linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *      David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71#include <linux/jiffies.h>
  72#include <linux/mem_encrypt.h>
  73
  74#include <linux/usb/xhci-dbgp.h>
  75#include <video/edid.h>
  76
  77#include <asm/mtrr.h>
  78#include <asm/apic.h>
  79#include <asm/realmode.h>
  80#include <asm/e820/api.h>
  81#include <asm/mpspec.h>
  82#include <asm/setup.h>
  83#include <asm/efi.h>
  84#include <asm/timer.h>
  85#include <asm/i8259.h>
  86#include <asm/sections.h>
  87#include <asm/io_apic.h>
  88#include <asm/ist.h>
  89#include <asm/setup_arch.h>
  90#include <asm/bios_ebda.h>
  91#include <asm/cacheflush.h>
  92#include <asm/processor.h>
  93#include <asm/bugs.h>
  94#include <asm/kasan.h>
  95
  96#include <asm/vsyscall.h>
  97#include <asm/cpu.h>
  98#include <asm/desc.h>
  99#include <asm/dma.h>
 100#include <asm/iommu.h>
 101#include <asm/gart.h>
 102#include <asm/mmu_context.h>
 103#include <asm/proto.h>
 104
 105#include <asm/paravirt.h>
 106#include <asm/hypervisor.h>
 107#include <asm/olpc_ofw.h>
 108
 109#include <asm/percpu.h>
 110#include <asm/topology.h>
 111#include <asm/apicdef.h>
 112#include <asm/amd_nb.h>
 113#include <asm/mce.h>
 114#include <asm/alternative.h>
 115#include <asm/prom.h>
 116#include <asm/microcode.h>
 117#include <asm/mmu_context.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 138
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 143 */
 144static struct resource data_resource = {
 145        .name   = "Kernel data",
 146        .start  = 0,
 147        .end    = 0,
 148        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152        .name   = "Kernel code",
 153        .start  = 0,
 154        .end    = 0,
 155        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159        .name   = "Kernel bss",
 160        .start  = 0,
 161        .end    = 0,
 162        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 194        .x86_phys_bits = MAX_PHYSMEM_BITS,
 195};
 196EXPORT_SYMBOL(boot_cpu_data);
 197#endif
 198
 199
 200#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 201__visible unsigned long mmu_cr4_features __ro_after_init;
 202#else
 203__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 204#endif
 205
 206/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 207int bootloader_type, bootloader_version;
 208
 209/*
 210 * Setup options
 211 */
 212struct screen_info screen_info;
 213EXPORT_SYMBOL(screen_info);
 214struct edid_info edid_info;
 215EXPORT_SYMBOL_GPL(edid_info);
 216
 217extern int root_mountflags;
 218
 219unsigned long saved_video_mode;
 220
 221#define RAMDISK_IMAGE_START_MASK        0x07FF
 222#define RAMDISK_PROMPT_FLAG             0x8000
 223#define RAMDISK_LOAD_FLAG               0x4000
 224
 225static char __initdata command_line[COMMAND_LINE_SIZE];
 226#ifdef CONFIG_CMDLINE_BOOL
 227static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 228#endif
 229
 230#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 231struct edd edd;
 232#ifdef CONFIG_EDD_MODULE
 233EXPORT_SYMBOL(edd);
 234#endif
 235/**
 236 * copy_edd() - Copy the BIOS EDD information
 237 *              from boot_params into a safe place.
