linux/net/sched/sch_fq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   3 *
   4 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
   5 *
   6 *      This program is free software; you can redistribute it and/or
   7 *      modify it under the terms of the GNU General Public License
   8 *      as published by the Free Software Foundation; either version
   9 *      2 of the License, or (at your option) any later version.
  10 *
  11 *  Meant to be mostly used for locally generated traffic :
  12 *  Fast classification depends on skb->sk being set before reaching us.
  13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14 *  All packets belonging to a socket are considered as a 'flow'.
  15 *
  16 *  Flows are dynamically allocated and stored in a hash table of RB trees
  17 *  They are also part of one Round Robin 'queues' (new or old flows)
  18 *
  19 *  Burst avoidance (aka pacing) capability :
  20 *
  21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22 *  bunch of packets, and this packet scheduler adds delay between
  23 *  packets to respect rate limitation.
  24 *
  25 *  enqueue() :
  26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  27 *     If non existent flow, create it, add it to the tree.
  28 *     Add skb to the per flow list of skb (fifo).
  29 *   - Use a special fifo for high prio packets
  30 *
  31 *  dequeue() : serves flows in Round Robin
  32 *  Note : When a flow becomes empty, we do not immediately remove it from
  33 *  rb trees, for performance reasons (its expected to send additional packets,
  34 *  or SLAB cache will reuse socket for another flow)
  35 */
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/jiffies.h>
  41#include <linux/string.h>
  42#include <linux/in.h>
  43#include <linux/errno.h>
  44#include <linux/init.h>
  45#include <linux/skbuff.h>
  46#include <linux/slab.h>
  47#include <linux/rbtree.h>
  48#include <linux/hash.h>
  49#include <linux/prefetch.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlink.h>
  52#include <net/pkt_sched.h>
  53#include <net/sock.h>
  54#include <net/tcp_states.h>
  55#include <net/tcp.h>
  56
  57/*
  58 * Per flow structure, dynamically allocated
  59 */
  60struct fq_flow {
  61        struct sk_buff  *head;          /* list of skbs for this flow : first skb */
  62        union {
  63                struct sk_buff *tail;   /* last skb in the list */
  64                unsigned long  age;     /* jiffies when flow was emptied, for gc */
  65        };
  66        struct rb_node  fq_node;        /* anchor in fq_root[] trees */
  67        struct sock     *sk;
  68        int             qlen;           /* number of packets in flow queue */
  69        int             credit;
  70        u32             socket_hash;    /* sk_hash */
  71        struct fq_flow *next;           /* next pointer in RR lists, or &detached */
  72
  73        struct rb_node  rate_node;      /* anchor in q->delayed tree */
  74        u64             time_next_packet;
  75};
  76
  77struct fq_flow_head {
  78        struct fq_flow *first;
  79        struct fq_flow *last;
  80};
  81
  82struct fq_sched_data {
  83        struct fq_flow_head new_flows;
  84
  85        struct fq_flow_head old_flows;
  86
  87        struct rb_root  delayed;        /* for rate limited flows */
  88        u64             time_next_delayed_flow;
  89        unsigned long   unthrottle_latency_ns;
  90
  91        struct fq_flow  internal;       /* for non classified or high prio packets */
  92        u32             quantum;
  93        u32             initial_quantum;
  94        u32             flow_refill_delay;
  95        u32             flow_max_rate;  /* optional max rate per flow */
  96        u32             flow_plimit;    /* max packets per flow */
  97        u32             orphan_mask;    /* mask for orphaned skb */
  98        u32             low_rate_threshold;
  99        struct rb_root  *fq_root;
 100        u8              rate_enable;
 101        u8              fq_trees_log;
 102
 103        u32             flows;
 104        u32             inactive_flows;
 105        u32             throttled_flows;
 106
 107        u64             stat_gc_flows;
 108        u64             stat_internal_packets;
 109        u64             stat_tcp_retrans;
 110        u64             stat_throttled;
 111        u64             stat_flows_plimit;
 112        u64             stat_pkts_too_long;
 113        u64             stat_allocation_errors;
 114        struct qdisc_watchdog watchdog;
 115};
 116
 117/* special value to mark a detached flow (not on old/new list) */
 118static struct fq_flow detached, throttled;
 119
 120static void fq_flow_set_detached(struct fq_flow *f)
 121{
 122        f->next = &detached;
