linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED        0
  60#define CPOLICY_BUFFERED        1
  61#define CPOLICY_WRITETHROUGH    2
  62#define CPOLICY_WRITEBACK       3
  63#define CPOLICY_WRITEALLOC      4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77        const char      policy[16];
  78        unsigned int    cr_mask;
  79        pmdval_t        pmd;
  80        pteval_t        pte;
  81        pteval_t        pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)       policy
  86#else
  87#define s2_policy(policy)       0
  88#endif
  89
  90unsigned long kimage_voffset __ro_after_init;
  91
  92static struct cachepolicy cache_policies[] __initdata = {
  93        {
  94                .policy         = "uncached",
  95                .cr_mask        = CR_W|CR_C,
  96                .pmd            = PMD_SECT_UNCACHED,
  97                .pte            = L_PTE_MT_UNCACHED,
  98                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  99        }, {
 100                .policy         = "buffered",
 101                .cr_mask        = CR_C,
 102                .pmd            = PMD_SECT_BUFFERED,
 103                .pte            = L_PTE_MT_BUFFERABLE,
 104                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 105        }, {
 106                .policy         = "writethrough",
 107                .cr_mask        = 0,
 108                .pmd            = PMD_SECT_WT,
 109                .pte            = L_PTE_MT_WRITETHROUGH,
 110                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 111        }, {
 112                .policy         = "writeback",
 113                .cr_mask        = 0,
 114                .pmd            = PMD_SECT_WB,
 115                .pte            = L_PTE_MT_WRITEBACK,
 116                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 117        }, {
 118                .policy         = "writealloc",
 119                .cr_mask        = 0,
 120                .pmd            = PMD_SECT_WBWA,
 121                .pte            = L_PTE_MT_WRITEALLOC,
 122                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 123        }
 124};
 125
 126#ifdef CONFIG_CPU_CP15
 127static unsigned long initial_pmd_value __initdata = 0;
 128
 129/*
 130 * Initialise the cache_policy variable with the initial state specified
 131 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 132 * the C code sets the page tables up with the same policy as the head
 133 * assembly code, which avoids an illegal state where the TLBs can get
 134 * confused.  See comments in early_cachepolicy() for more information.
 135 */
 136void __init init_default_cache_policy(unsigned long pmd)
 137{
 138        int i;
 139
 140        initial_pmd_value = pmd;
 141
 142        pmd &= PMD_SECT_CACHE_MASK;
 143
 144        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 145                if (cache_policies[i].pmd == pmd) {
 146                        cachepolicy = i;
 147                        break;
 148                }
 149
 150        if (i == ARRAY_SIZE(cache_policies))
 151                pr_err("ERROR: could not find cache policy\n");
 152}
 153
 154/*
 155 * These are useful for identifying cache coherency problems by allowing
 156 * the cache or the cache and writebuffer to be turned off.  (Note: the
 157 * write buffer should not be on and the cache off).
 158 */
 159static int __init early_cachepolicy(char *p)
 160{
 161        int i, selected = -1;
 162
 163        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 164                int len = strlen(cache_policies[i].policy);
 165
 166                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 167                        selected = i;
 168                        break;
 169                }
 170        }
 171
 172        if (selected == -1)
 173                pr_err("ERROR: unknown or unsupported cache policy\n");
 174
 175        /*
 176         * This restriction is partly to do with the way we boot; it is
 177         * unpredictable to have memory mapped using two different sets of
 178         * memory attributes (shared, type, and cache attribs).  We can not
 179         * change these attributes once the initial assembly has setup the
 180         * page tables.
 181         */
 182        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 183                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 184                        cache_policies[cachepolicy].policy);
 185                return 0;
 186        }
 187
 188        if (selected != cachepolicy) {
 189                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 190                cachepolicy = selected;
 191                flush_cache_all();
 192                set_cr(cr);
 193        }
 194        return 0;
 195}
 196early_param("cachepolicy", early_cachepolicy);
 197
 198static int __init early_nocache(char *__unused)
 199{
 200        char *p = "buffered";
 201        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 202        early_cachepolicy(p);
 203        return 0;
 204}
 205early_param("nocache", early_nocache);
 206
 207static int __init early_nowrite(char *__unused)
 208{
 209        char *p = "uncached";
 210        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 211        early_cachepolicy(p);
 212        return 0;
 213}
 214early_param("nowb", early_nowrite);
 215
 216#ifndef CONFIG_ARM_LPAE
 217static int __init early_ecc(char *p)
 218{
 219        if (memcmp(p, "on", 2) == 0)
 220                ecc_mask = PMD_PROTECTION;
 221        else if (memcmp(p, "off", 3) == 0)
 222                ecc_mask = 0;
 223        return 0;
 224}
 225early_param("ecc", early_ecc);
 226#endif
 227
 228#else /* ifdef CONFIG_CPU_CP15 */
 229
 230static int __init early_cachepolicy(char *p)
 231{
 232        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 233}
 234early_param("cachepolicy", early_cachepolicy);
 235
 236static int __init noalign_setup(char *__unused)
 237{
 238        pr_warn("noalign kernel parameter not supported without cp15\n");
 239}
 240__setup("noalign", noalign_setup);
 241
 242#endif /* ifdef CONFIG_CPU_CP15 / else */
 243
 244#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 245#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 246#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 247
 248static struct mem_type mem_types[] __ro_after_init = {
 249        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 250                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 251                                  L_PTE_SHARED,
 252                .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 253                                  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 254                                  L_PTE_SHARED,
 255                .prot_l1        = PMD_TYPE_TABLE,
 256                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 257                .domain         = DOMAIN_IO,
 258        },
