_bit(SOCK_PASSSEC, &sock->flags);
 985                break;
 986        case SO_MARK:
 987                if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 988                        ret = -EPERM;
 989                else
 990                        sk->sk_mark = val;
 991                break;
 992
 993        case SO_RXQ_OVFL:
 994                sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 995                break;
 996
 997        case SO_WIFI_STATUS:
 998                sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 999                break;
1000
1001        case SO_PEEK_OFF:
1002                if (sock->ops->set_peek_off)
1003                        ret = sock->ops->set_peek_off(sk, val);
1004                else
1005                        ret = -EOPNOTSUPP;
1006                break;
1007
1008        case SO_NOFCS:
1009                sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1010                break;
1011
1012        case SO_SELECT_ERR_QUEUE:
1013                sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1014                break;
1015
1016#ifdef CONFIG_NET_RX_BUSY_POLL
1017        case SO_BUSY_POLL:
1018                /* allow unprivileged users to decrease the value */
1019                if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1020                        ret = -EPERM;
1021                else {
1022                        if (val < 0)
1023                                ret = -EINVAL;
1024                        else
1025                                sk->sk_ll_usec = val;
1026                }
1027                break;
1028#endif
1029
1030        case SO_MAX_PACING_RATE:
1031                if (val != ~0U)
1032                        cmpxchg(&sk->sk_pacing_status,
1033                                SK_PACING_NONE,
1034                                SK_PACING_NEEDED);
1035                sk->sk_max_pacing_rate = val;
1036                sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1037                                         sk->sk_max_pacing_rate);
1038                break;
1039
1040        case SO_INCOMING_CPU:
1041                sk->sk_incoming_cpu = val;
1042                break;
1043
1044        case SO_CNX_ADVICE:
1045                if (val == 1)
1046                        dst_negative_advice(sk);
1047                break;
1048
1049        case SO_ZEROCOPY:
1050                if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1051                        ret = -ENOTSUPP;
1052                else if (sk->sk_protocol != IPPROTO_TCP)
1053                        ret = -ENOTSUPP;
1054                else if (sk->sk_state != TCP_CLOSE)
1055                        ret = -EBUSY;
1056                else if (val < 0 || val > 1)
1057                        ret = -EINVAL;
1058                else
1059                        sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1060                break;
1061
1062        default:
1063                ret = -ENOPROTOOPT;
1064                break;
1065        }
1066        release_sock(sk);
1067        return ret;
1068}
1069EXPORT_SYMBOL(sock_setsockopt);
1070
1071
1072static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1073                          struct ucred *ucred)
1074{
1075        ucred->pid = pid_vnr(pid);
1076        ucred->uid = ucred->gid = -1;
1077        if (cred) {
1078                struct user_namespace *current_ns = current_user_ns();
1079
1080                ucred->uid = from_kuid_munged(current_ns, cred->euid);
1081                ucred->gid = from_kgid_munged(current_ns, cred->egid);
1082        }
1083}
1084
1085static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1086{
1087        struct user_namespace *user_ns = current_user_ns();
1088        int i;
1089
1090        for (i = 0; i < src->ngroups; i++)
1091                if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1092                        return -EFAULT;
1093
1094        return 0;
1095}
1096
1097int sock_getsockopt(struct socket *sock, int level, int optname,
1098                    char __user *optval, int __user *optlen)
1099{
1100        struct sock *sk = sock->sk;
1101
1102        union {
1103                int val;
1104                u64 val64;
1105                struct linger ling;
1106                struct timeval tm;
1107        } v;
1108
1109        int lv = sizeof(int);
1110        int len;
1111
1112        if (get_user(len, optlen))
1113                return -EFAULT;
1114        if (len < 0)
1115                return -EINVAL;
1116
1117        memset(&v, 0, sizeof(v));
1118
1119        switch (optname) {
1120        case SO_DEBUG:
1121                v.val = sock_flag(sk, SOCK_DBG);
1122                break;
1123
1124        case SO_DONTROUTE:
1125                v.val = sock_flag(sk, SOCK_LOCALROUTE);
1126                break;
1127
1128        case SO_BROADCAST:
1129                v.val = sock_flag(sk, SOCK_BROADCAST);
1130                break;
1131
1132        case SO_SNDBUF:
1133                v.val = sk->sk_sndbuf;
1134                break;
1135
1136        case SO_RCVBUF:
1137                v.val = sk->sk_rcvbuf;
1138                break;
1139
1140        case SO_REUSEADDR:
1141                v.val = sk->sk_reuse;
1142                break;
1143
1144        case SO_REUSEPORT:
1145                v.val = sk->sk_reuseport;
1146                break;
1147
1148        case SO_KEEPALIVE:
1149                v.val = sock_flag(sk, SOCK_KEEPOPEN);
1150                break;
1151
1152        case SO_TYPE:
1153                v.val = sk->sk_type;
1154                break;
1155
1156        case SO_PROTOCOL:
1157                v.val = sk->sk_protocol;
1158                break;
1159
1160        case SO_DOMAIN:
1161                v.val = sk->sk_family;
1162                break;
1163
1164        case SO_ERROR:
1165                v.val = -sock_error(sk);
1166                if (v.val == 0)
1167                        v.val = xchg(&sk->sk_err_soft, 0);
1168                break;
1169
1170        case SO_OOBINLINE:
1171                v.val = sock_flag(sk, SOCK_URGINLINE);
1172                break;
1173
1174        case SO_NO_CHECK:
1175                v.val = sk->sk_no_check_tx;
1176                break;
1177
1178        case SO_PRIORITY:
1179                v.val = sk->sk_priority;
1180                break;
1181
1182        case SO_LINGER:
1183                lv              = sizeof(v.ling);
1184                v.ling.l_onoff  = sock_flag(sk, SOCK_LINGER);
1185                v.ling.l_linger = sk->sk_lingertime / HZ;
1186                break;
1187
1188        case SO_BSDCOMPAT:
1189                sock_warn_obsolete_bsdism("getsockopt");
1190                break;
1191
1192        case SO_TIMESTAMP:
1193                v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1194                                !sock_flag(sk, SOCK_RCVTSTAMPNS);
1195                break;
1196
1197        case SO_TIMESTAMPNS:
1198                v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1199                break;
1200
1201        case SO_TIMESTAMPING:
1202                v.val = sk->sk_tsflags;
1203                break;
1204
1205        case SO_RCVTIMEO:
1206                lv = sizeof(struct timeval);
1207                if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1208                        v.tm.tv_sec = 0;
1209                        v.tm.tv_usec = 0;
1210                } else {
1211                        v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1212                        v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1213                }
1214                break;
1215
1216        case SO_SNDTIMEO:
1217                lv = sizeof(struct timeval);
1218                if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1219                        v.tm.tv_sec = 0;
1220                        v.tm.tv_usec = 0;
1221                } else {
1222                        v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1223                        v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1224                }
1225                break;
1226
1227        case SO_RCVLOWAT:
1228                v.val = sk->sk_rcvlowat;
1229                break;
1230
1231        case SO_SNDLOWAT:
1232                v.val = 1;
1233                break;
1234
1235        case SO_PASSCRED:
1236                v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1237                break;
1238
1239        case SO_PEERCRED:
1240        {
1241                struct ucred peercred;
1242                if (len > sizeof(peercred))
1243                        len = sizeof(peercred);
1244                cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1245                if (copy_to_user(optval, &peercred, len))
1246                        return -EFAULT;
1247                goto lenout;
1248        }
1249
1250        case SO_PEERGROUPS:
1251        {
1252                int ret, n;
1253
1254                if (!sk->sk_peer_cred)
1255                        return -ENODATA;
1256
1257                n = sk->sk_peer_cred->group_info->ngroups;
1258                if (len < n * sizeof(gid_t)) {
1259                        len = n * sizeof(gid_t);
1260                        return put_user(len, optlen) ? -EFAULT : -ERANGE;
1261                }
1262                len = n * sizeof(gid_t);
1263
1264                ret = groups_to_user((gid_t __user *)optval,
1265                                     sk->sk_peer_cred->group_info);
1266                if (ret)
1267                        return ret;
1268                goto lenout;
1269        }
1270
1271        case SO_PEERNAME:
1272        {
1273                char address[128];
1274
1275                if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1276                        return -ENOTCONN;
1277                if (lv < len)
1278                        return -EINVAL;
1279                if (copy_to_user(optval, address, len))
1280                        return -EFAULT;
1281                goto lenout;
1282        }
1283
1284        /* Dubious BSD thing... Probably nobody even uses it, but
1285         * the UNIX standard wants it for whatever reason... -DaveM
1286         */
1287        case SO_ACCEPTCONN:
1288                v.val = sk->sk_state == TCP_LISTEN;
1289                break;
1290
1291        case SO_PASSSEC:
1292                v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1293                break;
1294
1295        case SO_PEERSEC:
1296                return security_socket_getpeersec_stream(sock, optval, optlen, len);
1297
1298        case SO_MARK:
1299                v.val = sk->sk_mark;
1300                break;
1301
1302        case SO_RXQ_OVFL:
1303                v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1304                break;
1305
1306        case SO_WIFI_STATUS:
1307                v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1308                break;
1309
1310        case SO_PEEK_OFF:
1311                if (!sock->ops->set_peek_off)
1312                        return -EOPNOTSUPP;
1313
1314                v.val = sk->sk_peek_off;
1315                break;
1316        case SO_NOFCS:
1317                v.val = sock_flag(sk, SOCK_NOFCS);
1318                break;
1319
1320        case SO_BINDTODEVICE:
1321                return sock_getbindtodevice(sk, optval, optlen, len);
1322
1323        case SO_GET_FILTER:
1324                len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1325                if (len < 0)
1326                        return len;
1327
1328                goto lenout;
1329
1330        case SO_LOCK_FILTER:
1331                v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1332                break;
1333
1334        case SO_BPF_EXTENSIONS:
1335                v.val = bpf_tell_extensions();
1336                break;
1337
1338        case SO_SELECT_ERR_QUEUE:
1339                v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1340                break;
1341
1342#ifdef CONFIG_NET_RX_BUSY_POLL
1343        case SO_BUSY_POLL:
1344                v.val = sk->sk_ll_usec;
1345                break;
1346#endif
1347
1348        case SO_MAX_PACING_RATE:
1349                v.val = sk->sk_max_pacing_rate;
1350                break;
1351
1352        case SO_INCOMING_CPU:
1353                v.val = sk->sk_incoming_cpu;
1354                break;
1355
1356        case SO_MEMINFO:
1357        {
1358                u32 meminfo[SK_MEMINFO_VARS];
1359
1360                if (get_user(len, optlen))
1361                        return -EFAULT;
1362
1363                sk_get_meminfo(sk, meminfo);
1364
1365                len = min_t(unsigned int, len, sizeof(meminfo));
1366                if (copy_to_user(optval, &meminfo, len))
1367                        return -EFAULT;
1368
1369                goto lenout;
1370        }
1371
1372#ifdef CONFIG_NET_RX_BUSY_POLL
1373        case SO_INCOMING_NAPI_ID:
1374                v.val = READ_ONCE(sk->sk_napi_id);
1375
1376                /* aggregate non-NAPI IDs down to 0 */
1377                if (v.val < MIN_NAPI_ID)
1378                        v.val = 0;
1379
1380                break;
1381#endif
1382
1383        case SO_COOKIE:
1384                lv = sizeof(u64);
1385                if (len < lv)
1386                        return -EINVAL;
1387                v.val64 = sock_gen_cookie(sk);
1388                break;
1389
1390        case SO_ZEROCOPY:
1391                v.val = sock_flag(sk, SOCK_ZEROCOPY);
1392                break;
1393
1394        default:
1395                /* We implement the SO_SNDLOWAT etc to not be settable
1396                 * (1003.1g 7).
