linux/arch/powerpc/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Derived from "arch/i386/mm/fault.c"
   6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  Modified by Cort Dougan and Paul Mackerras.
   9 *
  10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11 *
  12 *  This program is free software; you can redistribute it and/or
  13 *  modify it under the terms of the GNU General Public License
  14 *  as published by the Free Software Foundation; either version
  15 *  2 of the License, or (at your option) any later version.
  16 */
  17
  18#include <linux/signal.h>
  19#include <linux/sched.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/string.h>
  24#include <linux/types.h>
  25#include <linux/ptrace.h>
  26#include <linux/mman.h>
  27#include <linux/mm.h>
  28#include <linux/interrupt.h>
  29#include <linux/highmem.h>
  30#include <linux/extable.h>
  31#include <linux/kprobes.h>
  32#include <linux/kdebug.h>
  33#include <linux/perf_event.h>
  34#include <linux/ratelimit.h>
  35#include <linux/context_tracking.h>
  36#include <linux/hugetlb.h>
  37#include <linux/uaccess.h>
  38
  39#include <asm/firmware.h>
  40#include <asm/page.h>
  41#include <asm/pgtable.h>
  42#include <asm/mmu.h>
  43#include <asm/mmu_context.h>
  44#include <asm/tlbflush.h>
  45#include <asm/siginfo.h>
  46#include <asm/debug.h>
  47
  48static inline bool notify_page_fault(struct pt_regs *regs)
  49{
  50        bool ret = false;
  51
  52#ifdef CONFIG_KPROBES
  53        /* kprobe_running() needs smp_processor_id() */
  54        if (!user_mode(regs)) {
  55                preempt_disable();
  56                if (kprobe_running() && kprobe_fault_handler(regs, 11))
  57                        ret = true;
  58                preempt_enable();
  59        }
  60#endif /* CONFIG_KPROBES */
  61
  62        if (unlikely(debugger_fault_handler(regs)))
  63                ret = true;
  64
  65        return ret;
  66}
  67
  68/*
  69 * Check whether the instruction at regs->nip is a store using
  70 * an update addressing form which will update r1.
  71 */
  72static bool store_updates_sp(struct pt_regs *regs)
  73{
  74        unsigned int inst;
  75
  76        if (get_user(inst, (unsigned int __user *)regs->nip))
  77                return false;
  78        /* check for 1 in the rA field */
  79        if (((inst >> 16) & 0x1f) != 1)
  80                return false;
  81        /* check major opcode */
  82        switch (inst >> 26) {
  83        case 37:        /* stwu */
  84        case 39:        /* stbu */
  85        case 45:        /* sthu */
  86        case 53:        /* stfsu */
  87        case 55:        /* stfdu */
  88                return true;
  89        case 62:        /* std or stdu */
  90                return (inst & 3) == 1;
  91        case 31:
  92                /* check minor opcode */
  93                switch ((inst >> 1) & 0x3ff) {
  94                case 181:       /* stdux */
  95                case 183:       /* stwux */
  96                case 247:       /* stbux */
  97                case 439:       /* sthux */
  98                case 695:       /* stfsux */
  99                case 759:       /* stfdux */
 100                        return true;
 101                }
 102        }
 103        return false;
 104}
 105/*
 106 * do_page_fault error handling helpers
 107 */
 108
 109static int
 110__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
 111{
 112        /*
 113         * If we are in kernel mode, bail out with a SEGV, this will
 114         * be caught by the assembly which will restore the non-volatile
 115         * registers before calling bad_page_fault()
 116         */
 117        if (!user_mode(regs))
 118                return SIGSEGV;
 119
 120        _exception(SIGSEGV, regs, si_code, address);
 121
 122        return 0;
 123}
 124
 125static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 126{
 127        return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 128}
 129
 130static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 131{
 132        struct mm_struct *mm = current->mm;
 133
 134        /*
 135         * Something tried to access memory that isn't in our memory map..
 136         * Fix it, but check if it's kernel or user first..
