linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/stat.h>
  38#include <linux/cpumask.h>
  39#include <linux/smp.h>
  40#include <linux/anon_inodes.h>
  41#include <linux/profile.h>
  42#include <linux/kvm_para.h>
  43#include <linux/pagemap.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/bitops.h>
  47#include <linux/spinlock.h>
  48#include <linux/compat.h>
  49#include <linux/srcu.h>
  50#include <linux/hugetlb.h>
  51#include <linux/slab.h>
  52#include <linux/sort.h>
  53#include <linux/bsearch.h>
  54
  55#include <asm/processor.h>
  56#include <asm/io.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59#include <asm/pgtable.h>
  60
  61#include "coalesced_mmio.h"
  62#include "async_pf.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68/* Worst case buffer size needed for holding an integer. */
  69#define ITOA_MAX_LEN 12
  70
  71MODULE_AUTHOR("Qumranet");
  72MODULE_LICENSE("GPL");
  73
  74/* Architectures should define their poll value according to the halt latency */
  75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  76module_param(halt_poll_ns, uint, 0644);
  77EXPORT_SYMBOL_GPL(halt_poll_ns);
  78
  79/* Default doubles per-vcpu halt_poll_ns. */
  80unsigned int halt_poll_ns_grow = 2;
  81module_param(halt_poll_ns_grow, uint, 0644);
  82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  83
  84/* Default resets per-vcpu halt_poll_ns . */
  85unsigned int halt_poll_ns_shrink;
  86module_param(halt_poll_ns_shrink, uint, 0644);
  87EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  88
  89/*
  90 * Ordering of locks:
  91 *
  92 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  93 */
  94
  95DEFINE_SPINLOCK(kvm_lock);
  96static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  97LIST_HEAD(vm_list);
  98
  99static cpumask_var_t cpus_hardware_enabled;
 100static int kvm_usage_count;
 101static atomic_t hardware_enable_failed;
 102
 103struct kmem_cache *kvm_vcpu_cache;
 104EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 105
 106static __read_mostly struct preempt_ops kvm_preempt_ops;
 107
 108struct dentry *kvm_debugfs_dir;
 109EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 110
 111static int kvm_debugfs_num_entries;
 112static const struct file_operations *stat_fops_per_vm[];
 113
 114static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 115                           unsigned long arg);
 116#ifdef CONFIG_KVM_COMPAT
 117static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 118                                  unsigned long arg);
 119#endif
 120static int hardware_enable_all(void);
 121static void hardware_disable_all(void);
 122
 123static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 124
 125static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 126static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 127
 128__visible bool kvm_rebooting;
 129EXPORT_SYMBOL_GPL(kvm_rebooting);
 130
 131static bool largepages_enabled = true;
 132
 133#define KVM_EVENT_CREATE_VM 0
 134#define KVM_EVENT_DESTROY_VM 1
 135static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 136static unsigned long long kvm_createvm_count;
 137static unsigned long long kvm_active_vms;
 138
 139bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 140{
 141        if (pfn_valid(pfn))
 142                return PageReserved(pfn_to_page(pfn));
 143
 144        return true;
 145}
 146
 147/*
 148 * Switches to specified vcpu, until a matching vcpu_put()
 149 */
 150int vcpu_load(struct kvm_vcpu *vcpu)
 151{
 152        int cpu;
 153
 154        if (mutex_lock_killable(&vcpu->mutex))
 155                return -EINTR;
 156        cpu = get_cpu();
 157        preempt_notifier_register(&vcpu->preempt_notifier);
 158        kvm_arch_vcpu_load(vcpu, cpu);
 159        put_cpu();
 160        return 0;
 161}
 162EXPORT_SYMBOL_GPL(vcpu_load);
 163
 164void vcpu_put(struct kvm_vcpu *vcpu)
 165{
 166        preempt_disable();
 167        kvm_arch_vcpu_put(vcpu);
 168        preempt_notifier_unregister(&vcpu->preempt_notifier);
 169        preempt_enable();
 170        mutex_unlock(&vcpu->mutex);
 171}
 172EXPORT_SYMBOL_GPL(vcpu_put);
 173
 174/* TODO: merge with kvm_arch_vcpu_should_kick */
 175static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 176{
 177        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 178
 179        /*
 180         * We need to wait for the VCPU to reenable interrupts and get out of
 181         * READING_SHADOW_PAGE_TABLES mode.
 182         */
 183        if (req & KVM_REQUEST_WAIT)
 184                return mode != OUTSIDE_GUEST_MODE;
 185
 186        /*
 187         * Need to kick a running VCPU, but otherwise there is nothing to do.
 188         */
 189        return mode == IN_GUEST_MODE;
 190}
 191
 192static void ack_flush(void *_completed)
 193{
 194}
 195
 196static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 197{
 198        if (unlikely(!cpus))
 199                cpus = cpu_online_mask;
 200
 201        if (cpumask_empty(cpus))
 202                return false;
 203
 204        smp_call_function_many(cpus, ack_flush, NULL, wait);
 205        return true;
 206}
 207
 208bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 209{
 210        int i, cpu, me;
 211        cpumask_var_t cpus;
 212        bool called;
 213        struct kvm_vcpu *vcpu;
 214
 215        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 216
 217        me = get_cpu();
 218        kvm_for_each_vcpu(i, vcpu, kvm) {
 219                kvm_make_request(req, vcpu);
 220                cpu = vcpu->cpu;
 221
 222                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 223                        continue;
 224
 225                if (cpus != NULL && cpu != -1 && cpu != me &&
 226                    kvm_request_needs_ipi(vcpu, req))
 227                        __cpumask_set_cpu(cpu, cpus);
 228        }
 229        called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 230        put_cpu();
 231        free_cpumask_var(cpus);
 232        return called;
 233}
 234
 235#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 236void kvm_flush_remote_tlbs(struct kvm *kvm)
 237{
 238        /*
 239         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 240         * kvm_make_all_cpus_request.
 241         */
 242        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 243
 244        /*
 245         * We want to publish modifications to the page tables before reading
 246         * mode. Pairs with a memory barrier in arch-specific code.
 247         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 248         * and smp_mb in walk_shadow_page_lockless_begin/end.
 249         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 250         *
 251         * There is already an smp_mb__after_atomic() before
 252         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 253         * barrier here.
 254         */
 255        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 256                ++kvm->stat.remote_tlb_flush;
 257        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 258}
 259EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 260#endif
 261
 262void kvm_reload_remote_mmus(struct kvm *kvm)
 263{
 264        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 265}
 266
 267int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 268{
 269        struct page *page;
 270        int r;
 271
 272        mutex_init(&vcpu->mutex);
 273        vcpu->cpu = -1;
 274        vcpu->kvm = kvm;
 275        vcpu->vcpu_id = id;
 276        vcpu->pid = NULL;
 277        init_swait_queue_head(&vcpu->wq);
 278        kvm_async_pf_vcpu_init(vcpu);
 279
 280        vcpu->pre_pcpu = -1;
 281        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 282
 283        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 284        if (!page) {
 285                r = -ENOMEM;
 286                goto fail;
 287        }
 288        vcpu->run = page_address(page);
 289
 290        kvm_vcpu_set_in_spin_loop(vcpu, false);
 291        kvm_vcpu_set_dy_eligible(vcpu, false);
 292        vcpu->preempted = false;
 293
 294        r = kvm_arch_vcpu_init(vcpu);
 295        if (r < 0)
 296                goto fail_free_run;
 297        return 0;
 298
 299fail_free_run:
 300        free_page((unsigned long)vcpu->run);
 301fail:
 302        return r;
 303}
 304EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 305
 306void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 307{
 308        /*
 309         * no need for rcu_read_lock as VCPU_RUN is the only place that
 310         * will change the vcpu->pid pointer and on uninit all file
 311         * descriptors are already gone.
 312         */
 313        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 314        kvm_arch_vcpu_uninit(vcpu);
 315        free_page((unsigned long)vcpu->run);
 316}
 317EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 318
 319#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 320static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 321{
 322        return container_of(mn, struct kvm, mmu_notifier);
 323}
 324
 325static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 326                                        struct mm_struct *mm,
 327                                        unsigned long address,
 328                                        pte_t pte)
 329{
 330        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 331        int idx;
 332
 333        idx = srcu_read_lock(&kvm->srcu);
 334        spin_lock(&kvm->mmu_lock);
 335        kvm->mmu_notifier_seq++;
 336        kvm_set_spte_hva(kvm, address, pte);
 337        spin_unlock(&kvm->mmu_lock);
 338        srcu_read_unlock(&kvm->srcu, idx);
 339}
 340
 341static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 342                                                    struct mm_struct *mm,
 343                                                    unsigned long start,
 344                                                    unsigned long end)
 345{
 346        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 347        int need_tlb_flush = 0, idx;
 348
 349        idx = srcu_read_lock(&kvm->srcu);
 350        spin_lock(&kvm->mmu_lock);
 351        /*
 352         * The count increase must become visible at unlock time as no
 353         * spte can be established without taking the mmu_lock and
 354         * count is also read inside the mmu_lock critical section.
 355         */
 356        kvm->mmu_notifier_count++;
 357        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 358        need_tlb_flush |= kvm->tlbs_dirty;
 359        /* we've to flush the tlb before the pages can be freed */
 360        if (need_tlb_flush)
 361                kvm_flush_remote_tlbs(kvm);
 362
 363        spin_unlock(&kvm->mmu_lock);
 364        srcu_read_unlock(&kvm->srcu, idx);
 365}
 366
 367static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 368                                                  struct mm_struct *mm,
 369                                                  unsigned long start,
 370                                                  unsigned long end)
 371{
 372        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 373
 374        spin_lock(&kvm->mmu_lock);
 375        /*
 376         * This sequence increase will notify the kvm page fault that
 377         * the page that is going to be mapped in the spte could have
 378         * been freed.
 379         */
 380        kvm->mmu_notifier_seq++;
 381        smp_wmb();
 382        /*
 383         * The above sequence increase must be visible before the
 384         * below count decrease, which is ensured by the smp_wmb above
 385         * in conjunction with the smp_rmb in mmu_notifier_retry().
 386         */
 387        kvm->mmu_notifier_count--;
 388        spin_unlock(&kvm->mmu_lock);
 389
 390        BUG_ON(kvm->mmu_notifier_count < 0);
 391}
 392
 393static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 394                                              struct mm_struct *mm,
 395                                              unsigned long start,
 396                                              unsigned long end)
 397{
 398        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 399        int young, idx;
 400
 401        idx = srcu_read_lock(&kvm->srcu);
 402        spin_lock(&kvm->mmu_lock);
 403
 404        young = kvm_age_hva(kvm, start, end);
 405        if (young)
 406                kvm_flush_remote_tlbs(kvm);
 407
 408        spin_unlock(&kvm->mmu_lock);
 409        srcu_read_unlock(&kvm->srcu, idx);
 410
 411        return young;
 412}
 413
 414static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 415                                        struct mm_struct *mm,
 416                                        unsigned long start,
 417                                        unsigned long end)
 418{
 419        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 420        int young, idx;
 421
 422        idx = srcu_read_lock(&kvm->srcu);
 423        spin_lock(&kvm->mmu_lock);
 424        /*
 425         * Even though we do not flush TLB, this will still adversely
 426         * affect performance on pre-Haswell Intel EPT, where there is
 427         * no EPT Access Bit to clear so that we have to tear down EPT
 428         * tables instead. If we find this unacceptable, we can always
 429         * add a parameter to kvm_age_hva so that it effectively doesn't
 430         * do anything on clear_young.
 431         *
 432         * Also note that currently we never issue secondary TLB flushes
 433         * from clear_young, leaving this job up to the regular system
 434         * cadence. If we find this inaccurate, we might come up with a
 435         * more sophisticated heuristic later.
 436         */
 437        young = kvm_age_hva(kvm, start, end);
 438        spin_unlock(&kvm->mmu_lock);
 439        srcu_read_unlock(&kvm->srcu, idx);
 440
 441        return young;
 442}
 443
 444static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 445                                       struct mm_struct *mm,
 446                                       unsigned long address)
 447{
 448        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 449        int young, idx;
 450
 451        idx = srcu_read_lock(&kvm->srcu);
 452        spin_lock(&kvm->mmu_lock);
 453        young = kvm_test_age_hva(kvm, address);
 454        spin_unlock(&kvm->mmu_lock);
 455        srcu_read_unlock(&kvm->srcu, idx);
 456
 457        return young;
 458}
 459
 460static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 461                                     struct mm_struct *mm)
 462{
 463        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 464        int idx;
 465
 466        idx = srcu_read_lock(&kvm->srcu);
 467        kvm_arch_flush_shadow_all(kvm);
 468        srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 472        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 473        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 474        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 475        .clear_young            = kvm_mmu_notifier_clear_young,
 476        .test_young             = kvm_mmu_notifier_test_young,
 477        .change_pte             = kvm_mmu_notifier_change_pte,
 478        .release                = kvm_mmu_notifier_release,
 479};
 480
 481static int kvm_init_mmu_notifier(struct kvm *kvm)
 482{
 483        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 484        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 485}
 486
 487#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 488
 489static int kvm_init_mmu_notifier(struct kvm *kvm)
 490{
 491        return 0;
 492}
 493
 494#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 495
 496static struct kvm_memslots *kvm_alloc_memslots(void)
 497{
 498        int i;
 499        struct kvm_memslots *slots;
 500
 501        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 502        if (!slots)
 503                return NULL;
 504
 505        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 506                slots->id_to_index[i] = slots->memslots[i].id = i;
 507
 508        return slots;
 509}
 510
 511static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 512{
 513        if (!memslot->dirty_bitmap)
 514                return;
 515
 516        kvfree(memslot->dirty_bitmap);
 517        memslot->dirty_bitmap = NULL;
 518}
 519
 520/*
 521 * Free any memory in @free but not in @dont.
