linux/arch/mips/kernel/smp-bmips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
   7 *
   8 * SMP support for BMIPS
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/sched.h>
  13#include <linux/sched/hotplug.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/mm.h>
  16#include <linux/delay.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/spinlock.h>
  20#include <linux/cpu.h>
  21#include <linux/cpumask.h>
  22#include <linux/reboot.h>
  23#include <linux/io.h>
  24#include <linux/compiler.h>
  25#include <linux/linkage.h>
  26#include <linux/bug.h>
  27#include <linux/kernel.h>
  28
  29#include <asm/time.h>
  30#include <asm/pgtable.h>
  31#include <asm/processor.h>
  32#include <asm/bootinfo.h>
  33#include <asm/pmon.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mipsregs.h>
  37#include <asm/bmips.h>
  38#include <asm/traps.h>
  39#include <asm/barrier.h>
  40#include <asm/cpu-features.h>
  41
  42static int __maybe_unused max_cpus = 1;
  43
  44/* these may be configured by the platform code */
  45int bmips_smp_enabled = 1;
  46int bmips_cpu_offset;
  47cpumask_t bmips_booted_mask;
  48unsigned long bmips_tp1_irqs = IE_IRQ1;
  49
  50#define RESET_FROM_KSEG0                0x80080800
  51#define RESET_FROM_KSEG1                0xa0080800
  52
  53static void bmips_set_reset_vec(int cpu, u32 val);
  54
  55#ifdef CONFIG_SMP
  56
  57/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  58unsigned long bmips_smp_boot_sp;
  59unsigned long bmips_smp_boot_gp;
  60
  61static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  62static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  63static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  64static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  65
  66/* SW interrupts 0,1 are used for interprocessor signaling */
  67#define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
  68#define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
  69
  70#define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
  71#define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  72#define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  73#define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
  74
  75static void __init bmips_smp_setup(void)
  76{
  77        int i, cpu = 1, boot_cpu = 0;
  78        int cpu_hw_intr;
  79
  80        switch (current_cpu_type()) {
  81        case CPU_BMIPS4350:
  82        case CPU_BMIPS4380:
  83                /* arbitration priority */
  84                clear_c0_brcm_cmt_ctrl(0x30);
  85
  86                /* NBK and weak order flags */
  87                set_c0_brcm_config_0(0x30000);
  88
  89                /* Find out if we are running on TP0 or TP1 */
  90                boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  91
  92                /*
  93                 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  94                 * thread
  95                 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  96                 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  97                 */
  98                if (boot_cpu == 0)
  99                        cpu_hw_intr = 0x02;
 100                else
 101                        cpu_hw_intr = 0x1d;
 102
 103                change_c0_brcm_cmt_intr(0xf8018000,
 104                                        (cpu_hw_intr << 27) | (0x03 << 15));
 105
 106                /* single core, 2 threads (2 pipelines) */
 107                max_cpus = 2;
 108
 109                break;
 110        case CPU_BMIPS5000:
 111                /* enable raceless SW interrupts */
 112                set_c0_brcm_config(0x03 << 22);
 113
 114                /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 115                change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 116
 117                /* N cores, 2 threads per core */
 118                max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 119
 120                /* clear any pending SW interrupts */
 121                for (i = 0; i < max_cpus; i++) {
 122                        write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 123                        write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 124                }
 125
 126                break;
 127        default:
 128                max_cpus = 1;
 129        }
 130
 131        if (!bmips_smp_enabled)
 132                max_cpus = 1;
 133
 134        /* this can be overridden by the BSP */
 135        if (!board_ebase_setup)
 136                board_ebase_setup = &bmips_ebase_setup;
 137
 138        __cpu_number_map[boot_cpu] = 0;
 139        __cpu_logical_map[0] = boot_cpu;
 140
 141        for (i = 0; i < max_cpus; i++) {
 142                if (i != boot_cpu) {
 143                        __cpu_number_map[i] = cpu;
 144                        __cpu_logical_map[cpu] = i;
 145                        cpu++;
 146                }
 147                set_cpu_possible(i, 1);
 148                set_cpu_present(i, 1);
 149        }
 150}
 151
 152/*
 153 * IPI IRQ setup - runs on CPU0
 154 */
 155static void bmips_prepare_cpus(unsigned int max_cpus)
 156{
 157        irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