 123        f->age = jiffies;
 124}
 125
 126static bool fq_flow_is_detached(const struct fq_flow *f)
 127{
 128        return f->next == &detached;
 129}
 130
 131static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 132{
 133        struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 134
 135        while (*p) {
 136                struct fq_flow *aux;
 137
 138                parent = *p;
 139                aux = rb_entry(parent, struct fq_flow, rate_node);
 140                if (f->time_next_packet >= aux->time_next_packet)
 141                        p = &parent->rb_right;
 142                else
 143                        p = &parent->rb_left;
 144        }
 145        rb_link_node(&f->rate_node, parent, p);
 146        rb_insert_color(&f->rate_node, &q->delayed);
 147        q->throttled_flows++;
 148        q->stat_throttled++;
 149
 150        f->next = &throttled;
 151        if (q->time_next_delayed_flow > f->time_next_packet)
 152                q->time_next_delayed_flow = f->time_next_packet;
 153}
 154
 155
 156static struct kmem_cache *fq_flow_cachep __read_mostly;
 157
 158static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 159{
 160        if (head->first)
 161                head->last->next = flow;
 162        else
 163                head->first = flow;
 164        head->last = flow;
 165        flow->next = NULL;
 166}
 167
 168/* limit number of collected flows per round */
 169#define FQ_GC_MAX 8
 170#define FQ_GC_AGE (3*HZ)
 171
 172static bool fq_gc_candidate(const struct fq_flow *f)
 173{
 174        return fq_flow_is_detached(f) &&
 175               time_after(jiffies, f->age + FQ_GC_AGE);
 176}
 177
 178static void fq_gc(struct fq_sched_data *q,
 179                  struct rb_root *root,
 180                  struct sock *sk)
 181{
 182        struct fq_flow *f, *tofree[FQ_GC_MAX];
 183        struct rb_node **p, *parent;
 184        int fcnt = 0;
 185
 186        p = &root->rb_node;
 187        parent = NULL;
 188        while (*p) {
 189                parent = *p;
 190
 191                f = rb_entry(parent, struct fq_flow, fq_node);
 192                if (f->sk == sk)
 193                        break;
 194
 195                if (fq_gc_candidate(f)) {
 196                        tofree[fcnt++] = f;
 197                        if (fcnt == FQ_GC_MAX)
 198                                break;
 199                }
 200
 201                if (f->sk > sk)
 202                        p = &parent->rb_right;
 203                else
 204                        p = &parent->rb_left;
 205        }
 206
 207        q->flows -= fcnt;
 208        q->inactive_flows -= fcnt;
 209        q->stat_gc_flows += fcnt;
 210        while (fcnt) {
 211                struct fq_flow *f = tofree[--fcnt];
 212
 213                rb_erase(&f->fq_node, root);
 214                kmem_cache_free(fq_flow_cachep, f);
 215        }
 216}
 217
 218static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 219{
 220        struct rb_node **p, *parent;
 221        struct sock *sk = skb->sk;
 222        struct rb_root *root;
 223        struct fq_flow *f;
 224
 225        /* warning: no starvation prevention... */
 226        if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 227                return &q->internal;
 228
 229        /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
 230         * or a listener (SYNCOOKIE mode)
 231         * 1) request sockets are not full blown,
 232         *    they do not contain sk_pacing_rate
 233         * 2) They are not part of a 'flow' yet
 234         * 3) We do not want to rate limit them (eg SYNFLOOD attack),
 235         *    especially if the listener set SO_MAX_PACING_RATE
 236         * 4) We pretend they are orphaned
 237         */
 238        if (!sk || sk_listener(sk)) {
 239                unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 240
 241                /* By forcing low order bit to 1, we make sure to not
 242                 * collide with a local flow (socket pointers are word aligned)
 243                 */
 244                sk = (struct sock *)((hash << 1) | 1UL);
 245                skb_orphan(skb);
 246        }
 247
 248        root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
 249
 250        if (q->flows >= (2U << q->fq_trees_log) &&
 251            q->inactive_flows > q->flows/2)
 252                fq_gc(q, root, sk);
 253
 254        p = &root->rb_node;
 255        parent = NULL;
 256        while (*p) {
 257                parent = *p;
 258
 259                f = rb_entry(parent, struct fq_flow, fq_node);
 260                if (f->sk == sk) {
 261                        /* socket might have been reallocated, so check
 262                         * if its sk_hash is the same.
