linux/net/ipv4/tcp_bbr.c
<<
>>
Prefs
   1/* Bottleneck Bandwidth and RTT (BBR) congestion control
   2 *
   3 * BBR congestion control computes the sending rate based on the delivery
   4 * rate (throughput) estimated from ACKs. In a nutshell:
   5 *
   6 *   On each ACK, update our model of the network path:
   7 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
   8 *      min_rtt = windowed_min(rtt, 10 seconds)
   9 *   pacing_rate = pacing_gain * bottleneck_bandwidth
  10 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
  11 *
  12 * The core algorithm does not react directly to packet losses or delays,
  13 * although BBR may adjust the size of next send per ACK when loss is
  14 * observed, or adjust the sending rate if it estimates there is a
  15 * traffic policer, in order to keep the drop rate reasonable.
  16 *
  17 * Here is a state transition diagram for BBR:
  18 *
  19 *             |
  20 *             V
  21 *    +---> STARTUP  ----+
  22 *    |        |         |
  23 *    |        V         |
  24 *    |      DRAIN   ----+
  25 *    |        |         |
  26 *    |        V         |
  27 *    +---> PROBE_BW ----+
  28 *    |      ^    |      |
  29 *    |      |    |      |
  30 *    |      +----+      |
  31 *    |                  |
  32 *    +---- PROBE_RTT <--+
  33 *
  34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
  35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
  36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
  37 * A long-lived BBR flow spends the vast majority of its time remaining
  38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
  39 * in a fair manner, with a small, bounded queue. *If* a flow has been
  40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
  41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
  42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
  43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
  44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
  45 * otherwise we enter STARTUP to try to fill the pipe.
  46 *
  47 * BBR is described in detail in:
  48 *   "BBR: Congestion-Based Congestion Control",
  49 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
  50 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
  51 *
  52 * There is a public e-mail list for discussing BBR development and testing:
  53 *   https://groups.google.com/forum/#!forum/bbr-dev
  54 *
  55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
  56 * otherwise TCP stack falls back to an internal pacing using one high
  57 * resolution timer per TCP socket and may use more resources.
  58 */
  59#include <linux/module.h>
  60#include <net/tcp.h>
  61#include <linux/inet_diag.h>
  62#include <linux/inet.h>
  63#include <linux/random.h>
  64#include <linux/win_minmax.h>
  65
  66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
  67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
  68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
  69 * Since the minimum window is >=4 packets, the lower bound isn't
  70 * an issue. The upper bound isn't an issue with existing technologies.
  71 */
  72#define BW_SCALE 24
  73#define BW_UNIT (1 << BW_SCALE)
  74
  75#define BBR_SCALE 8     /* scaling factor for fractions in BBR (e.g. gains) */
  76#define BBR_UNIT (1 << BBR_SCALE)
  77
  78/* BBR has the following modes for deciding how fast to send: */
  79enum bbr_mode {
  80        BBR_STARTUP,    /* ramp up sending rate rapidly to fill pipe */
  81        BBR_DRAIN,      /* drain any queue created during startup */
  82        BBR_PROBE_BW,   /* discover, share bw: pace around estimated bw */
  83        BBR_PROBE_RTT,  /* cut inflight to min to probe min_rtt */
  84};
  85
  86/* BBR congestion control block */
  87struct bbr {
  88        u32     min_rtt_us;             /* min RTT in min_rtt_win_sec window */
  89        u32     min_rtt_stamp;          /* timestamp of min_rtt_us */
  90        u32     probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
  91        struct minmax bw;       /* Max recent delivery rate in pkts/uS << 24 */
  92        u32     rtt_cnt;            /* count of packet-timed rounds elapsed */
  93        u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
  94        u64     cycle_mstamp;        /* time of this cycle phase start */
  95        u32     mode:3,              /* current bbr_mode in state machine */
  96                prev_ca_state:3,     /* CA state on previous ACK */
  97                packet_conservation:1,  /* use packet conservation? */
  98                restore_cwnd:1,      /* decided to revert cwnd to old value */
  99                round_start:1,       /* start of packet-timed tx->ack round? */
 100                tso_segs_goal:7,     /* segments we want in each skb we send */
 101                idle_restart:1,      /* restarting after idle? */