 259        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 260                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 261                .prot_l1        = PMD_TYPE_TABLE,
 262                .prot_sect      = PROT_SECT_DEVICE,
 263                .domain         = DOMAIN_IO,
 264        },
 265        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 266                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 267                .prot_l1        = PMD_TYPE_TABLE,
 268                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 269                .domain         = DOMAIN_IO,
 270        },
 271        [MT_DEVICE_WC] = {      /* ioremap_wc */
 272                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 273                .prot_l1        = PMD_TYPE_TABLE,
 274                .prot_sect      = PROT_SECT_DEVICE,
 275                .domain         = DOMAIN_IO,
 276        },
 277        [MT_UNCACHED] = {
 278                .prot_pte       = PROT_PTE_DEVICE,
 279                .prot_l1        = PMD_TYPE_TABLE,
 280                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 281                .domain         = DOMAIN_IO,
 282        },
 283        [MT_CACHECLEAN] = {
 284                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 285                .domain    = DOMAIN_KERNEL,
 286        },
 287#ifndef CONFIG_ARM_LPAE
 288        [MT_MINICLEAN] = {
 289                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 290                .domain    = DOMAIN_KERNEL,
 291        },
 292#endif
 293        [MT_LOW_VECTORS] = {
 294                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 295                                L_PTE_RDONLY,
 296                .prot_l1   = PMD_TYPE_TABLE,
 297                .domain    = DOMAIN_VECTORS,
 298        },
 299        [MT_HIGH_VECTORS] = {
 300                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301                                L_PTE_USER | L_PTE_RDONLY,
 302                .prot_l1   = PMD_TYPE_TABLE,
 303                .domain    = DOMAIN_VECTORS,
 304        },
 305        [MT_MEMORY_RWX] = {
 306                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 307                .prot_l1   = PMD_TYPE_TABLE,
 308                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 309                .domain    = DOMAIN_KERNEL,
 310        },
 311        [MT_MEMORY_RW] = {
 312                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 313                             L_PTE_XN,
 314                .prot_l1   = PMD_TYPE_TABLE,
 315                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 316                .domain    = DOMAIN_KERNEL,
 317        },
 318        [MT_ROM] = {
 319                .prot_sect = PMD_TYPE_SECT,
 320                .domain    = DOMAIN_KERNEL,
 321        },
 322        [MT_MEMORY_RWX_NONCACHED] = {
 323                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 324                                L_PTE_MT_BUFFERABLE,
 325                .prot_l1   = PMD_TYPE_TABLE,
 326                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 327                .domain    = DOMAIN_KERNEL,
 328        },
 329        [MT_MEMORY_RW_DTCM] = {
 330                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 331                                L_PTE_XN,
 332                .prot_l1   = PMD_TYPE_TABLE,
 333                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 334                .domain    = DOMAIN_KERNEL,
 335        },
 336        [MT_MEMORY_RWX_ITCM] = {
 337                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 338                .prot_l1   = PMD_TYPE_TABLE,
 339                .domain    = DOMAIN_KERNEL,
 340        },
 341        [MT_MEMORY_RW_SO] = {
 342                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 343                                L_PTE_MT_UNCACHED | L_PTE_XN,
 344                .prot_l1   = PMD_TYPE_TABLE,
 345                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 346                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 347                .domain    = DOMAIN_KERNEL,
 348        },
 349        [MT_MEMORY_DMA_READY] = {
 350                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 351                                L_PTE_XN,
 352                .prot_l1   = PMD_TYPE_TABLE,
 353                .domain    = DOMAIN_KERNEL,
 354        },
 355};
 356
 357const struct mem_type *get_mem_type(unsigned int type)
 358{
 359        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 360}
 361EXPORT_SYMBOL(get_mem_type);
 362
 363static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 364
 365static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 366        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 367
 368static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 369{
 370        return &bm_pte[pte_index(addr)];
 371}
 372
 373static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 374{
 375        return pte_offset_kernel(dir, addr);
 376}
 377
 378static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 379{
 380        pgd_t *pgd = pgd_offset_k(addr);
 381        pud_t *pud = pud_offset(pgd, addr);
 382        pmd_t *pmd = pmd_offset(pud, addr);
 383
 384        return pmd;
 385}
 386
 387void __init early_fixmap_init(void)
 388{
 389        pmd_t *pmd;
 390
 391        /*
 392         * The early fixmap range spans multiple pmds, for which
 393         * we are not prepared:
 394         */
 395        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 396                     != FIXADDR_TOP >> PMD_SHIFT);
 397
 398        pmd = fixmap_pmd(FIXADDR_TOP);
 399        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 400
 401        pte_offset_fixmap = pte_offset_early_fixmap;
 402}
 403
 404/*
 405 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 406 * As a result, this can only be called with preemption disabled, as under
 407 * stop_machine().
 408 */
 409void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 410{
 411        unsigned long vaddr = __fix_to_virt(idx);
 412        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 413
 414        /* Make sure fixmap region does not exceed available allocation. */
 415        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 416                     FIXADDR_END);
 417        BUG_ON(idx >= __end_of_fixed_addresses);
 418
 419        /* we only support device mappings until pgprot_kernel has been set */
 420        if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 421                    pgprot_val(pgprot_kernel) == 0))
 422                return;
 423
 424        if (pgprot_val(prot))
 425                set_pte_at(NULL, vaddr, pte,
 426                        pfn_pte(phys >> PAGE_SHIFT, prot));
 427        else
 428                pte_clear(NULL, vaddr, pte);
 429        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 430}
 431
 432/*
 433 * Adjust the PMD section entries according to the CPU in use.
