linux/security/keys/big_key.c
<<
>>
Prefs
   1/* Large capacity key type
   2 *
   3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
   4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public Licence
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the Licence, or (at your option) any later version.
  11 */
  12
  13#define pr_fmt(fmt) "big_key: "fmt
  14#include <linux/init.h>
  15#include <linux/seq_file.h>
  16#include <linux/file.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/err.h>
  19#include <linux/scatterlist.h>
  20#include <linux/random.h>
  21#include <keys/user-type.h>
  22#include <keys/big_key-type.h>
  23#include <crypto/aead.h>
  24
  25/*
  26 * Layout of key payload words.
  27 */
  28enum {
  29        big_key_data,
  30        big_key_path,
  31        big_key_path_2nd_part,
  32        big_key_len,
  33};
  34
  35/*
  36 * Crypto operation with big_key data
  37 */
  38enum big_key_op {
  39        BIG_KEY_ENC,
  40        BIG_KEY_DEC,
  41};
  42
  43/*
  44 * If the data is under this limit, there's no point creating a shm file to
  45 * hold it as the permanently resident metadata for the shmem fs will be at
  46 * least as large as the data.
  47 */
  48#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
  49
  50/*
  51 * Key size for big_key data encryption
  52 */
  53#define ENC_KEY_SIZE 32
  54
  55/*
  56 * Authentication tag length
  57 */
  58#define ENC_AUTHTAG_SIZE 16
  59
  60/*
  61 * big_key defined keys take an arbitrary string as the description and an
  62 * arbitrary blob of data as the payload
  63 */
  64struct key_type key_type_big_key = {
  65        .name                   = "big_key",
  66        .preparse               = big_key_preparse,
  67        .free_preparse          = big_key_free_preparse,
  68        .instantiate            = generic_key_instantiate,
  69        .revoke                 = big_key_revoke,
  70        .destroy                = big_key_destroy,
  71        .describe               = big_key_describe,
  72        .read                   = big_key_read,
  73        /* no ->update(); don't add it without changing big_key_crypt() nonce */
  74};
  75
  76/*
  77 * Crypto names for big_key data authenticated encryption
  78 */
  79static const char big_key_alg_name[] = "gcm(aes)";
  80
  81/*
  82 * Crypto algorithms for big_key data authenticated encryption
  83 */
  84static struct crypto_aead *big_key_aead;
  85
  86/*
  87 * Since changing the key affects the entire object, we need a mutex.
  88 */
  89static DEFINE_MUTEX(big_key_aead_lock);
  90
  91/*
  92 * Encrypt/decrypt big_key data
  93 */
  94static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
  95{
  96        int ret;
  97        struct scatterlist sgio;
  98        struct aead_request *aead_req;
  99        /* We always use a zero nonce. The reason we can get away with this is
 100         * because we're using a different randomly generated key for every
 101         * different encryption. Notably, too, key_type_big_key doesn't define
 102         * an .update function, so there's no chance we'll wind up reusing the
 103         * key to encrypt updated data. Simply put: one key, one encryption.
 104         */
 105        u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
 106
 107        aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
 108        if (!aead_req)
 109                return -ENOMEM;
 110
 111        memset(zero_nonce, 0, sizeof(zero_nonce));
 112        sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
 113        aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce);
 114        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 115        aead_request_set_ad(aead_req, 0);
 116
 117        mutex_lock(&big_key_aead_lock);
 118        if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
 119                ret = -EAGAIN;
 120                goto error;
 121        }
 122        if (op == BIG_KEY_ENC)
 123                ret = crypto_aead_encrypt(aead_req);
 124        else
 125                ret = crypto_aead_decrypt(aead_req);
 126error:
 127        mutex_unlock(&big_key_aead_lock);
 128        aead_request_free(aead_req);
 129        return ret;
 130}
 131
 132/*
 133 * Preparse a big key
 134 */
 135int big_key_preparse(struct key_preparsed_payload *prep)
 136{
 137        struct path *path = (struct path *)&prep->payload.data[big_key_path];
 138        struct file *file;
 139        u8 *enckey;
 140        u8 *data = NULL;
 141        ssize_t written;
 142        size_t datalen = prep->datalen;
 143        int ret;
 144
 145        ret = -EINVAL;
 146        if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
 147                goto error;
 148
 149        /* Set an arbitrary quota */
 150        prep->quotalen = 16;
 151
 152        prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
 153
 154        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 155                /* Create a shmem file to store the data in.  This will permit the data
 156                 * to be swapped out if needed.
 157                 *
 158                 * File content is stored encrypted with randomly generated key.