 102                probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
 103                unused:5,
 104                lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
 105                lt_rtt_cnt:7,        /* round trips in long-term interval */
 106                lt_use_bw:1;         /* use lt_bw as our bw estimate? */
 107        u32     lt_bw;               /* LT est delivery rate in pkts/uS << 24 */
 108        u32     lt_last_delivered;   /* LT intvl start: tp->delivered */
 109        u32     lt_last_stamp;       /* LT intvl start: tp->delivered_mstamp */
 110        u32     lt_last_lost;        /* LT intvl start: tp->lost */
 111        u32     pacing_gain:10, /* current gain for setting pacing rate */
 112                cwnd_gain:10,   /* current gain for setting cwnd */
 113                full_bw_cnt:3,  /* number of rounds without large bw gains */
 114                cycle_idx:3,    /* current index in pacing_gain cycle array */
 115                has_seen_rtt:1, /* have we seen an RTT sample yet? */
 116                unused_b:5;
 117        u32     prior_cwnd;     /* prior cwnd upon entering loss recovery */
 118        u32     full_bw;        /* recent bw, to estimate if pipe is full */
 119};
 120
 121#define CYCLE_LEN       8       /* number of phases in a pacing gain cycle */
 122
 123/* Window length of bw filter (in rounds): */
 124static const int bbr_bw_rtts = CYCLE_LEN + 2;
 125/* Window length of min_rtt filter (in sec): */
 126static const u32 bbr_min_rtt_win_sec = 10;
 127/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
 128static const u32 bbr_probe_rtt_mode_ms = 200;
 129/* Skip TSO below the following bandwidth (bits/sec): */
 130static const int bbr_min_tso_rate = 1200000;
 131
 132/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 133 * that will allow a smoothly increasing pacing rate that will double each RTT
 134 * and send the same number of packets per RTT that an un-paced, slow-starting
 135 * Reno or CUBIC flow would:
 136 */
 137static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
 138/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 139 * the queue created in BBR_STARTUP in a single round:
 140 */
 141static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
 142/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
 143static const int bbr_cwnd_gain  = BBR_UNIT * 2;
 144/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
 145static const int bbr_pacing_gain[] = {
 146        BBR_UNIT * 5 / 4,       /* probe for more available bw */
 147        BBR_UNIT * 3 / 4,       /* drain queue and/or yield bw to other flows */
 148        BBR_UNIT, BBR_UNIT, BBR_UNIT,   /* cruise at 1.0*bw to utilize pipe, */
 149        BBR_UNIT, BBR_UNIT, BBR_UNIT    /* without creating excess queue... */
 150};
 151/* Randomize the starting gain cycling phase over N phases: */
 152static const u32 bbr_cycle_rand = 7;
 153
 154/* Try to keep at least this many packets in flight, if things go smoothly. For
 155 * smooth functioning, a sliding window protocol ACKing every other packet
 156 * needs at least 4 packets in flight:
 157 */
 158static const u32 bbr_cwnd_min_target = 4;
 159
 160/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
 161/* If bw has increased significantly (1.25x), there may be more bw available: */
 162static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
 163/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
 164static const u32 bbr_full_bw_cnt = 3;
 165
 166/* "long-term" ("LT") bandwidth estimator parameters... */
 167/* The minimum number of rounds in an LT bw sampling interval: */
 168static const u32 bbr_lt_intvl_min_rtts = 4;
 169/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
 170static const u32 bbr_lt_loss_thresh = 50;
 171/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
 172static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
 173/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
 174static const u32 bbr_lt_bw_diff = 4000 / 8;
 175/* If we estimate we're policed, use lt_bw for this many round trips: */
 176static const u32 bbr_lt_bw_max_rtts = 48;
 177
 178/* Do we estimate that STARTUP filled the pipe? */
 179static bool bbr_full_bw_reached(const struct sock *sk)
 180{
 181        const struct bbr *bbr = inet_csk_ca(sk);
 182
 183        return bbr->full_bw_cnt >= bbr_full_bw_cnt;
 184}
 185
 186/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
 187static u32 bbr_max_bw(const struct sock *sk)
 188{
 189        struct bbr *bbr = inet_csk_ca(sk);
 190
 191        return minmax_get(&bbr->bw);
 192}
 193
 194/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
 195static u32 bbr_bw(const struct sock *sk)
 196{
 197        struct bbr *bbr = inet_csk_ca(sk);
 198
 199        return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
 200}
 201
 202/* Return rate in bytes per second, optionally with a gain.
