linux/security/keys/keyring.c
<<
>>
Prefs
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE  (1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE     0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44        return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48        void *object = assoc_array_ptr_to_leaf(x);
  49        return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53        if (key->type == &key_type_keyring)
  54                return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55        return key;
  56}
  57
  58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
  62{
  63        unsigned bucket = 0;
  64
  65        for (; *desc; desc++)
  66                bucket += (unsigned char)*desc;
  67
  68        return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_preparse(struct key_preparsed_payload *prep);
  77static void keyring_free_preparse(struct key_preparsed_payload *prep);
  78static int keyring_instantiate(struct key *keyring,
  79                               struct key_preparsed_payload *prep);
  80static void keyring_revoke(struct key *keyring);
  81static void keyring_destroy(struct key *keyring);
  82static void keyring_describe(const struct key *keyring, struct seq_file *m);
  83static long keyring_read(const struct key *keyring,
  84                         char __user *buffer, size_t buflen);
  85
  86struct key_type key_type_keyring = {
  87        .name           = "keyring",
  88        .def_datalen    = 0,
  89        .preparse       = keyring_preparse,
  90        .free_preparse  = keyring_free_preparse,
  91        .instantiate    = keyring_instantiate,
  92        .revoke         = keyring_revoke,
  93        .destroy        = keyring_destroy,
  94        .describe       = keyring_describe,
  95        .read           = keyring_read,
  96};
  97EXPORT_SYMBOL(key_type_keyring);
  98
  99/*
 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 101 * introducing a cycle.
 102 */
 103static DECLARE_RWSEM(keyring_serialise_link_sem);
 104
 105/*
 106 * Publish the name of a keyring so that it can be found by name (if it has
 107 * one).
 108 */
 109static void keyring_publish_name(struct key *keyring)
 110{
 111        int bucket;
 112
 113        if (keyring->description) {
 114                bucket = keyring_hash(keyring->description);
 115
 116                write_lock(&keyring_name_lock);
 117
 118                if (!keyring_name_hash[bucket].next)
 119                        INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 120
 121                list_add_tail(&keyring->name_link,
 122                              &keyring_name_hash[bucket]);
 123
 124                write_unlock(&keyring_name_lock);
 125        }
 126}
 127
 128/*
 129 * Preparse a keyring payload
 130 */
 131static int keyring_preparse(struct key_preparsed_payload *prep)
 132{
 133        return prep->datalen != 0 ? -EINVAL : 0;
 134}
 135
 136/*
 137 * Free a preparse of a user defined key payload
 138 */
 139static void keyring_free_preparse(struct key_preparsed_payload *prep)
 140{
 141}
 142
 143/*
 144 * Initialise a keyring.
 145 *
 146 * Returns 0 on success, -EINVAL if given any data.
 147 */
 148static int keyring_instantiate(struct key *keyring,
 149                               struct key_preparsed_payload *prep)
 150{
 151        assoc_array_init(&keyring->keys);
 152        /* make the keyring available by name if it has one */
 153        keyring_publish_name(keyring);
 154        return 0;
 155}
 156
 157/*
 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 159 * fold the carry back too, but that requires inline asm.
 160 */
 161static u64 mult_64x32_and_fold(u64 x, u32 y)
 162{
 163        u64 hi = (u64)(u32)(x >> 32) * y;
 164        u64 lo = (u64)(u32)(x) * y;
 165        return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 166}
 167
 168/*
 169 * Hash a key type and description.
 170 */
 171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 172{
 173        const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 174        const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 175        const char *description = index_key->description;
 176        unsigned long hash, type;
 177        u32 piece;
 178        u64 acc;
 179        int n, desc_len = index_key->desc_len;
 180
 181        type = (unsigned long)index_key->type;
 182
 183        acc = mult_64x32_and_fold(type, desc_len + 13);
 184        acc = mult_64x32_and_fold(acc, 9207);
 185        for (;;) {
 186                n = desc_len;
 187                if (n <= 0)
 188                        break;
 189                if (n > 4)
 190                        n = 4;
 191                piece = 0;
 192                memcpy(&piece, description, n);
 193                description += n;
 194                desc_len -= n;
 195                acc = mult_64x32_and_fold(acc, piece);
 196                acc = mult_64x32_and_fold(acc, 9207);
 197        }
 198
 199        /* Fold the hash down to 32 bits if need be. */
 200        hash = acc;
 201        if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 202                hash ^= acc >> 32;
 203
 204        /* Squidge all the keyrings into a separate part of the tree to
 205         * ordinary keys by making sure the lowest level segment in the hash is
 206         * zero for keyrings and non-zero otherwise.
 207         */
 208        if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 209                return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 210        if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 211                return (hash + (hash << level_shift)) & ~fan_mask;
 212        return hash;
 213}
 214
 215/*
 216 * Build the next index key chunk.
 217 *
 218 * On 32-bit systems the index key is laid out as:
 219 *
 220 *      0       4       5       9...
 221 *      hash    desclen typeptr desc[]
 222 *
 223 * On 64-bit systems:
 224 *
 225 *      0       8       9       17...
 226 *      hash    desclen typeptr desc[]
 227 *
 228 * We return it one word-sized chunk at a time.