 263                         * It not, we need to refill credit with
 264                         * initial quantum
 265                         */
 266                        if (unlikely(skb->sk &&
 267                                     f->socket_hash != sk->sk_hash)) {
 268                                f->credit = q->initial_quantum;
 269                                f->socket_hash = sk->sk_hash;
 270                                f->time_next_packet = 0ULL;
 271                        }
 272                        return f;
 273                }
 274                if (f->sk > sk)
 275                        p = &parent->rb_right;
 276                else
 277                        p = &parent->rb_left;
 278        }
 279
 280        f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 281        if (unlikely(!f)) {
 282                q->stat_allocation_errors++;
 283                return &q->internal;
 284        }
 285        fq_flow_set_detached(f);
 286        f->sk = sk;
 287        if (skb->sk)
 288                f->socket_hash = sk->sk_hash;
 289        f->credit = q->initial_quantum;
 290
 291        rb_link_node(&f->fq_node, parent, p);
 292        rb_insert_color(&f->fq_node, root);
 293
 294        q->flows++;
 295        q->inactive_flows++;
 296        return f;
 297}
 298
 299
 300/* remove one skb from head of flow queue */
 301static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 302{
 303        struct sk_buff *skb = flow->head;
 304
 305        if (skb) {
 306                flow->head = skb->next;
 307                skb->next = NULL;
 308                flow->qlen--;
 309                qdisc_qstats_backlog_dec(sch, skb);
 310                sch->q.qlen--;
 311        }
 312        return skb;
 313}
 314
 315/* We might add in the future detection of retransmits
 316 * For the time being, just return false
 317 */
 318static bool skb_is_retransmit(struct sk_buff *skb)
 319{
 320        return false;
 321}
 322
 323/* add skb to flow queue
 324 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
 325 * We special case tcp retransmits to be transmitted before other packets.
 326 * We rely on fact that TCP retransmits are unlikely, so we do not waste
 327 * a separate queue or a pointer.
 328 * head->  [retrans pkt 1]
 329 *         [retrans pkt 2]
 330 *         [ normal pkt 1]
 331 *         [ normal pkt 2]
 332 *         [ normal pkt 3]
 333 * tail->  [ normal pkt 4]
 334 */
 335static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 336{
 337        struct sk_buff *prev, *head = flow->head;
 338
 339        skb->next = NULL;
 340        if (!head) {
 341                flow->head = skb;
 342                flow->tail = skb;
 343                return;
 344        }
 345        if (likely(!skb_is_retransmit(skb))) {
 346                flow->tail->next = skb;
 347                flow->tail = skb;
 348                return;
 349        }
 350
 351        /* This skb is a tcp retransmit,
 352         * find the last retrans packet in the queue
 353         */
 354        prev = NULL;
 355        while (skb_is_retransmit(head)) {
 356                prev = head;
 357                head = head->next;
 358                if (!head)
 359                        break;
 360        }
 361        if (!prev) { /* no rtx packet in queue, become the new head */
 362                skb->next = flow->head;
 363                flow->head = skb;
 364        } else {
 365                if (prev == flow->tail)
 366                        flow->tail = skb;
 367                else
 368                        skb->next = prev->next;
 369                prev->next = skb;
 370        }
 371}
 372
 373static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 374                      struct sk_buff **to_free)
 375{
 376        struct fq_sched_data *q = qdisc_priv(sch);
 377        struct fq_flow *f;
 378
 379        if (unlikely(sch->q.qlen >= sch->limit))
 380                return qdisc_drop(skb, sch, to_free);
 381
 382        f = fq_classify(skb, q);
 383        if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 384                q->stat_flows_plimit++;
 385                return qdisc_drop(skb, sch, to_free);
 386        }
 387
 388        f->qlen++;
 389        if (skb_is_retransmit(skb))
 390                q->stat_tcp_retrans++;
 391        qdisc_qstats_backlog_inc(sch, skb);
 392        if (fq_flow_is_detached(f)) {
 393                struct sock *sk = skb->sk;
 394
 395                fq_flow_add_tail(&q->new_flows, f);
 396                if (time_after(jiffies, f->age + q->flow_refill_delay))
 397                        f->credit = max_t(u32, f->credit, q->quantum);
 398                if (sk && q->rate_enable) {
 399                        if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
 400                                     SK_PACING_FQ))
 401                                smp_store_release(&sk->sk_pacing_status,
 402                                                  SK_PACING_FQ);
 403                }
 404                q->inactive_flows--;
 405        }
 406
 407        /* Note: this overwrites f->age */
 408        flow_queue_add(f, skb);
 409
 410        if (unlikely(f == &q->internal)) {
 411                q->stat_internal_packets++;
 412        }
 413        sch->q.qlen++;
 414
 415        return NET_XMIT_SUCCESS;
 416}
 417
 418static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 419{
 420        unsigned long sample;
 421        struct rb_node *p;
 422
 423        if (q->time_next_delayed_flow > now)
 424                return;
 425
 426        /* Update unthrottle latency EWMA.