 203 * The order here is chosen carefully to avoid overflow of u64. This should
 204 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 205 */
 206static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
 207{
 208        rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
 209        rate *= gain;
 210        rate >>= BBR_SCALE;
 211        rate *= USEC_PER_SEC;
 212        return rate >> BW_SCALE;
 213}
 214
 215/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
 216static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
 217{
 218        u64 rate = bw;
 219
 220        rate = bbr_rate_bytes_per_sec(sk, rate, gain);
 221        rate = min_t(u64, rate, sk->sk_max_pacing_rate);
 222        return rate;
 223}
 224
 225/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
 226static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
 227{
 228        struct tcp_sock *tp = tcp_sk(sk);
 229        struct bbr *bbr = inet_csk_ca(sk);
 230        u64 bw;
 231        u32 rtt_us;
 232
 233        if (tp->srtt_us) {              /* any RTT sample yet? */
 234                rtt_us = max(tp->srtt_us >> 3, 1U);
 235                bbr->has_seen_rtt = 1;
 236        } else {                         /* no RTT sample yet */
 237                rtt_us = USEC_PER_MSEC;  /* use nominal default RTT */
 238        }
 239        bw = (u64)tp->snd_cwnd * BW_UNIT;
 240        do_div(bw, rtt_us);
 241        sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
 242}
 243
 244/* Pace using current bw estimate and a gain factor. In order to help drive the
 245 * network toward lower queues while maintaining high utilization and low
 246 * latency, the average pacing rate aims to be slightly (~1%) lower than the
 247 * estimated bandwidth. This is an important aspect of the design. In this
 248 * implementation this slightly lower pacing rate is achieved implicitly by not
 249 * including link-layer headers in the packet size used for the pacing rate.
 250 */
 251static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
 252{
 253        struct tcp_sock *tp = tcp_sk(sk);
 254        struct bbr *bbr = inet_csk_ca(sk);
 255        u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
 256
 257        if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
 258                bbr_init_pacing_rate_from_rtt(sk);
 259        if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
 260                sk->sk_pacing_rate = rate;
 261}
 262
 263/* Return count of segments we want in the skbs we send, or 0 for default. */
 264static u32 bbr_tso_segs_goal(struct sock *sk)
 265{
 266        struct bbr *bbr = inet_csk_ca(sk);
 267
 268        return bbr->tso_segs_goal;
 269}
 270
 271static void bbr_set_tso_segs_goal(struct sock *sk)
 272{
 273        struct tcp_sock *tp = tcp_sk(sk);
 274        struct bbr *bbr = inet_csk_ca(sk);
 275        u32 min_segs;
 276
 277        min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
 278        bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
 279                                 0x7FU);
 280}
 281
 282/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
 283static void bbr_save_cwnd(struct sock *sk)
 284{
 285        struct tcp_sock *tp = tcp_sk(sk);
 286        struct bbr *bbr = inet_csk_ca(sk);
 287
 288        if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
 289                bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
 290        else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
 291                bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
 292}
 293
 294static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
 295{
 296        struct tcp_sock *tp = tcp_sk(sk);
 297        struct bbr *bbr = inet_csk_ca(sk);
 298
 299        if (event == CA_EVENT_TX_START && tp->app_limited) {
 300                bbr->idle_restart = 1;
 301                /* Avoid pointless buffer overflows: pace at est. bw if we don't
 302                 * need more speed (we're restarting from idle and app-limited).
 303                 */
 304                if (bbr->mode == BBR_PROBE_BW)
 305                        bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
 306        }
 307}
 308
 309/* Find target cwnd. Right-size the cwnd based on min RTT and the
 310 * estimated bottleneck bandwidth:
 311 *
 312 * cwnd = bw * min_rtt * gain = BDP * gain
 313 *
 314 * The key factor, gain, controls the amount of queue. While a small gain
 315 * builds a smaller queue, it becomes more vulnerable to noise in RTT
 316 * measurements (e.g., delayed ACKs or other ACK compression effects). This
 317 * noise may cause BBR to under-estimate the rate.
 318 *
 319 * To achieve full performance in high-speed paths, we budget enough cwnd to
 320 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 321 *   - one skb in sending host Qdisc,
 322 *   - one skb in sending host TSO/GSO engine
 323 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 324 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 325 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 326 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 327 * full even with ACK-every-other-packet delayed ACKs.