1397                 */
1398                return -ENOPROTOOPT;
1399        }
1400
1401        if (len > lv)
1402                len = lv;
1403        if (copy_to_user(optval, &v, len))
1404                return -EFAULT;
1405lenout:
1406        if (put_user(len, optlen))
1407                return -EFAULT;
1408        return 0;
1409}
1410
1411/*
1412 * Initialize an sk_lock.
1413 *
1414 * (We also register the sk_lock with the lock validator.)
1415 */
1416static inline void sock_lock_init(struct sock *sk)
1417{
1418        if (sk->sk_kern_sock)
1419                sock_lock_init_class_and_name(
1420                        sk,
1421                        af_family_kern_slock_key_strings[sk->sk_family],
1422                        af_family_kern_slock_keys + sk->sk_family,
1423                        af_family_kern_key_strings[sk->sk_family],
1424                        af_family_kern_keys + sk->sk_family);
1425        else
1426                sock_lock_init_class_and_name(
1427                        sk,
1428                        af_family_slock_key_strings[sk->sk_family],
1429                        af_family_slock_keys + sk->sk_family,
1430                        af_family_key_strings[sk->sk_family],
1431                        af_family_keys + sk->sk_family);
1432}
1433
1434/*
1435 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1436 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1437 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1438 */
1439static void sock_copy(struct sock *nsk, const struct sock *osk)
1440{
1441#ifdef CONFIG_SECURITY_NETWORK
1442        void *sptr = nsk->sk_security;
1443#endif
1444        memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1445
1446        memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1447               osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1448
1449#ifdef CONFIG_SECURITY_NETWORK
1450        nsk->sk_security = sptr;
1451        security_sk_clone(osk, nsk);
1452#endif
1453}
1454
1455static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1456                int family)
1457{
1458        struct sock *sk;
1459        struct kmem_cache *slab;
1460
1461        slab = prot->slab;
1462        if (slab != NULL) {
1463                sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1464                if (!sk)
1465                        return sk;
1466                if (priority & __GFP_ZERO)
1467                        sk_prot_clear_nulls(sk, prot->obj_size);
1468        } else
1469                sk = kmalloc(prot->obj_size, priority);
1470
1471        if (sk != NULL) {
1472                kmemcheck_annotate_bitfield(sk, flags);
1473
1474                if (security_sk_alloc(sk, family, priority))
1475                        goto out_free;
1476
1477                if (!try_module_get(prot->owner))
1478                        goto out_free_sec;
1479                sk_tx_queue_clear(sk);
1480        }
1481
1482        return sk;
1483
1484out_free_sec:
1485        security_sk_free(sk);
1486out_free:
1487        if (slab != NULL)
1488                kmem_cache_free(slab, sk);
1489        else
1490                kfree(sk);
1491        return NULL;
1492}
1493
1494static void sk_prot_free(struct proto *prot, struct sock *sk)
1495{
1496        struct kmem_cache *slab;
1497        struct module *owner;
1498
1499        owner = prot->owner;
1500        slab = prot->slab;
1501
1502        cgroup_sk_free(&sk->sk_cgrp_data);
1503        mem_cgroup_sk_free(sk);
1504        security_sk_free(sk);
1505        if (slab != NULL)
1506                kmem_cache_free(slab, sk);
1507        else
1508                kfree(sk);
1509        module_put(owner);
1510}
1511
1512/**
1513 *      sk_alloc - All socket objects are allocated here
1514 *      @net: the applicable net namespace
1515 *      @family: protocol family
1516 *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517 *      @prot: struct proto associated with this new sock instance
1518 *      @kern: is this to be a kernel socket?
1519 */
1520struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521                      struct proto *prot, int kern)
1522{
1523        struct sock *sk;
1524
1525        sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1526        if (sk) {
1527                sk->sk_family = family;
1528                /*
1529                 * See comment in struct sock definition to understand
1530                 * why we need sk_prot_creator -acme
1531                 */
1532                sk->sk_prot = sk->sk_prot_creator = prot;
1533                sk->sk_kern_sock = kern;
1534                sock_lock_init(sk);
1535                sk->sk_net_refcnt = kern ? 0 : 1;
1536                if (likely(sk->sk_net_refcnt))
1537                        get_net(net);
1538                sock_net_set(sk, net);
1539                refcount_set(&sk->sk_wmem_alloc, 1);
1540
1541                mem_cgroup_sk_alloc(sk);
1542                cgroup_sk_alloc(&sk->sk_cgrp_data);
1543                sock_update_classid(&sk->sk_cgrp_data);
1544                sock_update_netprioidx(&sk->sk_cgrp_data);
1545        }
1546
1547        return sk;
1548}
1549EXPORT_SYMBOL(sk_alloc);
1550
1551/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1552 * grace period. This is the case for UDP sockets and TCP listeners.
1553 */
1554static void __sk_destruct(struct rcu_head *head)
1555{
1556        struct sock *sk = container_of(head, struct sock, sk_rcu);
1557        struct sk_filter *filter;
1558
1559        if (sk->sk_destruct)
1560                sk->sk_destruct(sk);
1561
1562        filter = rcu_dereference_check(sk->sk_filter,
1563                                       refcount_read(&sk->sk_wmem_alloc) == 0);
1564        if (filter) {
1565                sk_filter_uncharge(sk, filter);
1566                RCU_INIT_POINTER(sk->sk_filter, NULL);
1567        }
1568        if (rcu_access_pointer(sk->sk_reuseport_cb))
1569                reuseport_detach_sock(sk);
1570
1571        sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1572
1573        if (atomic_read(&sk->sk_omem_alloc))
1574                pr_debug("%s: optmem leakage (%d bytes) detected\n",
1575                         __func__, atomic_read(&sk->sk_omem_alloc));
1576
1577        if (sk->sk_frag.page) {
1578                put_page(sk->sk_frag.page);
1579                sk->sk_frag.page = NULL;
1580        }
1581
1582        if (sk->sk_peer_cred)
1583                put_cred(sk->sk_peer_cred);
1584        put_pid(sk->sk_peer_pid);
1585        if (likely(sk->sk_net_refcnt))
1586                put_net(sock_net(sk));
1587        sk_prot_free(sk->sk_prot_creator, sk);
1588}
1589
1590void sk_destruct(struct sock *sk)
1591{
1592        if (sock_flag(sk, SOCK_RCU_FREE))
1593                call_rcu(&sk->sk_rcu, __sk_destruct);
1594        else
1595                __sk_destruct(&sk->sk_rcu);
1596}
1597
1598static void __sk_free(struct sock *sk)
1599{
1600        if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1601                sock_diag_broadcast_destroy(sk);
1602        else
1603                sk_destruct(sk);
1604}
1605
1606void sk_free(struct sock *sk)
1607{
1608        /*
1609         * We subtract one from sk_wmem_alloc and can know if
1610         * some packets are still in some tx queue.