 229 */
 230static unsigned long keyring_get_key_chunk(const void *data, int level)
 231{
 232        const struct keyring_index_key *index_key = data;
 233        unsigned long chunk = 0;
 234        long offset = 0;
 235        int desc_len = index_key->desc_len, n = sizeof(chunk);
 236
 237        level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 238        switch (level) {
 239        case 0:
 240                return hash_key_type_and_desc(index_key);
 241        case 1:
 242                return ((unsigned long)index_key->type << 8) | desc_len;
 243        case 2:
 244                if (desc_len == 0)
 245                        return (u8)((unsigned long)index_key->type >>
 246                                    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 247                n--;
 248                offset = 1;
 249        default:
 250                offset += sizeof(chunk) - 1;
 251                offset += (level - 3) * sizeof(chunk);
 252                if (offset >= desc_len)
 253                        return 0;
 254                desc_len -= offset;
 255                if (desc_len > n)
 256                        desc_len = n;
 257                offset += desc_len;
 258                do {
 259                        chunk <<= 8;
 260                        chunk |= ((u8*)index_key->description)[--offset];
 261                } while (--desc_len > 0);
 262
 263                if (level == 2) {
 264                        chunk <<= 8;
 265                        chunk |= (u8)((unsigned long)index_key->type >>
 266                                      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 267                }
 268                return chunk;
 269        }
 270}
 271
 272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 273{
 274        const struct key *key = keyring_ptr_to_key(object);
 275        return keyring_get_key_chunk(&key->index_key, level);
 276}
 277
 278static bool keyring_compare_object(const void *object, const void *data)
 279{
 280        const struct keyring_index_key *index_key = data;
 281        const struct key *key = keyring_ptr_to_key(object);
 282
 283        return key->index_key.type == index_key->type &&
 284                key->index_key.desc_len == index_key->desc_len &&
 285                memcmp(key->index_key.description, index_key->description,
 286                       index_key->desc_len) == 0;
 287}
 288
 289/*
 290 * Compare the index keys of a pair of objects and determine the bit position
 291 * at which they differ - if they differ.
 292 */
 293static int keyring_diff_objects(const void *object, const void *data)
 294{
 295        const struct key *key_a = keyring_ptr_to_key(object);
 296        const struct keyring_index_key *a = &key_a->index_key;
 297        const struct keyring_index_key *b = data;
 298        unsigned long seg_a, seg_b;
 299        int level, i;
 300
 301        level = 0;
 302        seg_a = hash_key_type_and_desc(a);
 303        seg_b = hash_key_type_and_desc(b);
 304        if ((seg_a ^ seg_b) != 0)
 305                goto differ;
 306
 307        /* The number of bits contributed by the hash is controlled by a
 308         * constant in the assoc_array headers.  Everything else thereafter we
 309         * can deal with as being machine word-size dependent.
 310         */
 311        level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 312        seg_a = a->desc_len;
 313        seg_b = b->desc_len;
 314        if ((seg_a ^ seg_b) != 0)
 315                goto differ;
 316
 317        /* The next bit may not work on big endian */
 318        level++;
 319        seg_a = (unsigned long)a->type;
 320        seg_b = (unsigned long)b->type;
 321        if ((seg_a ^ seg_b) != 0)
 322                goto differ;
 323
 324        level += sizeof(unsigned long);
 325        if (a->desc_len == 0)
 326                goto same;
 327
 328        i = 0;
 329        if (((unsigned long)a->description | (unsigned long)b->description) &
 330            (sizeof(unsigned long) - 1)) {
 331                do {
 332                        seg_a = *(unsigned long *)(a->description + i);
 333                        seg_b = *(unsigned long *)(b->description + i);
 334                        if ((seg_a ^ seg_b) != 0)
 335                                goto differ_plus_i;
 336                        i += sizeof(unsigned long);
 337                } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 338        }
 339
 340        for (; i < a->desc_len; i++) {
 341                seg_a = *(unsigned char *)(a->description + i);
 342                seg_b = *(unsigned char *)(b->description + i);
 343                if ((seg_a ^ seg_b) != 0)
 344                        goto differ_plus_i;
 345        }
 346
 347same:
 348        return -1;
 349
 350differ_plus_i:
 351        level += i;
 352differ:
 353        i = level * 8 + __ffs(seg_a ^ seg_b);
 354        return i;
 355}
 356
 357/*
 358 * Free an object after stripping the keyring flag off of the pointer.
 359 */
 360static void keyring_free_object(void *object)
 361{
 362        key_put(keyring_ptr_to_key(object));
 363}
 364
 365/*
 366 * Operations for keyring management by the index-tree routines.
 367 */
 368static const struct assoc_array_ops keyring_assoc_array_ops = {
 369        .get_key_chunk          = keyring_get_key_chunk,
 370        .get_object_key_chunk   = keyring_get_object_key_chunk,
 371        .compare_object         = keyring_compare_object,
 372        .diff_objects           = keyring_diff_objects,
 373        .free_object            = keyring_free_object,
 374};
 375
 376/*
 377 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 378 * and dispose of its data.
 379 *
 380 * The garbage collector detects the final key_put(), removes the keyring from
 381 * the serial number tree and then does RCU synchronisation before coming here,
 382 * so we shouldn't need to worry about code poking around here with the RCU
 383 * readlock held by this time.
 384 */
 385static void keyring_destroy(struct key *keyring)
 386{
 387        if (keyring->description) {
 388                write_lock(&keyring_name_lock);
 389
 390                if (keyring->name_link.next != NULL &&
 391                    !list_empty(&keyring->name_link))
 392                        list_del(&keyring->name_link);
 393
 394                write_unlock(&keyring_name_lock);
 395        }
 396
 397        if (keyring->restrict_link) {
 398                struct key_restriction *keyres = keyring->restrict_link;
 399
 400                key_put(keyres->key);
 401                kfree(keyres);
 402        }
 403
 404        assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 405}
 406
 407/*
 408 * Describe a keyring for /proc.
 409 */
 410static void keyring_describe(const struct key *keyring, struct seq_file *m)
 411{
 412        if (keyring->description)
 413                seq_puts(m, keyring->description);
 414        else
 415                seq_puts(m, "[anon]");
 416
 417        if (key_is_positive(keyring)) {
 418                if (keyring->keys.nr_leaves_on_tree != 0)
 419                        seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 420                else
 421                        seq_puts(m, ": empty");
 422        }
 423}
 424
 425struct keyring_read_iterator_context {
 426        size_t                  buflen;
 427        size_t                  count;
 428        key_serial_t __user     *buffer;
 429};
 430
 431static int keyring_read_iterator(const void *object, void *data)
 432{
 433        struct keyring_read_iterator_context *ctx = data;
 434        const struct key *key = keyring_ptr_to_key(object);
 435        int ret;
 436
 437        kenter("{%s,%d},,{%zu/%zu}",
 438               key->type->name, key->serial, ctx->count, ctx->buflen);
 439
 440        if (ctx->count >= ctx->buflen)
 441                return 1;
 442
 443        ret = put_user(key->serial, ctx->buffer);
 444        if (ret < 0)
 445                return ret;
 446        ctx->buffer++;
 447        ctx->count += sizeof(key->serial);
 448        return 0;
 449}
 450
 451/*
 452 * Read a list of key IDs from the keyring's contents in binary form
 453 *
 454 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 455 * from modifying it under us - which could cause us to read key IDs multiple
 456 * times.