 328 */
 329static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
 330{
 331        struct bbr *bbr = inet_csk_ca(sk);
 332        u32 cwnd;
 333        u64 w;
 334
 335        /* If we've never had a valid RTT sample, cap cwnd at the initial
 336         * default. This should only happen when the connection is not using TCP
 337         * timestamps and has retransmitted all of the SYN/SYNACK/data packets
 338         * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
 339         * case we need to slow-start up toward something safe: TCP_INIT_CWND.
 340         */
 341        if (unlikely(bbr->min_rtt_us == ~0U))    /* no valid RTT samples yet? */
 342                return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
 343
 344        w = (u64)bw * bbr->min_rtt_us;
 345
 346        /* Apply a gain to the given value, then remove the BW_SCALE shift. */
 347        cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
 348
 349        /* Allow enough full-sized skbs in flight to utilize end systems. */
 350        cwnd += 3 * bbr->tso_segs_goal;
 351
 352        /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
 353        cwnd = (cwnd + 1) & ~1U;
 354
 355        return cwnd;
 356}
 357
 358/* An optimization in BBR to reduce losses: On the first round of recovery, we
 359 * follow the packet conservation principle: send P packets per P packets acked.
 360 * After that, we slow-start and send at most 2*P packets per P packets acked.
 361 * After recovery finishes, or upon undo, we restore the cwnd we had when
 362 * recovery started (capped by the target cwnd based on estimated BDP).
 363 *
 364 * TODO(ycheng/ncardwell): implement a rate-based approach.
 365 */
 366static bool bbr_set_cwnd_to_recover_or_restore(
 367        struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
 368{
 369        struct tcp_sock *tp = tcp_sk(sk);
 370        struct bbr *bbr = inet_csk_ca(sk);
 371        u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
 372        u32 cwnd = tp->snd_cwnd;
 373
 374        /* An ACK for P pkts should release at most 2*P packets. We do this
 375         * in two steps. First, here we deduct the number of lost packets.
 376         * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
 377         */
 378        if (rs->losses > 0)
 379                cwnd = max_t(s32, cwnd - rs->losses, 1);
 380
 381        if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
 382                /* Starting 1st round of Recovery, so do packet conservation. */
 383                bbr->packet_conservation = 1;
 384                bbr->next_rtt_delivered = tp->delivered;  /* start round now */
 385                /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
 386                cwnd = tcp_packets_in_flight(tp) + acked;
 387        } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
 388                /* Exiting loss recovery; restore cwnd saved before recovery. */
 389                bbr->restore_cwnd = 1;
 390                bbr->packet_conservation = 0;
 391        }
 392        bbr->prev_ca_state = state;
 393
 394        if (bbr->restore_cwnd) {
 395                /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
 396                cwnd = max(cwnd, bbr->prior_cwnd);
 397                bbr->restore_cwnd = 0;
 398        }
 399
 400        if (bbr->packet_conservation) {
 401                *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
 402                return true;    /* yes, using packet conservation */
 403        }
 404        *new_cwnd = cwnd;
 405        return false;
 406}
 407
 408/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 409 * has drawn us down below target), or snap down to target if we're above it.
 410 */
 411static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
 412                         u32 acked, u32 bw, int gain)
 413{
 414        struct tcp_sock *tp = tcp_sk(sk);
 415        struct bbr *bbr = inet_csk_ca(sk);
 416        u32 cwnd = 0, target_cwnd = 0;
 417
 418        if (!acked)
 419                return;
 420
 421        if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
 422                goto done;
 423
 424        /* If we're below target cwnd, slow start cwnd toward target cwnd. */
 425        target_cwnd = bbr_target_cwnd(sk, bw, gain);
 426        if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
 427                cwnd = min(cwnd + acked, target_cwnd);
 428        else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
 429                cwnd = cwnd + acked;
 430        cwnd = max(cwnd, bbr_cwnd_min_target);
 431
 432done:
 433        tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);   /* apply global cap */
 434        if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
 435                tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
 436}
 437
 438/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
 439static bool bbr_is_next_cycle_phase(struct sock *sk,
 440                                    const struct rate_sample *rs)
 441{
 442        struct tcp_sock *tp = tcp_sk(sk);
 443        struct bbr *bbr = inet_csk_ca(sk);
 444        bool is_full_length =
 445                tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
 446                bbr->min_rtt_us;
 447        u32 inflight, bw;
 448
 449        /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
 450         * use the pipe without increasing the queue.
 451         */
 452        if (bbr->pacing_gain == BBR_UNIT)
 453                return is_full_length;          /* just use wall clock time */
 454
 455        inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
 456        bw = bbr_max_bw(sk);
 457
 458        /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
 459         * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
 460         * small (e.g. on a LAN). We do not persist if packets are lost, since
 461         * a path with small buffers may not hold that much.