 159                 */
 160                size_t enclen = datalen + ENC_AUTHTAG_SIZE;
 161                loff_t pos = 0;
 162
 163                data = kmalloc(enclen, GFP_KERNEL);
 164                if (!data)
 165                        return -ENOMEM;
 166                memcpy(data, prep->data, datalen);
 167
 168                /* generate random key */
 169                enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
 170                if (!enckey) {
 171                        ret = -ENOMEM;
 172                        goto error;
 173                }
 174                ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
 175                if (unlikely(ret))
 176                        goto err_enckey;
 177
 178                /* encrypt aligned data */
 179                ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey);
 180                if (ret)
 181                        goto err_enckey;
 182
 183                /* save aligned data to file */
 184                file = shmem_kernel_file_setup("", enclen, 0);
 185                if (IS_ERR(file)) {
 186                        ret = PTR_ERR(file);
 187                        goto err_enckey;
 188                }
 189
 190                written = kernel_write(file, data, enclen, &pos);
 191                if (written != enclen) {
 192                        ret = written;
 193                        if (written >= 0)
 194                                ret = -ENOMEM;
 195                        goto err_fput;
 196                }
 197
 198                /* Pin the mount and dentry to the key so that we can open it again
 199                 * later
 200                 */
 201                prep->payload.data[big_key_data] = enckey;
 202                *path = file->f_path;
 203                path_get(path);
 204                fput(file);
 205                kzfree(data);
 206        } else {
 207                /* Just store the data in a buffer */
 208                void *data = kmalloc(datalen, GFP_KERNEL);
 209
 210                if (!data)
 211                        return -ENOMEM;
 212
 213                prep->payload.data[big_key_data] = data;
 214                memcpy(data, prep->data, prep->datalen);
 215        }
 216        return 0;
 217
 218err_fput:
 219        fput(file);
 220err_enckey:
 221        kzfree(enckey);
 222error:
 223        kzfree(data);
 224        return ret;
 225}
 226
 227/*
 228 * Clear preparsement.
 229 */
 230void big_key_free_preparse(struct key_preparsed_payload *prep)
 231{
 232        if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
 233                struct path *path = (struct path *)&prep->payload.data[big_key_path];
 234
 235                path_put(path);
 236        }
 237        kzfree(prep->payload.data[big_key_data]);
 238}
 239
 240/*
 241 * dispose of the links from a revoked keyring
 242 * - called with the key sem write-locked
 243 */
 244void big_key_revoke(struct key *key)
 245{
 246        struct path *path = (struct path *)&key->payload.data[big_key_path];
 247
 248        /* clear the quota */
 249        key_payload_reserve(key, 0);
 250        if (key_is_positive(key) &&
 251            (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
 252                vfs_truncate(path, 0);
 253}
 254
 255/*
 256 * dispose of the data dangling from the corpse of a big_key key
 257 */
 258void big_key_destroy(struct key *key)
 259{
 260        size_t datalen = (size_t)key->payload.data[big_key_len];
 261
 262        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 263                struct path *path = (struct path *)&key->payload.data[big_key_path];
 264
 265                path_put(path);
 266                path->mnt = NULL;
 267                path->dentry = NULL;
 268        }
 269        kzfree(key->payload.data[big_key_data]);
 270        key->payload.data[big_key_data] = NULL;
 271}
 272
 273/*
 274 * describe the big_key key
 275 */
 276void big_key_describe(const struct key *key, struct seq_file *m)
 277{
 278        size_t datalen = (size_t)key->payload.data[big_key_len];
 279
 280        seq_puts(m, key->description);
 281
 282        if (key_is_positive(key))
 283                seq_printf(m, ": %zu [%s]",
 284                           datalen,
 285                           datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
 286}
 287
 288/*
 289 * read the key data
 290 * - the key's semaphore is read-locked
 291 */
 292long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
 293{
 294        size_t datalen = (size_t)key->payload.data[big_key_len];
 295        long ret;
 296
 297        if (!buffer || buflen < datalen)
 298                return datalen;
 299
 300        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 301                struct path *path = (struct path *)&key->payload.data[big_key_path];
 302                struct file *file;
 303                u8 *data;
 304                u8 *enckey = (u8 *)key->payload.data[big_key_data];
 305                size_t enclen = datalen + ENC_AUTHTAG_SIZE;
 306                loff_t pos = 0;
 307
 308                data = kmalloc(enclen, GFP_KERNEL);
 309                if (!data)
 310                        return -ENOMEM;
 311
 312                file = dentry_open(path, O_RDONLY, current_cred());
 313                if (IS_ERR(file)) {
 314                        ret = PTR_ERR(file);
 315                        goto error;
 316                }
 317
 318                /* read file to kernel and decrypt */
 319                ret = kernel_read(file, data, enclen, &pos);
 320                if (ret >= 0 && ret != enclen) {
 321                        ret = -EIO;
 322                        goto err_fput;
 323                }
 324
 325                ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
 326                if (ret)
 327                        goto err_fput;
 328
 329                ret = datalen;
 330
 331                /* copy decrypted data to user */
 332                if (copy_to_user(buffer, data, datalen) != 0)
 333                        ret = -EFAULT;
 334
 335err_fput:
 336                fput(file);
 337error:
 338                kzfree(data);
 339        } else {
 340                ret = datalen;
 341                if (copy_to_user(buffer, key->payload.data[big_key_data],
 342                                 datalen) != 0)
 343                        ret = -EFAULT;
 344        }
 345
 346        return ret;
 347}
 348
 349/*
 350 * Register key type
 351 */
 352static int __init big_key_init(void)
 353{
 354        int ret;
 355
 356        /* init block cipher */
 357        big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
 358        if (IS_ERR(big_key_aead)) {
 359                ret = PTR_ERR(big_key_aead);
 360                pr_err("Can't alloc crypto: %d\n", ret);
 361                return ret;
 362        }
 363        ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
 364        if (ret < 0) {
 365                pr_err("Can't set crypto auth tag len: %d\n", ret);
 366                goto free_aead;
 367        }
 368
 369        ret = register_key_type(&key_type_big_key);
 370        if (ret < 0) {
 371                pr_err("Can't register type: %d\n", ret);
 372                goto free_aead;
 373        }
 374
 375        return 0;
 376
 377free_aead:
 378        crypto_free_aead(big_key_aead);
 379        return ret;
 380}
 381
 382late_initcall(big_key_init);
 383