 457 */
 458static long keyring_read(const struct key *keyring,
 459                         char __user *buffer, size_t buflen)
 460{
 461        struct keyring_read_iterator_context ctx;
 462        long ret;
 463
 464        kenter("{%d},,%zu", key_serial(keyring), buflen);
 465
 466        if (buflen & (sizeof(key_serial_t) - 1))
 467                return -EINVAL;
 468
 469        /* Copy as many key IDs as fit into the buffer */
 470        if (buffer && buflen) {
 471                ctx.buffer = (key_serial_t __user *)buffer;
 472                ctx.buflen = buflen;
 473                ctx.count = 0;
 474                ret = assoc_array_iterate(&keyring->keys,
 475                                          keyring_read_iterator, &ctx);
 476                if (ret < 0) {
 477                        kleave(" = %ld [iterate]", ret);
 478                        return ret;
 479                }
 480        }
 481
 482        /* Return the size of the buffer needed */
 483        ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 484        if (ret <= buflen)
 485                kleave("= %ld [ok]", ret);
 486        else
 487                kleave("= %ld [buffer too small]", ret);
 488        return ret;
 489}
 490
 491/*
 492 * Allocate a keyring and link into the destination keyring.
 493 */
 494struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 495                          const struct cred *cred, key_perm_t perm,
 496                          unsigned long flags,
 497                          struct key_restriction *restrict_link,
 498                          struct key *dest)
 499{
 500        struct key *keyring;
 501        int ret;
 502
 503        keyring = key_alloc(&key_type_keyring, description,
 504                            uid, gid, cred, perm, flags, restrict_link);
 505        if (!IS_ERR(keyring)) {
 506                ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 507                if (ret < 0) {
 508                        key_put(keyring);
 509                        keyring = ERR_PTR(ret);
 510                }
 511        }
 512
 513        return keyring;
 514}
 515EXPORT_SYMBOL(keyring_alloc);
 516
 517/**
 518 * restrict_link_reject - Give -EPERM to restrict link
 519 * @keyring: The keyring being added to.
 520 * @type: The type of key being added.
 521 * @payload: The payload of the key intended to be added.
 522 * @data: Additional data for evaluating restriction.
 523 *
 524 * Reject the addition of any links to a keyring.  It can be overridden by
 525 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 526 * adding a key to a keyring.
 527 *
 528 * This is meant to be stored in a key_restriction structure which is passed
 529 * in the restrict_link parameter to keyring_alloc().
 530 */
 531int restrict_link_reject(struct key *keyring,
 532                         const struct key_type *type,
 533                         const union key_payload *payload,
 534                         struct key *restriction_key)
 535{
 536        return -EPERM;
 537}
 538
 539/*
 540 * By default, we keys found by getting an exact match on their descriptions.
 541 */
 542bool key_default_cmp(const struct key *key,
 543                     const struct key_match_data *match_data)
 544{
 545        return strcmp(key->description, match_data->raw_data) == 0;
 546}
 547
 548/*
 549 * Iteration function to consider each key found.
 550 */
 551static int keyring_search_iterator(const void *object, void *iterator_data)
 552{
 553        struct keyring_search_context *ctx = iterator_data;
 554        const struct key *key = keyring_ptr_to_key(object);
 555        unsigned long kflags = READ_ONCE(key->flags);
 556        short state = READ_ONCE(key->state);
 557
 558        kenter("{%d}", key->serial);
 559
 560        /* ignore keys not of this type */
 561        if (key->type != ctx->index_key.type) {
 562                kleave(" = 0 [!type]");
 563                return 0;
 564        }
 565
 566        /* skip invalidated, revoked and expired keys */
 567        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 568                time_t expiry = READ_ONCE(key->expiry);
 569
 570                if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 571                              (1 << KEY_FLAG_REVOKED))) {
 572                        ctx->result = ERR_PTR(-EKEYREVOKED);
 573                        kleave(" = %d [invrev]", ctx->skipped_ret);
 574                        goto skipped;
 575                }
 576
 577                if (expiry && ctx->now.tv_sec >= expiry) {
 578                        if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 579                                ctx->result = ERR_PTR(-EKEYEXPIRED);
 580                        kleave(" = %d [expire]", ctx->skipped_ret);
 581                        goto skipped;
 582                }
 583        }
 584
 585        /* keys that don't match */
 586        if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 587                kleave(" = 0 [!match]");
 588                return 0;
 589        }
 590
 591        /* key must have search permissions */
 592        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 593            key_task_permission(make_key_ref(key, ctx->possessed),
 594                                ctx->cred, KEY_NEED_SEARCH) < 0) {
 595                ctx->result = ERR_PTR(-EACCES);
 596                kleave(" = %d [!perm]", ctx->skipped_ret);
 597                goto skipped;
 598        }
 599
 600        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 601                /* we set a different error code if we pass a negative key */
 602                if (state < 0) {
 603                        ctx->result = ERR_PTR(state);
 604                        kleave(" = %d [neg]", ctx->skipped_ret);
 605                        goto skipped;
 606                }
 607        }
 608
 609        /* Found */
 610        ctx->result = make_key_ref(key, ctx->possessed);
 611        kleave(" = 1 [found]");
 612        return 1;
 613
 614skipped:
 615        return ctx->skipped_ret;
 616}
 617
 618/*
 619 * Search inside a keyring for a key.  We can search by walking to it
 620 * directly based on its index-key or we can iterate over the entire
 621 * tree looking for it, based on the match function.
 622 */
 623static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 624{
 625        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 626                const void *object;
 627
 628                object = assoc_array_find(&keyring->keys,
 629                                          &keyring_assoc_array_ops,
 630                                          &ctx->index_key);
 631                return object ? ctx->iterator(object, ctx) : 0;
 632        }
 633        return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 634}
 635
 636/*
 637 * Search a tree of keyrings that point to other keyrings up to the maximum
 638 * depth.