 427         * This is cheap and can help diagnosing timer/latency problems.
 428         */
 429        sample = (unsigned long)(now - q->time_next_delayed_flow);
 430        q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
 431        q->unthrottle_latency_ns += sample >> 3;
 432
 433        q->time_next_delayed_flow = ~0ULL;
 434        while ((p = rb_first(&q->delayed)) != NULL) {
 435                struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
 436
 437                if (f->time_next_packet > now) {
 438                        q->time_next_delayed_flow = f->time_next_packet;
 439                        break;
 440                }
 441                rb_erase(p, &q->delayed);
 442                q->throttled_flows--;
 443                fq_flow_add_tail(&q->old_flows, f);
 444        }
 445}
 446
 447static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 448{
 449        struct fq_sched_data *q = qdisc_priv(sch);
 450        u64 now = ktime_get_ns();
 451        struct fq_flow_head *head;
 452        struct sk_buff *skb;
 453        struct fq_flow *f;
 454        u32 rate, plen;
 455
 456        skb = fq_dequeue_head(sch, &q->internal);
 457        if (skb)
 458                goto out;
 459        fq_check_throttled(q, now);
 460begin:
 461        head = &q->new_flows;
 462        if (!head->first) {
 463                head = &q->old_flows;
 464                if (!head->first) {
 465                        if (q->time_next_delayed_flow != ~0ULL)
 466                                qdisc_watchdog_schedule_ns(&q->watchdog,
 467                                                           q->time_next_delayed_flow);
 468                        return NULL;
 469                }
 470        }
 471        f = head->first;
 472
 473        if (f->credit <= 0) {
 474                f->credit += q->quantum;
 475                head->first = f->next;
 476                fq_flow_add_tail(&q->old_flows, f);
 477                goto begin;
 478        }
 479
 480        skb = f->head;
 481        if (unlikely(skb && now < f->time_next_packet &&
 482                     !skb_is_tcp_pure_ack(skb))) {
 483                head->first = f->next;
 484                fq_flow_set_throttled(q, f);
 485                goto begin;
 486        }
 487
 488        skb = fq_dequeue_head(sch, f);
 489        if (!skb) {
 490                head->first = f->next;
 491                /* force a pass through old_flows to prevent starvation */
 492                if ((head == &q->new_flows) && q->old_flows.first) {
 493                        fq_flow_add_tail(&q->old_flows, f);
 494                } else {
 495                        fq_flow_set_detached(f);
 496                        q->inactive_flows++;
 497                }
 498                goto begin;
 499        }
 500        prefetch(&skb->end);
 501        f->credit -= qdisc_pkt_len(skb);
 502
 503        if (!q->rate_enable)
 504                goto out;
 505
 506        /* Do not pace locally generated ack packets */
 507        if (skb_is_tcp_pure_ack(skb))
 508                goto out;
 509
 510        rate = q->flow_max_rate;
 511        if (skb->sk)
 512                rate = min(skb->sk->sk_pacing_rate, rate);
 513
 514        if (rate <= q->low_rate_threshold) {
 515                f->credit = 0;
 516                plen = qdisc_pkt_len(skb);
 517        } else {
 518                plen = max(qdisc_pkt_len(skb), q->quantum);
 519                if (f->credit > 0)
 520                        goto out;
 521        }
 522        if (rate != ~0U) {
 523                u64 len = (u64)plen * NSEC_PER_SEC;
 524
 525                if (likely(rate))
 526                        do_div(len, rate);
 527                /* Since socket rate can change later,
 528                 * clamp the delay to 1 second.