 522 */
 523static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 524                              struct kvm_memory_slot *dont)
 525{
 526        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 527                kvm_destroy_dirty_bitmap(free);
 528
 529        kvm_arch_free_memslot(kvm, free, dont);
 530
 531        free->npages = 0;
 532}
 533
 534static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 535{
 536        struct kvm_memory_slot *memslot;
 537
 538        if (!slots)
 539                return;
 540
 541        kvm_for_each_memslot(memslot, slots)
 542                kvm_free_memslot(kvm, memslot, NULL);
 543
 544        kvfree(slots);
 545}
 546
 547static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 548{
 549        int i;
 550
 551        if (!kvm->debugfs_dentry)
 552                return;
 553
 554        debugfs_remove_recursive(kvm->debugfs_dentry);
 555
 556        if (kvm->debugfs_stat_data) {
 557                for (i = 0; i < kvm_debugfs_num_entries; i++)
 558                        kfree(kvm->debugfs_stat_data[i]);
 559                kfree(kvm->debugfs_stat_data);
 560        }
 561}
 562
 563static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 564{
 565        char dir_name[ITOA_MAX_LEN * 2];
 566        struct kvm_stat_data *stat_data;
 567        struct kvm_stats_debugfs_item *p;
 568
 569        if (!debugfs_initialized())
 570                return 0;
 571
 572        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 573        kvm->debugfs_dentry = debugfs_create_dir(dir_name,
 574                                                 kvm_debugfs_dir);
 575        if (!kvm->debugfs_dentry)
 576                return -ENOMEM;
 577
 578        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 579                                         sizeof(*kvm->debugfs_stat_data),
 580                                         GFP_KERNEL);
 581        if (!kvm->debugfs_stat_data)
 582                return -ENOMEM;
 583
 584        for (p = debugfs_entries; p->name; p++) {
 585                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 586                if (!stat_data)
 587                        return -ENOMEM;
 588
 589                stat_data->kvm = kvm;
 590                stat_data->offset = p->offset;
 591                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 592                if (!debugfs_create_file(p->name, 0644,
 593                                         kvm->debugfs_dentry,
 594                                         stat_data,
 595                                         stat_fops_per_vm[p->kind]))
 596                        return -ENOMEM;
 597        }
 598        return 0;
 599}
 600
 601static struct kvm *kvm_create_vm(unsigned long type)
 602{
 603        int r, i;
 604        struct kvm *kvm = kvm_arch_alloc_vm();
 605
 606        if (!kvm)
 607                return ERR_PTR(-ENOMEM);
 608
 609        spin_lock_init(&kvm->mmu_lock);
 610        mmgrab(current->mm);
 611        kvm->mm = current->mm;
 612        kvm_eventfd_init(kvm);
 613        mutex_init(&kvm->lock);
 614        mutex_init(&kvm->irq_lock);
 615        mutex_init(&kvm->slots_lock);
 616        refcount_set(&kvm->users_count, 1);
 617        INIT_LIST_HEAD(&kvm->devices);
 618
 619        r = kvm_arch_init_vm(kvm, type);
 620        if (r)
 621                goto out_err_no_disable;
 622
 623        r = hardware_enable_all();
 624        if (r)
 625                goto out_err_no_disable;
 626
 627#ifdef CONFIG_HAVE_KVM_IRQFD
 628        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 629#endif
 630
 631        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 632
 633        r = -ENOMEM;
 634        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 635                struct kvm_memslots *slots = kvm_alloc_memslots();
 636                if (!slots)
 637                        goto out_err_no_srcu;
 638                /*
 639                 * Generations must be different for each address space.
 640                 * Init kvm generation close to the maximum to easily test the
 641                 * code of handling generation number wrap-around.
 642                 */
 643                slots->generation = i * 2 - 150;
 644                rcu_assign_pointer(kvm->memslots[i], slots);
 645        }
 646
 647        if (init_srcu_struct(&kvm->srcu))
 648                goto out_err_no_srcu;
 649        if (init_srcu_struct(&kvm->irq_srcu))
 650                goto out_err_no_irq_srcu;
 651        for (i = 0; i < KVM_NR_BUSES; i++) {
 652                rcu_assign_pointer(kvm->buses[i],
 653                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
 654                if (!kvm->buses[i])
 655                        goto out_err;
 656        }
 657
 658        r = kvm_init_mmu_notifier(kvm);
 659        if (r)
 660                goto out_err;
 661
 662        spin_lock(&kvm_lock);
 663        list_add(&kvm->vm_list, &vm_list);
 664        spin_unlock(&kvm_lock);
 665
 666        preempt_notifier_inc();
 667
 668        return kvm;
 669
 670out_err:
 671        cleanup_srcu_struct(&kvm->irq_srcu);
 672out_err_no_irq_srcu:
 673        cleanup_srcu_struct(&kvm->srcu);
 674out_err_no_srcu:
 675        hardware_disable_all();
 676out_err_no_disable:
 677        refcount_set(&kvm->users_count, 0);
 678        for (i = 0; i < KVM_NR_BUSES; i++)
 679                kfree(kvm_get_bus(kvm, i));
 680        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 681                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 682        kvm_arch_free_vm(kvm);
 683        mmdrop(current->mm);
 684        return ERR_PTR(r);
 685}
 686
 687static void kvm_destroy_devices(struct kvm *kvm)
 688{
 689        struct kvm_device *dev, *tmp;
 690
 691        /*
 692         * We do not need to take the kvm->lock here, because nobody else
 693         * has a reference to the struct kvm at this point and therefore
 694         * cannot access the devices list anyhow.
 695         */
 696        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 697                list_del(&dev->vm_node);
 698                dev->ops->destroy(dev);
 699        }
 700}
 701
 702static void kvm_destroy_vm(struct kvm *kvm)
 703{
 704        int i;
 705        struct mm_struct *mm = kvm->mm;
 706
 707        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 708        kvm_destroy_vm_debugfs(kvm);
 709        kvm_arch_sync_events(kvm);
 710        spin_lock(&kvm_lock);
 711        list_del(&kvm->vm_list);
 712        spin_unlock(&kvm_lock);
 713        kvm_free_irq_routing(kvm);
 714        for (i = 0; i < KVM_NR_BUSES; i++) {
 715                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 716
 717                if (bus)
 718                        kvm_io_bus_destroy(bus);
 719                kvm->buses[i] = NULL;
 720        }
 721        kvm_coalesced_mmio_free(kvm);
 722#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 723        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 724#else
 725        kvm_arch_flush_shadow_all(kvm);
 726#endif
 727        kvm_arch_destroy_vm(kvm);
 728        kvm_destroy_devices(kvm);
 729        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 730                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 731        cleanup_srcu_struct(&kvm->irq_srcu);
 732        cleanup_srcu_struct(&kvm->srcu);
 733        kvm_arch_free_vm(kvm);
 734        preempt_notifier_dec();
 735        hardware_disable_all();
 736        mmdrop(mm);
 737}
 738
 739void kvm_get_kvm(struct kvm *kvm)
 740{
 741        refcount_inc(&kvm->users_count);
 742}
 743EXPORT_SYMBOL_GPL(kvm_get_kvm);
 744
 745void kvm_put_kvm(struct kvm *kvm)
 746{
 747        if (refcount_dec_and_test(&kvm->users_count))
 748                kvm_destroy_vm(kvm);
 749}
 750EXPORT_SYMBOL_GPL(kvm_put_kvm);
 751
 752
 753static int kvm_vm_release(struct inode *inode, struct file *filp)
 754{
 755        struct kvm *kvm = filp->private_data;
 756
 757        kvm_irqfd_release(kvm);
 758
 759        kvm_put_kvm(kvm);
 760        return 0;
 761}
 762
 763/*
 764 * Allocation size is twice as large as the actual dirty bitmap size.
 765 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 766 */
 767static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 768{
 769        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 770
 771        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
 772        if (!memslot->dirty_bitmap)
 773                return -ENOMEM;
 774
 775        return 0;
 776}
 777
 778/*
 779 * Insert memslot and re-sort memslots based on their GFN,
 780 * so binary search could be used to lookup GFN.
 781 * Sorting algorithm takes advantage of having initially
 782 * sorted array and known changed memslot position.
 783 */
 784static void update_memslots(struct kvm_memslots *slots,
 785                            struct kvm_memory_slot *new)
 786{
 787        int id = new->id;
 788        int i = slots->id_to_index[id];
 789        struct kvm_memory_slot *mslots = slots->memslots;
 790
 791        WARN_ON(mslots[i].id != id);
 792        if (!new->npages) {
 793                WARN_ON(!mslots[i].npages);
 794                if (mslots[i].npages)
 795                        slots->used_slots--;
 796        } else {
 797                if (!mslots[i].npages)
 798                        slots->used_slots++;
 799        }
 800
 801        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 802               new->base_gfn <= mslots[i + 1].base_gfn) {
 803                if (!mslots[i + 1].npages)
 804                        break;
 805                mslots[i] = mslots[i + 1];
 806                slots->id_to_index[mslots[i].id] = i;
 807                i++;
 808        }
 809
 810        /*
 811         * The ">=" is needed when creating a slot with base_gfn == 0,
 812         * so that it moves before all those with base_gfn == npages == 0.
 813         *
 814         * On the other hand, if new->npages is zero, the above loop has
 815         * already left i pointing to the beginning of the empty part of
 816         * mslots, and the ">=" would move the hole backwards in this
 817         * case---which is wrong.  So skip the loop when deleting a slot.
 818         */
 819        if (new->npages) {
 820                while (i > 0 &&
 821                       new->base_gfn >= mslots[i - 1].base_gfn) {
 822                        mslots[i] = mslots[i - 1];
 823                        slots->id_to_index[mslots[i].id] = i;
 824                        i--;
 825                }
 826        } else
 827                WARN_ON_ONCE(i != slots->used_slots);
 828
 829        mslots[i] = *new;
 830        slots->id_to_index[mslots[i].id] = i;
 831}
 832
 833static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 834{
 835        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 836
 837#ifdef __KVM_HAVE_READONLY_MEM
 838        valid_flags |= KVM_MEM_READONLY;
 839#endif
 840
 841        if (mem->flags & ~valid_flags)
 842                return -EINVAL;
 843
 844        return 0;
 845}
 846
 847static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 848                int as_id, struct kvm_memslots *slots)
 849{
 850        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 851
 852        /*
 853         * Set the low bit in the generation, which disables SPTE caching
 854         * until the end of synchronize_srcu_expedited.
 855         */
 856        WARN_ON(old_memslots->generation & 1);
 857        slots->generation = old_memslots->generation + 1;
 858
 859        rcu_assign_pointer(kvm->memslots[as_id], slots);
 860        synchronize_srcu_expedited(&kvm->srcu);
 861
 862        /*
 863         * Increment the new memslot generation a second time. This prevents
 864         * vm exits that race with memslot updates from caching a memslot
 865         * generation that will (potentially) be valid forever.
 866         *
 867         * Generations must be unique even across address spaces.  We do not need
 868         * a global counter for that, instead the generation space is evenly split
 869         * across address spaces.  For example, with two address spaces, address
 870         * space 0 will use generations 0, 4, 8, ... while * address space 1 will
 871         * use generations 2, 6, 10, 14, ...
 872         */
 873        slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
 874
 875        kvm_arch_memslots_updated(kvm, slots);
 876
 877        return old_memslots;
 878}
 879
 880/*
 881 * Allocate some memory and give it an address in the guest physical address
 882 * space.
 883 *
 884 * Discontiguous memory is allowed, mostly for framebuffers.
 885 *
 886 * Must be called holding kvm->slots_lock for write.
 887 */
 888int __kvm_set_memory_region(struct kvm *kvm,
 889                            const struct kvm_userspace_memory_region *mem)
 890{
 891        int r;
 892        gfn_t base_gfn;
 893        unsigned long npages;
 894        struct kvm_memory_slot *slot;
 895        struct kvm_memory_slot old, new;
 896        struct kvm_memslots *slots = NULL, *old_memslots;
 897        int as_id, id;
 898        enum kvm_mr_change change;
 899
 900        r = check_memory_region_flags(mem);
 901        if (r)
 902                goto out;
 903
 904        r = -EINVAL;
 905        as_id = mem->slot >> 16;
 906        id = (u16)mem->slot;
 907
 908        /* General sanity checks */
 909        if (mem->memory_size & (PAGE_SIZE - 1))
 910                goto out;
 911        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 912                goto out;
 913        /* We can read the guest memory with __xxx_user() later on. */
 914        if ((id < KVM_USER_MEM_SLOTS) &&
 915            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 916             !access_ok(VERIFY_WRITE,
 917                        (void __user *)(unsigned long)mem->userspace_addr,
 918                        mem->memory_size)))
 919                goto out;
 920        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 921                goto out;
 922        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 923                goto out;
 924
 925        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 926        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 927        npages = mem->memory_size >> PAGE_SHIFT;
 928
 929        if (npages > KVM_MEM_MAX_NR_PAGES)
 930                goto out;
 931
 932        new = old = *slot;
 933
 934        new.id = id;
 935        new.base_gfn = base_gfn;
 936        new.npages = npages;
 937        new.flags = mem->flags;
 938
 939        if (npages) {
 940                if (!old.npages)
 941                        change = KVM_MR_CREATE;
 942                else { /* Modify an existing slot. */
 943                        if ((mem->userspace_addr != old.userspace_addr) ||
 944                            (npages != old.npages) ||
 945                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 946                                goto out;
 947
 948                        if (base_gfn != old.base_gfn)
 949                                change = KVM_MR_MOVE;
 950                        else if (new.flags != old.flags)
 951                                change = KVM_MR_FLAGS_ONLY;
 952                        else { /* Nothing to change. */
 953                                r = 0;
 954                                goto out;
 955                        }
 956                }
 957        } else {
 958                if (!old.npages)
 959                        goto out;
 960
 961                change = KVM_MR_DELETE;
 962                new.base_gfn = 0;
 963                new.flags = 0;
 964        }
 965
 966        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 967                /* Check for overlaps */
 968                r = -EEXIST;
 969                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 970                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 971                            (slot->id == id))
 972                                continue;
 973                        if (!((base_gfn + npages <= slot->base_gfn) ||
 974                              (base_gfn >= slot->base_gfn + slot->npages)))
 975                                goto out;
 976                }
 977        }
 978
 979        /* Free page dirty bitmap if unneeded */
 980        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 981                new.dirty_bitmap = NULL;
 982
 983        r = -ENOMEM;
 984        if (change == KVM_MR_CREATE) {
 985                new.userspace_addr = mem->userspace_addr;
 986
 987                if (kvm_arch_create_memslot(kvm, &new, npages))
 988                        goto out_free;
 989        }
 990
 991        /* Allocate page dirty bitmap if needed */
 992        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 993                if (kvm_create_dirty_bitmap(&new) < 0)
 994                        goto out_free;
 995        }
 996
 997        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 998        if (!slots)
 999                goto out_free;
1000        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1001
1002        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1003                slot = id_to_memslot(slots, id);
1004                slot->flags |= KVM_MEMSLOT_INVALID;
1005
1006                old_memslots = install_new_memslots(kvm, as_id, slots);
1007
1008                /* From this point no new shadow pages pointing to a deleted,
1009                 * or moved, memslot will be created.
