linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 * cpuid support routines
   4 *
   5 * derived from arch/x86/kvm/x86.c
   6 *
   7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   8 * Copyright IBM Corporation, 2008
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2.  See
  11 * the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include <linux/kvm_host.h>
  16#include <linux/export.h>
  17#include <linux/vmalloc.h>
  18#include <linux/uaccess.h>
  19#include <linux/sched/stat.h>
  20
  21#include <asm/processor.h>
  22#include <asm/user.h>
  23#include <asm/fpu/xstate.h>
  24#include "cpuid.h"
  25#include "lapic.h"
  26#include "mmu.h"
  27#include "trace.h"
  28#include "pmu.h"
  29
  30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  31{
  32        int feature_bit = 0;
  33        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  34
  35        xstate_bv &= XFEATURE_MASK_EXTEND;
  36        while (xstate_bv) {
  37                if (xstate_bv & 0x1) {
  38                        u32 eax, ebx, ecx, edx, offset;
  39                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  40                        offset = compacted ? ret : ebx;
  41                        ret = max(ret, offset + eax);
  42                }
  43
  44                xstate_bv >>= 1;
  45                feature_bit++;
  46        }
  47
  48        return ret;
  49}
  50
  51bool kvm_mpx_supported(void)
  52{
  53        return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  54                 && kvm_x86_ops->mpx_supported());
  55}
  56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  57
  58u64 kvm_supported_xcr0(void)
  59{
  60        u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  61
  62        if (!kvm_mpx_supported())
  63                xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  64
  65        return xcr0;
  66}
  67
  68#define F(x) bit(X86_FEATURE_##x)
  69
  70/* These are scattered features in cpufeatures.h. */
  71#define KVM_CPUID_BIT_AVX512_4VNNIW     2
  72#define KVM_CPUID_BIT_AVX512_4FMAPS     3
  73#define KF(x) bit(KVM_CPUID_BIT_##x)
  74
  75int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  76{
  77        struct kvm_cpuid_entry2 *best;
  78        struct kvm_lapic *apic = vcpu->arch.apic;
  79
  80        best = kvm_find_cpuid_entry(vcpu, 1, 0);
  81        if (!best)
  82                return 0;
  83
  84        /* Update OSXSAVE bit */
  85        if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  86                best->ecx &= ~F(OSXSAVE);
  87                if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  88                        best->ecx |= F(OSXSAVE);
  89        }
  90
  91        best->edx &= ~F(APIC);
  92        if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  93                best->edx |= F(APIC);
  94
  95        if (apic) {
  96                if (best->ecx & F(TSC_DEADLINE_TIMER))
  97                        apic->lapic_timer.timer_mode_mask = 3 << 17;
  98                else
  99                        apic->lapic_timer.timer_mode_mask = 1 << 17;
 100        }
 101
 102        best = kvm_find_cpuid_entry(vcpu, 7, 0);
 103        if (best) {
 104                /* Update OSPKE bit */
 105                if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
 106                        best->ecx &= ~F(OSPKE);
 107                        if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
 108                                best->ecx |= F(OSPKE);
 109                }
 110        }
 111
 112        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 113        if (!best) {
 114                vcpu->arch.guest_supported_xcr0 = 0;
 115                vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 116        } else {
 117                vcpu->arch.guest_supported_xcr0 =
 118                        (best->eax | ((u64)best->edx << 32)) &
 119                        kvm_supported_xcr0();
 120                vcpu->arch.guest_xstate_size = best->ebx =
 121                        xstate_required_size(vcpu->arch.xcr0, false);
 122        }
 123
 124        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 125        if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
 126                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 127
 128        /*
 129         * The existing code assumes virtual address is 48-bit or 57-bit in the
 130         * canonical address checks; exit if it is ever changed.