 137         */
 138        up_read(&mm->mmap_sem);
 139
 140        return __bad_area_nosemaphore(regs, address, si_code);
 141}
 142
 143static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 144{
 145        return __bad_area(regs, address, SEGV_MAPERR);
 146}
 147
 148static noinline int bad_access(struct pt_regs *regs, unsigned long address)
 149{
 150        return __bad_area(regs, address, SEGV_ACCERR);
 151}
 152
 153static int do_sigbus(struct pt_regs *regs, unsigned long address,
 154                     unsigned int fault)
 155{
 156        siginfo_t info;
 157        unsigned int lsb = 0;
 158
 159        if (!user_mode(regs))
 160                return SIGBUS;
 161
 162        current->thread.trap_nr = BUS_ADRERR;
 163        info.si_signo = SIGBUS;
 164        info.si_errno = 0;
 165        info.si_code = BUS_ADRERR;
 166        info.si_addr = (void __user *)address;
 167#ifdef CONFIG_MEMORY_FAILURE
 168        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 169                pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 170                        current->comm, current->pid, address);
 171                info.si_code = BUS_MCEERR_AR;
 172        }
 173
 174        if (fault & VM_FAULT_HWPOISON_LARGE)
 175                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 176        if (fault & VM_FAULT_HWPOISON)
 177                lsb = PAGE_SHIFT;
 178#endif
 179        info.si_addr_lsb = lsb;
 180        force_sig_info(SIGBUS, &info, current);
 181        return 0;
 182}
 183
 184static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 185{
 186        /*
 187         * Kernel page fault interrupted by SIGKILL. We have no reason to
 188         * continue processing.
 189         */
 190        if (fatal_signal_pending(current) && !user_mode(regs))
 191                return SIGKILL;
 192
 193        /* Out of memory */
 194        if (fault & VM_FAULT_OOM) {
 195                /*
 196                 * We ran out of memory, or some other thing happened to us that
 197                 * made us unable to handle the page fault gracefully.
 198                 */
 199                if (!user_mode(regs))
 200                        return SIGSEGV;
 201                pagefault_out_of_memory();
 202        } else {
 203                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 204                             VM_FAULT_HWPOISON_LARGE))
 205                        return do_sigbus(regs, addr, fault);
 206                else if (fault & VM_FAULT_SIGSEGV)
 207                        return bad_area_nosemaphore(regs, addr);
 208                else
 209                        BUG();
 210        }
 211        return 0;
 212}
 213
 214/* Is this a bad kernel fault ? */
 215static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
 216                             unsigned long address)
 217{
 218        if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
 219                printk_ratelimited(KERN_CRIT "kernel tried to execute"
 220                                   " exec-protected page (%lx) -"
 221                                   "exploit attempt? (uid: %d)\n",
 222                                   address, from_kuid(&init_user_ns,
 223                                                      current_uid()));
 224        }
 225        return is_exec || (address >= TASK_SIZE);
 226}
 227
 228static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
 229                                struct vm_area_struct *vma,
 230                                bool store_update_sp)
 231{
 232        /*
 233         * N.B. The POWER/Open ABI allows programs to access up to
 234         * 288 bytes below the stack pointer.
 235         * The kernel signal delivery code writes up to about 1.5kB
 236         * below the stack pointer (r1) before decrementing it.
 237         * The exec code can write slightly over 640kB to the stack
 238         * before setting the user r1.  Thus we allow the stack to
 239         * expand to 1MB without further checks.
 240         */
 241        if (address + 0x100000 < vma->vm_end) {
 242                /* get user regs even if this fault is in kernel mode */
 243                struct pt_regs *uregs = current->thread.regs;
 244                if (uregs == NULL)
 245                        return true;
 246
 247                /*
 248                 * A user-mode access to an address a long way below
 249                 * the stack pointer is only valid if the instruction
 250                 * is one which would update the stack pointer to the
 251                 * address accessed if the instruction completed,
 252                 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
 253                 * (or the byte, halfword, float or double forms).
 254                 *
 255                 * If we don't check this then any write to the area
 256                 * between the last mapped region and the stack will
 257                 * expand the stack rather than segfaulting.