 158
 159        switch (current_cpu_type()) {
 160        case CPU_BMIPS4350:
 161        case CPU_BMIPS4380:
 162                bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
 163                break;
 164        case CPU_BMIPS5000:
 165                bmips_ipi_interrupt = bmips5000_ipi_interrupt;
 166                break;
 167        default:
 168                return;
 169        }
 170
 171        if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 172                        "smp_ipi0", NULL))
 173                panic("Can't request IPI0 interrupt");
 174        if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 175                        "smp_ipi1", NULL))
 176                panic("Can't request IPI1 interrupt");
 177}
 178
 179/*
 180 * Tell the hardware to boot CPUx - runs on CPU0
 181 */
 182static int bmips_boot_secondary(int cpu, struct task_struct *idle)
 183{
 184        bmips_smp_boot_sp = __KSTK_TOS(idle);
 185        bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
 186        mb();
 187
 188        /*
 189         * Initial boot sequence for secondary CPU:
 190         *   bmips_reset_nmi_vec @ a000_0000 ->
 191         *   bmips_smp_entry ->
 192         *   plat_wired_tlb_setup (cached function call; optional) ->
 193         *   start_secondary (cached jump)
 194         *
 195         * Warm restart sequence:
 196         *   play_dead WAIT loop ->
 197         *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
 198         *   eret to play_dead ->
 199         *   bmips_secondary_reentry ->
 200         *   start_secondary
 201         */
 202
 203        pr_info("SMP: Booting CPU%d...\n", cpu);
 204
 205        if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 206                /* kseg1 might not exist if this CPU enabled XKS01 */
 207                bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
 208
 209                switch (current_cpu_type()) {
 210                case CPU_BMIPS4350:
 211                case CPU_BMIPS4380:
 212                        bmips43xx_send_ipi_single(cpu, 0);
 213                        break;
 214                case CPU_BMIPS5000:
 215                        bmips5000_send_ipi_single(cpu, 0);
 216                        break;
 217                }
 218        } else {
 219                bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
 220
 221                switch (current_cpu_type()) {
 222                case CPU_BMIPS4350:
 223                case CPU_BMIPS4380:
 224                        /* Reset slave TP1 if booting from TP0 */
 225                        if (cpu_logical_map(cpu) == 1)
 226                                set_c0_brcm_cmt_ctrl(0x01);
 227                        break;
 228                case CPU_BMIPS5000:
 229                        write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 230                        break;
 231                }
 232                cpumask_set_cpu(cpu, &bmips_booted_mask);
 233        }
 234
 235        return 0;
 236}
 237
 238/*
 239 * Early setup - runs on secondary CPU after cache probe
 240 */
 241static void bmips_init_secondary(void)
 242{
 243        switch (current_cpu_type()) {
 244        case CPU_BMIPS4350:
 245        case CPU_BMIPS4380:
 246                clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
 247                break;
 248        case CPU_BMIPS5000:
 249                write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 250                cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
 251                break;
 252        }
 253}
 254
 255/*
 256 * Late setup - runs on secondary CPU before entering the idle loop
 257 */
 258static void bmips_smp_finish(void)
 259{
 260        pr_info("SMP: CPU%d is running\n", smp_processor_id());
 261
 262        /* make sure there won't be a timer interrupt for a little while */
 263        write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
 264
 265        irq_enable_hazard();
 266        set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
 267        irq_enable_hazard();
 268}
 269
 270/*
 271 * BMIPS5000 raceless IPIs
 272 *
 273 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 274 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 275 * IPI1 is used for SMP_CALL_FUNCTION
 276 */
 277
 278static void bmips5000_send_ipi_single(int cpu, unsigned int action)
 279{
 280        write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
 281}
 282
 283static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
 284{
 285        int action = irq - IPI0_IRQ;
 286
 287        write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
 288
 289        if (action == 0)
 290                scheduler_ipi();
 291        else
 292                generic_smp_call_function_interrupt();
 293
 294        return IRQ_HANDLED;
 295}
 296
 297static void bmips5000_send_ipi_mask(const struct cpumask *mask,
 298        unsigned int action)
 299{
 300        unsigned int i;
 301
 302        for_each_cpu(i, mask)
 303                bmips5000_send_ipi_single(i, action);
 304}
 305
 306/*
 307 * BMIPS43xx racey IPIs
 308 *
 309 * We use one inbound SW IRQ for each CPU.