 131         */
 132        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 133        if (best) {
 134                int vaddr_bits = (best->eax & 0xff00) >> 8;
 135
 136                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 137                        return -EINVAL;
 138        }
 139
 140        /* Update physical-address width */
 141        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 142        kvm_mmu_reset_context(vcpu);
 143
 144        kvm_pmu_refresh(vcpu);
 145        return 0;
 146}
 147
 148static int is_efer_nx(void)
 149{
 150        unsigned long long efer = 0;
 151
 152        rdmsrl_safe(MSR_EFER, &efer);
 153        return efer & EFER_NX;
 154}
 155
 156static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 157{
 158        int i;
 159        struct kvm_cpuid_entry2 *e, *entry;
 160
 161        entry = NULL;
 162        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 163                e = &vcpu->arch.cpuid_entries[i];
 164                if (e->function == 0x80000001) {
 165                        entry = e;
 166                        break;
 167                }
 168        }
 169        if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
 170                entry->edx &= ~F(NX);
 171                printk(KERN_INFO "kvm: guest NX capability removed\n");
 172        }
 173}
 174
 175int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 176{
 177        struct kvm_cpuid_entry2 *best;
 178
 179        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 180        if (!best || best->eax < 0x80000008)
 181                goto not_found;
 182        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 183        if (best)
 184                return best->eax & 0xff;
 185not_found:
 186        return 36;
 187}
 188EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 189
 190/* when an old userspace process fills a new kernel module */
 191int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 192                             struct kvm_cpuid *cpuid,
 193                             struct kvm_cpuid_entry __user *entries)
 194{
 195        int r, i;
 196        struct kvm_cpuid_entry *cpuid_entries = NULL;
 197
 198        r = -E2BIG;
 199        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 200                goto out;
 201        r = -ENOMEM;
 202        if (cpuid->nent) {
 203                cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
 204                                        cpuid->nent);
 205                if (!cpuid_entries)
 206                        goto out;
 207                r = -EFAULT;
 208                if (copy_from_user(cpuid_entries, entries,
 209                                   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 210                        goto out;
 211        }
 212        for (i = 0; i < cpuid->nent; i++) {
 213                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 214                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 215                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 216                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 217                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 218                vcpu->arch.cpuid_entries[i].index = 0;
 219                vcpu->arch.cpuid_entries[i].flags = 0;
 220                vcpu->arch.cpuid_entries[i].padding[0] = 0;
 221                vcpu->arch.cpuid_entries[i].padding[1] = 0;
 222                vcpu->arch.cpuid_entries[i].padding[2] = 0;
 223        }
 224        vcpu->arch.cpuid_nent = cpuid->nent;
 225        cpuid_fix_nx_cap(vcpu);
 226        kvm_apic_set_version(vcpu);
 227        kvm_x86_ops->cpuid_update(vcpu);
 228        r = kvm_update_cpuid(vcpu);
 229
 230out:
 231        vfree(cpuid_entries);
 232        return r;
 233}
 234
 235int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 236                              struct kvm_cpuid2 *cpuid,
 237                              struct kvm_cpuid_entry2 __user *entries)
 238{
 239        int r;
 240
 241        r = -E2BIG;
 242        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 243                goto out;
 244        r = -EFAULT;
 245        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 246                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 247                goto out;
 248        vcpu->arch.cpuid_nent = cpuid->nent;
 249        kvm_apic_set_version(vcpu);
 250        kvm_x86_ops->cpuid_update(vcpu);
 251        r = kvm_update_cpuid(vcpu);
 252out:
 253        return r;
 254}
 255
 256int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 257                              struct kvm_cpuid2 *cpuid,
 258                              struct kvm_cpuid_entry2 __user *entries)
 259{
 260        int r;
 261
 262        r = -E2BIG;
 263        if (cpuid->nent < vcpu->arch.cpuid_nent)
 264                goto out;
 265        r = -EFAULT;
 266        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 267                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 268                goto out;
 269        return 0;
 270
 271out:
 272        cpuid->nent = vcpu->arch.cpuid_nent;
 273        return r;
 274}
 275
 276static void cpuid_mask(u32 *word, int wordnum)
 277{
 278        *word &= boot_cpu_data.x86_capability[wordnum];
 279}
 280
 281static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 282                           u32 index)
 283{
 284        entry->function = function;
 285        entry->index = index;
 286        cpuid_count(entry->function, entry->index,
 287                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 288        entry->flags = 0;
 289}
 290
 291static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
 292                                   u32 func, u32 index, int *nent, int maxnent)
 293{
 294        switch (func) {
 295        case 0:
 296                entry->eax = 1;         /* only one leaf currently */
 297                ++*nent;
 298                break;
 299        case 1:
 300                entry->ecx = F(MOVBE);
 301                ++*nent;
 302                break;
 303        default:
 304                break;
 305        }
 306
 307        entry->function = func;
 308        entry->index = index;
 309
 310        return 0;
 311}
 312
 313static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 314                                 u32 index, int *nent, int maxnent)
 315{
 316        int r;
 317        unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 318#ifdef CONFIG_X86_64
 319        unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
 320                                ? F(GBPAGES) : 0;
 321        unsigned f_lm = F(LM);
 322#else
 323        unsigned f_gbpages = 0;
 324        unsigned f_lm = 0;
 325#endif
 326        unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
 327        unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
 328        unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
 329        unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
 330
 331        /* cpuid 1.edx */
 332        const u32 kvm_cpuid_1_edx_x86_features =
 333                F(FPU) | F(VME) | F(DE) | F(PSE) |
 334                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 335                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 336                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 337                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 338                0 /* Reserved, DS, ACPI */ | F(MMX) |
 339                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 340                0 /* HTT, TM, Reserved, PBE */;
 341        /* cpuid 0x80000001.edx */
 342        const u32 kvm_cpuid_8000_0001_edx_x86_features =
 343                F(FPU) | F(VME) | F(DE) | F(PSE) |