 434 */
 435static void __init build_mem_type_table(void)
 436{
 437        struct cachepolicy *cp;
 438        unsigned int cr = get_cr();
 439        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 440        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 441        int cpu_arch = cpu_architecture();
 442        int i;
 443
 444        if (cpu_arch < CPU_ARCH_ARMv6) {
 445#if defined(CONFIG_CPU_DCACHE_DISABLE)
 446                if (cachepolicy > CPOLICY_BUFFERED)
 447                        cachepolicy = CPOLICY_BUFFERED;
 448#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 449                if (cachepolicy > CPOLICY_WRITETHROUGH)
 450                        cachepolicy = CPOLICY_WRITETHROUGH;
 451#endif
 452        }
 453        if (cpu_arch < CPU_ARCH_ARMv5) {
 454                if (cachepolicy >= CPOLICY_WRITEALLOC)
 455                        cachepolicy = CPOLICY_WRITEBACK;
 456                ecc_mask = 0;
 457        }
 458
 459        if (is_smp()) {
 460                if (cachepolicy != CPOLICY_WRITEALLOC) {
 461                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 462                        cachepolicy = CPOLICY_WRITEALLOC;
 463                }
 464                if (!(initial_pmd_value & PMD_SECT_S)) {
 465                        pr_warn("Forcing shared mappings for SMP\n");
 466                        initial_pmd_value |= PMD_SECT_S;
 467                }
 468        }
 469
 470        /*
 471         * Strip out features not present on earlier architectures.
 472         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 473         * without extended page tables don't have the 'Shared' bit.
 474         */
 475        if (cpu_arch < CPU_ARCH_ARMv5)
 476                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 477                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 478        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 479                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 480                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 481
 482        /*
 483         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 484         * "update-able on write" bit on ARM610).  However, Xscale and
 485         * Xscale3 require this bit to be cleared.
 486         */
 487        if (cpu_is_xscale_family()) {
 488                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 489                        mem_types[i].prot_sect &= ~PMD_BIT4;
 490                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 491                }
 492        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 493                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 494                        if (mem_types[i].prot_l1)
 495                                mem_types[i].prot_l1 |= PMD_BIT4;
 496                        if (mem_types[i].prot_sect)
 497                                mem_types[i].prot_sect |= PMD_BIT4;
 498                }
 499        }
 500
 501        /*
 502         * Mark the device areas according to the CPU/architecture.
 503         */
 504        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 505                if (!cpu_is_xsc3()) {
 506                        /*
 507                         * Mark device regions on ARMv6+ as execute-never
 508                         * to prevent speculative instruction fetches.
 509                         */
 510                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 511                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 512                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 513                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 514
 515                        /* Also setup NX memory mapping */
 516                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 517                }
 518                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 519                        /*
 520                         * For ARMv7 with TEX remapping,
 521                         * - shared device is SXCB=1100
 522                         * - nonshared device is SXCB=0100
 523                         * - write combine device mem is SXCB=0001
 524                         * (Uncached Normal memory)
 525                         */
 526                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 527                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 528                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 529                } else if (cpu_is_xsc3()) {
 530                        /*
 531                         * For Xscale3,
 532                         * - shared device is TEXCB=00101
 533                         * - nonshared device is TEXCB=01000
 534                         * - write combine device mem is TEXCB=00100
 535                         * (Inner/Outer Uncacheable in xsc3 parlance)
 536                         */
 537                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 538                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 539                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 540                } else {
 541                        /*
 542                         * For ARMv6 and ARMv7 without TEX remapping,
 543                         * - shared device is TEXCB=00001
 544                         * - nonshared device is TEXCB=01000
 545                         * - write combine device mem is TEXCB=00100
 546                         * (Uncached Normal in ARMv6 parlance).
 547                         */
 548                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 549                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 550                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 551                }
 552        } else {
 553                /*
 554                 * On others, write combining is "Uncached/Buffered"
 555                 */
 556                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 557        }
 558
 559        /*
 560         * Now deal with the memory-type mappings
 561         */
 562        cp = &cache_policies[cachepolicy];
 563        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 564        s2_pgprot = cp->pte_s2;
 565        hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 566        s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 567
 568#ifndef CONFIG_ARM_LPAE
 569        /*
 570         * We don't use domains on ARMv6 (since this causes problems with
 571         * v6/v7 kernels), so we must use a separate memory type for user
 572         * r/o, kernel r/w to map the vectors page.
 573         */
 574        if (cpu_arch == CPU_ARCH_ARMv6)
 575                vecs_pgprot |= L_PTE_MT_VECTORS;
 576
 577        /*
 578         * Check is it with support for the PXN bit
 579         * in the Short-descriptor translation table format descriptors.
 580         */
 581        if (cpu_arch == CPU_ARCH_ARMv7 &&
 582                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 583                user_pmd_table |= PMD_PXNTABLE;
 584        }
 585#endif
 586
 587        /*
 588         * ARMv6 and above have extended page tables.
 589         */
 590        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 591#ifndef CONFIG_ARM_LPAE
 592                /*
 593                 * Mark cache clean areas and XIP ROM read only
 594                 * from SVC mode and no access from userspace.
 595                 */
 596                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 597                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 598                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 599#endif
 600
 601                /*
 602                 * If the initial page tables were created with the S bit
 603                 * set, then we need to do the same here for the same
 604                 * reasons given in early_cachepolicy().
 605                 */
 606                if (initial_pmd_value & PMD_SECT_S) {
 607                        user_pgprot |= L_PTE_SHARED;
 608                        kern_pgprot |= L_PTE_SHARED;
 609                        vecs_pgprot |= L_PTE_SHARED;
 610                        s2_pgprot |= L_PTE_SHARED;
 611                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 612                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 613                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 614                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 615                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 616                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 617                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 618                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 619                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 620                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 621                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 622                }
 623        }
 624
 625        /*
 626         * Non-cacheable Normal - intended for memory areas that must
 627         * not cause dirty cache line writebacks when used
 628         */
 629        if (cpu_arch >= CPU_ARCH_ARMv6) {
 630                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 631                        /* Non-cacheable Normal is XCB = 001 */
 632                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 633                                PMD_SECT_BUFFERED;
 634                } else {
 635                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 636                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 637                                PMD_SECT_TEX(1);
 638                }
 639        } else {
 640                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 641        }
 642
 643#ifdef CONFIG_ARM_LPAE
 644        /*
 645         * Do not generate access flag faults for the kernel mappings.