 310 *
 311 * A spinlock must be held in order to keep CPUx from accidentally clearing
 312 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 313 * same spinlock is used to protect the action masks.
 314 */
 315
 316static DEFINE_SPINLOCK(ipi_lock);
 317static DEFINE_PER_CPU(int, ipi_action_mask);
 318
 319static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
 320{
 321        unsigned long flags;
 322
 323        spin_lock_irqsave(&ipi_lock, flags);
 324        set_c0_cause(cpu ? C_SW1 : C_SW0);
 325        per_cpu(ipi_action_mask, cpu) |= action;
 326        irq_enable_hazard();
 327        spin_unlock_irqrestore(&ipi_lock, flags);
 328}
 329
 330static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
 331{
 332        unsigned long flags;
 333        int action, cpu = irq - IPI0_IRQ;
 334
 335        spin_lock_irqsave(&ipi_lock, flags);
 336        action = __this_cpu_read(ipi_action_mask);
 337        per_cpu(ipi_action_mask, cpu) = 0;
 338        clear_c0_cause(cpu ? C_SW1 : C_SW0);
 339        spin_unlock_irqrestore(&ipi_lock, flags);
 340
 341        if (action & SMP_RESCHEDULE_YOURSELF)
 342                scheduler_ipi();
 343        if (action & SMP_CALL_FUNCTION)
 344                generic_smp_call_function_interrupt();
 345
 346        return IRQ_HANDLED;
 347}
 348
 349static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 350        unsigned int action)
 351{
 352        unsigned int i;
 353
 354        for_each_cpu(i, mask)
 355                bmips43xx_send_ipi_single(i, action);
 356}
 357
 358#ifdef CONFIG_HOTPLUG_CPU
 359
 360static int bmips_cpu_disable(void)
 361{
 362        unsigned int cpu = smp_processor_id();
 363
 364        if (cpu == 0)
 365                return -EBUSY;
 366
 367        pr_info("SMP: CPU%d is offline\n", cpu);
 368
 369        set_cpu_online(cpu, false);
 370        calculate_cpu_foreign_map();
 371        irq_cpu_offline();
 372        clear_c0_status(IE_IRQ5);
 373
 374        local_flush_tlb_all();
 375        local_flush_icache_range(0, ~0);
 376
 377        return 0;
 378}
 379
 380static void bmips_cpu_die(unsigned int cpu)
 381{
 382}
 383
 384void __ref play_dead(void)
 385{
 386        idle_task_exit();
 387
 388        /* flush data cache */
 389        _dma_cache_wback_inv(0, ~0);
 390
 391        /*
 392         * Wakeup is on SW0 or SW1; disable everything else
 393         * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
 394         * IRQ handlers; this clears ST0_IE and returns immediately.