1611         * If not null, sock_wfree() will call __sk_free(sk) later
1612         */
1613        if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1614                __sk_free(sk);
1615}
1616EXPORT_SYMBOL(sk_free);
1617
1618static void sk_init_common(struct sock *sk)
1619{
1620        skb_queue_head_init(&sk->sk_receive_queue);
1621        skb_queue_head_init(&sk->sk_write_queue);
1622        skb_queue_head_init(&sk->sk_error_queue);
1623
1624        rwlock_init(&sk->sk_callback_lock);
1625        lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1626                        af_rlock_keys + sk->sk_family,
1627                        af_family_rlock_key_strings[sk->sk_family]);
1628        lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1629                        af_wlock_keys + sk->sk_family,
1630                        af_family_wlock_key_strings[sk->sk_family]);
1631        lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1632                        af_elock_keys + sk->sk_family,
1633                        af_family_elock_key_strings[sk->sk_family]);
1634        lockdep_set_class_and_name(&sk->sk_callback_lock,
1635                        af_callback_keys + sk->sk_family,
1636                        af_family_clock_key_strings[sk->sk_family]);
1637}
1638
1639/**
1640 *      sk_clone_lock - clone a socket, and lock its clone
1641 *      @sk: the socket to clone
1642 *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1643 *
1644 *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1645 */
1646struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1647{
1648        struct sock *newsk;
1649        bool is_charged = true;
1650
1651        newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1652        if (newsk != NULL) {
1653                struct sk_filter *filter;
1654
1655                sock_copy(newsk, sk);
1656
1657                newsk->sk_prot_creator = sk->sk_prot;
1658
1659                /* SANITY */
1660                if (likely(newsk->sk_net_refcnt))
1661                        get_net(sock_net(newsk));
1662                sk_node_init(&newsk->sk_node);
1663                sock_lock_init(newsk);
1664                bh_lock_sock(newsk);
1665                newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1666                newsk->sk_backlog.len = 0;
1667
1668                atomic_set(&newsk->sk_rmem_alloc, 0);
1669                /*
1670                 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1671                 */
1672                refcount_set(&newsk->sk_wmem_alloc, 1);
1673                atomic_set(&newsk->sk_omem_alloc, 0);
1674                sk_init_common(newsk);
1675
1676                newsk->sk_dst_cache     = NULL;
1677                newsk->sk_dst_pending_confirm = 0;
1678                newsk->sk_wmem_queued   = 0;
1679                newsk->sk_forward_alloc = 0;
1680
1681                /* sk->sk_memcg will be populated at accept() time */
1682                newsk->sk_memcg = NULL;
1683
1684                atomic_set(&newsk->sk_drops, 0);
1685                newsk->sk_send_head     = NULL;
1686                newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1687                atomic_set(&newsk->sk_zckey, 0);
1688
1689                sock_reset_flag(newsk, SOCK_DONE);
1690                cgroup_sk_alloc(&newsk->sk_cgrp_data);
1691
1692                rcu_read_lock();
1693                filter = rcu_dereference(sk->sk_filter);
1694                if (filter != NULL)
1695                        /* though it's an empty new sock, the charging may fail
1696                         * if sysctl_optmem_max was changed between creation of
1697                         * original socket and cloning
1698                         */
1699                        is_charged = sk_filter_charge(newsk, filter);
1700                RCU_INIT_POINTER(newsk->sk_filter, filter);
1701                rcu_read_unlock();
1702
1703                if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1704                        /* We need to make sure that we don't uncharge the new
1705                         * socket if we couldn't charge it in the first place
1706                         * as otherwise we uncharge the parent's filter.
1707                         */
1708                        if (!is_charged)
1709                                RCU_INIT_POINTER(newsk->sk_filter, NULL);
1710                        sk_free_unlock_clone(newsk);
1711                        newsk = NULL;
1712                        goto out;
1713                }
1714                RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1715
1716                newsk->sk_err      = 0;
1717                newsk->sk_err_soft = 0;
1718                newsk->sk_priority = 0;
1719                newsk->sk_incoming_cpu = raw_smp_processor_id();
1720                atomic64_set(&newsk->sk_cookie, 0);
1721
1722                /*
1723                 * Before updating sk_refcnt, we must commit prior changes to memory
1724                 * (Documentation/RCU/rculist_nulls.txt for details)
1725                 */
1726                smp_wmb();
1727                refcount_set(&newsk->sk_refcnt, 2);
1728
1729                /*
1730                 * Increment the counter in the same struct proto as the master
1731                 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1732                 * is the same as sk->sk_prot->socks, as this field was copied
1733                 * with memcpy).
1734                 *
1735                 * This _changes_ the previous behaviour, where
1736                 * tcp_create_openreq_child always was incrementing the
1737                 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1738                 * to be taken into account in all callers. -acme
1739                 */
1740                sk_refcnt_debug_inc(newsk);
1741                sk_set_socket(newsk, NULL);
1742                newsk->sk_wq = NULL;
1743
1744                if (newsk->sk_prot->sockets_allocated)
1745                        sk_sockets_allocated_inc(newsk);
1746
1747                if (sock_needs_netstamp(sk) &&
1748                    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1749                        net_enable_timestamp();
1750        }
1751out:
1752        return newsk;
1753}
1754EXPORT_SYMBOL_GPL(sk_clone_lock);
1755
1756void sk_free_unlock_clone(struct sock *sk)
1757{
1758        /* It is still raw copy of parent, so invalidate
1759         * destructor and make plain sk_free() */
1760        sk->sk_destruct = NULL;
1761        bh_unlock_sock(sk);
1762        sk_free(sk);
1763}
1764EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1765
1766void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1767{
1768        u32 max_segs = 1;
1769
1770        sk_dst_set(sk, dst);
1771        sk->sk_route_caps = dst->dev->features;
1772        if (sk->sk_route_caps & NETIF_F_GSO)
1773                sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1774        sk->sk_route_caps &= ~sk->sk_route_nocaps;
1775        if (sk_can_gso(sk)) {
1776                if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1777                        sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1778                } else {
1779                        sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1780                        sk->sk_gso_max_size = dst->dev->gso_max_size;
1781                        max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1782                }
1783        }
1784        sk->sk_gso_max_segs = max_segs;
1785}
1786EXPORT_SYMBOL_GPL(sk_setup_caps);
1787
1788/*
1789 *      Simple resource managers for sockets.
1790 */
1791
1792
1793/*
1794 * Write buffer destructor automatically called from kfree_skb.
1795 */
1796void sock_wfree(struct sk_buff *skb)
1797{
1798        struct sock *sk = skb->sk;
1799        unsigned int len = skb->truesize;
1800
1801        if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1802                /*
1803                 * Keep a reference on sk_wmem_alloc, this will be released
1804                 * after sk_write_space() call
1805                 */
1806                WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1807                sk->sk_write_space(sk);
1808                len = 1;
1809        }
1810        /*
1811         * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1812         * could not do because of in-flight packets
1813         */
1814        if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1815                __sk_free(sk);
1816}
1817EXPORT_SYMBOL(sock_wfree);
1818
1819/* This variant of sock_wfree() is used by TCP,
1820 * since it sets SOCK_USE_WRITE_QUEUE.
1821 */
1822void __sock_wfree(struct sk_buff *skb)
1823{
1824        struct sock *sk = skb->sk;
1825
1826        if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1827                __sk_free(sk);
1828}
1829
1830void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1831{
1832        skb_orphan(skb);
1833        skb->sk = sk;
1834#ifdef CONFIG_INET
1835        if (unlikely(!sk_fullsock(sk))) {
1836                skb->destructor = sock_edemux;
1837                sock_hold(sk);
1838                return;
1839        }
1840#endif
1841        skb->destructor = sock_wfree;
1842        skb_set_hash_from_sk(skb, sk);
1843        /*
1844         * We used to take a refcount on sk, but following operation
1845         * is enough to guarantee sk_free() wont free this sock until
1846         * all in-flight packets are completed
1847         */
1848        refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1849}
1850EXPORT_SYMBOL(skb_set_owner_w);
1851
1852/* This helper is used by netem, as it can hold packets in its
1853 * delay queue. We want to allow the owner socket to send more
1854 * packets, as if they were already TX completed by a typical driver.
1855 * But we also want to keep skb->sk set because some packet schedulers
1856 * rely on it (sch_fq for example).
1857 */
1858void skb_orphan_partial(struct sk_buff *skb)
1859{
1860        if (skb_is_tcp_pure_ack(skb))
1861                return;
1862
1863        if (skb->destructor == sock_wfree
1864#ifdef CONFIG_INET
1865            || skb->destructor == tcp_wfree
1866#endif
1867                ) {
1868                struct sock *sk = skb->sk;
1869
1870                if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1871                        WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1872                        skb->destructor = sock_efree;
1873                }
1874        } else {
1875                skb_orphan(skb);
1876        }
1877}
1878EXPORT_SYMBOL(skb_orphan_partial);
1879
1880/*
1881 * Read buffer destructor automatically called from kfree_skb.