 238 *
 239 */
 240static inline void __init copy_edd(void)
 241{
 242     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 243            sizeof(edd.mbr_signature));
 244     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 245     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 246     edd.edd_info_nr = boot_params.eddbuf_entries;
 247}
 248#else
 249static inline void __init copy_edd(void)
 250{
 251}
 252#endif
 253
 254void * __init extend_brk(size_t size, size_t align)
 255{
 256        size_t mask = align - 1;
 257        void *ret;
 258
 259        BUG_ON(_brk_start == 0);
 260        BUG_ON(align & mask);
 261
 262        _brk_end = (_brk_end + mask) & ~mask;
 263        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 264
 265        ret = (void *)_brk_end;
 266        _brk_end += size;
 267
 268        memset(ret, 0, size);
 269
 270        return ret;
 271}
 272
 273#ifdef CONFIG_X86_32
 274static void __init cleanup_highmap(void)
 275{
 276}
 277#endif
 278
 279static void __init reserve_brk(void)
 280{
 281        if (_brk_end > _brk_start)
 282                memblock_reserve(__pa_symbol(_brk_start),
 283                                 _brk_end - _brk_start);
 284
 285        /* Mark brk area as locked down and no longer taking any
 286           new allocations */
 287        _brk_start = 0;
 288}
 289
 290u64 relocated_ramdisk;
 291
 292#ifdef CONFIG_BLK_DEV_INITRD
 293
 294static u64 __init get_ramdisk_image(void)
 295{
 296        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 297
 298        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 299
 300        return ramdisk_image;
 301}
 302static u64 __init get_ramdisk_size(void)
 303{
 304        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 305
 306        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 307
 308        return ramdisk_size;
 309}
 310
 311static void __init relocate_initrd(void)
 312{
 313        /* Assume only end is not page aligned */
 314        u64 ramdisk_image = get_ramdisk_image();
 315        u64 ramdisk_size  = get_ramdisk_size();
 316        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 317
 318        /* We need to move the initrd down into directly mapped mem */
 319        relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 320                                                   area_size, PAGE_SIZE);
 321
 322        if (!relocated_ramdisk)
 323                panic("Cannot find place for new RAMDISK of size %lld\n",
 324                      ramdisk_size);
 325
 326        /* Note: this includes all the mem currently occupied by
 327           the initrd, we rely on that fact to keep the data intact. */
 328        memblock_reserve(relocated_ramdisk, area_size);
 329        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 330        initrd_end   = initrd_start + ramdisk_size;
 331        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 332               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 333
 334        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 335
 336        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 337                " [mem %#010llx-%#010llx]\n",
 338                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 339                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 340}
 341
 342static void __init early_reserve_initrd(void)
 343{
 344        /* Assume only end is not page aligned */
 345        u64 ramdisk_image = get_ramdisk_image();
 346        u64 ramdisk_size  = get_ramdisk_size();
 347        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 348
 349        if (!boot_params.hdr.type_of_loader ||
 350            !ramdisk_image || !ramdisk_size)
 351                return;         /* No initrd provided by bootloader */
 352
 353        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 354}
 355static void __init reserve_initrd(void)
 356{
 357        /* Assume only end is not page aligned */
 358        u64 ramdisk_image = get_ramdisk_image();
 359        u64 ramdisk_size  = get_ramdisk_size();
 360        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 361        u64 mapped_size;
 362
 363        if (!boot_params.hdr.type_of_loader ||
 364            !ramdisk_image || !ramdisk_size)
 365                return;         /* No initrd provided by bootloader */
 366
 367        initrd_start = 0;
 368
 369        mapped_size = memblock_mem_size(max_pfn_mapped);
 370        if (ramdisk_size >= (mapped_size>>1))
 371                panic("initrd too large to handle, "
 372                       "disabling initrd (%lld needed, %lld available)\n",
 373                       ramdisk_size, mapped_size>>1);
 374
 375        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 376                        ramdisk_end - 1);
 377
 378        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 379                                PFN_DOWN(ramdisk_end))) {
 380                /* All are mapped, easy case */
 381                initrd_start = ramdisk_image + PAGE_OFFSET;
 382                initrd_end = initrd_start + ramdisk_size;
 383                return;
 384        }
 385
 386        relocate_initrd();
 387
 388        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 389}
 390
 391#else
 392static void __init early_reserve_initrd(void)
 393{
 394}
 395static void __init reserve_initrd(void)
 396{
 397}
 398#endif /* CONFIG_BLK_DEV_INITRD */
 399
 400static void __init parse_setup_data(void)
 401{
 402        struct setup_data *data;
 403        u64 pa_data, pa_next;
 404
 405        pa_data = boot_params.hdr.setup_data;
 406        while (pa_data) {
 407                u32 data_len, data_type;
 408
 409                data = early_memremap(pa_data, sizeof(*data));
 410                data_len = data->len + sizeof(struct setup_data);
 411                data_type = data->type;
 412                pa_next = data->next;
 413                early_memunmap(data, sizeof(*data));
 414
 415                switch (data_type) {
 416                case SETUP_E820_EXT:
 417                        e820__memory_setup_extended(pa_data, data_len);
 418                        break;
 419                case SETUP_DTB:
 420                        add_dtb(pa_data);
 421                        break;
 422                case SETUP_EFI:
 423                        parse_efi_setup(pa_data, data_len);
 424                        break;
 425                default:
 426                        break;
 427                }
 428                pa_data = pa_next;
 429        }
 430}
 431
 432static void __init memblock_x86_reserve_range_setup_data(void)
 433{
 434        struct setup_data *data;
 435        u64 pa_data;
 436
 437        pa_data = boot_params.hdr.setup_data;
 438        while (pa_data) {
 439                data = early_memremap(pa_data, sizeof(*data));
 440                memblock_reserve(pa_data, sizeof(*data) + data->len);
 441                pa_data = data->next;
 442                early_memunmap(data, sizeof(*data));
 443        }
 444}
 445
 446/*
 447 * --------- Crashkernel reservation ------------------------------
 448 */
 449
 450#ifdef CONFIG_KEXEC_CORE
 451
 452/* 16M alignment for crash kernel regions */
 453#define CRASH_ALIGN             (16 << 20)
 454
 455/*
 456 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 457 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 458 * On 64bit, old kexec-tools need to under 896MiB.