 646         */
 647        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 648                mem_types[i].prot_pte |= PTE_EXT_AF;
 649                if (mem_types[i].prot_sect)
 650                        mem_types[i].prot_sect |= PMD_SECT_AF;
 651        }
 652        kern_pgprot |= PTE_EXT_AF;
 653        vecs_pgprot |= PTE_EXT_AF;
 654
 655        /*
 656         * Set PXN for user mappings
 657         */
 658        user_pgprot |= PTE_EXT_PXN;
 659#endif
 660
 661        for (i = 0; i < 16; i++) {
 662                pteval_t v = pgprot_val(protection_map[i]);
 663                protection_map[i] = __pgprot(v | user_pgprot);
 664        }
 665
 666        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 667        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 668
 669        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 670        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 671                                 L_PTE_DIRTY | kern_pgprot);
 672        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 673        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 674        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 675
 676        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 677        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 678        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 679        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 680        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 681        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 682        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 683        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 684        mem_types[MT_ROM].prot_sect |= cp->pmd;
 685
 686        switch (cp->pmd) {
 687        case PMD_SECT_WT:
 688                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 689                break;
 690        case PMD_SECT_WB:
 691        case PMD_SECT_WBWA:
 692                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 693                break;
 694        }
 695        pr_info("Memory policy: %sData cache %s\n",
 696                ecc_mask ? "ECC enabled, " : "", cp->policy);
 697
 698        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 699                struct mem_type *t = &mem_types[i];
 700                if (t->prot_l1)
 701                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 702                if (t->prot_sect)
 703                        t->prot_sect |= PMD_DOMAIN(t->domain);
 704        }
 705}
 706
 707#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 708pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 709                              unsigned long size, pgprot_t vma_prot)
 710{
 711        if (!pfn_valid(pfn))
 712                return pgprot_noncached(vma_prot);
 713        else if (file->f_flags & O_SYNC)
 714                return pgprot_writecombine(vma_prot);
 715        return vma_prot;
 716}
 717EXPORT_SYMBOL(phys_mem_access_prot);
 718#endif
 719
 720#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 721
 722static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 723{
 724        void *ptr = __va(memblock_alloc(sz, align));
 725        memset(ptr, 0, sz);
 726        return ptr;
 727}
 728
 729static void __init *early_alloc(unsigned long sz)
 730{
 731        return early_alloc_aligned(sz, sz);
 732}
 733
 734static void *__init late_alloc(unsigned long sz)
 735{
 736        void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 737
 738        if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
 739                BUG();
 740        return ptr;
 741}
 742
 743static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 744                                unsigned long prot,
 745                                void *(*alloc)(unsigned long sz))
 746{
 747        if (pmd_none(*pmd)) {
 748                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 749                __pmd_populate(pmd, __pa(pte), prot);
 750        }
 751        BUG_ON(pmd_bad(*pmd));
 752        return pte_offset_kernel(pmd, addr);
 753}
 754
 755static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 756                                      unsigned long prot)
 757{
 758        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 759}
 760
 761static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 762                                  unsigned long end, unsigned long pfn,
 763                                  const struct mem_type *type,
 764                                  void *(*alloc)(unsigned long sz),
 765                                  bool ng)
 766{
 767        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 768        do {
 769                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 770                            ng ? PTE_EXT_NG : 0);
 771                pfn++;
 772        } while (pte++, addr += PAGE_SIZE, addr != end);
 773}
 774
 775static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 776                        unsigned long end, phys_addr_t phys,
 777                        const struct mem_type *type, bool ng)
 778{
 779        pmd_t *p = pmd;
 780
 781#ifndef CONFIG_ARM_LPAE
 782        /*
 783         * In classic MMU format, puds and pmds are folded in to
 784         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 785         * group of L1 entries making up one logical pointer to
 786         * an L2 table (2MB), where as PMDs refer to the individual
 787         * L1 entries (1MB). Hence increment to get the correct
 788         * offset for odd 1MB sections.
 789         * (See arch/arm/include/asm/pgtable-2level.h)
 790         */
 791        if (addr & SECTION_SIZE)
 792                pmd++;
 793#endif
 794        do {
 795                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 796                phys += SECTION_SIZE;
 797        } while (pmd++, addr += SECTION_SIZE, addr != end);
 798
 799        flush_pmd_entry(p);
 800}
 801
 802static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 803                                      unsigned long end, phys_addr_t phys,
 804                                      const struct mem_type *type,
 805                                      void *(*alloc)(unsigned long sz), bool ng)
 806{
 807        pmd_t *pmd = pmd_offset(pud, addr);
 808        unsigned long next;
 809
 810        do {
 811                /*
 812                 * With LPAE, we must loop over to map
 813                 * all the pmds for the given range.
 814                 */
 815                next = pmd_addr_end(addr, end);
 816
 817                /*
 818                 * Try a section mapping - addr, next and phys must all be
 819                 * aligned to a section boundary.
 820                 */
 821                if (type->prot_sect &&
 822                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 823                        __map_init_section(pmd, addr, next, phys, type, ng);
 824                } else {
 825                        alloc_init_pte(pmd, addr, next,
 826                                       __phys_to_pfn(phys), type, alloc, ng);
 827                }
 828
 829                phys += next - addr;
 830
 831        } while (pmd++, addr = next, addr != end);
 832}
 833
 834static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 835                                  unsigned long end, phys_addr_t phys,
 836                                  const struct mem_type *type,
 837                                  void *(*alloc)(unsigned long sz), bool ng)
 838{
 839        pud_t *pud = pud_offset(pgd, addr);
 840        unsigned long next;
 841
 842        do {
 843                next = pud_addr_end(addr, end);
 844                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 845                phys += next - addr;
 846        } while (pud++, addr = next, addr != end);
 847}
 848
 849#ifndef CONFIG_ARM_LPAE
 850static void __init create_36bit_mapping(struct mm_struct *mm,
 851                                        struct map_desc *md,
 852                                        const struct mem_type *type,
 853                                        bool ng)
 854{
 855        unsigned long addr, length, end;
 856        phys_addr_t phys;
 857        pgd_t *pgd;
 858
 859        addr = md->virtual;
 860        phys = __pfn_to_phys(md->pfn);
 861        length = PAGE_ALIGN(md->length);
 862
 863        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 864                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 865                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 866                return;
 867        }
 868
 869        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 870         *      Since domain assignments can in fact be arbitrary, the
 871         *      'domain == 0' check below is required to insure that ARMv6
 872         *      supersections are only allocated for domain 0 regardless
 873         *      of the actual domain assignments in use.