1882 */
1883void sock_rfree(struct sk_buff *skb)
1884{
1885        struct sock *sk = skb->sk;
1886        unsigned int len = skb->truesize;
1887
1888        atomic_sub(len, &sk->sk_rmem_alloc);
1889        sk_mem_uncharge(sk, len);
1890}
1891EXPORT_SYMBOL(sock_rfree);
1892
1893/*
1894 * Buffer destructor for skbs that are not used directly in read or write
1895 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1896 */
1897void sock_efree(struct sk_buff *skb)
1898{
1899        sock_put(skb->sk);
1900}
1901EXPORT_SYMBOL(sock_efree);
1902
1903kuid_t sock_i_uid(struct sock *sk)
1904{
1905        kuid_t uid;
1906
1907        read_lock_bh(&sk->sk_callback_lock);
1908        uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1909        read_unlock_bh(&sk->sk_callback_lock);
1910        return uid;
1911}
1912EXPORT_SYMBOL(sock_i_uid);
1913
1914unsigned long sock_i_ino(struct sock *sk)
1915{
1916        unsigned long ino;
1917
1918        read_lock_bh(&sk->sk_callback_lock);
1919        ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1920        read_unlock_bh(&sk->sk_callback_lock);
1921        return ino;
1922}
1923EXPORT_SYMBOL(sock_i_ino);
1924
1925/*
1926 * Allocate a skb from the socket's send buffer.
1927 */
1928struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1929                             gfp_t priority)
1930{
1931        if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1932                struct sk_buff *skb = alloc_skb(size, priority);
1933                if (skb) {
1934                        skb_set_owner_w(skb, sk);
1935                        return skb;
1936                }
1937        }
1938        return NULL;
1939}
1940EXPORT_SYMBOL(sock_wmalloc);
1941
1942static void sock_ofree(struct sk_buff *skb)
1943{
1944        struct sock *sk = skb->sk;
1945
1946        atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1947}
1948
1949struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1950                             gfp_t priority)
1951{
1952        struct sk_buff *skb;
1953
1954        /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1955        if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1956            sysctl_optmem_max)
1957                return NULL;
1958
1959        skb = alloc_skb(size, priority);
1960        if (!skb)
1961                return NULL;
1962
1963        atomic_add(skb->truesize, &sk->sk_omem_alloc);
1964        skb->sk = sk;
1965        skb->destructor = sock_ofree;
1966        return skb;
1967}
1968
1969/*
1970 * Allocate a memory block from the socket's option memory buffer.
1971 */
1972void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1973{
1974        if ((unsigned int)size <= sysctl_optmem_max &&
1975            atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1976                void *mem;
1977                /* First do the add, to avoid the race if kmalloc
1978                 * might sleep.
1979                 */
1980                atomic_add(size, &sk->sk_omem_alloc);
1981                mem = kmalloc(size, priority);
1982                if (mem)
1983                        return mem;
1984                atomic_sub(size, &sk->sk_omem_alloc);
1985        }
1986        return NULL;
1987}
1988EXPORT_SYMBOL(sock_kmalloc);
1989
1990/* Free an option memory block. Note, we actually want the inline
1991 * here as this allows gcc to detect the nullify and fold away the
1992 * condition entirely.
1993 */
1994static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1995                                  const bool nullify)
1996{
1997        if (WARN_ON_ONCE(!mem))
1998                return;
1999        if (nullify)
2000                kzfree(mem);
2001        else
2002                kfree(mem);
2003        atomic_sub(size, &sk->sk_omem_alloc);
2004}
2005
2006void sock_kfree_s(struct sock *sk, void *mem, int size)
2007{
2008        __sock_kfree_s(sk, mem, size, false);
2009}
2010EXPORT_SYMBOL(sock_kfree_s);
2011
2012void sock_kzfree_s(struct sock *sk, void *mem, int size)
2013{
2014        __sock_kfree_s(sk, mem, size, true);
2015}
2016EXPORT_SYMBOL(sock_kzfree_s);
2017
2018/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2019   I think, these locks should be removed for datagram sockets.
2020 */
2021static long sock_wait_for_wmem(struct sock *sk, long timeo)
2022{
2023        DEFINE_WAIT(wait);
2024
2025        sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2026        for (;;) {
2027                if (!timeo)
2028                        break;
2029                if (signal_pending(current))
2030                        break;
2031                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2032                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2033                if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2034                        break;
2035                if (sk->sk_shutdown & SEND_SHUTDOWN)
2036                        break;
2037                if (sk->sk_err)
2038                        break;
2039                timeo = schedule_timeout(timeo);
2040        }
2041        finish_wait(sk_sleep(sk), &wait);
2042        return timeo;
2043}
2044
2045
2046/*
2047 *      Generic send/receive buffer handlers
2048 */
2049
2050struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2051                                     unsigned long data_len, int noblock,
2052                                     int *errcode, int max_page_order)
2053{
2054        struct sk_buff *skb;
2055        long timeo;
2056        int err;
2057
2058        timeo = sock_sndtimeo(sk, noblock);
2059        for (;;) {
2060                err = sock_error(sk);
2061                if (err != 0)
2062                        goto failure;
2063
2064                err = -EPIPE;
2065                if (sk->sk_shutdown & SEND_SHUTDOWN)
2066                        goto failure;
2067
2068                if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2069                        break;
2070
2071                sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2072                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2073                err = -EAGAIN;
2074                if (!timeo)
2075                        goto failure;
2076                if (signal_pending(current))
2077                        goto interrupted;
2078                timeo = sock_wait_for_wmem(sk, timeo);
2079        }
2080        skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2081                                   errcode, sk->sk_allocation);
2082        if (skb)
2083                skb_set_owner_w(skb, sk);
2084        return skb;
2085
2086interrupted:
2087        err = sock_intr_errno(timeo);
2088failure:
2089        *errcode = err;
2090        return NULL;
2091}
2092EXPORT_SYMBOL(sock_alloc_send_pskb);
2093
2094struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2095                                    int noblock, int *errcode)
2096{
2097        return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2098}
2099EXPORT_SYMBOL(sock_alloc_send_skb);
2100
2101int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2102                     struct sockcm_cookie *sockc)
2103{
2104        u32 tsflags;
2105
2106        switch (cmsg->cmsg_type) {
2107        case SO_MARK:
2108                if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2109                        return -EPERM;
2110                if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2111                        return -EINVAL;
2112                sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2113                break;
2114        case SO_TIMESTAMPING:
2115                if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2116                        return -EINVAL;
2117
2118                tsflags = *(u32 *)CMSG_DATA(cmsg);
2119                if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2120                        return -EINVAL;
2121
2122                sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2123                sockc->tsflags |= tsflags;
2124                break;
2125        /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2126        case SCM_RIGHTS:
2127        case SCM_CREDENTIALS:
2128                break;
2129        default:
2130                return -EINVAL;
2131        }
2132        return 0;
2133}
2134EXPORT_SYMBOL(__sock_cmsg_send);
2135
2136int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2137                   struct sockcm_cookie *sockc)
2138{
2139        struct cmsghdr *cmsg;
2140        int ret;
2141
2142        for_each_cmsghdr(cmsg, msg) {
2143                if (!CMSG_OK(msg, cmsg))
2144                        return -EINVAL;
2145                if (cmsg->cmsg_level != SOL_SOCKET)
2146                        continue;
2147                ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2148                if (ret)
2149                        return ret;
2150        }
2151        return 0;
2152}
2153EXPORT_SYMBOL(sock_cmsg_send);
2154
2155static void sk_enter_memory_pressure(struct sock *sk)
2156{
2157        if (!sk->sk_prot->enter_memory_pressure)
2158                return;
2159
2160        sk->sk_prot->enter_memory_pressure(sk);
2161}
2162
2163static void sk_leave_memory_pressure(struct sock *sk)
2164{
2165        if (sk->sk_prot->leave_memory_pressure) {
2166                sk->sk_prot->leave_memory_pressure(sk);
2167        } else {
2168                unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2169
2170                if (memory_pressure && *memory_pressure)
2171                        *memory_pressure = 0;
2172        }
2173}
2174
2175/* On 32bit arches, an skb frag is limited to 2^15 */
2176#define SKB_FRAG_PAGE_ORDER     get_order(32768)
2177
2178/**
2179 * skb_page_frag_refill - check that a page_frag contains enough room
2180 * @sz: minimum size of the fragment we want to get
2181 * @pfrag: pointer to page_frag
2182 * @gfp: priority for memory allocation
2183 *
2184 * Note: While this allocator tries to use high order pages, there is
2185 * no guarantee that allocations succeed. Therefore, @sz MUST be
2186 * less or equal than PAGE_SIZE.