 459 */
 460#ifdef CONFIG_X86_32
 461# define CRASH_ADDR_LOW_MAX     (512 << 20)
 462# define CRASH_ADDR_HIGH_MAX    (512 << 20)
 463#else
 464# define CRASH_ADDR_LOW_MAX     (896UL << 20)
 465# define CRASH_ADDR_HIGH_MAX    MAXMEM
 466#endif
 467
 468static int __init reserve_crashkernel_low(void)
 469{
 470#ifdef CONFIG_X86_64
 471        unsigned long long base, low_base = 0, low_size = 0;
 472        unsigned long total_low_mem;
 473        int ret;
 474
 475        total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 476
 477        /* crashkernel=Y,low */
 478        ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 479        if (ret) {
 480                /*
 481                 * two parts from lib/swiotlb.c:
 482                 * -swiotlb size: user-specified with swiotlb= or default.
 483                 *
 484                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 485                 * to 8M for other buffers that may need to stay low too. Also
 486                 * make sure we allocate enough extra low memory so that we
 487                 * don't run out of DMA buffers for 32-bit devices.
 488                 */
 489                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 490        } else {
 491                /* passed with crashkernel=0,low ? */
 492                if (!low_size)
 493                        return 0;
 494        }
 495
 496        low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 497        if (!low_base) {
 498                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 499                       (unsigned long)(low_size >> 20));
 500                return -ENOMEM;
 501        }
 502
 503        ret = memblock_reserve(low_base, low_size);
 504        if (ret) {
 505                pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 506                return ret;
 507        }
 508
 509        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 510                (unsigned long)(low_size >> 20),
 511                (unsigned long)(low_base >> 20),
 512                (unsigned long)(total_low_mem >> 20));
 513
 514        crashk_low_res.start = low_base;
 515        crashk_low_res.end   = low_base + low_size - 1;
 516        insert_resource(&iomem_resource, &crashk_low_res);
 517#endif
 518        return 0;
 519}
 520
 521static void __init reserve_crashkernel(void)
 522{
 523        unsigned long long crash_size, crash_base, total_mem;
 524        bool high = false;
 525        int ret;
 526
 527        total_mem = memblock_phys_mem_size();
 528
 529        /* crashkernel=XM */
 530        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 531        if (ret != 0 || crash_size <= 0) {
 532                /* crashkernel=X,high */
 533                ret = parse_crashkernel_high(boot_command_line, total_mem,
 534                                             &crash_size, &crash_base);
 535                if (ret != 0 || crash_size <= 0)
 536                        return;
 537                high = true;
 538        }
 539
 540        /* 0 means: find the address automatically */
 541        if (crash_base <= 0) {
 542                /*
 543                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 544                 * as old kexec-tools loads bzImage below that, unless
 545                 * "crashkernel=size[KMG],high" is specified.