 874         */
 875        if (type->domain) {
 876                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 877                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 878                return;
 879        }
 880
 881        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 882                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 883                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 884                return;
 885        }
 886
 887        /*
 888         * Shift bits [35:32] of address into bits [23:20] of PMD
 889         * (See ARMv6 spec).
 890         */
 891        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 892
 893        pgd = pgd_offset(mm, addr);
 894        end = addr + length;
 895        do {
 896                pud_t *pud = pud_offset(pgd, addr);
 897                pmd_t *pmd = pmd_offset(pud, addr);
 898                int i;
 899
 900                for (i = 0; i < 16; i++)
 901                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 902                                       (ng ? PMD_SECT_nG : 0));
 903
 904                addr += SUPERSECTION_SIZE;
 905                phys += SUPERSECTION_SIZE;
 906                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 907        } while (addr != end);
 908}
 909#endif  /* !CONFIG_ARM_LPAE */
 910
 911static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 912                                    void *(*alloc)(unsigned long sz),
 913                                    bool ng)
 914{
 915        unsigned long addr, length, end;
 916        phys_addr_t phys;
 917        const struct mem_type *type;
 918        pgd_t *pgd;
 919
 920        type = &mem_types[md->type];
 921
 922#ifndef CONFIG_ARM_LPAE
 923        /*
 924         * Catch 36-bit addresses
 925         */
 926        if (md->pfn >= 0x100000) {
 927                create_36bit_mapping(mm, md, type, ng);
 928                return;
 929        }
 930#endif
 931
 932        addr = md->virtual & PAGE_MASK;
 933        phys = __pfn_to_phys(md->pfn);
 934        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 935
 936        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 937                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 938                        (long long)__pfn_to_phys(md->pfn), addr);
 939                return;
 940        }
 941
 942        pgd = pgd_offset(mm, addr);
 943        end = addr + length;
 944        do {
 945                unsigned long next = pgd_addr_end(addr, end);
 946
 947                alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 948
 949                phys += next - addr;
 950                addr = next;
 951        } while (pgd++, addr != end);
 952}
 953
 954/*
 955 * Create the page directory entries and any necessary
 956 * page tables for the mapping specified by `md'.  We
 957 * are able to cope here with varying sizes and address
 958 * offsets, and we take full advantage of sections and
 959 * supersections.
 960 */
 961static void __init create_mapping(struct map_desc *md)
 962{
 963        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 964                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 965                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 966                return;
 967        }
 968
 969        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 970            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 971            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 972                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 973                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 974        }
 975
 976        __create_mapping(&init_mm, md, early_alloc, false);
 977}
 978
 979void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 980                                bool ng)
 981{
 982#ifdef CONFIG_ARM_LPAE
 983        pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 984        if (WARN_ON(!pud))
 985                return;
 986        pmd_alloc(mm, pud, 0);
 987#endif
 988        __create_mapping(mm, md, late_alloc, ng);
 989}
 990
 991/*
 992 * Create the architecture specific mappings
 993 */
 994void __init iotable_init(struct map_desc *io_desc, int nr)
 995{
 996        struct map_desc *md;
 997        struct vm_struct *vm;
 998        struct static_vm *svm;
 999
1000        if (!nr)
1001                return;
1002
1003        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
1004
1005        for (md = io_desc; nr; md++, nr--) {
1006                create_mapping(md);
1007
1008                vm = &svm->vm;
1009                vm->addr = (void *)(md->virtual & PAGE_MASK);
1010                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1011                vm->phys_addr = __pfn_to_phys(md->pfn);
1012                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1013                vm->flags |= VM_ARM_MTYPE(md->type);
1014                vm->caller = iotable_init;
1015                add_static_vm_early(svm++);
1016        }
1017}
1018
1019void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1020                                  void *caller)
1021{
1022        struct vm_struct *vm;
1023        struct static_vm *svm;
1024
1025        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1026
1027        vm = &svm->vm;
1028        vm->addr = (void *)addr;
1029        vm->size = size;
1030        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1031        vm->caller = caller;
1032        add_static_vm_early(svm);
1033}
1034
1035#ifndef CONFIG_ARM_LPAE
1036
1037/*
1038 * The Linux PMD is made of two consecutive section entries covering 2MB
1039 * (see definition in include/asm/pgtable-2level.h).  However a call to
1040 * create_mapping() may optimize static mappings by using individual
1041 * 1MB section mappings.  This leaves the actual PMD potentially half
1042 * initialized if the top or bottom section entry isn't used, leaving it
1043 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1044 * the virtual space left free by that unused section entry.
1045 *
1046 * Let's avoid the issue by inserting dummy vm entries covering the unused
1047 * PMD halves once the static mappings are in place.
1048 */
1049
1050static void __init pmd_empty_section_gap(unsigned long addr)
1051{
1052        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1053}
1054
1055static void __init fill_pmd_gaps(void)
1056{
1057        struct static_vm *svm;
1058        struct vm_struct *vm;
1059        unsigned long addr, next = 0;
1060        pmd_t *pmd;
1061
1062        list_for_each_entry(svm, &static_vmlist, list) {
1063                vm = &svm->vm;
1064                addr = (unsigned long)vm->addr;
1065                if (addr < next)
1066                        continue;
1067
1068                /*
1069                 * Check if this vm starts on an odd section boundary.
1070                 * If so and the first section entry for this PMD is free
1071                 * then we block the corresponding virtual address.
1072                 */
1073                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1074                        pmd = pmd_off_k(addr);
1075                        if (pmd_none(*pmd))
1076                                pmd_empty_section_gap(addr & PMD_MASK);
1077                }
1078
1079                /*
1080                 * Then check if this vm ends on an odd section boundary.