 258                 */
 259                if (address + 2048 < uregs->gpr[1] && !store_update_sp)
 260                        return true;
 261        }
 262        return false;
 263}
 264
 265static bool access_error(bool is_write, bool is_exec,
 266                         struct vm_area_struct *vma)
 267{
 268        /*
 269         * Allow execution from readable areas if the MMU does not
 270         * provide separate controls over reading and executing.
 271         *
 272         * Note: That code used to not be enabled for 4xx/BookE.
 273         * It is now as I/D cache coherency for these is done at
 274         * set_pte_at() time and I see no reason why the test
 275         * below wouldn't be valid on those processors. This -may-
 276         * break programs compiled with a really old ABI though.
 277         */
 278        if (is_exec) {
 279                return !(vma->vm_flags & VM_EXEC) &&
 280                        (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 281                         !(vma->vm_flags & (VM_READ | VM_WRITE)));
 282        }
 283
 284        if (is_write) {
 285                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 286                        return true;
 287                return false;
 288        }
 289
 290        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 291                return true;
 292
 293        return false;
 294}
 295
 296#ifdef CONFIG_PPC_SMLPAR
 297static inline void cmo_account_page_fault(void)
 298{
 299        if (firmware_has_feature(FW_FEATURE_CMO)) {
 300                u32 page_ins;
 301
 302                preempt_disable();
 303                page_ins = be32_to_cpu(get_lppaca()->page_ins);
 304                page_ins += 1 << PAGE_FACTOR;
 305                get_lppaca()->page_ins = cpu_to_be32(page_ins);
 306                preempt_enable();
 307        }
 308}
 309#else
 310static inline void cmo_account_page_fault(void) { }
 311#endif /* CONFIG_PPC_SMLPAR */
 312
 313#ifdef CONFIG_PPC_STD_MMU
 314static void sanity_check_fault(bool is_write, unsigned long error_code)
 315{
 316        /*
 317         * For hash translation mode, we should never get a
 318         * PROTFAULT. Any update to pte to reduce access will result in us
 319         * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
 320         * fault instead of DSISR_PROTFAULT.
 321         *
 322         * A pte update to relax the access will not result in a hash page table
 323         * entry invalidate and hence can result in DSISR_PROTFAULT.
 324         * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
 325         * the special !is_write in the below conditional.
 326         *
 327         * For platforms that doesn't supports coherent icache and do support
 328         * per page noexec bit, we do setup things such that we do the
 329         * sync between D/I cache via fault. But that is handled via low level
 330         * hash fault code (hash_page_do_lazy_icache()) and we should not reach
 331         * here in such case.
 332         *
 333         * For wrong access that can result in PROTFAULT, the above vma->vm_flags
 334         * check should handle those and hence we should fall to the bad_area
 335         * handling correctly.
 336         *
 337         * For embedded with per page exec support that doesn't support coherent
 338         * icache we do get PROTFAULT and we handle that D/I cache sync in
 339         * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
 340         * is conditional for server MMU.
 341         *
 342         * For radix, we can get prot fault for autonuma case, because radix
 343         * page table will have them marked noaccess for user.
 344         */
 345        if (!radix_enabled() && !is_write)
 346                WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 347}
 348#else
 349static void sanity_check_fault(bool is_write, unsigned long error_code) { }
 350#endif /* CONFIG_PPC_STD_MMU */
 351
 352/*
 353 * Define the correct "is_write" bit in error_code based
 354 * on the processor family
 355 */
 356#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
 357#define page_fault_is_write(__err)      ((__err) & ESR_DST)
 358#define page_fault_is_bad(__err)        (0)
 359#else
 360#define page_fault_is_write(__err)      ((__err) & DSISR_ISSTORE)
 361#if defined(CONFIG_PPC_8xx)
 362#define page_fault_is_bad(__err)        ((__err) & DSISR_NOEXEC_OR_G)
 363#elif defined(CONFIG_PPC64)
 364#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_64S)
 365#else
 366#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_32S)
 367#endif
 368#endif
 369
 370/*
 371 * For 600- and 800-family processors, the error_code parameter is DSISR
 372 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 373 * the error_code parameter is ESR for a data fault, 0 for an instruction
 374 * fault.