2187 */
2188bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2189{
2190        if (pfrag->page) {
2191                if (page_ref_count(pfrag->page) == 1) {
2192                        pfrag->offset = 0;
2193                        return true;
2194                }
2195                if (pfrag->offset + sz <= pfrag->size)
2196                        return true;
2197                put_page(pfrag->page);
2198        }
2199
2200        pfrag->offset = 0;
2201        if (SKB_FRAG_PAGE_ORDER) {
2202                /* Avoid direct reclaim but allow kswapd to wake */
2203                pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2204                                          __GFP_COMP | __GFP_NOWARN |
2205                                          __GFP_NORETRY,
2206                                          SKB_FRAG_PAGE_ORDER);
2207                if (likely(pfrag->page)) {
2208                        pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2209                        return true;
2210                }
2211        }
2212        pfrag->page = alloc_page(gfp);
2213        if (likely(pfrag->page)) {
2214                pfrag->size = PAGE_SIZE;
2215                return true;
2216        }
2217        return false;
2218}
2219EXPORT_SYMBOL(skb_page_frag_refill);
2220
2221bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2222{
2223        if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2224                return true;
2225
2226        sk_enter_memory_pressure(sk);
2227        sk_stream_moderate_sndbuf(sk);
2228        return false;
2229}
2230EXPORT_SYMBOL(sk_page_frag_refill);
2231
2232static void __lock_sock(struct sock *sk)
2233        __releases(&sk->sk_lock.slock)
2234        __acquires(&sk->sk_lock.slock)
2235{
2236        DEFINE_WAIT(wait);
2237
2238        for (;;) {
2239                prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2240                                        TASK_UNINTERRUPTIBLE);
2241                spin_unlock_bh(&sk->sk_lock.slock);
2242                schedule();
2243                spin_lock_bh(&sk->sk_lock.slock);
2244                if (!sock_owned_by_user(sk))
2245                        break;
2246        }
2247        finish_wait(&sk->sk_lock.wq, &wait);
2248}
2249
2250static void __release_sock(struct sock *sk)
2251        __releases(&sk->sk_lock.slock)
2252        __acquires(&sk->sk_lock.slock)
2253{
2254        struct sk_buff *skb, *next;
2255
2256        while ((skb = sk->sk_backlog.head) != NULL) {
2257                sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2258
2259                spin_unlock_bh(&sk->sk_lock.slock);
2260
2261                do {
2262                        next = skb->next;
2263                        prefetch(next);
2264                        WARN_ON_ONCE(skb_dst_is_noref(skb));
2265                        skb->next = NULL;
2266                        sk_backlog_rcv(sk, skb);
2267
2268                        cond_resched();
2269
2270                        skb = next;
2271                } while (skb != NULL);
2272
2273                spin_lock_bh(&sk->sk_lock.slock);
2274        }
2275
2276        /*
2277         * Doing the zeroing here guarantee we can not loop forever
2278         * while a wild producer attempts to flood us.
2279         */
2280        sk->sk_backlog.len = 0;
2281}
2282
2283void __sk_flush_backlog(struct sock *sk)
2284{
2285        spin_lock_bh(&sk->sk_lock.slock);
2286        __release_sock(sk);
2287        spin_unlock_bh(&sk->sk_lock.slock);
2288}
2289
2290/**
2291 * sk_wait_data - wait for data to arrive at sk_receive_queue
2292 * @sk:    sock to wait on
2293 * @timeo: for how long
2294 * @skb:   last skb seen on sk_receive_queue
2295 *
2296 * Now socket state including sk->sk_err is changed only under lock,
2297 * hence we may omit checks after joining wait queue.
2298 * We check receive queue before schedule() only as optimization;
2299 * it is very likely that release_sock() added new data.
2300 */
2301int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2302{
2303        DEFINE_WAIT_FUNC(wait, woken_wake_function);
2304        int rc;
2305
2306        add_wait_queue(sk_sleep(sk), &wait);
2307        sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2308        rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2309        sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2310        remove_wait_queue(sk_sleep(sk), &wait);
2311        return rc;
2312}
2313EXPORT_SYMBOL(sk_wait_data);
2314
2315/**
2316 *      __sk_mem_raise_allocated - increase memory_allocated
2317 *      @sk: socket
2318 *      @size: memory size to allocate
2319 *      @amt: pages to allocate
2320 *      @kind: allocation type
2321 *
2322 *      Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2323 */
2324int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2325{
2326        struct proto *prot = sk->sk_prot;
2327        long allocated = sk_memory_allocated_add(sk, amt);
2328
2329        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2330            !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2331                goto suppress_allocation;
2332
2333        /* Under limit. */
2334        if (allocated <= sk_prot_mem_limits(sk, 0)) {
2335                sk_leave_memory_pressure(sk);
2336                return 1;
2337        }
2338
2339        /* Under pressure. */
2340        if (allocated > sk_prot_mem_limits(sk, 1))
2341                sk_enter_memory_pressure(sk);
2342
2343        /* Over hard limit. */
2344        if (allocated > sk_prot_mem_limits(sk, 2))
2345                goto suppress_allocation;
2346
2347        /* guarantee minimum buffer size under pressure */
2348        if (kind == SK_MEM_RECV) {
2349                if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2350                        return 1;
2351
2352        } else { /* SK_MEM_SEND */
2353                if (sk->sk_type == SOCK_STREAM) {
2354                        if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2355                                return 1;
2356                } else if (refcount_read(&sk->sk_wmem_alloc) <
2357                           prot->sysctl_wmem[0])
2358                                return 1;
2359        }
2360
2361        if (sk_has_memory_pressure(sk)) {
2362                int alloc;
2363
2364                if (!sk_under_memory_pressure(sk))
2365                        return 1;
2366                alloc = sk_sockets_allocated_read_positive(sk);
2367                if (sk_prot_mem_limits(sk, 2) > alloc *
2368                    sk_mem_pages(sk->sk_wmem_queued +
2369                                 atomic_read(&sk->sk_rmem_alloc) +
2370                                 sk->sk_forward_alloc))
2371                        return 1;
2372        }
2373
2374suppress_allocation:
2375
2376        if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2377                sk_stream_moderate_sndbuf(sk);
2378
2379                /* Fail only if socket is _under_ its sndbuf.
2380                 * In this case we cannot block, so that we have to fail.
2381                 */
2382                if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2383                        return 1;
2384        }
2385
2386        trace_sock_exceed_buf_limit(sk, prot, allocated);
2387
2388        sk_memory_allocated_sub(sk, amt);
2389
2390        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2391                mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2392
2393        return 0;
2394}
2395EXPORT_SYMBOL(__sk_mem_raise_allocated);
2396
2397/**
2398 *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2399 *      @sk: socket
2400 *      @size: memory size to allocate
2401 *      @kind: allocation type
2402 *
2403 *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2404 *      rmem allocation. This function assumes that protocols which have
2405 *      memory_pressure use sk_wmem_queued as write buffer accounting.
2406 */
2407int __sk_mem_schedule(struct sock *sk, int size, int kind)
2408{
2409        int ret, amt = sk_mem_pages(size);
2410
2411        sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2412        ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2413        if (!ret)
2414                sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2415        return ret;
2416}
2417EXPORT_SYMBOL(__sk_mem_schedule);
2418
2419/**
2420 *      __sk_mem_reduce_allocated - reclaim memory_allocated
2421 *      @sk: socket
2422 *      @amount: number of quanta
2423 *
2424 *      Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2425 */
2426void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2427{
2428        sk_memory_allocated_sub(sk, amount);
2429
2430        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2431                mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2432
2433        if (sk_under_memory_pressure(sk) &&
2434            (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2435                sk_leave_memory_pressure(sk);
2436}
2437EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2438
2439/**
2440 *      __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2441 *      @sk: socket
2442 *      @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2443 */
2444void __sk_mem_reclaim(struct sock *sk, int amount)
2445{
2446        amount >>= SK_MEM_QUANTUM_SHIFT;
2447        sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2448        __sk_mem_reduce_allocated(sk, amount);
2449}
2450EXPORT_SYMBOL(__sk_mem_reclaim);
2451
2452int sk_set_peek_off(struct sock *sk, int val)
2453{
2454        sk->sk_peek_off = val;
2455        return 0;
2456}
2457EXPORT_SYMBOL_GPL(sk_set_peek_off);
2458
2459/*
2460 * Set of default routines for initialising struct proto_ops when
2461 * the protocol does not support a particular function. In certain
2462 * cases where it makes no sense for a protocol to have a "do nothing"
2463 * function, some default processing is provided.