1081                 * If so and the second section entry for this PMD is empty
1082                 * then we block the corresponding virtual address.
1083                 */
1084                addr += vm->size;
1085                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086                        pmd = pmd_off_k(addr) + 1;
1087                        if (pmd_none(*pmd))
1088                                pmd_empty_section_gap(addr);
1089                }
1090
1091                /* no need to look at any vm entry until we hit the next PMD */
1092                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1093        }
1094}
1095
1096#else
1097#define fill_pmd_gaps() do { } while (0)
1098#endif
1099
1100#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1101static void __init pci_reserve_io(void)
1102{
1103        struct static_vm *svm;
1104
1105        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1106        if (svm)
1107                return;
1108
1109        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1110}
1111#else
1112#define pci_reserve_io() do { } while (0)
1113#endif
1114
1115#ifdef CONFIG_DEBUG_LL
1116void __init debug_ll_io_init(void)
1117{
1118        struct map_desc map;
1119
1120        debug_ll_addr(&map.pfn, &map.virtual);
1121        if (!map.pfn || !map.virtual)
1122                return;
1123        map.pfn = __phys_to_pfn(map.pfn);
1124        map.virtual &= PAGE_MASK;
1125        map.length = PAGE_SIZE;
1126        map.type = MT_DEVICE;
1127        iotable_init(&map, 1);
1128}
1129#endif
1130
1131static void * __initdata vmalloc_min =
1132        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1133
1134/*
1135 * vmalloc=size forces the vmalloc area to be exactly 'size'
1136 * bytes. This can be used to increase (or decrease) the vmalloc
1137 * area - the default is 240m.
1138 */
1139static int __init early_vmalloc(char *arg)
1140{
1141        unsigned long vmalloc_reserve = memparse(arg, NULL);
1142
1143        if (vmalloc_reserve < SZ_16M) {
1144                vmalloc_reserve = SZ_16M;
1145                pr_warn("vmalloc area too small, limiting to %luMB\n",
1146                        vmalloc_reserve >> 20);
1147        }
1148
1149        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1150                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1151                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1152                        vmalloc_reserve >> 20);
1153        }
1154
1155        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1156        return 0;
1157}
1158early_param("vmalloc", early_vmalloc);
1159
1160phys_addr_t arm_lowmem_limit __initdata = 0;
1161
1162void __init adjust_lowmem_bounds(void)
1163{
1164        phys_addr_t memblock_limit = 0;
1165        u64 vmalloc_limit;
1166        struct memblock_region *reg;
1167        phys_addr_t lowmem_limit = 0;
1168
1169        /*
1170         * Let's use our own (unoptimized) equivalent of __pa() that is
1171         * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1172         * The result is used as the upper bound on physical memory address
1173         * and may itself be outside the valid range for which phys_addr_t
1174         * and therefore __pa() is defined.
1175         */
1176        vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1177
1178        for_each_memblock(memory, reg) {
1179                phys_addr_t block_start = reg->base;
1180                phys_addr_t block_end = reg->base + reg->size;
1181
1182                if (reg->base < vmalloc_limit) {
1183                        if (block_end > lowmem_limit)
1184                                /*
1185                                 * Compare as u64 to ensure vmalloc_limit does
1186                                 * not get truncated. block_end should always
1187                                 * fit in phys_addr_t so there should be no
1188                                 * issue with assignment.
1189                                 */
1190                                lowmem_limit = min_t(u64,
1191                                                         vmalloc_limit,
1192                                                         block_end);
1193
1194                        /*
1195                         * Find the first non-pmd-aligned page, and point
1196                         * memblock_limit at it. This relies on rounding the
1197                         * limit down to be pmd-aligned, which happens at the
1198                         * end of this function.
1199                         *
1200                         * With this algorithm, the start or end of almost any
1201                         * bank can be non-pmd-aligned. The only exception is
1202                         * that the start of the bank 0 must be section-
1203                         * aligned, since otherwise memory would need to be
1204                         * allocated when mapping the start of bank 0, which
1205                         * occurs before any free memory is mapped.
1206                         */
1207                        if (!memblock_limit) {
1208                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1209                                        memblock_limit = block_start;
1210                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1211                                        memblock_limit = lowmem_limit;
1212                        }
1213
1214                }
1215        }
1216
1217        arm_lowmem_limit = lowmem_limit;
1218
1219        high_memory = __va(arm_lowmem_limit - 1) + 1;
1220
1221        if (!memblock_limit)
1222                memblock_limit = arm_lowmem_limit;
1223
1224        /*
1225         * Round the memblock limit down to a pmd size.  This
1226         * helps to ensure that we will allocate memory from the
1227         * last full pmd, which should be mapped.
1228         */
1229        memblock_limit = round_down(memblock_limit, PMD_SIZE);
1230
1231        if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1232                if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1233                        phys_addr_t end = memblock_end_of_DRAM();
1234
1235                        pr_notice("Ignoring RAM at %pa-%pa\n",
1236                                  &memblock_limit, &end);
1237                        pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
1239                        memblock_remove(memblock_limit, end - memblock_limit);
1240                }
1241        }
1242
1243        memblock_set_current_limit(memblock_limit);
1244}
1245
1246static inline void prepare_page_table(void)
1247{
1248        unsigned long addr;
1249        phys_addr_t end;
1250
1251        /*
1252         * Clear out all the mappings below the kernel image.
1253         */
1254        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1255                pmd_clear(pmd_off_k(addr));
1256
1257#ifdef CONFIG_XIP_KERNEL
1258        /* The XIP kernel is mapped in the module area -- skip over it */
1259        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1260#endif
1261        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1262                pmd_clear(pmd_off_k(addr));
1263
1264        /*
1265         * Find the end of the first block of lowmem.
1266         */
1267        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1268        if (end >= arm_lowmem_limit)
1269                end = arm_lowmem_limit;
1270
1271        /*
1272         * Clear out all the kernel space mappings, except for the first
1273         * memory bank, up to the vmalloc region.