 395         */
 396        clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
 397        change_c0_status(
 398                IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 399                IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
 400        irq_disable_hazard();
 401
 402        /*
 403         * wait for SW interrupt from bmips_boot_secondary(), then jump
 404         * back to start_secondary()
 405         */
 406        __asm__ __volatile__(
 407        "       wait\n"
 408        "       j       bmips_secondary_reentry\n"
 409        : : : "memory");
 410}
 411
 412#endif /* CONFIG_HOTPLUG_CPU */
 413
 414const struct plat_smp_ops bmips43xx_smp_ops = {
 415        .smp_setup              = bmips_smp_setup,
 416        .prepare_cpus           = bmips_prepare_cpus,
 417        .boot_secondary         = bmips_boot_secondary,
 418        .smp_finish             = bmips_smp_finish,
 419        .init_secondary         = bmips_init_secondary,
 420        .send_ipi_single        = bmips43xx_send_ipi_single,
 421        .send_ipi_mask          = bmips43xx_send_ipi_mask,
 422#ifdef CONFIG_HOTPLUG_CPU
 423        .cpu_disable            = bmips_cpu_disable,
 424        .cpu_die                = bmips_cpu_die,
 425#endif
 426};
 427
 428const struct plat_smp_ops bmips5000_smp_ops = {
 429        .smp_setup              = bmips_smp_setup,
 430        .prepare_cpus           = bmips_prepare_cpus,
 431        .boot_secondary         = bmips_boot_secondary,
 432        .smp_finish             = bmips_smp_finish,
 433        .init_secondary         = bmips_init_secondary,
 434        .send_ipi_single        = bmips5000_send_ipi_single,
 435        .send_ipi_mask          = bmips5000_send_ipi_mask,
 436#ifdef CONFIG_HOTPLUG_CPU
 437        .cpu_disable            = bmips_cpu_disable,
 438        .cpu_die                = bmips_cpu_die,
 439#endif
 440};
 441
 442#endif /* CONFIG_SMP */
 443
 444/***********************************************************************
 445 * BMIPS vector relocation
 446 * This is primarily used for SMP boot, but it is applicable to some
 447 * UP BMIPS systems as well.
 448 ***********************************************************************/
 449
 450static void bmips_wr_vec(unsigned long dst, char *start, char *end)
 451{
 452        memcpy((void *)dst, start, end - start);
 453        dma_cache_wback(dst, end - start);
 454        local_flush_icache_range(dst, dst + (end - start));
 455        instruction_hazard();
 456}
 457
 458static inline void bmips_nmi_handler_setup(void)
 459{
 460        bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
 461                &bmips_reset_nmi_vec_end);
 462        bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
 463                &bmips_smp_int_vec_end);
 464}
 465
 466struct reset_vec_info {
 467        int cpu;
 468        u32 val;
 469};
 470
 471static void bmips_set_reset_vec_remote(void *vinfo)
 472{
 473        struct reset_vec_info *info = vinfo;
 474        int shift = info->cpu & 0x01 ? 16 : 0;
 475        u32 mask = ~(0xffff << shift), val = info->val >> 16;
 476
 477        preempt_disable();
 478        if (smp_processor_id() > 0) {
 479                smp_call_function_single(0, &bmips_set_reset_vec_remote,
 480                                         info, 1);
 481        } else {
 482                if (info->cpu & 0x02) {
 483                        /* BMIPS5200 "should" use mask/shift, but it's buggy */
 484                        bmips_write_zscm_reg(0xa0, (val << 16) | val);
 485                        bmips_read_zscm_reg(0xa0);
 486                } else {
 487                        write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
 488                                              (val << shift));
 489                }
 490        }
 491        preempt_enable();
 492}
 493
 494static void bmips_set_reset_vec(int cpu, u32 val)
 495{
 496        struct reset_vec_info info;
 497
 498        if (current_cpu_type() == CPU_BMIPS5000) {
 499                /* this needs to run from CPU0 (which is always online) */
 500                info.cpu = cpu;
 501                info.val = val;
 502                bmips_set_reset_vec_remote(&info);
 503        } else {
 504                void __iomem *cbr = BMIPS_GET_CBR();
 505
 506                if (cpu == 0)
 507                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
 508                else {
 509                        if (current_cpu_type() != CPU_BMIPS4380)
 510                                return;
 511                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
 512                }
 513        }
 514        __sync();
 515        back_to_back_c0_hazard();
 516}
 517
 518void bmips_ebase_setup(void)
 519{
 520        unsigned long new_ebase = ebase;
 521
 522        BUG_ON(ebase != CKSEG0);
 523
 524        switch (current_cpu_type()) {
 525        case CPU_BMIPS4350:
 526                /*
 527                 * BMIPS4350 cannot relocate the normal vectors, but it
 528                 * can relocate the BEV=1 vectors.  So CPU1 starts up at
 529                 * the relocated BEV=1, IV=0 general exception vector @
 530                 * 0xa000_0380.