2464 */
2465
2466int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2467{
2468        return -EOPNOTSUPP;
2469}
2470EXPORT_SYMBOL(sock_no_bind);
2471
2472int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2473                    int len, int flags)
2474{
2475        return -EOPNOTSUPP;
2476}
2477EXPORT_SYMBOL(sock_no_connect);
2478
2479int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2480{
2481        return -EOPNOTSUPP;
2482}
2483EXPORT_SYMBOL(sock_no_socketpair);
2484
2485int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2486                   bool kern)
2487{
2488        return -EOPNOTSUPP;
2489}
2490EXPORT_SYMBOL(sock_no_accept);
2491
2492int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2493                    int *len, int peer)
2494{
2495        return -EOPNOTSUPP;
2496}
2497EXPORT_SYMBOL(sock_no_getname);
2498
2499unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2500{
2501        return 0;
2502}
2503EXPORT_SYMBOL(sock_no_poll);
2504
2505int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2506{
2507        return -EOPNOTSUPP;
2508}
2509EXPORT_SYMBOL(sock_no_ioctl);
2510
2511int sock_no_listen(struct socket *sock, int backlog)
2512{
2513        return -EOPNOTSUPP;
2514}
2515EXPORT_SYMBOL(sock_no_listen);
2516
2517int sock_no_shutdown(struct socket *sock, int how)
2518{
2519        return -EOPNOTSUPP;
2520}
2521EXPORT_SYMBOL(sock_no_shutdown);
2522
2523int sock_no_setsockopt(struct socket *sock, int level, int optname,
2524                    char __user *optval, unsigned int optlen)
2525{
2526        return -EOPNOTSUPP;
2527}
2528EXPORT_SYMBOL(sock_no_setsockopt);
2529
2530int sock_no_getsockopt(struct socket *sock, int level, int optname,
2531                    char __user *optval, int __user *optlen)
2532{
2533        return -EOPNOTSUPP;
2534}
2535EXPORT_SYMBOL(sock_no_getsockopt);
2536
2537int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2538{
2539        return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_sendmsg);
2542
2543int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2544{
2545        return -EOPNOTSUPP;
2546}
2547EXPORT_SYMBOL(sock_no_sendmsg_locked);
2548
2549int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2550                    int flags)
2551{
2552        return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_recvmsg);
2555
2556int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2557{
2558        /* Mirror missing mmap method error code */
2559        return -ENODEV;
2560}
2561EXPORT_SYMBOL(sock_no_mmap);
2562
2563ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2564{
2565        ssize_t res;
2566        struct msghdr msg = {.msg_flags = flags};
2567        struct kvec iov;
2568        char *kaddr = kmap(page);
2569        iov.iov_base = kaddr + offset;
2570        iov.iov_len = size;
2571        res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2572        kunmap(page);
2573        return res;
2574}
2575EXPORT_SYMBOL(sock_no_sendpage);
2576
2577ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2578                                int offset, size_t size, int flags)
2579{
2580        ssize_t res;
2581        struct msghdr msg = {.msg_flags = flags};
2582        struct kvec iov;
2583        char *kaddr = kmap(page);
2584
2585        iov.iov_base = kaddr + offset;
2586        iov.iov_len = size;
2587        res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2588        kunmap(page);
2589        return res;
2590}
2591EXPORT_SYMBOL(sock_no_sendpage_locked);
2592
2593/*
2594 *      Default Socket Callbacks
2595 */
2596
2597static void sock_def_wakeup(struct sock *sk)
2598{
2599        struct socket_wq *wq;
2600
2601        rcu_read_lock();
2602        wq = rcu_dereference(sk->sk_wq);
2603        if (skwq_has_sleeper(wq))
2604                wake_up_interruptible_all(&wq->wait);
2605        rcu_read_unlock();
2606}
2607
2608static void sock_def_error_report(struct sock *sk)
2609{
2610        struct socket_wq *wq;
2611
2612        rcu_read_lock();
2613        wq = rcu_dereference(sk->sk_wq);
2614        if (skwq_has_sleeper(wq))
2615                wake_up_interruptible_poll(&wq->wait, POLLERR);
2616        sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2617        rcu_read_unlock();
2618}
2619
2620static void sock_def_readable(struct sock *sk)
2621{
2622        struct socket_wq *wq;
2623
2624        rcu_read_lock();
2625        wq = rcu_dereference(sk->sk_wq);
2626        if (skwq_has_sleeper(wq))
2627                wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2628                                                POLLRDNORM | POLLRDBAND);
2629        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2630        rcu_read_unlock();
2631}
2632
2633static void sock_def_write_space(struct sock *sk)
2634{
2635        struct socket_wq *wq;
2636
2637        rcu_read_lock();
2638
2639        /* Do not wake up a writer until he can make "significant"
2640         * progress.  --DaveM
2641         */
2642        if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2643                wq = rcu_dereference(sk->sk_wq);
2644                if (skwq_has_sleeper(wq))
2645                        wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2646                                                POLLWRNORM | POLLWRBAND);
2647
2648                /* Should agree with poll, otherwise some programs break */
2649                if (sock_writeable(sk))
2650                        sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2651        }
2652
2653        rcu_read_unlock();
2654}
2655
2656static void sock_def_destruct(struct sock *sk)
2657{
2658}
2659
2660void sk_send_sigurg(struct sock *sk)
2661{
2662        if (sk->sk_socket && sk->sk_socket->file)
2663                if (send_sigurg(&sk->sk_socket->file->f_owner))
2664                        sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2665}
2666EXPORT_SYMBOL(sk_send_sigurg);
2667
2668void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2669                    unsigned long expires)
2670{
2671        if (!mod_timer(timer, expires))
2672                sock_hold(sk);
2673}
2674EXPORT_SYMBOL(sk_reset_timer);
2675
2676void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2677{
2678        if (del_timer(timer))
2679                __sock_put(sk);
2680}
2681EXPORT_SYMBOL(sk_stop_timer);
2682
2683void sock_init_data(struct socket *sock, struct sock *sk)
2684{
2685        sk_init_common(sk);
2686        sk->sk_send_head        =       NULL;
2687
2688        init_timer(&sk->sk_timer);
2689
2690        sk->sk_allocation       =       GFP_KERNEL;
2691        sk->sk_rcvbuf           =       sysctl_rmem_default;
2692        sk->sk_sndbuf           =       sysctl_wmem_default;
2693        sk->sk_state            =       TCP_CLOSE;
2694        sk_set_socket(sk, sock);
2695
2696        sock_set_flag(sk, SOCK_ZAPPED);
2697
2698        if (sock) {
2699                sk->sk_type     =       sock->type;
2700                sk->sk_wq       =       sock->wq;
2701                sock->sk        =       sk;
2702                sk->sk_uid      =       SOCK_INODE(sock)->i_uid;
2703        } else {
2704                sk->sk_wq       =       NULL;
2705                sk->sk_uid      =       make_kuid(sock_net(sk)->user_ns, 0);
2706        }
2707
2708        rwlock_init(&sk->sk_callback_lock);
2709        if (sk->sk_kern_sock)
2710                lockdep_set_class_and_name(
2711                        &sk->sk_callback_lock,
2712                        af_kern_callback_keys + sk->sk_family,
2713                        af_family_kern_clock_key_strings[sk->sk_family]);
2714        else
2715                lockdep_set_class_and_name(
2716                        &sk->sk_callback_lock,
2717                        af_callback_keys + sk->sk_family,
2718                        af_family_clock_key_strings[sk->sk_family]);
2719
2720        sk->sk_state_change     =       sock_def_wakeup;
2721        sk->sk_data_ready       =       sock_def_readable;
2722        sk->sk_write_space      =       sock_def_write_space;
2723        sk->sk_error_report     =       sock_def_error_report;
2724        sk->sk_destruct         =       sock_def_destruct;
2725
2726        sk->sk_frag.page        =       NULL;
2727        sk->sk_frag.offset      =       0;
2728        sk->sk_peek_off         =       -1;
2729
2730        sk->sk_peer_pid         =       NULL;
2731        sk->sk_peer_cred        =       NULL;
2732        sk->sk_write_pending    =       0;
2733        sk->sk_rcvlowat         =       1;
2734        sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2735        sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2736
2737        sk->sk_stamp = SK_DEFAULT_STAMP;
2738        atomic_set(&sk->sk_zckey, 0);
2739
2740#ifdef CONFIG_NET_RX_BUSY_POLL
2741        sk->sk_napi_id          =       0;
2742        sk->sk_ll_usec          =       sysctl_net_busy_read;
2743#endif
2744
2745        sk->sk_max_pacing_rate = ~0U;
2746        sk->sk_pacing_rate = ~0U;
2747        sk->sk_incoming_cpu = -1;
2748        /*
2749         * Before updating sk_refcnt, we must commit prior changes to memory
2750         * (Documentation/RCU/rculist_nulls.txt for details)
2751         */
2752        smp_wmb();
2753        refcount_set(&sk->sk_refcnt, 1);
2754        atomic_set(&sk->sk_drops, 0);
2755}
2756EXPORT_SYMBOL(sock_init_data);
2757
2758void lock_sock_nested(struct sock *sk, int subclass)
2759{
2760        might_sleep();
2761        spin_lock_bh(&sk->sk_lock.slock);
2762        if (sk->sk_lock.owned)
2763                __lock_sock(sk);
2764        sk->sk_lock.owned = 1;
2765        spin_unlock(&sk->sk_lock.slock);
2766        /*
2767         * The sk_lock has mutex_lock() semantics here:
2768         */
2769        mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2770        local_bh_enable();
2771}
2772EXPORT_SYMBOL(lock_sock_nested);
2773
2774void release_sock(struct sock *sk)
2775{
2776        spin_lock_bh(&sk->sk_lock.slock);
2777        if (sk->sk_backlog.tail)
2778                __release_sock(sk);
2779
2780        /* Warning : release_cb() might need to release sk ownership,
2781         * ie call sock_release_ownership(sk) before us.