 462         */
 463        if (bbr->pacing_gain > BBR_UNIT)
 464                return is_full_length &&
 465                        (rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
 466                         inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
 467
 468        /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
 469         * probing didn't find more bw. If inflight falls to match BDP then we
 470         * estimate queue is drained; persisting would underutilize the pipe.
 471         */
 472        return is_full_length ||
 473                inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
 474}
 475
 476static void bbr_advance_cycle_phase(struct sock *sk)
 477{
 478        struct tcp_sock *tp = tcp_sk(sk);
 479        struct bbr *bbr = inet_csk_ca(sk);
 480
 481        bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
 482        bbr->cycle_mstamp = tp->delivered_mstamp;
 483        bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
 484}
 485
 486/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
 487static void bbr_update_cycle_phase(struct sock *sk,
 488                                   const struct rate_sample *rs)
 489{
 490        struct bbr *bbr = inet_csk_ca(sk);
 491
 492        if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
 493            bbr_is_next_cycle_phase(sk, rs))
 494                bbr_advance_cycle_phase(sk);
 495}
 496
 497static void bbr_reset_startup_mode(struct sock *sk)
 498{
 499        struct bbr *bbr = inet_csk_ca(sk);
 500
 501        bbr->mode = BBR_STARTUP;
 502        bbr->pacing_gain = bbr_high_gain;
 503        bbr->cwnd_gain   = bbr_high_gain;
 504}
 505
 506static void bbr_reset_probe_bw_mode(struct sock *sk)
 507{
 508        struct bbr *bbr = inet_csk_ca(sk);
 509
 510        bbr->mode = BBR_PROBE_BW;
 511        bbr->pacing_gain = BBR_UNIT;
 512        bbr->cwnd_gain = bbr_cwnd_gain;
 513        bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
 514        bbr_advance_cycle_phase(sk);    /* flip to next phase of gain cycle */
 515}
 516
 517static void bbr_reset_mode(struct sock *sk)
 518{
 519        if (!bbr_full_bw_reached(sk))
 520                bbr_reset_startup_mode(sk);
 521        else
 522                bbr_reset_probe_bw_mode(sk);
 523}
 524
 525/* Start a new long-term sampling interval. */
 526static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
 527{
 528        struct tcp_sock *tp = tcp_sk(sk);
 529        struct bbr *bbr = inet_csk_ca(sk);
 530
 531        bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
 532        bbr->lt_last_delivered = tp->delivered;
 533        bbr->lt_last_lost = tp->lost;
 534        bbr->lt_rtt_cnt = 0;
 535}
 536
 537/* Completely reset long-term bandwidth sampling. */
 538static void bbr_reset_lt_bw_sampling(struct sock *sk)
 539{
 540        struct bbr *bbr = inet_csk_ca(sk);
 541
 542        bbr->lt_bw = 0;
 543        bbr->lt_use_bw = 0;
 544        bbr->lt_is_sampling = false;
 545        bbr_reset_lt_bw_sampling_interval(sk);
 546}
 547
 548/* Long-term bw sampling interval is done. Estimate whether we're policed. */
 549static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
 550{
 551        struct bbr *bbr = inet_csk_ca(sk);
 552        u32 diff;
 553
 554        if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
 555                /* Is new bw close to the lt_bw from the previous interval? */
 556                diff = abs(bw - bbr->lt_bw);
 557                if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
 558                    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
 559                     bbr_lt_bw_diff)) {
 560                        /* All criteria are met; estimate we're policed. */
 561                        bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
 562                        bbr->lt_use_bw = 1;
 563                        bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
 564                        bbr->lt_rtt_cnt = 0;
 565                        return;
 566                }
 567        }
 568        bbr->lt_bw = bw;
 569        bbr_reset_lt_bw_sampling_interval(sk);
 570}
 571
 572/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 573 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 574 * explicitly models their policed rate, to reduce unnecessary losses. We
 575 * estimate that we're policed if we see 2 consecutive sampling intervals with
 576 * consistent throughput and high packet loss. If we think we're being policed,
 577 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 578 */
 579static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
 580{
 581        struct tcp_sock *tp = tcp_sk(sk);
 582        struct bbr *bbr = inet_csk_ca(sk);
 583        u32 lost, delivered;
 584        u64 bw;
 585        u32 t;
 586
 587        if (bbr->lt_use_bw) {   /* already using long-term rate, lt_bw? */
 588                if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
 589                    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
 590                        bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
 591                        bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
 592                }
 593                return;
 594        }
 595
 596        /* Wait for the first loss before sampling, to let the policer exhaust
 597         * its tokens and estimate the steady-state rate allowed by the policer.