 546                 */
 547                crash_base = memblock_find_in_range(CRASH_ALIGN,
 548                                                    high ? CRASH_ADDR_HIGH_MAX
 549                                                         : CRASH_ADDR_LOW_MAX,
 550                                                    crash_size, CRASH_ALIGN);
 551                if (!crash_base) {
 552                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 553                        return;
 554                }
 555
 556        } else {
 557                unsigned long long start;
 558
 559                start = memblock_find_in_range(crash_base,
 560                                               crash_base + crash_size,
 561                                               crash_size, 1 << 20);
 562                if (start != crash_base) {
 563                        pr_info("crashkernel reservation failed - memory is in use.\n");
 564                        return;
 565                }
 566        }
 567        ret = memblock_reserve(crash_base, crash_size);
 568        if (ret) {
 569                pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 570                return;
 571        }
 572
 573        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 574                memblock_free(crash_base, crash_size);
 575                return;
 576        }
 577
 578        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 579                (unsigned long)(crash_size >> 20),
 580                (unsigned long)(crash_base >> 20),
 581                (unsigned long)(total_mem >> 20));
 582
 583        crashk_res.start = crash_base;
 584        crashk_res.end   = crash_base + crash_size - 1;
 585        insert_resource(&iomem_resource, &crashk_res);
 586}
 587#else
 588static void __init reserve_crashkernel(void)
 589{
 590}
 591#endif
 592
 593static struct resource standard_io_resources[] = {
 594        { .name = "dma1", .start = 0x00, .end = 0x1f,
 595                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 596        { .name = "pic1", .start = 0x20, .end = 0x21,
 597                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 598        { .name = "timer0", .start = 0x40, .end = 0x43,
 599                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 600        { .name = "timer1", .start = 0x50, .end = 0x53,
 601                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 602        { .name = "keyboard", .start = 0x60, .end = 0x60,
 603                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 604        { .name = "keyboard", .start = 0x64, .end = 0x64,
 605                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 606        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 607                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 608        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 609                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 610        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 611                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 612        { .name = "fpu", .start = 0xf0, .end = 0xff,
 613                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 614};
 615
 616void __init reserve_standard_io_resources(void)
 617{
 618        int i;
 619
 620        /* request I/O space for devices used on all i[345]86 PCs */
 621        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 622                request_resource(&ioport_resource, &standard_io_resources[i]);
 623
 624}
 625
 626static __init void reserve_ibft_region(void)
 627{
 628        unsigned long addr, size = 0;
 629
 630        addr = find_ibft_region(&size);
 631
 632        if (size)
 633                memblock_reserve(addr, size);
 634}
 635
 636static bool __init snb_gfx_workaround_needed(void)
 637{
 638#ifdef CONFIG_PCI
 639        int i;
 640        u16 vendor, devid;
 641        static const __initconst u16 snb_ids[] = {
 642                0x0102,
 643                0x0112,
 644                0x0122,
 645                0x0106,
 646                0x0116,
 647                0x0126,
 648                0x010a,
 649        };
 650
 651        /* Assume no if something weird is going on with PCI */
 652        if (!early_pci_allowed())
 653                return false;
 654
 655        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 656        if (vendor != 0x8086)
 657                return false;
 658
 659        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 660        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 661                if (devid == snb_ids[i])
 662                        return true;
 663#endif
 664
 665        return false;
 666}
 667
 668/*
 669 * Sandy Bridge graphics has trouble with certain ranges, exclude
 670 * them from allocation.
 671 */
 672static void __init trim_snb_memory(void)
 673{
 674        static const __initconst unsigned long bad_pages[] = {
 675                0x20050000,
 676                0x20110000,
 677                0x20130000,
 678                0x20138000,
 679                0x40004000,
 680        };
 681        int i;
 682
 683        if (!snb_gfx_workaround_needed())
 684                return;
 685
 686        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 687
 688        /*
 689         * Reserve all memory below the 1 MB mark that has not
 690         * already been reserved.
 691         */
 692        memblock_reserve(0, 1<<20);
 693        
 694        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 695                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 696                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 697                               bad_pages[i]);
 698        }
 699}
 700
 701/*
 702 * Here we put platform-specific memory range workarounds, i.e.
 703 * memory known to be corrupt or otherwise in need to be reserved on
 704 * specific platforms.
 705 *
 706 * If this gets used more widely it could use a real dispatch mechanism.
 707 */
 708static void __init trim_platform_memory_ranges(void)
 709{
 710        trim_snb_memory();
 711}
 712
 713static void __init trim_bios_range(void)
 714{
 715        /*
 716         * A special case is the first 4Kb of memory;
 717         * This is a BIOS owned area, not kernel ram, but generally
 718         * not listed as such in the E820 table.
 719         *
 720         * This typically reserves additional memory (64KiB by default)
 721         * since some BIOSes are known to corrupt low memory.  See the
 722         * Kconfig help text for X86_RESERVE_LOW.
 723         */
 724        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 725
 726        /*
 727         * special case: Some BIOSen report the PC BIOS
 728         * area (640->1Mb) as ram even though it is not.
 729         * take them out.