 529                 * Really, providers of too big packets should be fixed !
 530                 */
 531                if (unlikely(len > NSEC_PER_SEC)) {
 532                        len = NSEC_PER_SEC;
 533                        q->stat_pkts_too_long++;
 534                }
 535                /* Account for schedule/timers drifts.
 536                 * f->time_next_packet was set when prior packet was sent,
 537                 * and current time (@now) can be too late by tens of us.
 538                 */
 539                if (f->time_next_packet)
 540                        len -= min(len/2, now - f->time_next_packet);
 541                f->time_next_packet = now + len;
 542        }
 543out:
 544        qdisc_bstats_update(sch, skb);
 545        return skb;
 546}
 547
 548static void fq_flow_purge(struct fq_flow *flow)
 549{
 550        rtnl_kfree_skbs(flow->head, flow->tail);
 551        flow->head = NULL;
 552        flow->qlen = 0;
 553}
 554
 555static void fq_reset(struct Qdisc *sch)
 556{
 557        struct fq_sched_data *q = qdisc_priv(sch);
 558        struct rb_root *root;
 559        struct rb_node *p;
 560        struct fq_flow *f;
 561        unsigned int idx;
 562
 563        sch->q.qlen = 0;
 564        sch->qstats.backlog = 0;
 565
 566        fq_flow_purge(&q->internal);
 567
 568        if (!q->fq_root)
 569                return;
 570
 571        for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 572                root = &q->fq_root[idx];
 573                while ((p = rb_first(root)) != NULL) {
 574                        f = rb_entry(p, struct fq_flow, fq_node);
 575                        rb_erase(p, root);
 576
 577                        fq_flow_purge(f);
 578
 579                        kmem_cache_free(fq_flow_cachep, f);
 580                }
 581        }
 582        q->new_flows.first      = NULL;
 583        q->old_flows.first      = NULL;
 584        q->delayed              = RB_ROOT;
 585        q->flows                = 0;
 586        q->inactive_flows       = 0;
 587        q->throttled_flows      = 0;
 588}
 589
 590static void fq_rehash(struct fq_sched_data *q,
 591                      struct rb_root *old_array, u32 old_log,
 592                      struct rb_root *new_array, u32 new_log)
 593{
 594        struct rb_node *op, **np, *parent;
 595        struct rb_root *oroot, *nroot;
 596        struct fq_flow *of, *nf;
 597        int fcnt = 0;
 598        u32 idx;
 599
 600        for (idx = 0; idx < (1U << old_log); idx++) {
 601                oroot = &old_array[idx];
 602                while ((op = rb_first(oroot)) != NULL) {
 603                        rb_erase(op, oroot);
 604                        of = rb_entry(op, struct fq_flow, fq_node);
 605                        if (fq_gc_candidate(of)) {
 606                                fcnt++;
 607                                kmem_cache_free(fq_flow_cachep, of);
 608                                continue;
 609                        }
 610                        nroot = &new_array[hash_ptr(of->sk, new_log)];
 611
 612                        np = &nroot->rb_node;
 613                        parent = NULL;
 614                        while (*np) {
 615                                parent = *np;
 616
 617                                nf = rb_entry(parent, struct fq_flow, fq_node);
 618                                BUG_ON(nf->sk == of->sk);
 619
 620                                if (nf->sk > of->sk)
 621                                        np = &parent->rb_right;
 622                                else
 623                                        np = &parent->rb_left;
 624                        }
 625
 626                        rb_link_node(&of->fq_node, parent, np);
 627                        rb_insert_color(&of->fq_node, nroot);
 628                }
 629        }
 630        q->flows -= fcnt;
 631        q->inactive_flows -= fcnt;
 632        q->stat_gc_flows += fcnt;
 633}
 634
 635static void fq_free(void *addr)
 636{
 637        kvfree(addr);
 638}
 639
 640static int fq_resize(struct Qdisc *sch, u32 log)
 641{
 642        struct fq_sched_data *q = qdisc_priv(sch);
 643        struct rb_root *array;
 644        void *old_fq_root;
 645        u32 idx;
 646
 647        if (q->fq_root && log == q->fq_trees_log)
 648                return 0;
 649
 650        /* If XPS was setup, we can allocate memory on right NUMA node */
 651        array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
 652                              netdev_queue_numa_node_read(sch->dev_queue));
 653        if (!array)
 654                return -ENOMEM;
 655
 656        for (idx = 0; idx < (1U << log); idx++)
 657                array[idx] = RB_ROOT;
 658
 659        sch_tree_lock(sch);
 660
 661        old_fq_root = q->fq_root;