2782         */
2783        if (sk->sk_prot->release_cb)
2784                sk->sk_prot->release_cb(sk);
2785
2786        sock_release_ownership(sk);
2787        if (waitqueue_active(&sk->sk_lock.wq))
2788                wake_up(&sk->sk_lock.wq);
2789        spin_unlock_bh(&sk->sk_lock.slock);
2790}
2791EXPORT_SYMBOL(release_sock);
2792
2793/**
2794 * lock_sock_fast - fast version of lock_sock
2795 * @sk: socket
2796 *
2797 * This version should be used for very small section, where process wont block
2798 * return false if fast path is taken:
2799 *
2800 *   sk_lock.slock locked, owned = 0, BH disabled
2801 *
2802 * return true if slow path is taken:
2803 *
2804 *   sk_lock.slock unlocked, owned = 1, BH enabled
2805 */
2806bool lock_sock_fast(struct sock *sk)
2807{
2808        might_sleep();
2809        spin_lock_bh(&sk->sk_lock.slock);
2810
2811        if (!sk->sk_lock.owned)
2812                /*
2813                 * Note : We must disable BH
2814                 */
2815                return false;
2816
2817        __lock_sock(sk);
2818        sk->sk_lock.owned = 1;
2819        spin_unlock(&sk->sk_lock.slock);
2820        /*
2821         * The sk_lock has mutex_lock() semantics here:
2822         */
2823        mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2824        local_bh_enable();
2825        return true;
2826}
2827EXPORT_SYMBOL(lock_sock_fast);
2828
2829int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2830{
2831        struct timeval tv;
2832        if (!sock_flag(sk, SOCK_TIMESTAMP))
2833                sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2834        tv = ktime_to_timeval(sk->sk_stamp);
2835        if (tv.tv_sec == -1)
2836                return -ENOENT;
2837        if (tv.tv_sec == 0) {
2838                sk->sk_stamp = ktime_get_real();
2839                tv = ktime_to_timeval(sk->sk_stamp);
2840        }
2841        return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2842}
2843EXPORT_SYMBOL(sock_get_timestamp);
2844
2845int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2846{
2847        struct timespec ts;
2848        if (!sock_flag(sk, SOCK_TIMESTAMP))
2849                sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2850        ts = ktime_to_timespec(sk->sk_stamp);
2851        if (ts.tv_sec == -1)
2852                return -ENOENT;
2853        if (ts.tv_sec == 0) {
2854                sk->sk_stamp = ktime_get_real();
2855                ts = ktime_to_timespec(sk->sk_stamp);
2856        }
2857        return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2858}
2859EXPORT_SYMBOL(sock_get_timestampns);
2860
2861void sock_enable_timestamp(struct sock *sk, int flag)
2862{
2863        if (!sock_flag(sk, flag)) {
2864                unsigned long previous_flags = sk->sk_flags;
2865
2866                sock_set_flag(sk, flag);
2867                /*
2868                 * we just set one of the two flags which require net
2869                 * time stamping, but time stamping might have been on
2870                 * already because of the other one
2871                 */
2872                if (sock_needs_netstamp(sk) &&
2873                    !(previous_flags & SK_FLAGS_TIMESTAMP))
2874                        net_enable_timestamp();
2875        }
2876}
2877
2878int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2879                       int level, int type)
2880{
2881        struct sock_exterr_skb *serr;
2882        struct sk_buff *skb;
2883        int copied, err;
2884
2885        err = -EAGAIN;
2886        skb = sock_dequeue_err_skb(sk);
2887        if (skb == NULL)
2888                goto out;
2889
2890        copied = skb->len;
2891        if (copied > len) {
2892                msg->msg_flags |= MSG_TRUNC;
2893                copied = len;
2894        }
2895        err = skb_copy_datagram_msg(skb, 0, msg, copied);
2896        if (err)
2897                goto out_free_skb;
2898
2899        sock_recv_timestamp(msg, sk, skb);
2900
2901        serr = SKB_EXT_ERR(skb);
2902        put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2903
2904        msg->msg_flags |= MSG_ERRQUEUE;
2905        err = copied;
2906
2907out_free_skb:
2908        kfree_skb(skb);
2909out:
2910        return err;
2911}
2912EXPORT_SYMBOL(sock_recv_errqueue);
2913
2914/*
2915 *      Get a socket option on an socket.
2916 *
2917 *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2918 *      asynchronous errors should be reported by getsockopt. We assume
2919 *      this means if you specify SO_ERROR (otherwise whats the point of it).
2920 */
2921int sock_common_getsockopt(struct socket *sock, int level, int optname,
2922                           char __user *optval, int __user *optlen)
2923{
2924        struct sock *sk = sock->sk;
2925
2926        return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2927}
2928EXPORT_SYMBOL(sock_common_getsockopt);
2929
2930#ifdef CONFIG_COMPAT
2931int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2932                                  char __user *optval, int __user *optlen)
2933{
2934        struct sock *sk = sock->sk;
2935
2936        if (sk->sk_prot->compat_getsockopt != NULL)
2937                return sk->sk_prot->compat_getsockopt(sk, level, optname,
2938                                                      optval, optlen);
2939        return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2940}
2941EXPORT_SYMBOL(compat_sock_common_getsockopt);
2942#endif
2943
2944int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2945                        int flags)
2946{
2947        struct sock *sk = sock->sk;
2948        int addr_len = 0;
2949        int err;
2950
2951        err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2952                                   flags & ~MSG_DONTWAIT, &addr_len);
2953        if (err >= 0)
2954                msg->msg_namelen = addr_len;
2955        return err;
2956}
2957EXPORT_SYMBOL(sock_common_recvmsg);
2958
2959/*
2960 *      Set socket options on an inet socket.
2961 */
2962int sock_common_setsockopt(struct socket *sock, int level, int optname,
2963                           char __user *optval, unsigned int optlen)
2964{
2965        struct sock *sk = sock->sk;
2966
2967        return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2968}
2969EXPORT_SYMBOL(sock_common_setsockopt);
2970
2971#ifdef CONFIG_COMPAT
2972int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2973                                  char __user *optval, unsigned int optlen)
2974{
2975        struct sock *sk = sock->sk;
2976
2977        if (sk->sk_prot->compat_setsockopt != NULL)
2978                return sk->sk_prot->compat_setsockopt(sk, level, optname,
2979                                                      optval, optlen);
2980        return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2981}
2982EXPORT_SYMBOL(compat_sock_common_setsockopt);
2983#endif
2984
2985void sk_common_release(struct sock *sk)
2986{
2987        if (sk->sk_prot->destroy)
2988                sk->sk_prot->destroy(sk);
2989
2990        /*
2991         * Observation: when sock_common_release is called, processes have
2992         * no access to socket. But net still has.
2993         * Step one, detach it from networking:
2994         *
2995         * A. Remove from hash tables.
2996         */
2997
2998        sk->sk_prot->unhash(sk);
2999
3000        /*
3001         * In this point socket cannot receive new packets, but it is possible
3002         * that some packets are in flight because some CPU runs receiver and
3003         * did hash table lookup before we unhashed socket. They will achieve
3004         * receive queue and will be purged by socket destructor.
3005         *
3006         * Also we still have packets pending on receive queue and probably,
3007         * our own packets waiting in device queues. sock_destroy will drain
3008         * receive queue, but transmitted packets will delay socket destruction
3009         * until the last reference will be released.