 375 * For 64-bit processors, the error_code parameter is
 376 *  - DSISR for a non-SLB data access fault,
 377 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 378 *  - 0 any SLB fault.
 379 *
 380 * The return value is 0 if the fault was handled, or the signal
 381 * number if this is a kernel fault that can't be handled here.
 382 */
 383static int __do_page_fault(struct pt_regs *regs, unsigned long address,
 384                           unsigned long error_code)
 385{
 386        struct vm_area_struct * vma;
 387        struct mm_struct *mm = current->mm;
 388        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 389        int is_exec = TRAP(regs) == 0x400;
 390        int is_user = user_mode(regs);
 391        int is_write = page_fault_is_write(error_code);
 392        int fault, major = 0;
 393        bool store_update_sp = false;
 394
 395        if (notify_page_fault(regs))
 396                return 0;
 397
 398        if (unlikely(page_fault_is_bad(error_code))) {
 399                if (is_user) {
 400                        _exception(SIGBUS, regs, BUS_OBJERR, address);
 401                        return 0;
 402                }
 403                return SIGBUS;
 404        }
 405
 406        /* Additional sanity check(s) */
 407        sanity_check_fault(is_write, error_code);
 408
 409        /*
 410         * The kernel should never take an execute fault nor should it
 411         * take a page fault to a kernel address.
 412         */
 413        if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
 414                return SIGSEGV;
 415
 416        /*
 417         * If we're in an interrupt, have no user context or are running
 418         * in a region with pagefaults disabled then we must not take the fault
 419         */
 420        if (unlikely(faulthandler_disabled() || !mm)) {
 421                if (is_user)
 422                        printk_ratelimited(KERN_ERR "Page fault in user mode"
 423                                           " with faulthandler_disabled()=%d"
 424                                           " mm=%p\n",
 425                                           faulthandler_disabled(), mm);
 426                return bad_area_nosemaphore(regs, address);
 427        }
 428
 429        /* We restore the interrupt state now */
 430        if (!arch_irq_disabled_regs(regs))
 431                local_irq_enable();
 432
 433        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 434
 435        /*
 436         * We want to do this outside mmap_sem, because reading code around nip
 437         * can result in fault, which will cause a deadlock when called with
 438         * mmap_sem held
 439         */
 440        if (is_write && is_user)
 441                store_update_sp = store_updates_sp(regs);
 442
 443        if (is_user)
 444                flags |= FAULT_FLAG_USER;
 445        if (is_write)
 446                flags |= FAULT_FLAG_WRITE;
 447        if (is_exec)
 448                flags |= FAULT_FLAG_INSTRUCTION;
 449
 450        /* When running in the kernel we expect faults to occur only to
 451         * addresses in user space.  All other faults represent errors in the
 452         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 453         * erroneous fault occurring in a code path which already holds mmap_sem
 454         * we will deadlock attempting to validate the fault against the
 455         * address space.  Luckily the kernel only validly references user
 456         * space from well defined areas of code, which are listed in the
 457         * exceptions table.
 458         *
 459         * As the vast majority of faults will be valid we will only perform
 460         * the source reference check when there is a possibility of a deadlock.
 461         * Attempt to lock the address space, if we cannot we then validate the
 462         * source.  If this is invalid we can skip the address space check,
 463         * thus avoiding the deadlock.