 639 */
 640static bool search_nested_keyrings(struct key *keyring,
 641                                   struct keyring_search_context *ctx)
 642{
 643        struct {
 644                struct key *keyring;
 645                struct assoc_array_node *node;
 646                int slot;
 647        } stack[KEYRING_SEARCH_MAX_DEPTH];
 648
 649        struct assoc_array_shortcut *shortcut;
 650        struct assoc_array_node *node;
 651        struct assoc_array_ptr *ptr;
 652        struct key *key;
 653        int sp = 0, slot;
 654
 655        kenter("{%d},{%s,%s}",
 656               keyring->serial,
 657               ctx->index_key.type->name,
 658               ctx->index_key.description);
 659
 660#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 661        BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 662               (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 663
 664        if (ctx->index_key.description)
 665                ctx->index_key.desc_len = strlen(ctx->index_key.description);
 666
 667        /* Check to see if this top-level keyring is what we are looking for
 668         * and whether it is valid or not.
 669         */
 670        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 671            keyring_compare_object(keyring, &ctx->index_key)) {
 672                ctx->skipped_ret = 2;
 673                switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 674                case 1:
 675                        goto found;
 676                case 2:
 677                        return false;
 678                default:
 679                        break;
 680                }
 681        }
 682
 683        ctx->skipped_ret = 0;
 684
 685        /* Start processing a new keyring */
 686descend_to_keyring:
 687        kdebug("descend to %d", keyring->serial);
 688        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 689                              (1 << KEY_FLAG_REVOKED)))
 690                goto not_this_keyring;
 691
 692        /* Search through the keys in this keyring before its searching its
 693         * subtrees.
 694         */
 695        if (search_keyring(keyring, ctx))
 696                goto found;
 697
 698        /* Then manually iterate through the keyrings nested in this one.
 699         *
 700         * Start from the root node of the index tree.  Because of the way the
 701         * hash function has been set up, keyrings cluster on the leftmost
 702         * branch of the root node (root slot 0) or in the root node itself.
 703         * Non-keyrings avoid the leftmost branch of the root entirely (root
 704         * slots 1-15).
 705         */
 706        ptr = READ_ONCE(keyring->keys.root);
 707        if (!ptr)
 708                goto not_this_keyring;
 709
 710        if (assoc_array_ptr_is_shortcut(ptr)) {
 711                /* If the root is a shortcut, either the keyring only contains
 712                 * keyring pointers (everything clusters behind root slot 0) or
 713                 * doesn't contain any keyring pointers.
 714                 */
 715                shortcut = assoc_array_ptr_to_shortcut(ptr);
 716                smp_read_barrier_depends();
 717                if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 718                        goto not_this_keyring;
 719
 720                ptr = READ_ONCE(shortcut->next_node);
 721                node = assoc_array_ptr_to_node(ptr);
 722                goto begin_node;
 723        }
 724
 725        node = assoc_array_ptr_to_node(ptr);
 726        smp_read_barrier_depends();
 727
 728        ptr = node->slots[0];
 729        if (!assoc_array_ptr_is_meta(ptr))
 730                goto begin_node;
 731
 732descend_to_node:
 733        /* Descend to a more distal node in this keyring's content tree and go
 734         * through that.
 735         */
 736        kdebug("descend");
 737        if (assoc_array_ptr_is_shortcut(ptr)) {
 738                shortcut = assoc_array_ptr_to_shortcut(ptr);
 739                smp_read_barrier_depends();
 740                ptr = READ_ONCE(shortcut->next_node);
 741                BUG_ON(!assoc_array_ptr_is_node(ptr));
 742        }
 743        node = assoc_array_ptr_to_node(ptr);
 744
 745begin_node:
 746        kdebug("begin_node");
 747        smp_read_barrier_depends();
 748        slot = 0;
 749ascend_to_node:
 750        /* Go through the slots in a node */
 751        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 752                ptr = READ_ONCE(node->slots[slot]);
 753
 754                if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 755                        goto descend_to_node;
 756
 757                if (!keyring_ptr_is_keyring(ptr))
 758                        continue;
 759
 760                key = keyring_ptr_to_key(ptr);
 761
 762                if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 763                        if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 764                                ctx->result = ERR_PTR(-ELOOP);
 765                                return false;
 766                        }
 767                        goto not_this_keyring;
 768                }
 769
 770                /* Search a nested keyring */
 771                if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 772                    key_task_permission(make_key_ref(key, ctx->possessed),
 773                                        ctx->cred, KEY_NEED_SEARCH) < 0)
 774                        continue;
 775
 776                /* stack the current position */
 777                stack[sp].keyring = keyring;
 778                stack[sp].node = node;
 779                stack[sp].slot = slot;
 780                sp++;
 781
 782                /* begin again with the new keyring */
 783                keyring = key;
 784                goto descend_to_keyring;
 785        }
 786
 787        /* We've dealt with all the slots in the current node, so now we need
 788         * to ascend to the parent and continue processing there.
 789         */
 790        ptr = READ_ONCE(node->back_pointer);
 791        slot = node->parent_slot;
 792
 793        if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 794                shortcut = assoc_array_ptr_to_shortcut(ptr);
 795                smp_read_barrier_depends();
 796                ptr = READ_ONCE(shortcut->back_pointer);
 797                slot = shortcut->parent_slot;
 798        }
 799        if (!ptr)
 800                goto not_this_keyring;
 801        node = assoc_array_ptr_to_node(ptr);
 802        smp_read_barrier_depends();
 803        slot++;
 804
 805        /* If we've ascended to the root (zero backpointer), we must have just
 806         * finished processing the leftmost branch rather than the root slots -
 807         * so there can't be any more keyrings for us to find.
 808         */
 809        if (node->back_pointer) {
 810                kdebug("ascend %d", slot);
 811                goto ascend_to_node;
 812        }
 813
 814        /* The keyring we're looking at was disqualified or didn't contain a
 815         * matching key.