 598         * Starting samples earlier includes bursts that over-estimate the bw.
 599         */
 600        if (!bbr->lt_is_sampling) {
 601                if (!rs->losses)
 602                        return;
 603                bbr_reset_lt_bw_sampling_interval(sk);
 604                bbr->lt_is_sampling = true;
 605        }
 606
 607        /* To avoid underestimates, reset sampling if we run out of data. */
 608        if (rs->is_app_limited) {
 609                bbr_reset_lt_bw_sampling(sk);
 610                return;
 611        }
 612
 613        if (bbr->round_start)
 614                bbr->lt_rtt_cnt++;      /* count round trips in this interval */
 615        if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
 616                return;         /* sampling interval needs to be longer */
 617        if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
 618                bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
 619                return;
 620        }
 621
 622        /* End sampling interval when a packet is lost, so we estimate the
 623         * policer tokens were exhausted. Stopping the sampling before the
 624         * tokens are exhausted under-estimates the policed rate.
 625         */
 626        if (!rs->losses)
 627                return;
 628
 629        /* Calculate packets lost and delivered in sampling interval. */
 630        lost = tp->lost - bbr->lt_last_lost;
 631        delivered = tp->delivered - bbr->lt_last_delivered;
 632        /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
 633        if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
 634                return;
 635
 636        /* Find average delivery rate in this sampling interval. */
 637        t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
 638        if ((s32)t < 1)
 639                return;         /* interval is less than one ms, so wait */
 640        /* Check if can multiply without overflow */
 641        if (t >= ~0U / USEC_PER_MSEC) {
 642                bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
 643                return;
 644        }
 645        t *= USEC_PER_MSEC;
 646        bw = (u64)delivered * BW_UNIT;
 647        do_div(bw, t);
 648        bbr_lt_bw_interval_done(sk, bw);
 649}
 650
 651/* Estimate the bandwidth based on how fast packets are delivered */
 652static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
 653{
 654        struct tcp_sock *tp = tcp_sk(sk);
 655        struct bbr *bbr = inet_csk_ca(sk);
 656        u64 bw;
 657
 658        bbr->round_start = 0;
 659        if (rs->delivered < 0 || rs->interval_us <= 0)
 660                return; /* Not a valid observation */
 661
 662        /* See if we've reached the next RTT */
 663        if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
 664                bbr->next_rtt_delivered = tp->delivered;
 665                bbr->rtt_cnt++;
 666                bbr->round_start = 1;
 667                bbr->packet_conservation = 0;
 668        }
 669
 670        bbr_lt_bw_sampling(sk, rs);
 671
 672        /* Divide delivered by the interval to find a (lower bound) bottleneck
 673         * bandwidth sample. Delivered is in packets and interval_us in uS and
 674         * ratio will be <<1 for most connections. So delivered is first scaled.
 675         */
 676        bw = (u64)rs->delivered * BW_UNIT;
 677        do_div(bw, rs->interval_us);
 678
 679        /* If this sample is application-limited, it is likely to have a very
 680         * low delivered count that represents application behavior rather than
 681         * the available network rate. Such a sample could drag down estimated
 682         * bw, causing needless slow-down. Thus, to continue to send at the
 683         * last measured network rate, we filter out app-limited samples unless
 684         * they describe the path bw at least as well as our bw model.