1010                 *
1011                 * validation of sp->gfn happens in:
1012                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                 *      - kvm_is_visible_gfn (mmu_check_roots)
1014                 */
1015                kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                /*
1018                 * We can re-use the old_memslots from above, the only difference
1019                 * from the currently installed memslots is the invalid flag.  This
1020                 * will get overwritten by update_memslots anyway.
1021                 */
1022                slots = old_memslots;
1023        }
1024
1025        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026        if (r)
1027                goto out_slots;
1028
1029        /* actual memory is freed via old in kvm_free_memslot below */
1030        if (change == KVM_MR_DELETE) {
1031                new.dirty_bitmap = NULL;
1032                memset(&new.arch, 0, sizeof(new.arch));
1033        }
1034
1035        update_memslots(slots, &new);
1036        old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040        kvm_free_memslot(kvm, &old, &new);
1041        kvfree(old_memslots);
1042        return 0;
1043
1044out_slots:
1045        kvfree(slots);
1046out_free:
1047        kvm_free_memslot(kvm, &new, &old);
1048out:
1049        return r;
1050}
1051EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1052
1053int kvm_set_memory_region(struct kvm *kvm,
1054                          const struct kvm_userspace_memory_region *mem)
1055{
1056        int r;
1057
1058        mutex_lock(&kvm->slots_lock);
1059        r = __kvm_set_memory_region(kvm, mem);
1060        mutex_unlock(&kvm->slots_lock);
1061        return r;
1062}
1063EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1064
1065static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1066                                          struct kvm_userspace_memory_region *mem)
1067{
1068        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1069                return -EINVAL;
1070
1071        return kvm_set_memory_region(kvm, mem);
1072}
1073
1074int kvm_get_dirty_log(struct kvm *kvm,
1075                        struct kvm_dirty_log *log, int *is_dirty)
1076{
1077        struct kvm_memslots *slots;
1078        struct kvm_memory_slot *memslot;
1079        int i, as_id, id;
1080        unsigned long n;
1081        unsigned long any = 0;
1082
1083        as_id = log->slot >> 16;
1084        id = (u16)log->slot;
1085        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086                return -EINVAL;
1087
1088        slots = __kvm_memslots(kvm, as_id);
1089        memslot = id_to_memslot(slots, id);
1090        if (!memslot->dirty_bitmap)
1091                return -ENOENT;
1092
1093        n = kvm_dirty_bitmap_bytes(memslot);
1094
1095        for (i = 0; !any && i < n/sizeof(long); ++i)
1096                any = memslot->dirty_bitmap[i];
1097
1098        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1099                return -EFAULT;
1100
1101        if (any)
1102                *is_dirty = 1;
1103        return 0;
1104}
1105EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1106
1107#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1108/**
1109 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1110 *      are dirty write protect them for next write.
1111 * @kvm:        pointer to kvm instance
1112 * @log:        slot id and address to which we copy the log
1113 * @is_dirty:   flag set if any page is dirty
1114 *
1115 * We need to keep it in mind that VCPU threads can write to the bitmap
1116 * concurrently. So, to avoid losing track of dirty pages we keep the
1117 * following order:
1118 *
1119 *    1. Take a snapshot of the bit and clear it if needed.
1120 *    2. Write protect the corresponding page.
1121 *    3. Copy the snapshot to the userspace.
1122 *    4. Upon return caller flushes TLB's if needed.
1123 *
1124 * Between 2 and 4, the guest may write to the page using the remaining TLB
1125 * entry.  This is not a problem because the page is reported dirty using
1126 * the snapshot taken before and step 4 ensures that writes done after
1127 * exiting to userspace will be logged for the next call.
1128 *
1129 */
1130int kvm_get_dirty_log_protect(struct kvm *kvm,
1131                        struct kvm_dirty_log *log, bool *is_dirty)
1132{
1133        struct kvm_memslots *slots;
1134        struct kvm_memory_slot *memslot;
1135        int i, as_id, id;
1136        unsigned long n;
1137        unsigned long *dirty_bitmap;
1138        unsigned long *dirty_bitmap_buffer;
1139
1140        as_id = log->slot >> 16;
1141        id = (u16)log->slot;
1142        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1143                return -EINVAL;
1144
1145        slots = __kvm_memslots(kvm, as_id);
1146        memslot = id_to_memslot(slots, id);
1147
1148        dirty_bitmap = memslot->dirty_bitmap;
1149        if (!dirty_bitmap)
1150                return -ENOENT;
1151
1152        n = kvm_dirty_bitmap_bytes(memslot);
1153
1154        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1155        memset(dirty_bitmap_buffer, 0, n);
1156
1157        spin_lock(&kvm->mmu_lock);
1158        *is_dirty = false;
1159        for (i = 0; i < n / sizeof(long); i++) {
1160                unsigned long mask;
1161                gfn_t offset;
1162
1163                if (!dirty_bitmap[i])
1164                        continue;
1165
1166                *is_dirty = true;
1167
1168                mask = xchg(&dirty_bitmap[i], 0);
1169                dirty_bitmap_buffer[i] = mask;
1170
1171                if (mask) {
1172                        offset = i * BITS_PER_LONG;
1173                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1174                                                                offset, mask);
1175                }
1176        }
1177
1178        spin_unlock(&kvm->mmu_lock);
1179        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1180                return -EFAULT;
1181        return 0;
1182}
1183EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1184#endif
1185
1186bool kvm_largepages_enabled(void)
1187{
1188        return largepages_enabled;
1189}
1190
1191void kvm_disable_largepages(void)
1192{
1193        largepages_enabled = false;
1194}
1195EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1196
1197struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1198{
1199        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1200}
1201EXPORT_SYMBOL_GPL(gfn_to_memslot);
1202
1203struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1204{
1205        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1206}
1207
1208bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1209{
1210        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1211
1212        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1213              memslot->flags & KVM_MEMSLOT_INVALID)
1214                return false;
1215
1216        return true;
1217}
1218EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1219
1220unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1221{
1222        struct vm_area_struct *vma;
1223        unsigned long addr, size;
1224
1225        size = PAGE_SIZE;
1226
1227        addr = gfn_to_hva(kvm, gfn);
1228        if (kvm_is_error_hva(addr))
1229                return PAGE_SIZE;
1230
1231        down_read(&current->mm->mmap_sem);
1232        vma = find_vma(current->mm, addr);
1233        if (!vma)
1234                goto out;
1235
1236        size = vma_kernel_pagesize(vma);
1237
1238out:
1239        up_read(&current->mm->mmap_sem);
1240
1241        return size;
1242}
1243
1244static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1245{
1246        return slot->flags & KVM_MEM_READONLY;
1247}
1248
1249static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1250                                       gfn_t *nr_pages, bool write)
1251{
1252        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1253                return KVM_HVA_ERR_BAD;
1254
1255        if (memslot_is_readonly(slot) && write)
1256                return KVM_HVA_ERR_RO_BAD;
1257
1258        if (nr_pages)
1259                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1260
1261        return __gfn_to_hva_memslot(slot, gfn);
1262}
1263
1264static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1265                                     gfn_t *nr_pages)
1266{
1267        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1268}
1269
1270unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1271                                        gfn_t gfn)
1272{
1273        return gfn_to_hva_many(slot, gfn, NULL);
1274}
1275EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1276
1277unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1278{
1279        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1280}
1281EXPORT_SYMBOL_GPL(gfn_to_hva);
1282
1283unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1284{
1285        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1286}
1287EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1288
1289/*
1290 * If writable is set to false, the hva returned by this function is only
1291 * allowed to be read.
1292 */
1293unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1294                                      gfn_t gfn, bool *writable)
1295{
1296        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1297
1298        if (!kvm_is_error_hva(hva) && writable)
1299                *writable = !memslot_is_readonly(slot);
1300
1301        return hva;
1302}
1303
1304unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1305{
1306        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1307
1308        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1309}
1310
1311unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1312{
1313        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1314
1315        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316}
1317
1318static int get_user_page_nowait(unsigned long start, int write,
1319                struct page **page)
1320{
1321        int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1322
1323        if (write)
1324                flags |= FOLL_WRITE;
1325
1326        return get_user_pages(start, 1, flags, page, NULL);
1327}
1328
1329static inline int check_user_page_hwpoison(unsigned long addr)
1330{
1331        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1332
1333        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1334        return rc == -EHWPOISON;
1335}
1336
1337/*
1338 * The atomic path to get the writable pfn which will be stored in @pfn,
1339 * true indicates success, otherwise false is returned.
1340 */
1341static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1342                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1343{
1344        struct page *page[1];
1345        int npages;
1346
1347        if (!(async || atomic))
1348                return false;
1349
1350        /*
1351         * Fast pin a writable pfn only if it is a write fault request
1352         * or the caller allows to map a writable pfn for a read fault
1353         * request.
1354         */
1355        if (!(write_fault || writable))
1356                return false;
1357
1358        npages = __get_user_pages_fast(addr, 1, 1, page);
1359        if (npages == 1) {
1360                *pfn = page_to_pfn(page[0]);
1361
1362                if (writable)
1363                        *writable = true;
1364                return true;
1365        }
1366
1367        return false;
1368}
1369
1370/*
1371 * The slow path to get the pfn of the specified host virtual address,
1372 * 1 indicates success, -errno is returned if error is detected.
1373 */
1374static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1375                           bool *writable, kvm_pfn_t *pfn)
1376{
1377        struct page *page[1];
1378        int npages = 0;
1379
1380        might_sleep();
1381
1382        if (writable)
1383                *writable = write_fault;
1384
1385        if (async) {
1386                down_read(&current->mm->mmap_sem);
1387                npages = get_user_page_nowait(addr, write_fault, page);
1388                up_read(&current->mm->mmap_sem);
1389        } else {
1390                unsigned int flags = FOLL_HWPOISON;
1391
1392                if (write_fault)
1393                        flags |= FOLL_WRITE;
1394
1395                npages = get_user_pages_unlocked(addr, 1, page, flags);
1396        }
1397        if (npages != 1)
1398                return npages;
1399
1400        /* map read fault as writable if possible */
1401        if (unlikely(!write_fault) && writable) {
1402                struct page *wpage[1];
1403
1404                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1405                if (npages == 1) {
1406                        *writable = true;
1407                        put_page(page[0]);
1408                        page[0] = wpage[0];
1409                }
1410
1411                npages = 1;
1412        }
1413        *pfn = page_to_pfn(page[0]);
1414        return npages;
1415}
1416
1417static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1418{
1419        if (unlikely(!(vma->vm_flags & VM_READ)))
1420                return false;
1421
1422        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1423                return false;
1424
1425        return true;
1426}
1427
1428static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1429                               unsigned long addr, bool *async,
1430                               bool write_fault, kvm_pfn_t *p_pfn)
1431{
1432        unsigned long pfn;
1433        int r;
1434
1435        r = follow_pfn(vma, addr, &pfn);
1436        if (r) {
1437                /*
1438                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439                 * not call the fault handler, so do it here.
1440                 */
1441                bool unlocked = false;
1442                r = fixup_user_fault(current, current->mm, addr,
1443                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1444                                     &unlocked);
1445                if (unlocked)
1446                        return -EAGAIN;
1447                if (r)
1448                        return r;
1449
1450                r = follow_pfn(vma, addr, &pfn);
1451                if (r)
1452                        return r;
1453
1454        }
1455
1456
1457        /*
1458         * Get a reference here because callers of *hva_to_pfn* and
1459         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1460         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1461         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1462         * simply do nothing for reserved pfns.
1463         *
1464         * Whoever called remap_pfn_range is also going to call e.g.
1465         * unmap_mapping_range before the underlying pages are freed,
1466         * causing a call to our MMU notifier.
1467         */ 
1468        kvm_get_pfn(pfn);
1469
1470        *p_pfn = pfn;
1471        return 0;
1472}
1473
1474/*
1475 * Pin guest page in memory and return its pfn.
1476 * @addr: host virtual address which maps memory to the guest
1477 * @atomic: whether this function can sleep
1478 * @async: whether this function need to wait IO complete if the
1479 *         host page is not in the memory
1480 * @write_fault: whether we should get a writable host page
1481 * @writable: whether it allows to map a writable host page for !@write_fault
1482 *
1483 * The function will map a writable host page for these two cases:
1484 * 1): @write_fault = true
1485 * 2): @write_fault = false && @writable, @writable will tell the caller
1486 *     whether the mapping is writable.