 816         */
 817not_this_keyring:
 818        kdebug("not_this_keyring %d", sp);
 819        if (sp <= 0) {
 820                kleave(" = false");
 821                return false;
 822        }
 823
 824        /* Resume the processing of a keyring higher up in the tree */
 825        sp--;
 826        keyring = stack[sp].keyring;
 827        node = stack[sp].node;
 828        slot = stack[sp].slot + 1;
 829        kdebug("ascend to %d [%d]", keyring->serial, slot);
 830        goto ascend_to_node;
 831
 832        /* We found a viable match */
 833found:
 834        key = key_ref_to_ptr(ctx->result);
 835        key_check(key);
 836        if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 837                key->last_used_at = ctx->now.tv_sec;
 838                keyring->last_used_at = ctx->now.tv_sec;
 839                while (sp > 0)
 840                        stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 841        }
 842        kleave(" = true");
 843        return true;
 844}
 845
 846/**
 847 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 848 * @keyring_ref: A pointer to the keyring with possession indicator.
 849 * @ctx: The keyring search context.
 850 *
 851 * Search the supplied keyring tree for a key that matches the criteria given.
 852 * The root keyring and any linked keyrings must grant Search permission to the
 853 * caller to be searchable and keys can only be found if they too grant Search
 854 * to the caller. The possession flag on the root keyring pointer controls use
 855 * of the possessor bits in permissions checking of the entire tree.  In
 856 * addition, the LSM gets to forbid keyring searches and key matches.
 857 *
 858 * The search is performed as a breadth-then-depth search up to the prescribed
 859 * limit (KEYRING_SEARCH_MAX_DEPTH).
 860 *
 861 * Keys are matched to the type provided and are then filtered by the match
 862 * function, which is given the description to use in any way it sees fit.  The
 863 * match function may use any attributes of a key that it wishes to to
 864 * determine the match.  Normally the match function from the key type would be
 865 * used.
 866 *
 867 * RCU can be used to prevent the keyring key lists from disappearing without
 868 * the need to take lots of locks.
 869 *
 870 * Returns a pointer to the found key and increments the key usage count if
 871 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 872 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 873 * specified keyring wasn't a keyring.
 874 *
 875 * In the case of a successful return, the possession attribute from
 876 * @keyring_ref is propagated to the returned key reference.
 877 */
 878key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 879                             struct keyring_search_context *ctx)
 880{
 881        struct key *keyring;
 882        long err;
 883
 884        ctx->iterator = keyring_search_iterator;
 885        ctx->possessed = is_key_possessed(keyring_ref);
 886        ctx->result = ERR_PTR(-EAGAIN);
 887
 888        keyring = key_ref_to_ptr(keyring_ref);
 889        key_check(keyring);
 890
 891        if (keyring->type != &key_type_keyring)
 892                return ERR_PTR(-ENOTDIR);
 893
 894        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 895                err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 896                if (err < 0)
 897                        return ERR_PTR(err);
 898        }
 899
 900        rcu_read_lock();
 901        ctx->now = current_kernel_time();
 902        if (search_nested_keyrings(keyring, ctx))
 903                __key_get(key_ref_to_ptr(ctx->result));
 904        rcu_read_unlock();
 905        return ctx->result;
 906}
 907
 908/**
 909 * keyring_search - Search the supplied keyring tree for a matching key
 910 * @keyring: The root of the keyring tree to be searched.
 911 * @type: The type of keyring we want to find.
 912 * @description: The name of the keyring we want to find.
 913 *
 914 * As keyring_search_aux() above, but using the current task's credentials and
 915 * type's default matching function and preferred search method.
 916 */
 917key_ref_t keyring_search(key_ref_t keyring,
 918                         struct key_type *type,
 919                         const char *description)
 920{
 921        struct keyring_search_context ctx = {
 922                .index_key.type         = type,
 923                .index_key.description  = description,
 924                .cred                   = current_cred(),
 925                .match_data.cmp         = key_default_cmp,
 926                .match_data.raw_data    = description,
 927                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 928                .flags                  = KEYRING_SEARCH_DO_STATE_CHECK,
 929        };
 930        key_ref_t key;
 931        int ret;
 932
 933        if (type->match_preparse) {
 934                ret = type->match_preparse(&ctx.match_data);
 935                if (ret < 0)
 936                        return ERR_PTR(ret);
 937        }
 938
 939        key = keyring_search_aux(keyring, &ctx);
 940
 941        if (type->match_free)
 942                type->match_free(&ctx.match_data);
 943        return key;
 944}
 945EXPORT_SYMBOL(keyring_search);
 946
 947static struct key_restriction *keyring_restriction_alloc(
 948        key_restrict_link_func_t check)
 949{
 950        struct key_restriction *keyres =
 951                kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 952
 953        if (!keyres)
 954                return ERR_PTR(-ENOMEM);
 955
 956        keyres->check = check;
 957
 958        return keyres;
 959}
 960
 961/*
 962 * Semaphore to serialise restriction setup to prevent reference count
 963 * cycles through restriction key pointers.
 964 */
 965static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 966
 967/*
 968 * Check for restriction cycles that would prevent keyring garbage collection.
 969 * keyring_serialise_restrict_sem must be held.