1274         */
1275        for (addr = __phys_to_virt(end);
1276             addr < VMALLOC_START; addr += PMD_SIZE)
1277                pmd_clear(pmd_off_k(addr));
1278}
1279
1280#ifdef CONFIG_ARM_LPAE
1281/* the first page is reserved for pgd */
1282#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1283                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1284#else
1285#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1286#endif
1287
1288/*
1289 * Reserve the special regions of memory
1290 */
1291void __init arm_mm_memblock_reserve(void)
1292{
1293        /*
1294         * Reserve the page tables.  These are already in use,
1295         * and can only be in node 0.
1296         */
1297        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1298
1299#ifdef CONFIG_SA1111
1300        /*
1301         * Because of the SA1111 DMA bug, we want to preserve our
1302         * precious DMA-able memory...
1303         */
1304        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1305#endif
1306}
1307
1308/*
1309 * Set up the device mappings.  Since we clear out the page tables for all
1310 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1311 * device mappings.  This means earlycon can be used to debug this function
1312 * Any other function or debugging method which may touch any device _will_
1313 * crash the kernel.
1314 */
1315static void __init devicemaps_init(const struct machine_desc *mdesc)
1316{
1317        struct map_desc map;
1318        unsigned long addr;
1319        void *vectors;
1320
1321        /*
1322         * Allocate the vector page early.
1323         */
1324        vectors = early_alloc(PAGE_SIZE * 2);
1325
1326        early_trap_init(vectors);
1327
1328        /*
1329         * Clear page table except top pmd used by early fixmaps
1330         */
1331        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1332                pmd_clear(pmd_off_k(addr));
1333
1334        /*
1335         * Map the kernel if it is XIP.
1336         * It is always first in the modulearea.
1337         */
1338#ifdef CONFIG_XIP_KERNEL
1339        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1340        map.virtual = MODULES_VADDR;
1341        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1342        map.type = MT_ROM;
1343        create_mapping(&map);
1344#endif
1345
1346        /*
1347         * Map the cache flushing regions.
1348         */
1349#ifdef FLUSH_BASE
1350        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1351        map.virtual = FLUSH_BASE;
1352        map.length = SZ_1M;
1353        map.type = MT_CACHECLEAN;
1354        create_mapping(&map);
1355#endif
1356#ifdef FLUSH_BASE_MINICACHE
1357        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1358        map.virtual = FLUSH_BASE_MINICACHE;
1359        map.length = SZ_1M;
1360        map.type = MT_MINICLEAN;
1361        create_mapping(&map);
1362#endif
1363
1364        /*
1365         * Create a mapping for the machine vectors at the high-vectors
1366         * location (0xffff0000).  If we aren't using high-vectors, also
1367         * create a mapping at the low-vectors virtual address.
1368         */
1369        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1370        map.virtual = 0xffff0000;
1371        map.length = PAGE_SIZE;
1372#ifdef CONFIG_KUSER_HELPERS
1373        map.type = MT_HIGH_VECTORS;
1374#else
1375        map.type = MT_LOW_VECTORS;
1376#endif
1377        create_mapping(&map);
1378
1379        if (!vectors_high()) {
1380                map.virtual = 0;
1381                map.length = PAGE_SIZE * 2;
1382                map.type = MT_LOW_VECTORS;
1383                create_mapping(&map);
1384        }
1385
1386        /* Now create a kernel read-only mapping */
1387        map.pfn += 1;
1388        map.virtual = 0xffff0000 + PAGE_SIZE;
1389        map.length = PAGE_SIZE;
1390        map.type = MT_LOW_VECTORS;
1391        create_mapping(&map);
1392
1393        /*
1394         * Ask the machine support to map in the statically mapped devices.
1395         */
1396        if (mdesc->map_io)
1397                mdesc->map_io();
1398        else
1399                debug_ll_io_init();
1400        fill_pmd_gaps();
1401
1402        /* Reserve fixed i/o space in VMALLOC region */
1403        pci_reserve_io();
1404
1405        /*
1406         * Finally flush the caches and tlb to ensure that we're in a
1407         * consistent state wrt the writebuffer.  This also ensures that
1408         * any write-allocated cache lines in the vector page are written
1409         * back.  After this point, we can start to touch devices again.