3010         */
3011
3012        sock_orphan(sk);
3013
3014        xfrm_sk_free_policy(sk);
3015
3016        sk_refcnt_debug_release(sk);
3017
3018        sock_put(sk);
3019}
3020EXPORT_SYMBOL(sk_common_release);
3021
3022void sk_get_meminfo(const struct sock *sk, u32 *mem)
3023{
3024        memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3025
3026        mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3027        mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3028        mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3029        mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3030        mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3031        mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3032        mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3033        mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3034        mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3035}
3036
3037#ifdef CONFIG_PROC_FS
3038#define PROTO_INUSE_NR  64      /* should be enough for the first time */
3039struct prot_inuse {
3040        int val[PROTO_INUSE_NR];
3041};
3042
3043static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3044
3045#ifdef CONFIG_NET_NS
3046void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3047{
3048        __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
3049}
3050EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3051
3052int sock_prot_inuse_get(struct net *net, struct proto *prot)
3053{
3054        int cpu, idx = prot->inuse_idx;
3055        int res = 0;
3056
3057        for_each_possible_cpu(cpu)
3058                res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
3059
3060        return res >= 0 ? res : 0;
3061}
3062EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3063
3064static int __net_init sock_inuse_init_net(struct net *net)
3065{
3066        net->core.inuse = alloc_percpu(struct prot_inuse);
3067        return net->core.inuse ? 0 : -ENOMEM;
3068}
3069
3070static void __net_exit sock_inuse_exit_net(struct net *net)
3071{
3072        free_percpu(net->core.inuse);
3073}
3074
3075static struct pernet_operations net_inuse_ops = {
3076        .init = sock_inuse_init_net,
3077        .exit = sock_inuse_exit_net,
3078};
3079
3080static __init int net_inuse_init(void)
3081{
3082        if (register_pernet_subsys(&net_inuse_ops))
3083                panic("Cannot initialize net inuse counters");
3084
3085        return 0;
3086}
3087
3088core_initcall(net_inuse_init);
3089#else
3090static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
3091
3092void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3093{
3094        __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
3095}
3096EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3097
3098int sock_prot_inuse_get(struct net *net, struct proto *prot)
3099{
3100        int cpu, idx = prot->inuse_idx;
3101        int res = 0;
3102
3103        for_each_possible_cpu(cpu)
3104                res += per_cpu(prot_inuse, cpu).val[idx];
3105
3106        return res >= 0 ? res : 0;
3107}
3108EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3109#endif
3110
3111static void assign_proto_idx(struct proto *prot)
3112{
3113        prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3114
3115        if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3116                pr_err("PROTO_INUSE_NR exhausted\n");
3117                return;
3118        }
3119
3120        set_bit(prot->inuse_idx, proto_inuse_idx);
3121}
3122
3123static void release_proto_idx(struct proto *prot)
3124{
3125        if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3126                clear_bit(prot->inuse_idx, proto_inuse_idx);
3127}
3128#else
3129static inline void assign_proto_idx(struct proto *prot)
3130{
3131}
3132
3133static inline void release_proto_idx(struct proto *prot)
3134{
3135}
3136#endif
3137
3138static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3139{
3140        if (!rsk_prot)
3141                return;
3142        kfree(rsk_prot->slab_name);
3143        rsk_prot->slab_name = NULL;
3144        kmem_cache_destroy(rsk_prot->slab);
3145        rsk_prot->slab = NULL;
3146}
3147
3148static int req_prot_init(const struct proto *prot)
3149{
3150        struct request_sock_ops *rsk_prot = prot->rsk_prot;
3151
3152        if (!rsk_prot)
3153                return 0;
3154
3155        rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3156                                        prot->name);
3157        if (!rsk_prot->slab_name)
3158                return -ENOMEM;
3159
3160        rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3161                                           rsk_prot->obj_size, 0,
3162                                           prot->slab_flags, NULL);
3163
3164        if (!rsk_prot->slab) {
3165                pr_crit("%s: Can't create request sock SLAB cache!\n",
3166                        prot->name);
3167                return -ENOMEM;
3168        }
3169        return 0;
3170}
3171
3172int proto_register(struct proto *prot, int alloc_slab)
3173{
3174        if (alloc_slab) {
3175                prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3176                                        SLAB_HWCACHE_ALIGN | prot->slab_flags,
3177                                        NULL);
3178
3179                if (prot->slab == NULL) {
3180                        pr_crit("%s: Can't create sock SLAB cache!\n",
3181                                prot->name);
3182                        goto out;
3183                }
3184
3185                if (req_prot_init(prot))
3186                        goto out_free_request_sock_slab;
3187
3188                if (prot->twsk_prot != NULL) {
3189                        prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3190
3191                        if (prot->twsk_prot->twsk_slab_name == NULL)
3192                                goto out_free_request_sock_slab;
3193
3194                        prot->twsk_prot->twsk_slab =
3195                                kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3196                                                  prot->twsk_prot->twsk_obj_size,
3197                                                  0,
3198                                                  prot->slab_flags,
3199                                                  NULL);
3200                        if (prot->twsk_prot->twsk_slab == NULL)
3201                                goto out_free_timewait_sock_slab_name;
3202                }
3203        }
3204
3205        mutex_lock(&proto_list_mutex);
3206        list_add(&prot->node, &proto_list);
3207        assign_proto_idx(prot);
3208        mutex_unlock(&proto_list_mutex);
3209        return 0;
3210
3211out_free_timewait_sock_slab_name:
3212        kfree(prot->twsk_prot->twsk_slab_name);
3213out_free_request_sock_slab:
3214        req_prot_cleanup(prot->rsk_prot);
3215
3216        kmem_cache_destroy(prot->slab);
3217        prot->slab = NULL;
3218out:
3219        return -ENOBUFS;
3220}
3221EXPORT_SYMBOL(proto_register);
3222
3223void proto_unregister(struct proto *prot)
3224{
3225        mutex_lock(&proto_list_mutex);
3226        release_proto_idx(prot);
3227        list_del(&prot->node);
3228        mutex_unlock(&proto_list_mutex);
3229
3230        kmem_cache_destroy(prot->slab);
3231        prot->slab = NULL;
3232
3233        req_prot_cleanup(prot->rsk_prot);
3234
3235        if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3236                kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3237                kfree(prot->twsk_prot->twsk_slab_name);
3238                prot->twsk_prot->twsk_slab = NULL;
3239        }
3240}
3241EXPORT_SYMBOL(proto_unregister);
3242
3243#ifdef CONFIG_PROC_FS
3244static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3245        __acquires(proto_list_mutex)
3246{
3247        mutex_lock(&proto_list_mutex);
3248        return seq_list_start_head(&proto_list, *pos);
3249}
3250
3251static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3252{
3253        return seq_list_next(v, &proto_list, pos);
3254}
3255
3256static void proto_seq_stop(struct seq_file *seq, void *v)
3257        __releases(proto_list_mutex)
3258{
3259        mutex_unlock(&proto_list_mutex);
3260}
3261
3262static char proto_method_implemented(const void *method)
3263{
3264        return method == NULL ? 'n' : 'y';
3265}
3266static long sock_prot_memory_allocated(struct proto *proto)
3267{
3268        return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3269}
3270
3271static char *sock_prot_memory_pressure(struct proto *proto)
3272{
3273        return proto->memory_pressure != NULL ?
3274        proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3275}
3276
3277static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3278{
3279
3280        seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3281                        "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3282                   proto->name,
3283                   proto->obj_size,
3284                   sock_prot_inuse_get(seq_file_net(seq), proto),
3285                   sock_prot_memory_allocated(proto),
3286                   sock_prot_memory_pressure(proto),
3287                   proto->max_header,
3288                   proto->slab == NULL ? "no" : "yes",
3289                   module_name(proto->owner),
3290                   proto_method_implemented(proto->close),
3291                   proto_method_implemented(proto->connect),
3292                   proto_method_implemented(proto->disconnect),
3293                   proto_method_implemented(proto->accept),
3294                   proto_method_implemented(proto->ioctl),
3295                   proto_method_implemented(proto->init),
3296                   proto_method_implemented(proto->destroy),
3297                   proto_method_implemented(proto->shutdown),
3298                   proto_method_implemented(proto->setsockopt),
3299                   proto_method_implemented(proto->getsockopt),
3300                   proto_method_implemented(proto->sendmsg),
3301                   proto_method_implemented(proto->recvmsg),
3302                   proto_method_implemented(proto->sendpage),
3303                   proto_method_implemented(proto->bind),
3304                   proto_method_implemented(proto->backlog_rcv),
3305                   proto_method_implemented(proto->hash),
3306                   proto_method_implemented(proto->unhash),
3307                   proto_method_implemented(proto->get_port),
3308                   proto_method_implemented(proto->enter_memory_pressure));
3309}
3310
3311static int proto_seq_show(struct seq_file *seq, void *v)
3312{
3313        if (v == &proto_list)
3314                seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3315                           "protocol",
3316                           "size",
3317                           "sockets",
3318                           "memory",
3319                           "press",
3320                           "maxhdr",
3321                           "slab",
3322                           "module",
3323                           "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3324        else
3325                proto_seq_printf(seq, list_entry(v, struct proto, node));
3326        return 0;
3327}
3328
3329static const struct seq_operations proto_seq_ops = {
3330        .start  = proto_seq_start,
3331        .next   = proto_seq_next,
3332        .stop   = proto_seq_stop,
3333        .show   = proto_seq_show,
3334};
3335
3336static int proto_seq_open(struct inode *inode, struct file *file)
3337{
3338        return seq_open_net(inode, file, &proto_seq_ops,
3339                            sizeof(struct seq_net_private));
3340}
3341
3342static const struct file_operations proto_seq_fops = {
3343        .owner          = THIS_MODULE,
3344        .open           = proto_seq_open,
3345        .read           = seq_read,
3346        .llseek         = seq_lseek,
3347        .release        = seq_release_net,
3348};
3349
3350static __net_init int proto_init_net(struct net *net)
3351{
3352        if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3353                return -ENOMEM;
3354
3355        return 0;
3356}
3357
3358static __net_exit void proto_exit_net(struct net *net)
3359{
3360        remove_proc_entry("protocols", net->proc_net);
3361}
3362
3363
3364static __net_initdata struct pernet_operations proto_net_ops = {
3365        .init = proto_init_net,
3366        .exit = proto_exit_net,
3367};
3368
3369static int __init proto_init(void)
3370{
3371        return register_pernet_subsys(&proto_net_ops);
3372}
3373
3374subsys_initcall(proto_init);
3375
3376#endif /* PROC_FS */
3377
3378#ifdef CONFIG_NET_RX_BUSY_POLL
3379bool sk_busy_loop_end(void *p, unsigned long start_time)
3380{
3381        struct sock *sk = p;
3382
3383        return !skb_queue_empty(&sk->sk_receive_queue) ||
3384               sk_busy_loop_timeout(sk, start_time);
3385}
3386EXPORT_SYMBOL(sk_busy_loop_end);
3387#endif /* CONFIG_NET_RX_BUSY_POLL */
3388