 662        if (old_fq_root)
 663                fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 664
 665        q->fq_root = array;
 666        q->fq_trees_log = log;
 667
 668        sch_tree_unlock(sch);
 669
 670        fq_free(old_fq_root);
 671
 672        return 0;
 673}
 674
 675static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 676        [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
 677        [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
 678        [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
 679        [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
 680        [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
 681        [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
 682        [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
 683        [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
 684        [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
 685        [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
 686};
 687
 688static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 689{
 690        struct fq_sched_data *q = qdisc_priv(sch);
 691        struct nlattr *tb[TCA_FQ_MAX + 1];
 692        int err, drop_count = 0;
 693        unsigned drop_len = 0;
 694        u32 fq_log;
 695
 696        if (!opt)
 697                return -EINVAL;
 698
 699        err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
 700        if (err < 0)
 701                return err;
 702
 703        sch_tree_lock(sch);
 704
 705        fq_log = q->fq_trees_log;
 706
 707        if (tb[TCA_FQ_BUCKETS_LOG]) {
 708                u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 709
 710                if (nval >= 1 && nval <= ilog2(256*1024))
 711                        fq_log = nval;
 712                else
 713                        err = -EINVAL;
 714        }
 715        if (tb[TCA_FQ_PLIMIT])
 716                sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 717
 718        if (tb[TCA_FQ_FLOW_PLIMIT])
 719                q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 720
 721        if (tb[TCA_FQ_QUANTUM]) {
 722                u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 723
 724                if (quantum > 0)
 725                        q->quantum = quantum;
 726                else
 727                        err = -EINVAL;
 728        }
 729
 730        if (tb[TCA_FQ_INITIAL_QUANTUM])
 731                q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 732
 733        if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 734                pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 735                                    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 736
 737        if (tb[TCA_FQ_FLOW_MAX_RATE])
 738                q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 739
 740        if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
 741                q->low_rate_threshold =
 742                        nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
 743
 744        if (tb[TCA_FQ_RATE_ENABLE]) {
 745                u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 746
 747                if (enable <= 1)
 748                        q->rate_enable = enable;
 749                else
 750                        err = -EINVAL;
 751        }
 752
 753        if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 754                u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 755
 756                q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 757        }
 758
 759        if (tb[TCA_FQ_ORPHAN_MASK])
 760                q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
 761
 762        if (!err) {
 763                sch_tree_unlock(sch);
 764                err = fq_resize(sch, fq_log);
 765                sch_tree_lock(sch);
 766        }
 767        while (sch->q.qlen > sch->limit) {
 768                struct sk_buff *skb = fq_dequeue(sch);
 769
 770                if (!skb)
 771                        break;
 772                drop_len += qdisc_pkt_len(skb);
 773                rtnl_kfree_skbs(skb, skb);
 774                drop_count++;
 775        }
 776        qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
 777
 778        sch_tree_unlock(sch);
 779        return err;
 780}
 781
 782static void fq_destroy(struct Qdisc *sch)
 783{
 784        struct fq_sched_data *q = qdisc_priv(sch);
 785
 786        fq_reset(sch);
 787        fq_free(q->fq_root);
 788        qdisc_watchdog_cancel(&q->watchdog);
 789}
 790
 791static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 792{
 793        struct fq_sched_data *q = qdisc_priv(sch);
 794        int err;
 795
 796        sch->limit              = 10000;
 797        q->flow_plimit          = 100;