 970 */
 971static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
 972                                             struct key_restriction *keyres)
 973{
 974        while (keyres && keyres->key &&
 975               keyres->key->type == &key_type_keyring) {
 976                if (keyres->key == dest_keyring)
 977                        return true;
 978
 979                keyres = keyres->key->restrict_link;
 980        }
 981
 982        return false;
 983}
 984
 985/**
 986 * keyring_restrict - Look up and apply a restriction to a keyring
 987 *
 988 * @keyring: The keyring to be restricted
 989 * @restriction: The restriction options to apply to the keyring
 990 */
 991int keyring_restrict(key_ref_t keyring_ref, const char *type,
 992                     const char *restriction)
 993{
 994        struct key *keyring;
 995        struct key_type *restrict_type = NULL;
 996        struct key_restriction *restrict_link;
 997        int ret = 0;
 998
 999        keyring = key_ref_to_ptr(keyring_ref);
1000        key_check(keyring);
1001
1002        if (keyring->type != &key_type_keyring)
1003                return -ENOTDIR;
1004
1005        if (!type) {
1006                restrict_link = keyring_restriction_alloc(restrict_link_reject);
1007        } else {
1008                restrict_type = key_type_lookup(type);
1009
1010                if (IS_ERR(restrict_type))
1011                        return PTR_ERR(restrict_type);
1012
1013                if (!restrict_type->lookup_restriction) {
1014                        ret = -ENOENT;
1015                        goto error;
1016                }
1017
1018                restrict_link = restrict_type->lookup_restriction(restriction);
1019        }
1020
1021        if (IS_ERR(restrict_link)) {
1022                ret = PTR_ERR(restrict_link);
1023                goto error;
1024        }
1025
1026        down_write(&keyring->sem);
1027        down_write(&keyring_serialise_restrict_sem);
1028
1029        if (keyring->restrict_link)
1030                ret = -EEXIST;
1031        else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1032                ret = -EDEADLK;
1033        else
1034                keyring->restrict_link = restrict_link;
1035
1036        up_write(&keyring_serialise_restrict_sem);
1037        up_write(&keyring->sem);
1038
1039        if (ret < 0) {
1040                key_put(restrict_link->key);
1041                kfree(restrict_link);
1042        }
1043
1044error:
1045        if (restrict_type)
1046                key_type_put(restrict_type);
1047
1048        return ret;
1049}
1050EXPORT_SYMBOL(keyring_restrict);
1051
1052/*
1053 * Search the given keyring for a key that might be updated.
1054 *
1055 * The caller must guarantee that the keyring is a keyring and that the
1056 * permission is granted to modify the keyring as no check is made here.  The
1057 * caller must also hold a lock on the keyring semaphore.
1058 *
1059 * Returns a pointer to the found key with usage count incremented if
1060 * successful and returns NULL if not found.  Revoked and invalidated keys are
1061 * skipped over.
1062 *
1063 * If successful, the possession indicator is propagated from the keyring ref
1064 * to the returned key reference.
1065 */
1066key_ref_t find_key_to_update(key_ref_t keyring_ref,
1067                             const struct keyring_index_key *index_key)
1068{
1069        struct key *keyring, *key;
1070        const void *object;
1071
1072        keyring = key_ref_to_ptr(keyring_ref);
1073
1074        kenter("{%d},{%s,%s}",
1075               keyring->serial, index_key->type->name, index_key->description);
1076
1077        object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1078                                  index_key);
1079
1080        if (object)
1081                goto found;
1082
1083        kleave(" = NULL");
1084        return NULL;
1085
1086found:
1087        key = keyring_ptr_to_key(object);
1088        if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1089                          (1 << KEY_FLAG_REVOKED))) {
1090                kleave(" = NULL [x]");
1091                return NULL;
1092        }
1093        __key_get(key);
1094        kleave(" = {%d}", key->serial);
1095        return make_key_ref(key, is_key_possessed(keyring_ref));
1096}
1097
1098/*
1099 * Find a keyring with the specified name.
1100 *
1101 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1102 * user in the current user namespace are considered.  If @uid_keyring is %true,
1103 * the keyring additionally must have been allocated as a user or user session
1104 * keyring; otherwise, it must grant Search permission directly to the caller.
1105 *
1106 * Returns a pointer to the keyring with the keyring's refcount having being
1107 * incremented on success.  -ENOKEY is returned if a key could not be found.
1108 */
1109struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1110{
1111        struct key *keyring;
1112        int bucket;
1113
1114        if (!name)
1115                return ERR_PTR(-EINVAL);
1116
1117        bucket = keyring_hash(name);
1118
1119        read_lock(&keyring_name_lock);
1120
1121        if (keyring_name_hash[bucket].next) {
1122                /* search this hash bucket for a keyring with a matching name
1123                 * that's readable and that hasn't been revoked */
1124                list_for_each_entry(keyring,
1125                                    &keyring_name_hash[bucket],
1126                                    name_link
1127                                    ) {
1128                        if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1129                                continue;
1130
1131                        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1132                                continue;
1133
1134                        if (strcmp(keyring->description, name) != 0)
1135                                continue;
1136
1137                        if (uid_keyring) {
1138                                if (!test_bit(KEY_FLAG_UID_KEYRING,
1139                                              &keyring->flags))
1140                                        continue;
1141                        } else {
1142                                if (key_permission(make_key_ref(keyring, 0),
1143                                                   KEY_NEED_SEARCH) < 0)
1144                                        continue;
1145                        }
1146
1147                        /* we've got a match but we might end up racing with
1148                         * key_cleanup() if the keyring is currently 'dead'
1149                         * (ie. it has a zero usage count) */
1150                        if (!refcount_inc_not_zero(&keyring->usage))
1151                                continue;
1152                        keyring->last_used_at = current_kernel_time().tv_sec;
1153                        goto out;
1154                }
1155        }
1156
1157        keyring = ERR_PTR(-ENOKEY);
1158out:
1159        read_unlock(&keyring_name_lock);
1160        return keyring;
1161}
1162
1163static int keyring_detect_cycle_iterator(const void *object,
1164                                         void *iterator_data)
1165{
1166        struct keyring_search_context *ctx = iterator_data;
1167        const struct key *key = keyring_ptr_to_key(object);
1168
1169        kenter("{%d}", key->serial);
1170
1171        /* We might get a keyring with matching index-key that is nonetheless a
1172         * different keyring. */
1173        if (key != ctx->match_data.raw_data)
1174                return 0;
1175
1176        ctx->result = ERR_PTR(-EDEADLK);
1177        return 1;
1178}
1179
1180/*
1181 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1182 * tree A at the topmost level (ie: as a direct child of A).
1183 *
1184 * Since we are adding B to A at the top level, checking for cycles should just
1185 * be a matter of seeing if node A is somewhere in tree B.
1186 */
1187static int keyring_detect_cycle(struct key *A, struct key *B)
1188{
1189        struct keyring_search_context ctx = {
1190                .index_key              = A->index_key,
1191                .match_data.raw_data    = A,
1192                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1193                .iterator               = keyring_detect_cycle_iterator,
1194                .flags                  = (KEYRING_SEARCH_NO_STATE_CHECK |
1195                                           KEYRING_SEARCH_NO_UPDATE_TIME |
1196                                           KEYRING_SEARCH_NO_CHECK_PERM |
1197                                           KEYRING_SEARCH_DETECT_TOO_DEEP),
1198        };
1199
1200        rcu_read_lock();
1201        search_nested_keyrings(B, &ctx);
1202        rcu_read_unlock();
1203        return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1204}
1205
1206/*
1207 * Preallocate memory so that a key can be linked into to a keyring.