1487 */
1488static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1489                        bool write_fault, bool *writable)
1490{
1491        struct vm_area_struct *vma;
1492        kvm_pfn_t pfn = 0;
1493        int npages, r;
1494
1495        /* we can do it either atomically or asynchronously, not both */
1496        BUG_ON(atomic && async);
1497
1498        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1499                return pfn;
1500
1501        if (atomic)
1502                return KVM_PFN_ERR_FAULT;
1503
1504        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1505        if (npages == 1)
1506                return pfn;
1507
1508        down_read(&current->mm->mmap_sem);
1509        if (npages == -EHWPOISON ||
1510              (!async && check_user_page_hwpoison(addr))) {
1511                pfn = KVM_PFN_ERR_HWPOISON;
1512                goto exit;
1513        }
1514
1515retry:
1516        vma = find_vma_intersection(current->mm, addr, addr + 1);
1517
1518        if (vma == NULL)
1519                pfn = KVM_PFN_ERR_FAULT;
1520        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1521                r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1522                if (r == -EAGAIN)
1523                        goto retry;
1524                if (r < 0)
1525                        pfn = KVM_PFN_ERR_FAULT;
1526        } else {
1527                if (async && vma_is_valid(vma, write_fault))
1528                        *async = true;
1529                pfn = KVM_PFN_ERR_FAULT;
1530        }
1531exit:
1532        up_read(&current->mm->mmap_sem);
1533        return pfn;
1534}
1535
1536kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1537                               bool atomic, bool *async, bool write_fault,
1538                               bool *writable)
1539{
1540        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1541
1542        if (addr == KVM_HVA_ERR_RO_BAD) {
1543                if (writable)
1544                        *writable = false;
1545                return KVM_PFN_ERR_RO_FAULT;
1546        }
1547
1548        if (kvm_is_error_hva(addr)) {
1549                if (writable)
1550                        *writable = false;
1551                return KVM_PFN_NOSLOT;
1552        }
1553
1554        /* Do not map writable pfn in the readonly memslot. */
1555        if (writable && memslot_is_readonly(slot)) {
1556                *writable = false;
1557                writable = NULL;
1558        }
1559
1560        return hva_to_pfn(addr, atomic, async, write_fault,
1561                          writable);
1562}
1563EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1564
1565kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1566                      bool *writable)
1567{
1568        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1569                                    write_fault, writable);
1570}
1571EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1572
1573kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1574{
1575        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1576}
1577EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1578
1579kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1580{
1581        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1582}
1583EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1584
1585kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1586{
1587        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1588}
1589EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1590
1591kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1592{
1593        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1594}
1595EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1596
1597kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1598{
1599        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1600}
1601EXPORT_SYMBOL_GPL(gfn_to_pfn);
1602
1603kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1604{
1605        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606}
1607EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1608
1609int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1610                            struct page **pages, int nr_pages)
1611{
1612        unsigned long addr;
1613        gfn_t entry = 0;
1614
1615        addr = gfn_to_hva_many(slot, gfn, &entry);
1616        if (kvm_is_error_hva(addr))
1617                return -1;
1618
1619        if (entry < nr_pages)
1620                return 0;
1621
1622        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1623}
1624EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1625
1626static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1627{
1628        if (is_error_noslot_pfn(pfn))
1629                return KVM_ERR_PTR_BAD_PAGE;
1630
1631        if (kvm_is_reserved_pfn(pfn)) {
1632                WARN_ON(1);
1633                return KVM_ERR_PTR_BAD_PAGE;
1634        }
1635
1636        return pfn_to_page(pfn);
1637}
1638
1639struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1640{
1641        kvm_pfn_t pfn;
1642
1643        pfn = gfn_to_pfn(kvm, gfn);
1644
1645        return kvm_pfn_to_page(pfn);
1646}
1647EXPORT_SYMBOL_GPL(gfn_to_page);
1648
1649struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1650{
1651        kvm_pfn_t pfn;
1652
1653        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1654
1655        return kvm_pfn_to_page(pfn);
1656}
1657EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1658
1659void kvm_release_page_clean(struct page *page)
1660{
1661        WARN_ON(is_error_page(page));
1662
1663        kvm_release_pfn_clean(page_to_pfn(page));
1664}
1665EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1666
1667void kvm_release_pfn_clean(kvm_pfn_t pfn)
1668{
1669        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1670                put_page(pfn_to_page(pfn));
1671}
1672EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1673
1674void kvm_release_page_dirty(struct page *page)
1675{
1676        WARN_ON(is_error_page(page));
1677
1678        kvm_release_pfn_dirty(page_to_pfn(page));
1679}
1680EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1681
1682static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1683{
1684        kvm_set_pfn_dirty(pfn);
1685        kvm_release_pfn_clean(pfn);
1686}
1687
1688void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689{
1690        if (!kvm_is_reserved_pfn(pfn)) {
1691                struct page *page = pfn_to_page(pfn);
1692
1693                if (!PageReserved(page))
1694                        SetPageDirty(page);
1695        }
1696}
1697EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698
1699void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700{
1701        if (!kvm_is_reserved_pfn(pfn))
1702                mark_page_accessed(pfn_to_page(pfn));
1703}
1704EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705
1706void kvm_get_pfn(kvm_pfn_t pfn)
1707{
1708        if (!kvm_is_reserved_pfn(pfn))
1709                get_page(pfn_to_page(pfn));
1710}
1711EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712
1713static int next_segment(unsigned long len, int offset)
1714{
1715        if (len > PAGE_SIZE - offset)
1716                return PAGE_SIZE - offset;
1717        else
1718                return len;
1719}
1720
1721static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722                                 void *data, int offset, int len)
1723{
1724        int r;
1725        unsigned long addr;
1726
1727        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728        if (kvm_is_error_hva(addr))
1729                return -EFAULT;
1730        r = __copy_from_user(data, (void __user *)addr + offset, len);
1731        if (r)
1732                return -EFAULT;
1733        return 0;
1734}
1735
1736int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737                        int len)
1738{
1739        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740
1741        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742}
1743EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744
1745int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746                             int offset, int len)
1747{
1748        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749
1750        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751}
1752EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753
1754int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755{
1756        gfn_t gfn = gpa >> PAGE_SHIFT;
1757        int seg;
1758        int offset = offset_in_page(gpa);
1759        int ret;
1760
1761        while ((seg = next_segment(len, offset)) != 0) {
1762                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763                if (ret < 0)
1764                        return ret;
1765                offset = 0;
1766                len -= seg;
1767                data += seg;
1768                ++gfn;
1769        }
1770        return 0;
1771}
1772EXPORT_SYMBOL_GPL(kvm_read_guest);
1773
1774int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775{
1776        gfn_t gfn = gpa >> PAGE_SHIFT;
1777        int seg;
1778        int offset = offset_in_page(gpa);
1779        int ret;
1780
1781        while ((seg = next_segment(len, offset)) != 0) {
1782                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783                if (ret < 0)
1784                        return ret;
1785                offset = 0;
1786                len -= seg;
1787                data += seg;
1788                ++gfn;
1789        }
1790        return 0;
1791}
1792EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793
1794static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795                                   void *data, int offset, unsigned long len)
1796{
1797        int r;
1798        unsigned long addr;
1799
1800        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801        if (kvm_is_error_hva(addr))
1802                return -EFAULT;
1803        pagefault_disable();
1804        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805        pagefault_enable();
1806        if (r)
1807                return -EFAULT;
1808        return 0;
1809}
1810
1811int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812                          unsigned long len)
1813{
1814        gfn_t gfn = gpa >> PAGE_SHIFT;
1815        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816        int offset = offset_in_page(gpa);
1817
1818        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819}
1820EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821
1822int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823                               void *data, unsigned long len)
1824{
1825        gfn_t gfn = gpa >> PAGE_SHIFT;
1826        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827        int offset = offset_in_page(gpa);
1828
1829        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830}
1831EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832
1833static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834                                  const void *data, int offset, int len)
1835{
1836        int r;
1837        unsigned long addr;
1838
1839        addr = gfn_to_hva_memslot(memslot, gfn);
1840        if (kvm_is_error_hva(addr))
1841                return -EFAULT;
1842        r = __copy_to_user((void __user *)addr + offset, data, len);
1843        if (r)
1844                return -EFAULT;
1845        mark_page_dirty_in_slot(memslot, gfn);
1846        return 0;
1847}
1848
1849int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850                         const void *data, int offset, int len)
1851{
1852        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853
1854        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855}
1856EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857
1858int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859                              const void *data, int offset, int len)
1860{
1861        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862
1863        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864}
1865EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866
1867int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868                    unsigned long len)
1869{
1870        gfn_t gfn = gpa >> PAGE_SHIFT;
1871        int seg;
1872        int offset = offset_in_page(gpa);
1873        int ret;
1874
1875        while ((seg = next_segment(len, offset)) != 0) {
1876                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877                if (ret < 0)
1878                        return ret;
1879                offset = 0;
1880                len -= seg;
1881                data += seg;
1882                ++gfn;
1883        }
1884        return 0;
1885}
1886EXPORT_SYMBOL_GPL(kvm_write_guest);
1887
1888int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889                         unsigned long len)
1890{
1891        gfn_t gfn = gpa >> PAGE_SHIFT;
1892        int seg;
1893        int offset = offset_in_page(gpa);
1894        int ret;
1895
1896        while ((seg = next_segment(len, offset)) != 0) {
1897                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898                if (ret < 0)
1899                        return ret;
1900                offset = 0;
1901                len -= seg;
1902                data += seg;
1903                ++gfn;
1904        }
1905        return 0;
1906}
1907EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908
1909static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910                                       struct gfn_to_hva_cache *ghc,
1911                                       gpa_t gpa, unsigned long len)
1912{
1913        int offset = offset_in_page(gpa);
1914        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917        gfn_t nr_pages_avail;
1918
1919        ghc->gpa = gpa;
1920        ghc->generation = slots->generation;
1921        ghc->len = len;
1922        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925                ghc->hva += offset;
1926        } else {
1927                /*
1928                 * If the requested region crosses two memslots, we still
1929                 * verify that the entire region is valid here.
1930                 */
1931                while (start_gfn <= end_gfn) {
1932                        nr_pages_avail = 0;
1933                        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935                                                   &nr_pages_avail);
1936                        if (kvm_is_error_hva(ghc->hva))
1937                                return -EFAULT;
1938                        start_gfn += nr_pages_avail;
1939                }
1940                /* Use the slow path for cross page reads and writes. */
1941                ghc->memslot = NULL;
1942        }
1943        return 0;
1944}
1945
1946int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947                              gpa_t gpa, unsigned long len)
1948{
1949        struct kvm_memslots *slots = kvm_memslots(kvm);
1950        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951}
1952EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953
1954int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955                           void *data, int offset, unsigned long len)
1956{
1957        struct kvm_memslots *slots = kvm_memslots(kvm);
1958        int r;
1959        gpa_t gpa = ghc->gpa + offset;
1960
1961        BUG_ON(len + offset > ghc->len);
1962
1963        if (slots->generation != ghc->generation)
1964                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965
1966        if (unlikely(!ghc->memslot))
1967                return kvm_write_guest(kvm, gpa, data, len);
1968
1969        if (kvm_is_error_hva(ghc->hva))
1970                return -EFAULT;
1971
1972        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973        if (r)
1974                return -EFAULT;
1975        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976
1977        return 0;
1978}
1979EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980
1981int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982                           void *data, unsigned long len)
1983{
1984        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985}
1986EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987
1988int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989                           void *data, unsigned long len)
1990{
1991        struct kvm_memslots *slots = kvm_memslots(kvm);
1992        int r;
1993
1994        BUG_ON(len > ghc->len);
1995
1996        if (slots->generation != ghc->generation)
1997                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998
1999        if (unlikely(!ghc->memslot))
2000                return kvm_read_guest(kvm, ghc->gpa, data, len);
2001
2002        if (kvm_is_error_hva(ghc->hva))
2003                return -EFAULT;
2004
2005        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006        if (r)
2007                return -EFAULT;
2008
2009        return 0;
2010}
2011EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012
2013int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014{
2015        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016
2017        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018}
2019EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020
2021int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022{
2023        gfn_t gfn = gpa >> PAGE_SHIFT;
2024        int seg;
2025        int offset = offset_in_page(gpa);
2026        int ret;
2027
2028        while ((seg = next_segment(len, offset)) != 0) {
2029                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030                if (ret < 0)
2031                        return ret;
2032                offset = 0;
2033                len -= seg;
2034                ++gfn;
2035        }
2036        return 0;
2037}
2038EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039
2040static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041                                    gfn_t gfn)
2042{
2043        if (memslot && memslot->dirty_bitmap) {
2044                unsigned long rel_gfn = gfn - memslot->base_gfn;
2045
2046                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047        }
2048}
2049
2050void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051{
2052        struct kvm_memory_slot *memslot;
2053
2054        memslot = gfn_to_memslot(kvm, gfn);
2055        mark_page_dirty_in_slot(memslot, gfn);
2056}
2057EXPORT_SYMBOL_GPL(mark_page_dirty);
2058
2059void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060{
2061        struct kvm_memory_slot *memslot;
2062
2063        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064        mark_page_dirty_in_slot(memslot, gfn);
2065}
2066EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067
2068static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069{
2070        unsigned int old, val, grow;
2071
2072        old = val = vcpu->halt_poll_ns;
2073        grow = READ_ONCE(halt_poll_ns_grow);
2074        /* 10us base */
2075        if (val == 0 && grow)
2076                val = 10000;
2077        else
2078                val *= grow;
2079
2080        if (val > halt_poll_ns)
2081                val = halt_poll_ns;
2082
2083        vcpu->halt_poll_ns = val;
2084        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085}
2086
2087static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088{
2089        unsigned int old, val, shrink;
2090
2091        old = val = vcpu->halt_poll_ns;
2092        shrink = READ_ONCE(halt_poll_ns_shrink);
2093        if (shrink == 0)
2094                val = 0;
2095        else
2096                val /= shrink;
2097
2098        vcpu->halt_poll_ns = val;
2099        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100}
2101
2102static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103{
2104        if (kvm_arch_vcpu_runnable(vcpu)) {
2105                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106                return -EINTR;
2107        }
2108        if (kvm_cpu_has_pending_timer(vcpu))
2109                return -EINTR;
2110        if (signal_pending(current))
2111                return -EINTR;
2112
2113        return 0;
2114}
2115
2116/*
2117 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118 */
2119void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120{
2121        ktime_t start, cur;
2122        DECLARE_SWAITQUEUE(wait);
2123        bool waited = false;
2124        u64 block_ns;
2125
2126        start = cur = ktime_get();
2127        if (vcpu->halt_poll_ns) {
2128                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129
2130                ++vcpu->stat.halt_attempted_poll;
2131                do {
2132                        /*
2133                         * This sets KVM_REQ_UNHALT if an interrupt
2134                         * arrives.