 685         *
 686         * So the goal during app-limited phase is to proceed with the best
 687         * network rate no matter how long. We automatically leave this
 688         * phase when app writes faster than the network can deliver :)
 689         */
 690        if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
 691                /* Incorporate new sample into our max bw filter. */
 692                minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
 693        }
 694}
 695
 696/* Estimate when the pipe is full, using the change in delivery rate: BBR
 697 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 698 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 699 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 700 * higher rwin, 3: we get higher delivery rate samples. Or transient
 701 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 702 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 703 */
 704static void bbr_check_full_bw_reached(struct sock *sk,
 705                                      const struct rate_sample *rs)
 706{
 707        struct bbr *bbr = inet_csk_ca(sk);
 708        u32 bw_thresh;
 709
 710        if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
 711                return;
 712
 713        bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
 714        if (bbr_max_bw(sk) >= bw_thresh) {
 715                bbr->full_bw = bbr_max_bw(sk);
 716                bbr->full_bw_cnt = 0;
 717                return;
 718        }
 719        ++bbr->full_bw_cnt;
 720}
 721
 722/* If pipe is probably full, drain the queue and then enter steady-state. */
 723static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
 724{
 725        struct bbr *bbr = inet_csk_ca(sk);
 726
 727        if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
 728                bbr->mode = BBR_DRAIN;  /* drain queue we created */
 729                bbr->pacing_gain = bbr_drain_gain;      /* pace slow to drain */
 730                bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
 731        }       /* fall through to check if in-flight is already small: */
 732        if (bbr->mode == BBR_DRAIN &&
 733            tcp_packets_in_flight(tcp_sk(sk)) <=
 734            bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
 735                bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
 736}
 737
 738/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 739 * periodically drain the bottleneck queue, to converge to measure the true
 740 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 741 * small (reducing queuing delay and packet loss) and achieve fairness among
 742 * BBR flows.
 743 *
 744 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 745 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 746 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 747 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 748 * re-enter the previous mode. BBR uses 200ms to approximately bound the
 749 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 750 *
 751 * Note that flows need only pay 2% if they are busy sending over the last 10
 752 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 753 * natural silences or low-rate periods within 10 seconds where the rate is low
 754 * enough for long enough to drain its queue in the bottleneck. We pick up
 755 * these min RTT measurements opportunistically with our min_rtt filter. :-)
 756 */
 757static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
 758{
 759        struct tcp_sock *tp = tcp_sk(sk);
 760        struct bbr *bbr = inet_csk_ca(sk);
 761        bool filter_expired;
 762
 763        /* Track min RTT seen in the min_rtt_win_sec filter window: */
 764        filter_expired = after(tcp_jiffies32,
 765                               bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
 766        if (rs->rtt_us >= 0 &&
 767            (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
 768                bbr->min_rtt_us = rs->rtt_us;
 769                bbr->min_rtt_stamp = tcp_jiffies32;
 770        }
 771
 772        if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
 773            !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
 774                bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
 775                bbr->pacing_gain = BBR_UNIT;
 776                bbr->cwnd_gain = BBR_UNIT;
 777                bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
 778                bbr->probe_rtt_done_stamp = 0;
 779        }
 780
 781        if (bbr->mode == BBR_PROBE_RTT) {
 782                /* Ignore low rate samples during this mode. */
 783                tp->app_limited =
 784                        (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
 785                /* Maintain min packets in flight for max(200 ms, 1 round). */
 786                if (!bbr->probe_rtt_done_stamp &&
 787                    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
 788                        bbr->probe_rtt_done_stamp = tcp_jiffies32 +
 789                                msecs_to_jiffies(bbr_probe_rtt_mode_ms);
 790                        bbr->probe_rtt_round_done = 0;
 791                        bbr->next_rtt_delivered = tp->delivered;
 792                } else if (bbr->probe_rtt_done_stamp) {
 793                        if (bbr->round_start)
 794                                bbr->probe_rtt_round_done = 1;
 795                        if (bbr->probe_rtt_round_done &&
 796                            after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