 730         */
 731        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 732
 733        e820__update_table(e820_table);
 734}
 735
 736/* called before trim_bios_range() to spare extra sanitize */
 737static void __init e820_add_kernel_range(void)
 738{
 739        u64 start = __pa_symbol(_text);
 740        u64 size = __pa_symbol(_end) - start;
 741
 742        /*
 743         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 744         * attempt to fix it by adding the range. We may have a confused BIOS,
 745         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 746         * exclude kernel range. If we really are running on top non-RAM,
 747         * we will crash later anyways.
 748         */
 749        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 750                return;
 751
 752        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 753        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 754        e820__range_add(start, size, E820_TYPE_RAM);
 755}
 756
 757static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 758
 759static int __init parse_reservelow(char *p)
 760{
 761        unsigned long long size;
 762
 763        if (!p)
 764                return -EINVAL;
 765
 766        size = memparse(p, &p);
 767
 768        if (size < 4096)
 769                size = 4096;
 770
 771        if (size > 640*1024)
 772                size = 640*1024;
 773
 774        reserve_low = size;
 775
 776        return 0;
 777}
 778
 779early_param("reservelow", parse_reservelow);
 780
 781static void __init trim_low_memory_range(void)
 782{
 783        memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 784}
 785        
 786/*
 787 * Dump out kernel offset information on panic.
 788 */
 789static int
 790dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 791{
 792        if (kaslr_enabled()) {
 793                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 794                         kaslr_offset(),
 795                         __START_KERNEL,
 796                         __START_KERNEL_map,
 797                         MODULES_VADDR-1);
 798        } else {
 799                pr_emerg("Kernel Offset: disabled\n");
 800        }
 801
 802        return 0;
 803}
 804
 805/*
 806 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 807 * passed the efi memmap, systab, etc., so we should use these data structures
 808 * for initialization.  Note, the efi init code path is determined by the
 809 * global efi_enabled. This allows the same kernel image to be used on existing
 810 * systems (with a traditional BIOS) as well as on EFI systems.
 811 */
 812/*
 813 * setup_arch - architecture-specific boot-time initializations
 814 *
 815 * Note: On x86_64, fixmaps are ready for use even before this is called.
 816 */
 817
 818void __init setup_arch(char **cmdline_p)
 819{
 820        memblock_reserve(__pa_symbol(_text),
 821                         (unsigned long)__bss_stop - (unsigned long)_text);
 822
 823        early_reserve_initrd();
 824
 825        /*
 826         * At this point everything still needed from the boot loader
 827         * or BIOS or kernel text should be early reserved or marked not
 828         * RAM in e820. All other memory is free game.
 829         */
 830
 831#ifdef CONFIG_X86_32
 832        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 833
 834        /*
 835         * copy kernel address range established so far and switch
 836         * to the proper swapper page table
 837         */
 838        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 839                        initial_page_table + KERNEL_PGD_BOUNDARY,
 840                        KERNEL_PGD_PTRS);
 841
 842        load_cr3(swapper_pg_dir);
 843        /*
 844         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 845         * a cr3 based tlb flush, so the following __flush_tlb_all()
 846         * will not flush anything because the cpu quirk which clears
 847         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 848         * load_cr3() above the TLB has been flushed already. The
 849         * quirk is invoked before subsequent calls to __flush_tlb_all()
 850         * so proper operation is guaranteed.
 851         */
 852        __flush_tlb_all();
 853#else
 854        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 855#endif
 856
 857        /*
 858         * If we have OLPC OFW, we might end up relocating the fixmap due to
 859         * reserve_top(), so do this before touching the ioremap area.