1208 */
1209int __key_link_begin(struct key *keyring,
1210                     const struct keyring_index_key *index_key,
1211                     struct assoc_array_edit **_edit)
1212        __acquires(&keyring->sem)
1213        __acquires(&keyring_serialise_link_sem)
1214{
1215        struct assoc_array_edit *edit;
1216        int ret;
1217
1218        kenter("%d,%s,%s,",
1219               keyring->serial, index_key->type->name, index_key->description);
1220
1221        BUG_ON(index_key->desc_len == 0);
1222
1223        if (keyring->type != &key_type_keyring)
1224                return -ENOTDIR;
1225
1226        down_write(&keyring->sem);
1227
1228        ret = -EKEYREVOKED;
1229        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1230                goto error_krsem;
1231
1232        /* serialise link/link calls to prevent parallel calls causing a cycle
1233         * when linking two keyring in opposite orders */
1234        if (index_key->type == &key_type_keyring)
1235                down_write(&keyring_serialise_link_sem);
1236
1237        /* Create an edit script that will insert/replace the key in the
1238         * keyring tree.
1239         */
1240        edit = assoc_array_insert(&keyring->keys,
1241                                  &keyring_assoc_array_ops,
1242                                  index_key,
1243                                  NULL);
1244        if (IS_ERR(edit)) {
1245                ret = PTR_ERR(edit);
1246                goto error_sem;
1247        }
1248
1249        /* If we're not replacing a link in-place then we're going to need some
1250         * extra quota.
1251         */
1252        if (!edit->dead_leaf) {
1253                ret = key_payload_reserve(keyring,
1254                                          keyring->datalen + KEYQUOTA_LINK_BYTES);
1255                if (ret < 0)
1256                        goto error_cancel;
1257        }
1258
1259        *_edit = edit;
1260        kleave(" = 0");
1261        return 0;
1262
1263error_cancel:
1264        assoc_array_cancel_edit(edit);
1265error_sem:
1266        if (index_key->type == &key_type_keyring)
1267                up_write(&keyring_serialise_link_sem);
1268error_krsem:
1269        up_write(&keyring->sem);
1270        kleave(" = %d", ret);
1271        return ret;
1272}
1273
1274/*
1275 * Check already instantiated keys aren't going to be a problem.
1276 *
1277 * The caller must have called __key_link_begin(). Don't need to call this for
1278 * keys that were created since __key_link_begin() was called.
1279 */
1280int __key_link_check_live_key(struct key *keyring, struct key *key)
1281{
1282        if (key->type == &key_type_keyring)
1283                /* check that we aren't going to create a cycle by linking one
1284                 * keyring to another */
1285                return keyring_detect_cycle(keyring, key);
1286        return 0;
1287}
1288
1289/*
1290 * Link a key into to a keyring.
1291 *
1292 * Must be called with __key_link_begin() having being called.  Discards any
1293 * already extant link to matching key if there is one, so that each keyring
1294 * holds at most one link to any given key of a particular type+description
1295 * combination.
1296 */
1297void __key_link(struct key *key, struct assoc_array_edit **_edit)
1298{
1299        __key_get(key);
1300        assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1301        assoc_array_apply_edit(*_edit);
1302        *_edit = NULL;
1303}
1304
1305/*
1306 * Finish linking a key into to a keyring.
1307 *
1308 * Must be called with __key_link_begin() having being called.
1309 */
1310void __key_link_end(struct key *keyring,
1311                    const struct keyring_index_key *index_key,
1312                    struct assoc_array_edit *edit)
1313        __releases(&keyring->sem)
1314        __releases(&keyring_serialise_link_sem)
1315{
1316        BUG_ON(index_key->type == NULL);
1317        kenter("%d,%s,", keyring->serial, index_key->type->name);
1318
1319        if (index_key->type == &key_type_keyring)
1320                up_write(&keyring_serialise_link_sem);
1321
1322        if (edit) {
1323                if (!edit->dead_leaf) {
1324                        key_payload_reserve(keyring,
1325                                keyring->datalen - KEYQUOTA_LINK_BYTES);
1326                }
1327                assoc_array_cancel_edit(edit);
1328        }
1329        up_write(&keyring->sem);
1330}
1331
1332/*
1333 * Check addition of keys to restricted keyrings.
1334 */
1335static int __key_link_check_restriction(struct key *keyring, struct key *key)
1336{
1337        if (!keyring->restrict_link || !keyring->restrict_link->check)
1338                return 0;
1339        return keyring->restrict_link->check(keyring, key->type, &key->payload,
1340                                             keyring->restrict_link->key);
1341}
1342
1343/**
1344 * key_link - Link a key to a keyring
1345 * @keyring: The keyring to make the link in.
1346 * @key: The key to link to.
1347 *
1348 * Make a link in a keyring to a key, such that the keyring holds a reference
1349 * on that key and the key can potentially be found by searching that keyring.
1350 *
1351 * This function will write-lock the keyring's semaphore and will consume some
1352 * of the user's key data quota to hold the link.
1353 *
1354 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1355 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1356 * full, -EDQUOT if there is insufficient key data quota remaining to add
1357 * another link or -ENOMEM if there's insufficient memory.
1358 *
1359 * It is assumed that the caller has checked that it is permitted for a link to
1360 * be made (the keyring should have Write permission and the key Link
1361 * permission).
1362 */
1363int key_link(struct key *keyring, struct key *key)
1364{
1365        struct assoc_array_edit *edit;
1366        int ret;
1367
1368        kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1369
1370        key_check(keyring);
1371        key_check(key);
1372
1373        ret = __key_link_begin(keyring, &key->index_key, &edit);
1374        if (ret == 0) {
1375                kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1376                ret = __key_link_check_restriction(keyring, key);
1377                if (ret == 0)
1378                        ret = __key_link_check_live_key(keyring, key);
1379                if (ret == 0)
1380                        __key_link(key, &edit);
1381                __key_link_end(keyring, &key->index_key, edit);
1382        }
1383
1384        kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1385        return ret;
1386}
1387EXPORT_SYMBOL(key_link);
1388
1389/**
1390 * key_unlink - Unlink the first link to a key from a keyring.