 798        q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
 799        q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
 800        q->flow_refill_delay    = msecs_to_jiffies(40);
 801        q->flow_max_rate        = ~0U;
 802        q->time_next_delayed_flow = ~0ULL;
 803        q->rate_enable          = 1;
 804        q->new_flows.first      = NULL;
 805        q->old_flows.first      = NULL;
 806        q->delayed              = RB_ROOT;
 807        q->fq_root              = NULL;
 808        q->fq_trees_log         = ilog2(1024);
 809        q->orphan_mask          = 1024 - 1;
 810        q->low_rate_threshold   = 550000 / 8;
 811        qdisc_watchdog_init(&q->watchdog, sch);
 812
 813        if (opt)
 814                err = fq_change(sch, opt);
 815        else
 816                err = fq_resize(sch, q->fq_trees_log);
 817
 818        return err;
 819}
 820
 821static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 822{
 823        struct fq_sched_data *q = qdisc_priv(sch);
 824        struct nlattr *opts;
 825
 826        opts = nla_nest_start(skb, TCA_OPTIONS);
 827        if (opts == NULL)
 828                goto nla_put_failure;
 829
 830        /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 831
 832        if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 833            nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 834            nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 835            nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 836            nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 837            nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
 838            nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 839                        jiffies_to_usecs(q->flow_refill_delay)) ||
 840            nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 841            nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
 842                        q->low_rate_threshold) ||
 843            nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 844                goto nla_put_failure;
 845
 846        return nla_nest_end(skb, opts);
 847
 848nla_put_failure:
 849        return -1;
 850}
 851
 852static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 853{
 854        struct fq_sched_data *q = qdisc_priv(sch);
 855        struct tc_fq_qd_stats st;
 856
 857        sch_tree_lock(sch);
 858
 859        st.gc_flows               = q->stat_gc_flows;
 860        st.highprio_packets       = q->stat_internal_packets;
 861        st.tcp_retrans            = q->stat_tcp_retrans;
 862        st.throttled              = q->stat_throttled;
 863        st.flows_plimit           = q->stat_flows_plimit;
 864        st.pkts_too_long          = q->stat_pkts_too_long;
 865        st.allocation_errors      = q->stat_allocation_errors;
 866        st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
 867        st.flows                  = q->flows;
 868        st.inactive_flows         = q->inactive_flows;
 869        st.throttled_flows        = q->throttled_flows;
 870        st.unthrottle_latency_ns  = min_t(unsigned long,
 871                                          q->unthrottle_latency_ns, ~0U);
 872        sch_tree_unlock(sch);
 873
 874        return gnet_stats_copy_app(d, &st, sizeof(st));
 875}
 876
 877static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 878        .id             =       "fq",
 879        .priv_size      =       sizeof(struct fq_sched_data),
 880
 881        .enqueue        =       fq_enqueue,
 882        .dequeue        =       fq_dequeue,
 883        .peek           =       qdisc_peek_dequeued,
 884        .init           =       fq_init,
 885        .reset          =       fq_reset,
 886        .destroy        =       fq_destroy,
 887        .change         =       fq_change,
 888        .dump           =       fq_dump,
 889        .dump_stats     =       fq_dump_stats,
 890        .owner          =       THIS_MODULE,
 891};
 892
 893static int __init fq_module_init(void)
 894{
 895        int ret;
 896
 897        fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 898                                           sizeof(struct fq_flow),
 899                                           0, 0, NULL);
 900        if (!fq_flow_cachep)
 901                return -ENOMEM;
 902
 903        ret = register_qdisc(&fq_qdisc_ops);
 904        if (ret)
 905                kmem_cache_destroy(fq_flow_cachep);
 906        return ret;
 907}
 908
 909static void __exit fq_module_exit(void)
 910{
 911        unregister_qdisc(&fq_qdisc_ops);
 912        kmem_cache_destroy(fq_flow_cachep);
 913}
 914
 915module_init(fq_module_init)
 916module_exit(fq_module_exit)
 917MODULE_AUTHOR("Eric Dumazet");
 918MODULE_LICENSE("GPL");
 919