2135                         */
2136                        if (kvm_vcpu_check_block(vcpu) < 0) {
2137                                ++vcpu->stat.halt_successful_poll;
2138                                if (!vcpu_valid_wakeup(vcpu))
2139                                        ++vcpu->stat.halt_poll_invalid;
2140                                goto out;
2141                        }
2142                        cur = ktime_get();
2143                } while (single_task_running() && ktime_before(cur, stop));
2144        }
2145
2146        kvm_arch_vcpu_blocking(vcpu);
2147
2148        for (;;) {
2149                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150
2151                if (kvm_vcpu_check_block(vcpu) < 0)
2152                        break;
2153
2154                waited = true;
2155                schedule();
2156        }
2157
2158        finish_swait(&vcpu->wq, &wait);
2159        cur = ktime_get();
2160
2161        kvm_arch_vcpu_unblocking(vcpu);
2162out:
2163        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164
2165        if (!vcpu_valid_wakeup(vcpu))
2166                shrink_halt_poll_ns(vcpu);
2167        else if (halt_poll_ns) {
2168                if (block_ns <= vcpu->halt_poll_ns)
2169                        ;
2170                /* we had a long block, shrink polling */
2171                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172                        shrink_halt_poll_ns(vcpu);
2173                /* we had a short halt and our poll time is too small */
2174                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175                        block_ns < halt_poll_ns)
2176                        grow_halt_poll_ns(vcpu);
2177        } else
2178                vcpu->halt_poll_ns = 0;
2179
2180        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181        kvm_arch_vcpu_block_finish(vcpu);
2182}
2183EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184
2185bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186{
2187        struct swait_queue_head *wqp;
2188
2189        wqp = kvm_arch_vcpu_wq(vcpu);
2190        if (swq_has_sleeper(wqp)) {
2191                swake_up(wqp);
2192                ++vcpu->stat.halt_wakeup;
2193                return true;
2194        }
2195
2196        return false;
2197}
2198EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199
2200#ifndef CONFIG_S390
2201/*
2202 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203 */
2204void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205{
2206        int me;
2207        int cpu = vcpu->cpu;
2208
2209        if (kvm_vcpu_wake_up(vcpu))
2210                return;
2211
2212        me = get_cpu();
2213        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214                if (kvm_arch_vcpu_should_kick(vcpu))
2215                        smp_send_reschedule(cpu);
2216        put_cpu();
2217}
2218EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219#endif /* !CONFIG_S390 */
2220
2221int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222{
2223        struct pid *pid;
2224        struct task_struct *task = NULL;
2225        int ret = 0;
2226
2227        rcu_read_lock();
2228        pid = rcu_dereference(target->pid);
2229        if (pid)
2230                task = get_pid_task(pid, PIDTYPE_PID);
2231        rcu_read_unlock();
2232        if (!task)
2233                return ret;
2234        ret = yield_to(task, 1);
2235        put_task_struct(task);
2236
2237        return ret;
2238}
2239EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240
2241/*
2242 * Helper that checks whether a VCPU is eligible for directed yield.
2243 * Most eligible candidate to yield is decided by following heuristics:
2244 *
2245 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246 *  (preempted lock holder), indicated by @in_spin_loop.
2247 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2248 *
2249 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250 *  chance last time (mostly it has become eligible now since we have probably
2251 *  yielded to lockholder in last iteration. This is done by toggling
2252 *  @dy_eligible each time a VCPU checked for eligibility.)
2253 *
2254 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2256 *  burning. Giving priority for a potential lock-holder increases lock
2257 *  progress.
2258 *
2259 *  Since algorithm is based on heuristics, accessing another VCPU data without
2260 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2261 *  and continue with next VCPU and so on.
2262 */
2263static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264{
2265#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266        bool eligible;
2267
2268        eligible = !vcpu->spin_loop.in_spin_loop ||
2269                    vcpu->spin_loop.dy_eligible;
2270
2271        if (vcpu->spin_loop.in_spin_loop)
2272                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273
2274        return eligible;
2275#else
2276        return true;
2277#endif
2278}
2279
2280void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281{
2282        struct kvm *kvm = me->kvm;
2283        struct kvm_vcpu *vcpu;
2284        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285        int yielded = 0;
2286        int try = 3;
2287        int pass;
2288        int i;
2289
2290        kvm_vcpu_set_in_spin_loop(me, true);
2291        /*
2292         * We boost the priority of a VCPU that is runnable but not
2293         * currently running, because it got preempted by something
2294         * else and called schedule in __vcpu_run.  Hopefully that
2295         * VCPU is holding the lock that we need and will release it.
2296         * We approximate round-robin by starting at the last boosted VCPU.
2297         */
2298        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299                kvm_for_each_vcpu(i, vcpu, kvm) {
2300                        if (!pass && i <= last_boosted_vcpu) {
2301                                i = last_boosted_vcpu;
2302                                continue;
2303                        } else if (pass && i > last_boosted_vcpu)
2304                                break;
2305                        if (!ACCESS_ONCE(vcpu->preempted))
2306                                continue;
2307                        if (vcpu == me)
2308                                continue;
2309                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310                                continue;
2311                        if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312                                continue;
2313                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314                                continue;
2315
2316                        yielded = kvm_vcpu_yield_to(vcpu);
2317                        if (yielded > 0) {
2318                                kvm->last_boosted_vcpu = i;
2319                                break;
2320                        } else if (yielded < 0) {
2321                                try--;
2322                                if (!try)
2323                                        break;
2324                        }
2325                }
2326        }
2327        kvm_vcpu_set_in_spin_loop(me, false);
2328
2329        /* Ensure vcpu is not eligible during next spinloop */
2330        kvm_vcpu_set_dy_eligible(me, false);
2331}
2332EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333
2334static int kvm_vcpu_fault(struct vm_fault *vmf)
2335{
2336        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337        struct page *page;
2338
2339        if (vmf->pgoff == 0)
2340                page = virt_to_page(vcpu->run);
2341#ifdef CONFIG_X86
2342        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343                page = virt_to_page(vcpu->arch.pio_data);
2344#endif
2345#ifdef CONFIG_KVM_MMIO
2346        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348#endif
2349        else
2350                return kvm_arch_vcpu_fault(vcpu, vmf);
2351        get_page(page);
2352        vmf->page = page;
2353        return 0;
2354}
2355
2356static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357        .fault = kvm_vcpu_fault,
2358};
2359
2360static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361{
2362        vma->vm_ops = &kvm_vcpu_vm_ops;
2363        return 0;
2364}
2365
2366static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367{
2368        struct kvm_vcpu *vcpu = filp->private_data;
2369
2370        debugfs_remove_recursive(vcpu->debugfs_dentry);
2371        kvm_put_kvm(vcpu->kvm);
2372        return 0;
2373}
2374
2375static struct file_operations kvm_vcpu_fops = {
2376        .release        = kvm_vcpu_release,
2377        .unlocked_ioctl = kvm_vcpu_ioctl,
2378#ifdef CONFIG_KVM_COMPAT
2379        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2380#endif
2381        .mmap           = kvm_vcpu_mmap,
2382        .llseek         = noop_llseek,
2383};
2384
2385/*
2386 * Allocates an inode for the vcpu.
2387 */
2388static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389{
2390        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391}
2392
2393static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394{
2395        char dir_name[ITOA_MAX_LEN * 2];
2396        int ret;
2397
2398        if (!kvm_arch_has_vcpu_debugfs())
2399                return 0;
2400
2401        if (!debugfs_initialized())
2402                return 0;
2403
2404        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406                                                                vcpu->kvm->debugfs_dentry);
2407        if (!vcpu->debugfs_dentry)
2408                return -ENOMEM;
2409
2410        ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411        if (ret < 0) {
2412                debugfs_remove_recursive(vcpu->debugfs_dentry);
2413                return ret;
2414        }
2415
2416        return 0;
2417}
2418
2419/*
2420 * Creates some virtual cpus.  Good luck creating more than one.
2421 */
2422static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423{
2424        int r;
2425        struct kvm_vcpu *vcpu;
2426
2427        if (id >= KVM_MAX_VCPU_ID)
2428                return -EINVAL;
2429
2430        mutex_lock(&kvm->lock);
2431        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432                mutex_unlock(&kvm->lock);
2433                return -EINVAL;
2434        }
2435
2436        kvm->created_vcpus++;
2437        mutex_unlock(&kvm->lock);
2438
2439        vcpu = kvm_arch_vcpu_create(kvm, id);
2440        if (IS_ERR(vcpu)) {
2441                r = PTR_ERR(vcpu);
2442                goto vcpu_decrement;
2443        }
2444
2445        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446
2447        r = kvm_arch_vcpu_setup(vcpu);
2448        if (r)
2449                goto vcpu_destroy;
2450
2451        r = kvm_create_vcpu_debugfs(vcpu);
2452        if (r)
2453                goto vcpu_destroy;
2454
2455        mutex_lock(&kvm->lock);
2456        if (kvm_get_vcpu_by_id(kvm, id)) {
2457                r = -EEXIST;
2458                goto unlock_vcpu_destroy;
2459        }
2460
2461        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462
2463        /* Now it's all set up, let userspace reach it */
2464        kvm_get_kvm(kvm);
2465        r = create_vcpu_fd(vcpu);
2466        if (r < 0) {
2467                kvm_put_kvm(kvm);
2468                goto unlock_vcpu_destroy;
2469        }
2470
2471        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472
2473        /*
2474         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2475         * before kvm->online_vcpu's incremented value.
2476         */
2477        smp_wmb();
2478        atomic_inc(&kvm->online_vcpus);
2479
2480        mutex_unlock(&kvm->lock);
2481        kvm_arch_vcpu_postcreate(vcpu);
2482        return r;
2483
2484unlock_vcpu_destroy:
2485        mutex_unlock(&kvm->lock);
2486        debugfs_remove_recursive(vcpu->debugfs_dentry);
2487vcpu_destroy:
2488        kvm_arch_vcpu_destroy(vcpu);
2489vcpu_decrement:
2490        mutex_lock(&kvm->lock);
2491        kvm->created_vcpus--;
2492        mutex_unlock(&kvm->lock);
2493        return r;
2494}
2495
2496static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497{
2498        if (sigset) {
2499                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500                vcpu->sigset_active = 1;
2501                vcpu->sigset = *sigset;
2502        } else
2503                vcpu->sigset_active = 0;
2504        return 0;
2505}
2506
2507static long kvm_vcpu_ioctl(struct file *filp,
2508                           unsigned int ioctl, unsigned long arg)
2509{
2510        struct kvm_vcpu *vcpu = filp->private_data;
2511        void __user *argp = (void __user *)arg;
2512        int r;
2513        struct kvm_fpu *fpu = NULL;
2514        struct kvm_sregs *kvm_sregs = NULL;
2515
2516        if (vcpu->kvm->mm != current->mm)
2517                return -EIO;
2518
2519        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520                return -EINVAL;
2521
2522#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523        /*
2524         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525         * so vcpu_load() would break it.