1391 * @keyring: The keyring to remove the link from.
1392 * @key: The key the link is to.
1393 *
1394 * Remove a link from a keyring to a key.
1395 *
1396 * This function will write-lock the keyring's semaphore.
1397 *
1398 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1399 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1400 * memory.
1401 *
1402 * It is assumed that the caller has checked that it is permitted for a link to
1403 * be removed (the keyring should have Write permission; no permissions are
1404 * required on the key).
1405 */
1406int key_unlink(struct key *keyring, struct key *key)
1407{
1408        struct assoc_array_edit *edit;
1409        int ret;
1410
1411        key_check(keyring);
1412        key_check(key);
1413
1414        if (keyring->type != &key_type_keyring)
1415                return -ENOTDIR;
1416
1417        down_write(&keyring->sem);
1418
1419        edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1420                                  &key->index_key);
1421        if (IS_ERR(edit)) {
1422                ret = PTR_ERR(edit);
1423                goto error;
1424        }
1425        ret = -ENOENT;
1426        if (edit == NULL)
1427                goto error;
1428
1429        assoc_array_apply_edit(edit);
1430        key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1431        ret = 0;
1432
1433error:
1434        up_write(&keyring->sem);
1435        return ret;
1436}
1437EXPORT_SYMBOL(key_unlink);
1438
1439/**
1440 * keyring_clear - Clear a keyring
1441 * @keyring: The keyring to clear.
1442 *
1443 * Clear the contents of the specified keyring.
1444 *
1445 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1446 */
1447int keyring_clear(struct key *keyring)
1448{
1449        struct assoc_array_edit *edit;
1450        int ret;
1451
1452        if (keyring->type != &key_type_keyring)
1453                return -ENOTDIR;
1454
1455        down_write(&keyring->sem);
1456
1457        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1458        if (IS_ERR(edit)) {
1459                ret = PTR_ERR(edit);
1460        } else {
1461                if (edit)
1462                        assoc_array_apply_edit(edit);
1463                key_payload_reserve(keyring, 0);
1464                ret = 0;
1465        }
1466
1467        up_write(&keyring->sem);
1468        return ret;
1469}
1470EXPORT_SYMBOL(keyring_clear);
1471
1472/*
1473 * Dispose of the links from a revoked keyring.
1474 *
1475 * This is called with the key sem write-locked.
1476 */
1477static void keyring_revoke(struct key *keyring)
1478{
1479        struct assoc_array_edit *edit;
1480
1481        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1482        if (!IS_ERR(edit)) {
1483                if (edit)
1484                        assoc_array_apply_edit(edit);
1485                key_payload_reserve(keyring, 0);
1486        }
1487}
1488
1489static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1490{
1491        struct key *key = keyring_ptr_to_key(object);
1492        time_t *limit = iterator_data;
1493
1494        if (key_is_dead(key, *limit))
1495                return false;
1496        key_get(key);
1497        return true;
1498}
1499
1500static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1501{
1502        const struct key *key = keyring_ptr_to_key(object);
1503        time_t *limit = iterator_data;
1504
1505        key_check(key);
1506        return key_is_dead(key, *limit);
1507}
1508
1509/*
1510 * Garbage collect pointers from a keyring.
1511 *
1512 * Not called with any locks held.  The keyring's key struct will not be
1513 * deallocated under us as only our caller may deallocate it.
1514 */
1515void keyring_gc(struct key *keyring, time_t limit)
1516{
1517        int result;
1518
1519        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1520
1521        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1522                              (1 << KEY_FLAG_REVOKED)))
1523                goto dont_gc;
1524
1525        /* scan the keyring looking for dead keys */
1526        rcu_read_lock();
1527        result = assoc_array_iterate(&keyring->keys,
1528                                     keyring_gc_check_iterator, &limit);
1529        rcu_read_unlock();
1530        if (result == true)
1531                goto do_gc;
1532
1533dont_gc:
1534        kleave(" [no gc]");
1535        return;
1536
1537do_gc:
1538        down_write(&keyring->sem);
1539        assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1540                       keyring_gc_select_iterator, &limit);
1541        up_write(&keyring->sem);
1542        kleave(" [gc]");
1543}
1544
1545/*
1546 * Garbage collect restriction pointers from a keyring.
1547 *
1548 * Keyring restrictions are associated with a key type, and must be cleaned
1549 * up if the key type is unregistered. The restriction is altered to always
1550 * reject additional keys so a keyring cannot be opened up by unregistering
1551 * a key type.
1552 *
1553 * Not called with any keyring locks held. The keyring's key struct will not
1554 * be deallocated under us as only our caller may deallocate it.
1555 *
1556 * The caller is required to hold key_types_sem and dead_type->sem. This is
1557 * fulfilled by key_gc_keytype() holding the locks on behalf of
1558 * key_garbage_collector(), which it invokes on a workqueue.
1559 */
1560void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1561{
1562        struct key_restriction *keyres;
1563
1564        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1565
1566        /*
1567         * keyring->restrict_link is only assigned at key allocation time
1568         * or with the key type locked, so the only values that could be
1569         * concurrently assigned to keyring->restrict_link are for key
1570         * types other than dead_type. Given this, it's ok to check
1571         * the key type before acquiring keyring->sem.
1572         */
1573        if (!dead_type || !keyring->restrict_link ||
1574            keyring->restrict_link->keytype != dead_type) {
1575                kleave(" [no restriction gc]");
1576                return;
1577        }
1578
1579        /* Lock the keyring to ensure that a link is not in progress */
1580        down_write(&keyring->sem);
1581
1582        keyres = keyring->restrict_link;
1583
1584        keyres->check = restrict_link_reject;
1585
1586        key_put(keyres->key);
1587        keyres->key = NULL;
1588        keyres->keytype = NULL;
1589
1590        up_write(&keyring->sem);
1591
1592        kleave(" [restriction gc]");
1593}
1594