1410         */
1411        local_flush_tlb_all();
1412        flush_cache_all();
1413
1414        /* Enable asynchronous aborts */
1415        early_abt_enable();
1416}
1417
1418static void __init kmap_init(void)
1419{
1420#ifdef CONFIG_HIGHMEM
1421        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1422                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1423#endif
1424
1425        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1426                        _PAGE_KERNEL_TABLE);
1427}
1428
1429static void __init map_lowmem(void)
1430{
1431        struct memblock_region *reg;
1432        phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1433        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1434
1435        /* Map all the lowmem memory banks. */
1436        for_each_memblock(memory, reg) {
1437                phys_addr_t start = reg->base;
1438                phys_addr_t end = start + reg->size;
1439                struct map_desc map;
1440
1441                if (memblock_is_nomap(reg))
1442                        continue;
1443
1444                if (end > arm_lowmem_limit)
1445                        end = arm_lowmem_limit;
1446                if (start >= end)
1447                        break;
1448
1449                if (end < kernel_x_start) {
1450                        map.pfn = __phys_to_pfn(start);
1451                        map.virtual = __phys_to_virt(start);
1452                        map.length = end - start;
1453                        map.type = MT_MEMORY_RWX;
1454
1455                        create_mapping(&map);
1456                } else if (start >= kernel_x_end) {
1457                        map.pfn = __phys_to_pfn(start);
1458                        map.virtual = __phys_to_virt(start);
1459                        map.length = end - start;
1460                        map.type = MT_MEMORY_RW;
1461
1462                        create_mapping(&map);
1463                } else {
1464                        /* This better cover the entire kernel */
1465                        if (start < kernel_x_start) {
1466                                map.pfn = __phys_to_pfn(start);
1467                                map.virtual = __phys_to_virt(start);
1468                                map.length = kernel_x_start - start;
1469                                map.type = MT_MEMORY_RW;
1470
1471                                create_mapping(&map);
1472                        }
1473
1474                        map.pfn = __phys_to_pfn(kernel_x_start);
1475                        map.virtual = __phys_to_virt(kernel_x_start);
1476                        map.length = kernel_x_end - kernel_x_start;
1477                        map.type = MT_MEMORY_RWX;
1478
1479                        create_mapping(&map);
1480
1481                        if (kernel_x_end < end) {
1482                                map.pfn = __phys_to_pfn(kernel_x_end);
1483                                map.virtual = __phys_to_virt(kernel_x_end);
1484                                map.length = end - kernel_x_end;
1485                                map.type = MT_MEMORY_RW;
1486
1487                                create_mapping(&map);
1488                        }
1489                }
1490        }
1491}
1492
1493#ifdef CONFIG_ARM_PV_FIXUP
1494extern unsigned long __atags_pointer;
1495typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1496pgtables_remap lpae_pgtables_remap_asm;
1497
1498/*
1499 * early_paging_init() recreates boot time page table setup, allowing machines
1500 * to switch over to a high (>4G) address space on LPAE systems
1501 */
1502static void __init early_paging_init(const struct machine_desc *mdesc)
1503{
1504        pgtables_remap *lpae_pgtables_remap;
1505        unsigned long pa_pgd;
1506        unsigned int cr, ttbcr;
1507        long long offset;
1508        void *boot_data;
1509
1510        if (!mdesc->pv_fixup)
1511                return;
1512
1513        offset = mdesc->pv_fixup();
1514        if (offset == 0)
1515                return;
1516
1517        /*
1518         * Get the address of the remap function in the 1:1 identity
1519         * mapping setup by the early page table assembly code.  We
1520         * must get this prior to the pv update.  The following barrier
1521         * ensures that this is complete before we fixup any P:V offsets.
1522         */
1523        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1524        pa_pgd = __pa(swapper_pg_dir);
1525        boot_data = __va(__atags_pointer);
1526        barrier();
1527
1528        pr_info("Switching physical address space to 0x%08llx\n",
1529                (u64)PHYS_OFFSET + offset);
1530
1531        /* Re-set the phys pfn offset, and the pv offset */
1532        __pv_offset += offset;
1533        __pv_phys_pfn_offset += PFN_DOWN(offset);
1534
1535        /* Run the patch stub to update the constants */
1536        fixup_pv_table(&__pv_table_begin,
1537                (&__pv_table_end - &__pv_table_begin) << 2);
1538
1539        /*
1540         * We changing not only the virtual to physical mapping, but also
1541         * the physical addresses used to access memory.  We need to flush
1542         * all levels of cache in the system with caching disabled to
1543         * ensure that all data is written back, and nothing is prefetched
1544         * into the caches.  We also need to prevent the TLB walkers
1545         * allocating into the caches too.  Note that this is ARMv7 LPAE
1546         * specific.
1547         */
1548        cr = get_cr();
1549        set_cr(cr & ~(CR_I | CR_C));
1550        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1551        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1552                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1553        flush_cache_all();
1554
1555        /*
1556         * Fixup the page tables - this must be in the idmap region as
1557         * we need to disable the MMU to do this safely, and hence it
1558         * needs to be assembly.  It's fairly simple, as we're using the
1559         * temporary tables setup by the initial assembly code.
1560         */
1561        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1562
1563        /* Re-enable the caches and cacheable TLB walks */
1564        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1565        set_cr(cr);
1566}
1567
1568#else
1569
1570static void __init early_paging_init(const struct machine_desc *mdesc)
1571{
1572        long long offset;
1573
1574        if (!mdesc->pv_fixup)
1575                return;
1576
1577        offset = mdesc->pv_fixup();
1578        if (offset == 0)
1579                return;
1580
1581        pr_crit("Physical address space modification is only to support Keystone2.\n");
1582        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1583        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1584        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1585}
1586
1587#endif
1588
1589static void __init early_fixmap_shutdown(void)
1590{
1591        int i;
1592        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1593
1594        pte_offset_fixmap = pte_offset_late_fixmap;
1595        pmd_clear(fixmap_pmd(va));
1596        local_flush_tlb_kernel_page(va);
1597
1598        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1599                pte_t *pte;
1600                struct map_desc map;
1601
1602                map.virtual = fix_to_virt(i);
1603                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1604
1605                /* Only i/o device mappings are supported ATM */
1606                if (pte_none(*pte) ||
1607                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1608                        continue;
1609
1610                map.pfn = pte_pfn(*pte);
1611                map.type = MT_DEVICE;
1612                map.length = PAGE_SIZE;
1613
1614                create_mapping(&map);
1615        }
1616}
1617
1618/*
1619 * paging_init() sets up the page tables, initialises the zone memory
1620 * maps, and sets up the zero page, bad page and bad page tables.
1621 */
1622void __init paging_init(const struct machine_desc *mdesc)
1623{
1624        void *zero_page;
1625
1626        prepare_page_table();
1627        map_lowmem();
1628        memblock_set_current_limit(arm_lowmem_limit);
1629        dma_contiguous_remap();
1630        early_fixmap_shutdown();
1631        devicemaps_init(mdesc);
1632        kmap_init();
1633        tcm_init();
1634
1635        top_pmd = pmd_off_k(0xffff0000);
1636
1637        /* allocate the zero page. */
1638        zero_page = early_alloc(PAGE_SIZE);
1639
1640        bootmem_init();
1641
1642        empty_zero_page = virt_to_page(zero_page);
1643        __flush_dcache_page(NULL, empty_zero_page);
1644
1645        /* Compute the virt/idmap offset, mostly for the sake of KVM */
1646        kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1647}
1648
1649void __init early_mm_init(const struct machine_desc *mdesc)
1650{
1651        build_mem_type_table();
1652        early_paging_init(mdesc);
1653}
1654