 860         */
 861        olpc_ofw_detect();
 862
 863        idt_setup_early_traps();
 864        early_cpu_init();
 865        early_ioremap_init();
 866
 867        setup_olpc_ofw_pgd();
 868
 869        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 870        screen_info = boot_params.screen_info;
 871        edid_info = boot_params.edid_info;
 872#ifdef CONFIG_X86_32
 873        apm_info.bios = boot_params.apm_bios_info;
 874        ist_info = boot_params.ist_info;
 875#endif
 876        saved_video_mode = boot_params.hdr.vid_mode;
 877        bootloader_type = boot_params.hdr.type_of_loader;
 878        if ((bootloader_type >> 4) == 0xe) {
 879                bootloader_type &= 0xf;
 880                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 881        }
 882        bootloader_version  = bootloader_type & 0xf;
 883        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 884
 885#ifdef CONFIG_BLK_DEV_RAM
 886        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 887        rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 888        rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 889#endif
 890#ifdef CONFIG_EFI
 891        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 892                     EFI32_LOADER_SIGNATURE, 4)) {
 893                set_bit(EFI_BOOT, &efi.flags);
 894        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 895                     EFI64_LOADER_SIGNATURE, 4)) {
 896                set_bit(EFI_BOOT, &efi.flags);
 897                set_bit(EFI_64BIT, &efi.flags);
 898        }
 899#endif
 900
 901        x86_init.oem.arch_setup();
 902
 903        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 904        e820__memory_setup();
 905        parse_setup_data();
 906
 907        copy_edd();
 908
 909        if (!boot_params.hdr.root_flags)
 910                root_mountflags &= ~MS_RDONLY;
 911        init_mm.start_code = (unsigned long) _text;
 912        init_mm.end_code = (unsigned long) _etext;
 913        init_mm.end_data = (unsigned long) _edata;
 914        init_mm.brk = _brk_end;
 915
 916        mpx_mm_init(&init_mm);
 917
 918        code_resource.start = __pa_symbol(_text);
 919        code_resource.end = __pa_symbol(_etext)-1;
 920        data_resource.start = __pa_symbol(_etext);
 921        data_resource.end = __pa_symbol(_edata)-1;
 922        bss_resource.start = __pa_symbol(__bss_start);
 923        bss_resource.end = __pa_symbol(__bss_stop)-1;
 924
 925#ifdef CONFIG_CMDLINE_BOOL
 926#ifdef CONFIG_CMDLINE_OVERRIDE
 927        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 928#else
 929        if (builtin_cmdline[0]) {
 930                /* append boot loader cmdline to builtin */
 931                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 932                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 933                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 934        }
 935#endif
 936#endif
 937
 938        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 939        *cmdline_p = command_line;
 940
 941        /*
 942         * x86_configure_nx() is called before parse_early_param() to detect
 943         * whether hardware doesn't support NX (so that the early EHCI debug
 944         * console setup can safely call set_fixmap()). It may then be called
 945         * again from within noexec_setup() during parsing early parameters
 946         * to honor the respective command line option.
 947         */
 948        x86_configure_nx();
 949
 950        parse_early_param();
 951
 952        if (efi_enabled(EFI_BOOT))
 953                efi_memblock_x86_reserve_range();
 954#ifdef CONFIG_MEMORY_HOTPLUG
 955        /*
 956         * Memory used by the kernel cannot be hot-removed because Linux
 957         * cannot migrate the kernel pages. When memory hotplug is
 958         * enabled, we should prevent memblock from allocating memory
 959         * for the kernel.
 960         *
 961         * ACPI SRAT records all hotpluggable memory ranges. But before
 962         * SRAT is parsed, we don't know about it.
 963         *
 964         * The kernel image is loaded into memory at very early time. We
 965         * cannot prevent this anyway. So on NUMA system, we set any
 966         * node the kernel resides in as un-hotpluggable.
 967         *
 968         * Since on modern servers, one node could have double-digit
 969         * gigabytes memory, we can assume the memory around the kernel
 970         * image is also un-hotpluggable. So before SRAT is parsed, just
 971         * allocate memory near the kernel image to try the best to keep
 972         * the kernel away from hotpluggable memory.
 973         */
 974        if (movable_node_is_enabled())
 975                memblock_set_bottom_up(true);
 976#endif
 977
 978        x86_report_nx();
 979
 980        /* after early param, so could get panic from serial */
 981        memblock_x86_reserve_range_setup_data();
 982
 983        if (acpi_mps_check()) {
 984#ifdef CONFIG_X86_LOCAL_APIC
 985                disable_apic = 1;
 986#endif
 987                setup_clear_cpu_cap(X86_FEATURE_APIC);
 988        }
 989
 990#ifdef CONFIG_PCI
 991        if (pci_early_dump_regs)
 992                early_dump_pci_devices();
 993#endif
 994
 995        e820__reserve_setup_data();
 996        e820__finish_early_params();
 997
 998        if (efi_enabled(EFI_BOOT))
 999                efi_init();
1000
1001        dmi_scan_machine();
1002        dmi_memdev_walk();
1003        dmi_set_dump_stack_arch_desc();
1004
1005        /*
1006         * VMware detection requires dmi to be available, so this
1007         * needs to be done after dmi_scan_machine(), for the boot CPU.