2526         */
2527        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529#endif
2530
2531
2532        r = vcpu_load(vcpu);
2533        if (r)
2534                return r;
2535        switch (ioctl) {
2536        case KVM_RUN: {
2537                struct pid *oldpid;
2538                r = -EINVAL;
2539                if (arg)
2540                        goto out;
2541                oldpid = rcu_access_pointer(vcpu->pid);
2542                if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543                        /* The thread running this VCPU changed. */
2544                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545
2546                        rcu_assign_pointer(vcpu->pid, newpid);
2547                        if (oldpid)
2548                                synchronize_rcu();
2549                        put_pid(oldpid);
2550                }
2551                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553                break;
2554        }
2555        case KVM_GET_REGS: {
2556                struct kvm_regs *kvm_regs;
2557
2558                r = -ENOMEM;
2559                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560                if (!kvm_regs)
2561                        goto out;
2562                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563                if (r)
2564                        goto out_free1;
2565                r = -EFAULT;
2566                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567                        goto out_free1;
2568                r = 0;
2569out_free1:
2570                kfree(kvm_regs);
2571                break;
2572        }
2573        case KVM_SET_REGS: {
2574                struct kvm_regs *kvm_regs;
2575
2576                r = -ENOMEM;
2577                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578                if (IS_ERR(kvm_regs)) {
2579                        r = PTR_ERR(kvm_regs);
2580                        goto out;
2581                }
2582                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583                kfree(kvm_regs);
2584                break;
2585        }
2586        case KVM_GET_SREGS: {
2587                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588                r = -ENOMEM;
2589                if (!kvm_sregs)
2590                        goto out;
2591                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592                if (r)
2593                        goto out;
2594                r = -EFAULT;
2595                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596                        goto out;
2597                r = 0;
2598                break;
2599        }
2600        case KVM_SET_SREGS: {
2601                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602                if (IS_ERR(kvm_sregs)) {
2603                        r = PTR_ERR(kvm_sregs);
2604                        kvm_sregs = NULL;
2605                        goto out;
2606                }
2607                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608                break;
2609        }
2610        case KVM_GET_MP_STATE: {
2611                struct kvm_mp_state mp_state;
2612
2613                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614                if (r)
2615                        goto out;
2616                r = -EFAULT;
2617                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618                        goto out;
2619                r = 0;
2620                break;
2621        }
2622        case KVM_SET_MP_STATE: {
2623                struct kvm_mp_state mp_state;
2624
2625                r = -EFAULT;
2626                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627                        goto out;
2628                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629                break;
2630        }
2631        case KVM_TRANSLATE: {
2632                struct kvm_translation tr;
2633
2634                r = -EFAULT;
2635                if (copy_from_user(&tr, argp, sizeof(tr)))
2636                        goto out;
2637                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638                if (r)
2639                        goto out;
2640                r = -EFAULT;
2641                if (copy_to_user(argp, &tr, sizeof(tr)))
2642                        goto out;
2643                r = 0;
2644                break;
2645        }
2646        case KVM_SET_GUEST_DEBUG: {
2647                struct kvm_guest_debug dbg;
2648
2649                r = -EFAULT;
2650                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651                        goto out;
2652                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653                break;
2654        }
2655        case KVM_SET_SIGNAL_MASK: {
2656                struct kvm_signal_mask __user *sigmask_arg = argp;
2657                struct kvm_signal_mask kvm_sigmask;
2658                sigset_t sigset, *p;
2659
2660                p = NULL;
2661                if (argp) {
2662                        r = -EFAULT;
2663                        if (copy_from_user(&kvm_sigmask, argp,
2664                                           sizeof(kvm_sigmask)))
2665                                goto out;
2666                        r = -EINVAL;
2667                        if (kvm_sigmask.len != sizeof(sigset))
2668                                goto out;
2669                        r = -EFAULT;
2670                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2671                                           sizeof(sigset)))
2672                                goto out;
2673                        p = &sigset;
2674                }
2675                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676                break;
2677        }
2678        case KVM_GET_FPU: {
2679                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680                r = -ENOMEM;
2681                if (!fpu)
2682                        goto out;
2683                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684                if (r)
2685                        goto out;
2686                r = -EFAULT;
2687                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688                        goto out;
2689                r = 0;
2690                break;
2691        }
2692        case KVM_SET_FPU: {
2693                fpu = memdup_user(argp, sizeof(*fpu));
2694                if (IS_ERR(fpu)) {
2695                        r = PTR_ERR(fpu);
2696                        fpu = NULL;
2697                        goto out;
2698                }
2699                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700                break;
2701        }
2702        default:
2703                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704        }
2705out:
2706        vcpu_put(vcpu);
2707        kfree(fpu);
2708        kfree(kvm_sregs);
2709        return r;
2710}
2711
2712#ifdef CONFIG_KVM_COMPAT
2713static long kvm_vcpu_compat_ioctl(struct file *filp,
2714                                  unsigned int ioctl, unsigned long arg)
2715{
2716        struct kvm_vcpu *vcpu = filp->private_data;
2717        void __user *argp = compat_ptr(arg);
2718        int r;
2719
2720        if (vcpu->kvm->mm != current->mm)
2721                return -EIO;
2722
2723        switch (ioctl) {
2724        case KVM_SET_SIGNAL_MASK: {
2725                struct kvm_signal_mask __user *sigmask_arg = argp;
2726                struct kvm_signal_mask kvm_sigmask;
2727                compat_sigset_t csigset;
2728                sigset_t sigset;
2729
2730                if (argp) {
2731                        r = -EFAULT;
2732                        if (copy_from_user(&kvm_sigmask, argp,
2733                                           sizeof(kvm_sigmask)))
2734                                goto out;
2735                        r = -EINVAL;
2736                        if (kvm_sigmask.len != sizeof(csigset))
2737                                goto out;
2738                        r = -EFAULT;
2739                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2740                                           sizeof(csigset)))
2741                                goto out;
2742                        sigset_from_compat(&sigset, &csigset);
2743                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2744                } else
2745                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2746                break;
2747        }
2748        default:
2749                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2750        }
2751
2752out:
2753        return r;
2754}
2755#endif
2756
2757static int kvm_device_ioctl_attr(struct kvm_device *dev,
2758                                 int (*accessor)(struct kvm_device *dev,
2759                                                 struct kvm_device_attr *attr),
2760                                 unsigned long arg)
2761{
2762        struct kvm_device_attr attr;
2763
2764        if (!accessor)
2765                return -EPERM;
2766
2767        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2768                return -EFAULT;
2769
2770        return accessor(dev, &attr);
2771}
2772
2773static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2774                             unsigned long arg)
2775{
2776        struct kvm_device *dev = filp->private_data;
2777
2778        switch (ioctl) {
2779        case KVM_SET_DEVICE_ATTR:
2780                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2781        case KVM_GET_DEVICE_ATTR:
2782                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2783        case KVM_HAS_DEVICE_ATTR:
2784                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2785        default:
2786                if (dev->ops->ioctl)
2787                        return dev->ops->ioctl(dev, ioctl, arg);
2788
2789                return -ENOTTY;
2790        }
2791}
2792
2793static int kvm_device_release(struct inode *inode, struct file *filp)
2794{
2795        struct kvm_device *dev = filp->private_data;
2796        struct kvm *kvm = dev->kvm;
2797
2798        kvm_put_kvm(kvm);
2799        return 0;
2800}
2801
2802static const struct file_operations kvm_device_fops = {
2803        .unlocked_ioctl = kvm_device_ioctl,
2804#ifdef CONFIG_KVM_COMPAT
2805        .compat_ioctl = kvm_device_ioctl,
2806#endif
2807        .release = kvm_device_release,
2808};
2809
2810struct kvm_device *kvm_device_from_filp(struct file *filp)
2811{
2812        if (filp->f_op != &kvm_device_fops)
2813                return NULL;
2814
2815        return filp->private_data;
2816}
2817
2818static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2819#ifdef CONFIG_KVM_MPIC
2820        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2821        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2822#endif
2823};
2824
2825int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2826{
2827        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2828                return -ENOSPC;
2829
2830        if (kvm_device_ops_table[type] != NULL)
2831                return -EEXIST;
2832
2833        kvm_device_ops_table[type] = ops;
2834        return 0;
2835}
2836
2837void kvm_unregister_device_ops(u32 type)
2838{
2839        if (kvm_device_ops_table[type] != NULL)
2840                kvm_device_ops_table[type] = NULL;
2841}
2842
2843static int kvm_ioctl_create_device(struct kvm *kvm,
2844                                   struct kvm_create_device *cd)
2845{
2846        struct kvm_device_ops *ops = NULL;
2847        struct kvm_device *dev;
2848        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2849        int ret;
2850
2851        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2852                return -ENODEV;
2853
2854        ops = kvm_device_ops_table[cd->type];
2855        if (ops == NULL)
2856                return -ENODEV;
2857
2858        if (test)
2859                return 0;
2860
2861        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2862        if (!dev)
2863                return -ENOMEM;
2864
2865        dev->ops = ops;
2866        dev->kvm = kvm;
2867
2868        mutex_lock(&kvm->lock);
2869        ret = ops->create(dev, cd->type);
2870        if (ret < 0) {
2871                mutex_unlock(&kvm->lock);
2872                kfree(dev);
2873                return ret;
2874        }
2875        list_add(&dev->vm_node, &kvm->devices);
2876        mutex_unlock(&kvm->lock);
2877
2878        if (ops->init)
2879                ops->init(dev);
2880
2881        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2882        if (ret < 0) {
2883                mutex_lock(&kvm->lock);
2884                list_del(&dev->vm_node);
2885                mutex_unlock(&kvm->lock);
2886                ops->destroy(dev);
2887                return ret;
2888        }
2889
2890        kvm_get_kvm(kvm);
2891        cd->fd = ret;
2892        return 0;
2893}
2894
2895static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2896{
2897        switch (arg) {
2898        case KVM_CAP_USER_MEMORY:
2899        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2900        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2901        case KVM_CAP_INTERNAL_ERROR_DATA:
2902#ifdef CONFIG_HAVE_KVM_MSI
2903        case KVM_CAP_SIGNAL_MSI:
2904#endif
2905#ifdef CONFIG_HAVE_KVM_IRQFD
2906        case KVM_CAP_IRQFD:
2907        case KVM_CAP_IRQFD_RESAMPLE:
2908#endif
2909        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2910        case KVM_CAP_CHECK_EXTENSION_VM:
2911                return 1;
2912#ifdef CONFIG_KVM_MMIO
2913        case KVM_CAP_COALESCED_MMIO:
2914                return KVM_COALESCED_MMIO_PAGE_OFFSET;
2915#endif
2916#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2917        case KVM_CAP_IRQ_ROUTING:
2918                return KVM_MAX_IRQ_ROUTES;
2919#endif
2920#if KVM_ADDRESS_SPACE_NUM > 1
2921        case KVM_CAP_MULTI_ADDRESS_SPACE:
2922                return KVM_ADDRESS_SPACE_NUM;
2923#endif
2924        case KVM_CAP_MAX_VCPU_ID:
2925                return KVM_MAX_VCPU_ID;
2926        default:
2927                break;
2928        }
2929        return kvm_vm_ioctl_check_extension(kvm, arg);
2930}
2931
2932static long kvm_vm_ioctl(struct file *filp,
2933                           unsigned int ioctl, unsigned long arg)
2934{
2935        struct kvm *kvm = filp->private_data;
2936        void __user *argp = (void __user *)arg;
2937        int r;
2938
2939        if (kvm->mm != current->mm)
2940                return -EIO;
2941        switch (ioctl) {
2942        case KVM_CREATE_VCPU:
2943                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2944                break;
2945        case KVM_SET_USER_MEMORY_REGION: {
2946                struct kvm_userspace_memory_region kvm_userspace_mem;
2947
2948                r = -EFAULT;
2949                if (copy_from_user(&kvm_userspace_mem, argp,
2950                                                sizeof(kvm_userspace_mem)))
2951                        goto out;
2952
2953                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2954                break;
2955        }
2956        case KVM_GET_DIRTY_LOG: {
2957                struct kvm_dirty_log log;
2958
2959                r = -EFAULT;
2960                if (copy_from_user(&log, argp, sizeof(log)))
2961                        goto out;
2962                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2963                break;
2964        }
2965#ifdef CONFIG_KVM_MMIO
2966        case KVM_REGISTER_COALESCED_MMIO: {
2967                struct kvm_coalesced_mmio_zone zone;
2968
2969                r = -EFAULT;
2970                if (copy_from_user(&zone, argp, sizeof(zone)))
2971                        goto out;
2972                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2973                break;
2974        }
2975        case KVM_UNREGISTER_COALESCED_MMIO: {
2976                struct kvm_coalesced_mmio_zone zone;
2977
2978                r = -EFAULT;
2979                if (copy_from_user(&zone, argp, sizeof(zone)))
2980                        goto out;
2981                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2982                break;
2983        }
2984#endif
2985        case KVM_IRQFD: {
2986                struct kvm_irqfd data;
2987
2988                r = -EFAULT;
2989                if (copy_from_user(&data, argp, sizeof(data)))
2990                        goto out;
2991                r = kvm_irqfd(kvm, &data);
2992                break;
2993        }
2994        case KVM_IOEVENTFD: {
2995                struct kvm_ioeventfd data;
2996
2997                r = -EFAULT;
2998                if (copy_from_user(&data, argp, sizeof(data)))
2999                        goto out;
3000                r = kvm_ioeventfd(kvm, &data);
3001                break;
3002        }
3003#ifdef CONFIG_HAVE_KVM_MSI
3004        case KVM_SIGNAL_MSI: {
3005                struct kvm_msi msi;
3006
3007                r = -EFAULT;
3008                if (copy_from_user(&msi, argp, sizeof(msi)))
3009                        goto out;
3010                r = kvm_send_userspace_msi(kvm, &msi);
3011                break;
3012        }
3013#endif
3014#ifdef __KVM_HAVE_IRQ_LINE
3015        case KVM_IRQ_LINE_STATUS:
3016        case KVM_IRQ_LINE: {
3017                struct kvm_irq_level irq_event;
3018
3019                r = -EFAULT;
3020                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3021                        goto out;
3022
3023                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3024                                        ioctl == KVM_IRQ_LINE_STATUS);
3025                if (r)
3026                        goto out;
3027
3028                r = -EFAULT;
3029                if (ioctl == KVM_IRQ_LINE_STATUS) {
3030                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3031                                goto out;
3032                }
3033
3034                r = 0;
3035                break;
3036        }
3037#endif
3038#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3039        case KVM_SET_GSI_ROUTING: {
3040                struct kvm_irq_routing routing;
3041                struct kvm_irq_routing __user *urouting;
3042                struct kvm_irq_routing_entry *entries = NULL;
3043
3044                r = -EFAULT;
3045                if (copy_from_user(&routing, argp, sizeof(routing)))
3046                        goto out;
3047                r = -EINVAL;
3048                if (!kvm_arch_can_set_irq_routing(kvm))
3049                        goto out;
3050                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051                        goto out;
3052                if (routing.flags)
3053                        goto out;
3054                if (routing.nr) {
3055                        r = -ENOMEM;
3056                        entries = vmalloc(routing.nr * sizeof(*entries));
3057                        if (!entries)
3058                                goto out;
3059                        r = -EFAULT;
3060                        urouting = argp;
3061                        if (copy_from_user(entries, urouting->entries,
3062                                           routing.nr * sizeof(*entries)))
3063                                goto out_free_irq_routing;
3064                }
3065                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066                                        routing.flags);
3067out_free_irq_routing:
3068                vfree(entries);
3069                break;
3070        }
3071#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072        case KVM_CREATE_DEVICE: {
3073                struct kvm_create_device cd;
3074
3075                r = -EFAULT;
3076                if (copy_from_user(&cd, argp, sizeof(cd)))
3077                        goto out;
3078
3079                r = kvm_ioctl_create_device(kvm, &cd);
3080                if (r)
3081                        goto out;
3082
3083                r = -EFAULT;
3084                if (copy_to_user(argp, &cd, sizeof(cd)))
3085                        goto out;
3086
3087                r = 0;
3088                break;
3089        }
3090        case KVM_CHECK_EXTENSION:
3091                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092                break;
3093        default:
3094                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095        }
3096out:
3097        return r;
3098}
3099
3100#ifdef CONFIG_KVM_COMPAT
3101struct compat_kvm_dirty_log {
3102        __u32 slot;
3103        __u32 padding1;
3104        union {
3105                compat_uptr_t dirty_bitmap; /* one bit per page */
3106                __u64 padding2;
3107        };
3108};
3109
3110static long kvm_vm_compat_ioctl(struct file *filp,
3111                           unsigned int ioctl, unsigned long arg)
3112{
3113        struct kvm *kvm = filp->private_data;
3114        int r;
3115
3116        if (kvm->mm != current->mm)
3117                return -EIO;
3118        switch (ioctl) {
3119        case KVM_GET_DIRTY_LOG: {
3120                struct compat_kvm_dirty_log compat_log;
3121                struct kvm_dirty_log log;
3122
3123                if (copy_from_user(&compat_log, (void __user *)arg,
3124                                   sizeof(compat_log)))
3125                        return -EFAULT;
3126                log.slot         = compat_log.slot;
3127                log.padding1     = compat_log.padding1;
3128                log.padding2     = compat_log.padding2;
3129                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3130
3131                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132                break;
3133        }
3134        default:
3135                r = kvm_vm_ioctl(filp, ioctl, arg);
3136        }
3137        return r;
3138}
3139#endif
3140
3141static struct file_operations kvm_vm_fops = {
3142        .release        = kvm_vm_release,
3143        .unlocked_ioctl = kvm_vm_ioctl,
3144#ifdef CONFIG_KVM_COMPAT
3145        .compat_ioctl   = kvm_vm_compat_ioctl,
3146#endif
3147        .llseek         = noop_llseek,
3148};
3149
3150static int kvm_dev_ioctl_create_vm(unsigned long type)
3151{
3152        int r;
3153        struct kvm *kvm;
3154        struct file *file;
3155
3156        kvm = kvm_create_vm(type);
3157        if (IS_ERR(kvm))
3158                return PTR_ERR(kvm);
3159#ifdef CONFIG_KVM_MMIO
3160        r = kvm_coalesced_mmio_init(kvm);
3161        if (r < 0) {
3162                kvm_put_kvm(kvm);
3163                return r;
3164        }
3165#endif
3166        r = get_unused_fd_flags(O_CLOEXEC);
3167        if (r < 0) {
3168                kvm_put_kvm(kvm);
3169                return r;
3170        }
3171        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3172        if (IS_ERR(file)) {
3173                put_unused_fd(r);
3174                kvm_put_kvm(kvm);
3175                return PTR_ERR(file);
3176        }
3177
3178        /*
3179         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3180         * already set, with ->release() being kvm_vm_release().  In error
3181         * cases it will be called by the final fput(file) and will take
3182         * care of doing kvm_put_kvm(kvm).