 797                                bbr->min_rtt_stamp = tcp_jiffies32;
 798                                bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
 799                                bbr_reset_mode(sk);
 800                        }
 801                }
 802        }
 803        bbr->idle_restart = 0;
 804}
 805
 806static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
 807{
 808        bbr_update_bw(sk, rs);
 809        bbr_update_cycle_phase(sk, rs);
 810        bbr_check_full_bw_reached(sk, rs);
 811        bbr_check_drain(sk, rs);
 812        bbr_update_min_rtt(sk, rs);
 813}
 814
 815static void bbr_main(struct sock *sk, const struct rate_sample *rs)
 816{
 817        struct bbr *bbr = inet_csk_ca(sk);
 818        u32 bw;
 819
 820        bbr_update_model(sk, rs);
 821
 822        bw = bbr_bw(sk);
 823        bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
 824        bbr_set_tso_segs_goal(sk);
 825        bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
 826}
 827
 828static void bbr_init(struct sock *sk)
 829{
 830        struct tcp_sock *tp = tcp_sk(sk);
 831        struct bbr *bbr = inet_csk_ca(sk);
 832
 833        bbr->prior_cwnd = 0;
 834        bbr->tso_segs_goal = 0;  /* default segs per skb until first ACK */
 835        bbr->rtt_cnt = 0;
 836        bbr->next_rtt_delivered = 0;
 837        bbr->prev_ca_state = TCP_CA_Open;
 838        bbr->packet_conservation = 0;
 839
 840        bbr->probe_rtt_done_stamp = 0;
 841        bbr->probe_rtt_round_done = 0;
 842        bbr->min_rtt_us = tcp_min_rtt(tp);
 843        bbr->min_rtt_stamp = tcp_jiffies32;
 844
 845        minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
 846
 847        bbr->has_seen_rtt = 0;
 848        bbr_init_pacing_rate_from_rtt(sk);
 849
 850        bbr->restore_cwnd = 0;
 851        bbr->round_start = 0;
 852        bbr->idle_restart = 0;
 853        bbr->full_bw = 0;
 854        bbr->full_bw_cnt = 0;
 855        bbr->cycle_mstamp = 0;
 856        bbr->cycle_idx = 0;
 857        bbr_reset_lt_bw_sampling(sk);
 858        bbr_reset_startup_mode(sk);
 859
 860        cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
 861}
 862
 863static u32 bbr_sndbuf_expand(struct sock *sk)
 864{
 865        /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
 866        return 3;
 867}
 868
 869/* In theory BBR does not need to undo the cwnd since it does not
 870 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
 871 */
 872static u32 bbr_undo_cwnd(struct sock *sk)
 873{
 874        return tcp_sk(sk)->snd_cwnd;
 875}
 876
 877/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
 878static u32 bbr_ssthresh(struct sock *sk)
 879{
 880        bbr_save_cwnd(sk);
 881        return TCP_INFINITE_SSTHRESH;    /* BBR does not use ssthresh */
 882}
 883
 884static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
 885                           union tcp_cc_info *info)
 886{
 887        if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
 888            ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
 889                struct tcp_sock *tp = tcp_sk(sk);
 890                struct bbr *bbr = inet_csk_ca(sk);
 891                u64 bw = bbr_bw(sk);
 892
 893                bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
 894                memset(&info->bbr, 0, sizeof(info->bbr));
 895                info->bbr.bbr_bw_lo             = (u32)bw;
 896                info->bbr.bbr_bw_hi             = (u32)(bw >> 32);
 897                info->bbr.bbr_min_rtt           = bbr->min_rtt_us;
 898                info->bbr.bbr_pacing_gain       = bbr->pacing_gain;
 899                info->bbr.bbr_cwnd_gain         = bbr->cwnd_gain;
 900                *attr = INET_DIAG_BBRINFO;
 901                return sizeof(info->bbr);
 902        }
 903        return 0;
 904}
 905
 906static void bbr_set_state(struct sock *sk, u8 new_state)
 907{
 908        struct bbr *bbr = inet_csk_ca(sk);
 909
 910        if (new_state == TCP_CA_Loss) {
 911                struct rate_sample rs = { .losses = 1 };
 912
 913                bbr->prev_ca_state = TCP_CA_Loss;
 914                bbr->full_bw = 0;
 915                bbr->round_start = 1;   /* treat RTO like end of a round */
 916                bbr_lt_bw_sampling(sk, &rs);
 917        }
 918}
 919
 920static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
 921        .flags          = TCP_CONG_NON_RESTRICTED,
 922        .name           = "bbr",
 923        .owner          = THIS_MODULE,
 924        .init           = bbr_init,
 925        .cong_control   = bbr_main,
 926        .sndbuf_expand  = bbr_sndbuf_expand,
 927        .undo_cwnd      = bbr_undo_cwnd,
 928        .cwnd_event     = bbr_cwnd_event,
 929        .ssthresh       = bbr_ssthresh,
 930        .tso_segs_goal  = bbr_tso_segs_goal,
 931        .get_info       = bbr_get_info,
 932        .set_state      = bbr_set_state,
 933};
 934
 935static int __init bbr_register(void)
 936{
 937        BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
 938        return tcp_register_congestion_control(&tcp_bbr_cong_ops);
 939}
 940
 941static void __exit bbr_unregister(void)
 942{
 943        tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
 944}
 945
 946module_init(bbr_register);
 947module_exit(bbr_unregister);
 948
 949MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
 950MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
 951MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
 952MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
 953MODULE_LICENSE("Dual BSD/GPL");
 954MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
 955