1008         */
1009        init_hypervisor_platform();
1010
1011        x86_init.resources.probe_roms();
1012
1013        /* after parse_early_param, so could debug it */
1014        insert_resource(&iomem_resource, &code_resource);
1015        insert_resource(&iomem_resource, &data_resource);
1016        insert_resource(&iomem_resource, &bss_resource);
1017
1018        e820_add_kernel_range();
1019        trim_bios_range();
1020#ifdef CONFIG_X86_32
1021        if (ppro_with_ram_bug()) {
1022                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1023                                  E820_TYPE_RESERVED);
1024                e820__update_table(e820_table);
1025                printk(KERN_INFO "fixed physical RAM map:\n");
1026                e820__print_table("bad_ppro");
1027        }
1028#else
1029        early_gart_iommu_check();
1030#endif
1031
1032        /*
1033         * partially used pages are not usable - thus
1034         * we are rounding upwards:
1035         */
1036        max_pfn = e820__end_of_ram_pfn();
1037
1038        /* update e820 for memory not covered by WB MTRRs */
1039        mtrr_bp_init();
1040        if (mtrr_trim_uncached_memory(max_pfn))
1041                max_pfn = e820__end_of_ram_pfn();
1042
1043        max_possible_pfn = max_pfn;
1044
1045        /*
1046         * This call is required when the CPU does not support PAT. If
1047         * mtrr_bp_init() invoked it already via pat_init() the call has no
1048         * effect.
1049         */
1050        init_cache_modes();
1051
1052        /*
1053         * Define random base addresses for memory sections after max_pfn is
1054         * defined and before each memory section base is used.
1055         */
1056        kernel_randomize_memory();
1057
1058#ifdef CONFIG_X86_32
1059        /* max_low_pfn get updated here */
1060        find_low_pfn_range();
1061#else
1062        check_x2apic();
1063
1064        /* How many end-of-memory variables you have, grandma! */
1065        /* need this before calling reserve_initrd */
1066        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1067                max_low_pfn = e820__end_of_low_ram_pfn();
1068        else
1069                max_low_pfn = max_pfn;
1070
1071        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1072#endif
1073
1074        /*
1075         * Find and reserve possible boot-time SMP configuration:
1076         */
1077        find_smp_config();
1078
1079        reserve_ibft_region();
1080
1081        early_alloc_pgt_buf();
1082
1083        /*
1084         * Need to conclude brk, before e820__memblock_setup()
1085         *  it could use memblock_find_in_range, could overlap with
1086         *  brk area.
1087         */
1088        reserve_brk();
1089
1090        cleanup_highmap();
1091
1092        memblock_set_current_limit(ISA_END_ADDRESS);
1093        e820__memblock_setup();
1094
1095        reserve_bios_regions();
1096
1097        if (efi_enabled(EFI_MEMMAP)) {
1098                efi_fake_memmap();
1099                efi_find_mirror();
1100                efi_esrt_init();
1101
1102                /*
1103                 * The EFI specification says that boot service code won't be
1104                 * called after ExitBootServices(). This is, in fact, a lie.
1105                 */
1106                efi_reserve_boot_services();
1107        }
1108
1109        /* preallocate 4k for mptable mpc */
1110        e820__memblock_alloc_reserved_mpc_new();
1111
1112#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1113        setup_bios_corruption_check();
1114#endif
1115
1116#ifdef CONFIG_X86_32
1117        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1118                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1119#endif
1120
1121        reserve_real_mode();
1122
1123        trim_platform_memory_ranges();
1124        trim_low_memory_range();
1125
1126        init_mem_mapping();
1127
1128        idt_setup_early_pf();
1129
1130        /*
1131         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1132         * with the current CR4 value.  This may not be necessary, but
1133         * auditing all the early-boot CR4 manipulation would be needed to
1134         * rule it out.
1135         *
1136         * Mask off features that don't work outside long mode (just
1137         * PCIDE for now).
1138         */
1139        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1140
1141        memblock_set_current_limit(get_max_mapped());
1142
1143        /*
1144         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1145         */
1146
1147#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1148        if (init_ohci1394_dma_early)
1149                init_ohci1394_dma_on_all_controllers();
1150#endif
1151        /* Allocate bigger log buffer */
1152        setup_log_buf(1);
1153
1154        if (efi_enabled(EFI_BOOT)) {
1155                switch (boot_params.secure_boot) {
1156                case efi_secureboot_mode_disabled:
1157                        pr_info("Secure boot disabled\n");
1158                        break;
1159                case efi_secureboot_mode_enabled:
1160                        pr_info("Secure boot enabled\n");
1161                        break;
1162                default:
1163                        pr_info("Secure boot could not be determined\n");
1164                        break;
1165                }
1166        }
1167
1168        reserve_initrd();
1169
1170        acpi_table_upgrade();
1171
1172        vsmp_init();
1173
1174        io_delay_init();
1175
1176        early_platform_quirks();
1177
1178        /*
1179         * Parse the ACPI tables for possible boot-time SMP configuration.