3183         */
3184        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185                put_unused_fd(r);
3186                fput(file);
3187                return -ENOMEM;
3188        }
3189        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3190
3191        fd_install(r, file);
3192        return r;
3193}
3194
3195static long kvm_dev_ioctl(struct file *filp,
3196                          unsigned int ioctl, unsigned long arg)
3197{
3198        long r = -EINVAL;
3199
3200        switch (ioctl) {
3201        case KVM_GET_API_VERSION:
3202                if (arg)
3203                        goto out;
3204                r = KVM_API_VERSION;
3205                break;
3206        case KVM_CREATE_VM:
3207                r = kvm_dev_ioctl_create_vm(arg);
3208                break;
3209        case KVM_CHECK_EXTENSION:
3210                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3211                break;
3212        case KVM_GET_VCPU_MMAP_SIZE:
3213                if (arg)
3214                        goto out;
3215                r = PAGE_SIZE;     /* struct kvm_run */
3216#ifdef CONFIG_X86
3217                r += PAGE_SIZE;    /* pio data page */
3218#endif
3219#ifdef CONFIG_KVM_MMIO
3220                r += PAGE_SIZE;    /* coalesced mmio ring page */
3221#endif
3222                break;
3223        case KVM_TRACE_ENABLE:
3224        case KVM_TRACE_PAUSE:
3225        case KVM_TRACE_DISABLE:
3226                r = -EOPNOTSUPP;
3227                break;
3228        default:
3229                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3230        }
3231out:
3232        return r;
3233}
3234
3235static struct file_operations kvm_chardev_ops = {
3236        .unlocked_ioctl = kvm_dev_ioctl,
3237        .compat_ioctl   = kvm_dev_ioctl,
3238        .llseek         = noop_llseek,
3239};
3240
3241static struct miscdevice kvm_dev = {
3242        KVM_MINOR,
3243        "kvm",
3244        &kvm_chardev_ops,
3245};
3246
3247static void hardware_enable_nolock(void *junk)
3248{
3249        int cpu = raw_smp_processor_id();
3250        int r;
3251
3252        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3253                return;
3254
3255        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3256
3257        r = kvm_arch_hardware_enable();
3258
3259        if (r) {
3260                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3261                atomic_inc(&hardware_enable_failed);
3262                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3263        }
3264}
3265
3266static int kvm_starting_cpu(unsigned int cpu)
3267{
3268        raw_spin_lock(&kvm_count_lock);
3269        if (kvm_usage_count)
3270                hardware_enable_nolock(NULL);
3271        raw_spin_unlock(&kvm_count_lock);
3272        return 0;
3273}
3274
3275static void hardware_disable_nolock(void *junk)
3276{
3277        int cpu = raw_smp_processor_id();
3278
3279        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3280                return;
3281        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3282        kvm_arch_hardware_disable();
3283}
3284
3285static int kvm_dying_cpu(unsigned int cpu)
3286{
3287        raw_spin_lock(&kvm_count_lock);
3288        if (kvm_usage_count)
3289                hardware_disable_nolock(NULL);
3290        raw_spin_unlock(&kvm_count_lock);
3291        return 0;
3292}
3293
3294static void hardware_disable_all_nolock(void)
3295{
3296        BUG_ON(!kvm_usage_count);
3297
3298        kvm_usage_count--;
3299        if (!kvm_usage_count)
3300                on_each_cpu(hardware_disable_nolock, NULL, 1);
3301}
3302
3303static void hardware_disable_all(void)
3304{
3305        raw_spin_lock(&kvm_count_lock);
3306        hardware_disable_all_nolock();
3307        raw_spin_unlock(&kvm_count_lock);
3308}
3309
3310static int hardware_enable_all(void)
3311{
3312        int r = 0;
3313
3314        raw_spin_lock(&kvm_count_lock);
3315
3316        kvm_usage_count++;
3317        if (kvm_usage_count == 1) {
3318                atomic_set(&hardware_enable_failed, 0);
3319                on_each_cpu(hardware_enable_nolock, NULL, 1);
3320
3321                if (atomic_read(&hardware_enable_failed)) {
3322                        hardware_disable_all_nolock();
3323                        r = -EBUSY;
3324                }
3325        }
3326
3327        raw_spin_unlock(&kvm_count_lock);
3328
3329        return r;
3330}
3331
3332static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3333                      void *v)
3334{
3335        /*
3336         * Some (well, at least mine) BIOSes hang on reboot if
3337         * in vmx root mode.
3338         *
3339         * And Intel TXT required VMX off for all cpu when system shutdown.
3340         */
3341        pr_info("kvm: exiting hardware virtualization\n");
3342        kvm_rebooting = true;
3343        on_each_cpu(hardware_disable_nolock, NULL, 1);
3344        return NOTIFY_OK;
3345}
3346
3347static struct notifier_block kvm_reboot_notifier = {
3348        .notifier_call = kvm_reboot,
3349        .priority = 0,
3350};
3351
3352static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3353{
3354        int i;
3355
3356        for (i = 0; i < bus->dev_count; i++) {
3357                struct kvm_io_device *pos = bus->range[i].dev;
3358
3359                kvm_iodevice_destructor(pos);
3360        }
3361        kfree(bus);
3362}
3363
3364static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3365                                 const struct kvm_io_range *r2)
3366{
3367        gpa_t addr1 = r1->addr;
3368        gpa_t addr2 = r2->addr;
3369
3370        if (addr1 < addr2)
3371                return -1;
3372
3373        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3374         * accept any overlapping write.  Any order is acceptable for
3375         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3376         * we process all of them.
3377         */
3378        if (r2->len) {
3379                addr1 += r1->len;
3380                addr2 += r2->len;
3381        }
3382
3383        if (addr1 > addr2)
3384                return 1;
3385
3386        return 0;
3387}
3388
3389static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3390{
3391        return kvm_io_bus_cmp(p1, p2);
3392}
3393
3394static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3395                          gpa_t addr, int len)
3396{
3397        bus->range[bus->dev_count++] = (struct kvm_io_range) {
3398                .addr = addr,
3399                .len = len,
3400                .dev = dev,
3401        };
3402
3403        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3404                kvm_io_bus_sort_cmp, NULL);
3405
3406        return 0;
3407}
3408
3409static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3410                             gpa_t addr, int len)
3411{
3412        struct kvm_io_range *range, key;
3413        int off;
3414
3415        key = (struct kvm_io_range) {
3416                .addr = addr,
3417                .len = len,
3418        };
3419
3420        range = bsearch(&key, bus->range, bus->dev_count,
3421                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3422        if (range == NULL)
3423                return -ENOENT;
3424
3425        off = range - bus->range;
3426
3427        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3428                off--;
3429
3430        return off;
3431}
3432
3433static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3434                              struct kvm_io_range *range, const void *val)
3435{
3436        int idx;
3437
3438        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3439        if (idx < 0)
3440                return -EOPNOTSUPP;
3441
3442        while (idx < bus->dev_count &&
3443                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3444                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3445                                        range->len, val))
3446                        return idx;
3447                idx++;
3448        }
3449
3450        return -EOPNOTSUPP;
3451}
3452
3453/* kvm_io_bus_write - called under kvm->slots_lock */
3454int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3455                     int len, const void *val)
3456{
3457        struct kvm_io_bus *bus;
3458        struct kvm_io_range range;
3459        int r;
3460
3461        range = (struct kvm_io_range) {
3462                .addr = addr,
3463                .len = len,
3464        };
3465
3466        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3467        if (!bus)
3468                return -ENOMEM;
3469        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470        return r < 0 ? r : 0;
3471}
3472
3473/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475                            gpa_t addr, int len, const void *val, long cookie)
3476{
3477        struct kvm_io_bus *bus;
3478        struct kvm_io_range range;
3479
3480        range = (struct kvm_io_range) {
3481                .addr = addr,
3482                .len = len,
3483        };
3484
3485        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486        if (!bus)
3487                return -ENOMEM;
3488
3489        /* First try the device referenced by cookie. */
3490        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3491            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3492                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3493                                        val))
3494                        return cookie;
3495
3496        /*
3497         * cookie contained garbage; fall back to search and return the
3498         * correct cookie value.
3499         */
3500        return __kvm_io_bus_write(vcpu, bus, &range, val);
3501}
3502
3503static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3504                             struct kvm_io_range *range, void *val)
3505{
3506        int idx;
3507
3508        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3509        if (idx < 0)
3510                return -EOPNOTSUPP;
3511
3512        while (idx < bus->dev_count &&
3513                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3514                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3515                                       range->len, val))
3516                        return idx;
3517                idx++;
3518        }
3519
3520        return -EOPNOTSUPP;
3521}
3522EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3523
3524/* kvm_io_bus_read - called under kvm->slots_lock */
3525int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3526                    int len, void *val)
3527{
3528        struct kvm_io_bus *bus;
3529        struct kvm_io_range range;
3530        int r;
3531
3532        range = (struct kvm_io_range) {
3533                .addr = addr,
3534                .len = len,
3535        };
3536
3537        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3538        if (!bus)
3539                return -ENOMEM;
3540        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3541        return r < 0 ? r : 0;
3542}
3543
3544
3545/* Caller must hold slots_lock. */
3546int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3547                            int len, struct kvm_io_device *dev)
3548{
3549        struct kvm_io_bus *new_bus, *bus;
3550
3551        bus = kvm_get_bus(kvm, bus_idx);
3552        if (!bus)
3553                return -ENOMEM;
3554
3555        /* exclude ioeventfd which is limited by maximum fd */
3556        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557                return -ENOSPC;
3558
3559        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3561        if (!new_bus)
3562                return -ENOMEM;
3563        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564               sizeof(struct kvm_io_range)));
3565        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567        synchronize_srcu_expedited(&kvm->srcu);
3568        kfree(bus);
3569
3570        return 0;
3571}
3572
3573/* Caller must hold slots_lock. */
3574void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575                               struct kvm_io_device *dev)
3576{
3577        int i;
3578        struct kvm_io_bus *new_bus, *bus;
3579
3580        bus = kvm_get_bus(kvm, bus_idx);
3581        if (!bus)
3582                return;
3583
3584        for (i = 0; i < bus->dev_count; i++)
3585                if (bus->range[i].dev == dev) {
3586                        break;
3587                }
3588
3589        if (i == bus->dev_count)
3590                return;
3591
3592        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3594        if (!new_bus)  {
3595                pr_err("kvm: failed to shrink bus, removing it completely\n");
3596                goto broken;
3597        }
3598
3599        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3600        new_bus->dev_count--;
3601        memcpy(new_bus->range + i, bus->range + i + 1,
3602               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3603
3604broken:
3605        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3606        synchronize_srcu_expedited(&kvm->srcu);
3607        kfree(bus);
3608        return;
3609}
3610
3611struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3612                                         gpa_t addr)
3613{
3614        struct kvm_io_bus *bus;
3615        int dev_idx, srcu_idx;
3616        struct kvm_io_device *iodev = NULL;
3617
3618        srcu_idx = srcu_read_lock(&kvm->srcu);
3619
3620        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3621        if (!bus)
3622                goto out_unlock;
3623
3624        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3625        if (dev_idx < 0)
3626                goto out_unlock;
3627
3628        iodev = bus->range[dev_idx].dev;
3629
3630out_unlock:
3631        srcu_read_unlock(&kvm->srcu, srcu_idx);
3632
3633        return iodev;
3634}
3635EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3636
3637static int kvm_debugfs_open(struct inode *inode, struct file *file,
3638                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3639                           const char *fmt)
3640{
3641        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3642                                          inode->i_private;
3643
3644        /* The debugfs files are a reference to the kvm struct which
3645         * is still valid when kvm_destroy_vm is called.