 531                 *
 532                 * set_uncached_handler() is used here because:
 533                 *  - CPU1 will run this from uncached space
 534                 *  - None of the cacheflush functions are set up yet
 535                 */
 536                set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
 537                        &bmips_smp_int_vec, 0x80);
 538                __sync();
 539                return;
 540        case CPU_BMIPS3300:
 541        case CPU_BMIPS4380:
 542                /*
 543                 * 0x8000_0000: reset/NMI (initially in kseg1)
 544                 * 0x8000_0400: normal vectors
 545                 */
 546                new_ebase = 0x80000400;
 547                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 548                break;
 549        case CPU_BMIPS5000:
 550                /*
 551                 * 0x8000_0000: reset/NMI (initially in kseg1)
 552                 * 0x8000_1000: normal vectors
 553                 */
 554                new_ebase = 0x80001000;
 555                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 556                write_c0_ebase(new_ebase);
 557                break;
 558        default:
 559                return;
 560        }
 561
 562        board_nmi_handler_setup = &bmips_nmi_handler_setup;
 563        ebase = new_ebase;
 564}
 565
 566asmlinkage void __weak plat_wired_tlb_setup(void)
 567{
 568        /*
 569         * Called when starting/restarting a secondary CPU.
 570         * Kernel stacks and other important data might only be accessible
 571         * once the wired entries are present.
 572         */
 573}
 574
 575void __init bmips_cpu_setup(void)
 576{
 577        void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
 578        u32 __maybe_unused cfg;
 579
 580        switch (current_cpu_type()) {
 581        case CPU_BMIPS3300:
 582                /* Set BIU to async mode */
 583                set_c0_brcm_bus_pll(BIT(22));
 584                __sync();
 585
 586                /* put the BIU back in sync mode */
 587                clear_c0_brcm_bus_pll(BIT(22));
 588
 589                /* clear BHTD to enable branch history table */
 590                clear_c0_brcm_reset(BIT(16));
 591
 592                /* Flush and enable RAC */
 593                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 594                __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
 595                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 596
 597                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 598                __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
 599                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 600
 601                cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 602                __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
 603                __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 604                break;
 605
 606        case CPU_BMIPS4380:
 607                /* CBG workaround for early BMIPS4380 CPUs */
 608                switch (read_c0_prid()) {
 609                case 0x2a040:
 610                case 0x2a042:
 611                case 0x2a044:
 612                case 0x2a060:
 613                        cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
 614                        __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
 615                        __raw_readl(cbr + BMIPS_L2_CONFIG);
 616                }
 617
 618                /* clear BHTD to enable branch history table */
 619                clear_c0_brcm_config_0(BIT(21));
 620
 621                /* XI/ROTR enable */
 622                set_c0_brcm_config_0(BIT(23));
 623                set_c0_brcm_cmt_ctrl(BIT(15));
 624                break;
 625
 626        case CPU_BMIPS5000:
 627                /* enable RDHWR, BRDHWR */
 628                set_c0_brcm_config(BIT(17) | BIT(21));
 629
 630                /* Disable JTB */
 631                __asm__ __volatile__(
 632                "       .set    noreorder\n"
 633                "       li      $8, 0x5a455048\n"
 634                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 635                "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
 636                "       li      $9, 0x00008000\n"
 637                "       or      $8, $8, $9\n"
 638                "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
 639                "       sync\n"
 640                "       li      $8, 0x0\n"
 641                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 642                "       .set    reorder\n"
 643                : : : "$8", "$9");
 644
 645                /* XI enable */
 646                set_c0_brcm_config(BIT(27));
 647
 648                /* enable MIPS32R2 ROR instruction for XI TLB handlers */
 649                __asm__ __volatile__(
 650                "       li      $8, 0x5a455048\n"
 651                "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
 652                "       nop; nop; nop\n"
 653                "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
 654                "       lui     $9, 0x0100\n"
 655                "       or      $8, $9\n"
 656                "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
 657                : : : "$8", "$9");
 658                break;
 659        }
 660}
 661