1180         */
1181        acpi_boot_table_init();
1182
1183        early_acpi_boot_init();
1184
1185        initmem_init();
1186        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1187
1188        /*
1189         * Reserve memory for crash kernel after SRAT is parsed so that it
1190         * won't consume hotpluggable memory.
1191         */
1192        reserve_crashkernel();
1193
1194        memblock_find_dma_reserve();
1195
1196#ifdef CONFIG_KVM_GUEST
1197        kvmclock_init();
1198#endif
1199
1200        tsc_early_delay_calibrate();
1201        if (!early_xdbc_setup_hardware())
1202                early_xdbc_register_console();
1203
1204        x86_init.paging.pagetable_init();
1205
1206        kasan_init();
1207
1208#ifdef CONFIG_X86_32
1209        /* sync back kernel address range */
1210        clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1211                        swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1212                        KERNEL_PGD_PTRS);
1213
1214        /*
1215         * sync back low identity map too.  It is used for example
1216         * in the 32-bit EFI stub.
1217         */
1218        clone_pgd_range(initial_page_table,
1219                        swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1220                        min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1221#endif
1222
1223        tboot_probe();
1224
1225        map_vsyscall();
1226
1227        generic_apic_probe();
1228
1229        early_quirks();
1230
1231        /*
1232         * Read APIC and some other early information from ACPI tables.
1233         */
1234        acpi_boot_init();
1235        sfi_init();
1236        x86_dtb_init();
1237
1238        /*
1239         * get boot-time SMP configuration:
1240         */
1241        get_smp_config();
1242
1243        /*
1244         * Systems w/o ACPI and mptables might not have it mapped the local
1245         * APIC yet, but prefill_possible_map() might need to access it.
1246         */
1247        init_apic_mappings();
1248
1249        prefill_possible_map();
1250
1251        init_cpu_to_node();
1252
1253        io_apic_init_mappings();
1254
1255        x86_init.hyper.guest_late_init();
1256
1257        e820__reserve_resources();
1258        e820__register_nosave_regions(max_low_pfn);
1259
1260        x86_init.resources.reserve_resources();
1261
1262        e820__setup_pci_gap();
1263
1264#ifdef CONFIG_VT
1265#if defined(CONFIG_VGA_CONSOLE)
1266        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1267                conswitchp = &vga_con;
1268#elif defined(CONFIG_DUMMY_CONSOLE)
1269        conswitchp = &dummy_con;
1270#endif
1271#endif
1272        x86_init.oem.banner();
1273
1274        x86_init.timers.wallclock_init();
1275
1276        mcheck_init();
1277
1278        arch_init_ideal_nops();
1279
1280        register_refined_jiffies(CLOCK_TICK_RATE);
1281
1282#ifdef CONFIG_EFI
1283        if (efi_enabled(EFI_BOOT))
1284                efi_apply_memmap_quirks();
1285#endif
1286
1287        unwind_init();
1288}
1289
1290#ifdef CONFIG_X86_32
1291
1292static struct resource video_ram_resource = {
1293        .name   = "Video RAM area",
1294        .start  = 0xa0000,
1295        .end    = 0xbffff,
1296        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1297};
1298
1299void __init i386_reserve_resources(void)
1300{
1301        request_resource(&iomem_resource, &video_ram_resource);
1302        reserve_standard_io_resources();
1303}
1304
1305#endif /* CONFIG_X86_32 */
1306
1307static struct notifier_block kernel_offset_notifier = {
1308        .notifier_call = dump_kernel_offset
1309};
1310
1311static int __init register_kernel_offset_dumper(void)
1312{
1313        atomic_notifier_chain_register(&panic_notifier_list,
1314                                        &kernel_offset_notifier);
1315        return 0;
1316}
1317__initcall(register_kernel_offset_dumper);
1318
1319void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1320{
1321        if (!boot_cpu_has(X86_FEATURE_OSPKE))
1322                return;
1323
1324        seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1325}
1326