3646         * To avoid the race between open and the removal of the debugfs
3647         * directory we test against the users count.
3648         */
3649        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3650                return -ENOENT;
3651
3652        if (simple_attr_open(inode, file, get, set, fmt)) {
3653                kvm_put_kvm(stat_data->kvm);
3654                return -ENOMEM;
3655        }
3656
3657        return 0;
3658}
3659
3660static int kvm_debugfs_release(struct inode *inode, struct file *file)
3661{
3662        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3663                                          inode->i_private;
3664
3665        simple_attr_release(inode, file);
3666        kvm_put_kvm(stat_data->kvm);
3667
3668        return 0;
3669}
3670
3671static int vm_stat_get_per_vm(void *data, u64 *val)
3672{
3673        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3674
3675        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3676
3677        return 0;
3678}
3679
3680static int vm_stat_clear_per_vm(void *data, u64 val)
3681{
3682        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684        if (val)
3685                return -EINVAL;
3686
3687        *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3688
3689        return 0;
3690}
3691
3692static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3693{
3694        __simple_attr_check_format("%llu\n", 0ull);
3695        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3696                                vm_stat_clear_per_vm, "%llu\n");
3697}
3698
3699static const struct file_operations vm_stat_get_per_vm_fops = {
3700        .owner   = THIS_MODULE,
3701        .open    = vm_stat_get_per_vm_open,
3702        .release = kvm_debugfs_release,
3703        .read    = simple_attr_read,
3704        .write   = simple_attr_write,
3705        .llseek  = no_llseek,
3706};
3707
3708static int vcpu_stat_get_per_vm(void *data, u64 *val)
3709{
3710        int i;
3711        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712        struct kvm_vcpu *vcpu;
3713
3714        *val = 0;
3715
3716        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3717                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3718
3719        return 0;
3720}
3721
3722static int vcpu_stat_clear_per_vm(void *data, u64 val)
3723{
3724        int i;
3725        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3726        struct kvm_vcpu *vcpu;
3727
3728        if (val)
3729                return -EINVAL;
3730
3731        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732                *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3733
3734        return 0;
3735}
3736
3737static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3738{
3739        __simple_attr_check_format("%llu\n", 0ull);
3740        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3741                                 vcpu_stat_clear_per_vm, "%llu\n");
3742}
3743
3744static const struct file_operations vcpu_stat_get_per_vm_fops = {
3745        .owner   = THIS_MODULE,
3746        .open    = vcpu_stat_get_per_vm_open,
3747        .release = kvm_debugfs_release,
3748        .read    = simple_attr_read,
3749        .write   = simple_attr_write,
3750        .llseek  = no_llseek,
3751};
3752
3753static const struct file_operations *stat_fops_per_vm[] = {
3754        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3755        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3756};
3757
3758static int vm_stat_get(void *_offset, u64 *val)
3759{
3760        unsigned offset = (long)_offset;
3761        struct kvm *kvm;
3762        struct kvm_stat_data stat_tmp = {.offset = offset};
3763        u64 tmp_val;
3764
3765        *val = 0;
3766        spin_lock(&kvm_lock);
3767        list_for_each_entry(kvm, &vm_list, vm_list) {
3768                stat_tmp.kvm = kvm;
3769                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3770                *val += tmp_val;
3771        }
3772        spin_unlock(&kvm_lock);
3773        return 0;
3774}
3775
3776static int vm_stat_clear(void *_offset, u64 val)
3777{
3778        unsigned offset = (long)_offset;
3779        struct kvm *kvm;
3780        struct kvm_stat_data stat_tmp = {.offset = offset};
3781
3782        if (val)
3783                return -EINVAL;
3784
3785        spin_lock(&kvm_lock);
3786        list_for_each_entry(kvm, &vm_list, vm_list) {
3787                stat_tmp.kvm = kvm;
3788                vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3789        }
3790        spin_unlock(&kvm_lock);
3791
3792        return 0;
3793}
3794
3795DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3796
3797static int vcpu_stat_get(void *_offset, u64 *val)
3798{
3799        unsigned offset = (long)_offset;
3800        struct kvm *kvm;
3801        struct kvm_stat_data stat_tmp = {.offset = offset};
3802        u64 tmp_val;
3803
3804        *val = 0;
3805        spin_lock(&kvm_lock);
3806        list_for_each_entry(kvm, &vm_list, vm_list) {
3807                stat_tmp.kvm = kvm;
3808                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3809                *val += tmp_val;
3810        }
3811        spin_unlock(&kvm_lock);
3812        return 0;
3813}
3814
3815static int vcpu_stat_clear(void *_offset, u64 val)
3816{
3817        unsigned offset = (long)_offset;
3818        struct kvm *kvm;
3819        struct kvm_stat_data stat_tmp = {.offset = offset};
3820
3821        if (val)
3822                return -EINVAL;
3823
3824        spin_lock(&kvm_lock);
3825        list_for_each_entry(kvm, &vm_list, vm_list) {
3826                stat_tmp.kvm = kvm;
3827                vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3828        }
3829        spin_unlock(&kvm_lock);
3830
3831        return 0;
3832}
3833
3834DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3835                        "%llu\n");
3836
3837static const struct file_operations *stat_fops[] = {
3838        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3839        [KVM_STAT_VM]   = &vm_stat_fops,
3840};
3841
3842static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3843{
3844        struct kobj_uevent_env *env;
3845        unsigned long long created, active;
3846
3847        if (!kvm_dev.this_device || !kvm)
3848                return;
3849
3850        spin_lock(&kvm_lock);
3851        if (type == KVM_EVENT_CREATE_VM) {
3852                kvm_createvm_count++;
3853                kvm_active_vms++;
3854        } else if (type == KVM_EVENT_DESTROY_VM) {
3855                kvm_active_vms--;
3856        }
3857        created = kvm_createvm_count;
3858        active = kvm_active_vms;
3859        spin_unlock(&kvm_lock);
3860
3861        env = kzalloc(sizeof(*env), GFP_KERNEL);
3862        if (!env)
3863                return;
3864
3865        add_uevent_var(env, "CREATED=%llu", created);
3866        add_uevent_var(env, "COUNT=%llu", active);
3867
3868        if (type == KVM_EVENT_CREATE_VM) {
3869                add_uevent_var(env, "EVENT=create");
3870                kvm->userspace_pid = task_pid_nr(current);
3871        } else if (type == KVM_EVENT_DESTROY_VM) {
3872                add_uevent_var(env, "EVENT=destroy");
3873        }
3874        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3875
3876        if (kvm->debugfs_dentry) {
3877                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3878
3879                if (p) {
3880                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3881                        if (!IS_ERR(tmp))
3882                                add_uevent_var(env, "STATS_PATH=%s", tmp);
3883                        kfree(p);
3884                }
3885        }
3886        /* no need for checks, since we are adding at most only 5 keys */
3887        env->envp[env->envp_idx++] = NULL;
3888        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3889        kfree(env);
3890}
3891
3892static int kvm_init_debug(void)
3893{
3894        int r = -EEXIST;
3895        struct kvm_stats_debugfs_item *p;
3896
3897        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3898        if (kvm_debugfs_dir == NULL)
3899                goto out;
3900
3901        kvm_debugfs_num_entries = 0;
3902        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3903                if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3904                                         (void *)(long)p->offset,
3905                                         stat_fops[p->kind]))
3906                        goto out_dir;
3907        }
3908
3909        return 0;
3910
3911out_dir:
3912        debugfs_remove_recursive(kvm_debugfs_dir);
3913out:
3914        return r;
3915}
3916
3917static int kvm_suspend(void)
3918{
3919        if (kvm_usage_count)
3920                hardware_disable_nolock(NULL);
3921        return 0;
3922}
3923
3924static void kvm_resume(void)
3925{
3926        if (kvm_usage_count) {
3927                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3928                hardware_enable_nolock(NULL);
3929        }
3930}
3931
3932static struct syscore_ops kvm_syscore_ops = {
3933        .suspend = kvm_suspend,
3934        .resume = kvm_resume,
3935};
3936
3937static inline
3938struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3939{
3940        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3941}
3942
3943static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3944{
3945        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3946
3947        if (vcpu->preempted)
3948                vcpu->preempted = false;
3949
3950        kvm_arch_sched_in(vcpu, cpu);
3951
3952        kvm_arch_vcpu_load(vcpu, cpu);
3953}
3954
3955static void kvm_sched_out(struct preempt_notifier *pn,
3956                          struct task_struct *next)
3957{
3958        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959
3960        if (current->state == TASK_RUNNING)
3961                vcpu->preempted = true;
3962        kvm_arch_vcpu_put(vcpu);
3963}
3964
3965int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3966                  struct module *module)
3967{
3968        int r;
3969        int cpu;
3970
3971        r = kvm_arch_init(opaque);
3972        if (r)
3973                goto out_fail;
3974
3975        /*
3976         * kvm_arch_init makes sure there's at most one caller
3977         * for architectures that support multiple implementations,
3978         * like intel and amd on x86.
3979         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3980         * conflicts in case kvm is already setup for another implementation.
3981         */
3982        r = kvm_irqfd_init();
3983        if (r)
3984                goto out_irqfd;
3985
3986        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3987                r = -ENOMEM;
3988                goto out_free_0;
3989        }
3990
3991        r = kvm_arch_hardware_setup();
3992        if (r < 0)
3993                goto out_free_0a;
3994
3995        for_each_online_cpu(cpu) {
3996                smp_call_function_single(cpu,
3997                                kvm_arch_check_processor_compat,
3998                                &r, 1);
3999                if (r < 0)
4000                        goto out_free_1;
4001        }
4002
4003        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4004                                      kvm_starting_cpu, kvm_dying_cpu);
4005        if (r)
4006                goto out_free_2;
4007        register_reboot_notifier(&kvm_reboot_notifier);
4008
4009        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4010        if (!vcpu_align)
4011                vcpu_align = __alignof__(struct kvm_vcpu);
4012        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4013                                           0, NULL);
4014        if (!kvm_vcpu_cache) {
4015                r = -ENOMEM;
4016                goto out_free_3;
4017        }
4018
4019        r = kvm_async_pf_init();
4020        if (r)
4021                goto out_free;
4022
4023        kvm_chardev_ops.owner = module;
4024        kvm_vm_fops.owner = module;
4025        kvm_vcpu_fops.owner = module;
4026
4027        r = misc_register(&kvm_dev);
4028        if (r) {
4029                pr_err("kvm: misc device register failed\n");
4030                goto out_unreg;
4031        }
4032
4033        register_syscore_ops(&kvm_syscore_ops);
4034
4035        kvm_preempt_ops.sched_in = kvm_sched_in;
4036        kvm_preempt_ops.sched_out = kvm_sched_out;
4037
4038        r = kvm_init_debug();
4039        if (r) {
4040                pr_err("kvm: create debugfs files failed\n");
4041                goto out_undebugfs;
4042        }
4043
4044        r = kvm_vfio_ops_init();
4045        WARN_ON(r);
4046
4047        return 0;
4048
4049out_undebugfs:
4050        unregister_syscore_ops(&kvm_syscore_ops);
4051        misc_deregister(&kvm_dev);
4052out_unreg:
4053        kvm_async_pf_deinit();
4054out_free:
4055        kmem_cache_destroy(kvm_vcpu_cache);
4056out_free_3:
4057        unregister_reboot_notifier(&kvm_reboot_notifier);
4058        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4059out_free_2:
4060out_free_1:
4061        kvm_arch_hardware_unsetup();
4062out_free_0a:
4063        free_cpumask_var(cpus_hardware_enabled);
4064out_free_0:
4065        kvm_irqfd_exit();
4066out_irqfd:
4067        kvm_arch_exit();
4068out_fail:
4069        return r;
4070}
4071EXPORT_SYMBOL_GPL(kvm_init);
4072
4073void kvm_exit(void)
4074{
4075        debugfs_remove_recursive(kvm_debugfs_dir);
4076        misc_deregister(&kvm_dev);
4077        kmem_cache_destroy(kvm_vcpu_cache);
4078        kvm_async_pf_deinit();
4079        unregister_syscore_ops(&kvm_syscore_ops);
4080        unregister_reboot_notifier(&kvm_reboot_notifier);
4081        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082        on_each_cpu(hardware_disable_nolock, NULL, 1);
4083        kvm_arch_hardware_unsetup();
4084        kvm_arch_exit();
4085        kvm_irqfd_exit();
4086        free_cpumask_var(cpus_hardware_enabled);
4087        kvm_vfio_ops_exit();
4088}
4089EXPORT_SYMBOL_GPL(kvm_exit);
4090