 464         */
 465        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 466                if (!is_user && !search_exception_tables(regs->nip))
 467                        return bad_area_nosemaphore(regs, address);
 468
 469retry:
 470                down_read(&mm->mmap_sem);
 471        } else {
 472                /*
 473                 * The above down_read_trylock() might have succeeded in
 474                 * which case we'll have missed the might_sleep() from
 475                 * down_read():
 476                 */
 477                might_sleep();
 478        }
 479
 480        vma = find_vma(mm, address);
 481        if (unlikely(!vma))
 482                return bad_area(regs, address);
 483        if (likely(vma->vm_start <= address))
 484                goto good_area;
 485        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 486                return bad_area(regs, address);
 487
 488        /* The stack is being expanded, check if it's valid */
 489        if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
 490                return bad_area(regs, address);
 491
 492        /* Try to expand it */
 493        if (unlikely(expand_stack(vma, address)))
 494                return bad_area(regs, address);
 495
 496good_area:
 497        if (unlikely(access_error(is_write, is_exec, vma)))
 498                return bad_access(regs, address);
 499
 500        /*
 501         * If for any reason at all we couldn't handle the fault,
 502         * make sure we exit gracefully rather than endlessly redo
 503         * the fault.
 504         */
 505        fault = handle_mm_fault(vma, address, flags);
 506        major |= fault & VM_FAULT_MAJOR;
 507
 508        /*
 509         * Handle the retry right now, the mmap_sem has been released in that
 510         * case.
 511         */
 512        if (unlikely(fault & VM_FAULT_RETRY)) {
 513                /* We retry only once */
 514                if (flags & FAULT_FLAG_ALLOW_RETRY) {
 515                        /*
 516                         * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 517                         * of starvation.
 518                         */
 519                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 520                        flags |= FAULT_FLAG_TRIED;
 521                        if (!fatal_signal_pending(current))
 522                                goto retry;
 523                }
 524
 525                /*
 526                 * User mode? Just return to handle the fatal exception otherwise
 527                 * return to bad_page_fault
 528                 */
 529                return is_user ? 0 : SIGBUS;
 530        }
 531
 532        up_read(&current->mm->mmap_sem);
 533
 534        if (unlikely(fault & VM_FAULT_ERROR))
 535                return mm_fault_error(regs, address, fault);
 536
 537        /*
 538         * Major/minor page fault accounting.
 539         */
 540        if (major) {
 541                current->maj_flt++;
 542                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
 543                cmo_account_page_fault();
 544        } else {
 545                current->min_flt++;
 546                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 547        }
 548        return 0;
 549}
 550NOKPROBE_SYMBOL(__do_page_fault);
 551
 552int do_page_fault(struct pt_regs *regs, unsigned long address,
 553                  unsigned long error_code)
 554{
 555        enum ctx_state prev_state = exception_enter();
 556        int rc = __do_page_fault(regs, address, error_code);
 557        exception_exit(prev_state);
 558        return rc;
 559}
 560NOKPROBE_SYMBOL(do_page_fault);
 561
 562/*
 563 * bad_page_fault is called when we have a bad access from the kernel.
 564 * It is called from the DSI and ISI handlers in head.S and from some
 565 * of the procedures in traps.c.
 566 */
 567void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
 568{
 569        const struct exception_table_entry *entry;
 570
 571        /* Are we prepared to handle this fault?  */
 572        if ((entry = search_exception_tables(regs->nip)) != NULL) {
 573                regs->nip = extable_fixup(entry);
 574                return;
 575        }
 576
 577        /* kernel has accessed a bad area */
 578
 579        switch (regs->trap) {
 580        case 0x300:
 581        case 0x380:
 582                printk(KERN_ALERT "Unable to handle kernel paging request for "
 583                        "data at address 0x%08lx\n", regs->dar);
 584                break;
 585        case 0x400:
 586        case 0x480:
 587                printk(KERN_ALERT "Unable to handle kernel paging request for "
 588                        "instruction fetch\n");
 589                break;
 590        case 0x600:
 591                printk(KERN_ALERT "Unable to handle kernel paging request for "
 592                        "unaligned access at address 0x%08lx\n", regs->dar);
 593                break;
 594        default:
 595                printk(KERN_ALERT "Unable to handle kernel paging request for "
 596                        "unknown fault\n");
 597                break;
 598        }
 599        printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 600                regs->nip);
 601
 602        if (task_stack_end_corrupted(current))
 603                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 604
 605        die("Kernel access of bad area", regs, sig);
 606}
 607