 344                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 345                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 346                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 347                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 348                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 349                F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
 350                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 351        /* cpuid 1.ecx */
 352        const u32 kvm_cpuid_1_ecx_x86_features =
 353                /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
 354                 * but *not* advertised to guests via CPUID ! */
 355                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 356                0 /* DS-CPL, VMX, SMX, EST */ |
 357                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 358                F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
 359                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 360                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 361                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 362                F(F16C) | F(RDRAND);
 363        /* cpuid 0x80000001.ecx */
 364        const u32 kvm_cpuid_8000_0001_ecx_x86_features =
 365                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 366                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 367                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 368                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
 369
 370        /* cpuid 0xC0000001.edx */
 371        const u32 kvm_cpuid_C000_0001_edx_x86_features =
 372                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 373                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 374                F(PMM) | F(PMM_EN);
 375
 376        /* cpuid 7.0.ebx */
 377        const u32 kvm_cpuid_7_0_ebx_x86_features =
 378                F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 379                F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
 380                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 381                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 382                F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
 383
 384        /* cpuid 0xD.1.eax */
 385        const u32 kvm_cpuid_D_1_eax_x86_features =
 386                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
 387
 388        /* cpuid 7.0.ecx*/
 389        const u32 kvm_cpuid_7_0_ecx_x86_features =
 390                F(AVX512VBMI) | F(LA57) | F(PKU) |
 391                0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
 392
 393        /* cpuid 7.0.edx*/
 394        const u32 kvm_cpuid_7_0_edx_x86_features =
 395                KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
 396
 397        /* all calls to cpuid_count() should be made on the same cpu */
 398        get_cpu();
 399
 400        r = -E2BIG;
 401
 402        if (*nent >= maxnent)
 403                goto out;
 404
 405        do_cpuid_1_ent(entry, function, index);
 406        ++*nent;
 407
 408        switch (function) {
 409        case 0:
 410                entry->eax = min(entry->eax, (u32)0xd);
 411                break;
 412        case 1:
 413                entry->edx &= kvm_cpuid_1_edx_x86_features;
 414                cpuid_mask(&entry->edx, CPUID_1_EDX);
 415                entry->ecx &= kvm_cpuid_1_ecx_x86_features;
 416                cpuid_mask(&entry->ecx, CPUID_1_ECX);
 417                /* we support x2apic emulation even if host does not support
 418                 * it since we emulate x2apic in software */
 419                entry->ecx |= F(X2APIC);
 420                break;
 421        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
 422         * may return different values. This forces us to get_cpu() before
 423         * issuing the first command, and also to emulate this annoying behavior
 424         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 425        case 2: {
 426                int t, times = entry->eax & 0xff;
 427
 428                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 429                entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 430                for (t = 1; t < times; ++t) {
 431                        if (*nent >= maxnent)
 432                                goto out;
 433
 434                        do_cpuid_1_ent(&entry[t], function, 0);
 435                        entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 436                        ++*nent;
 437                }
 438                break;
 439        }
 440        /* function 4 has additional index. */
 441        case 4: {
 442                int i, cache_type;
 443
 444                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 445                /* read more entries until cache_type is zero */
 446                for (i = 1; ; ++i) {
 447                        if (*nent >= maxnent)
 448                                goto out;
 449
 450                        cache_type = entry[i - 1].eax & 0x1f;
 451                        if (!cache_type)
 452                                break;
 453                        do_cpuid_1_ent(&entry[i], function, i);
 454                        entry[i].flags |=
 455                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 456                        ++*nent;
 457                }
 458                break;
 459        }
 460        case 6: /* Thermal management */
 461                entry->eax = 0x4; /* allow ARAT */
 462                entry->ebx = 0;
 463                entry->ecx = 0;
 464                entry->edx = 0;
 465                break;
 466        case 7: {
 467                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 468                /* Mask ebx against host capability word 9 */
 469                if (index == 0) {
 470                        entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
 471                        cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
 472                        // TSC_ADJUST is emulated
 473                        entry->ebx |= F(TSC_ADJUST);
 474                        entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
 475                        cpuid_mask(&entry->ecx, CPUID_7_ECX);
 476                        /* PKU is not yet implemented for shadow paging. */
 477                        if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 478                                entry->ecx &= ~F(PKU);
 479                        entry->edx &= kvm_cpuid_7_0_edx_x86_features;
 480                        entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
 481                } else {
 482                        entry->ebx = 0;
 483                        entry->ecx = 0;
 484                        entry->edx = 0;
 485                }
 486                entry->eax = 0;
 487                break;
 488        }
 489        case 9:
 490                break;
 491        case 0xa: { /* Architectural Performance Monitoring */
 492                struct x86_pmu_capability cap;
 493                union cpuid10_eax eax;
 494                union cpuid10_edx edx;
 495
 496                perf_get_x86_pmu_capability(&cap);
 497
 498                /*
 499                 * Only support guest architectural pmu on a host
 500                 * with architectural pmu.
 501                 */
 502                if (!cap.version)
 503                        memset(&cap, 0, sizeof(cap));
 504
 505                eax.split.version_id = min(cap.version, 2);
 506                eax.split.num_counters = cap.num_counters_gp;
 507                eax.split.bit_width = cap.bit_width_gp;
 508                eax.split.mask_length = cap.events_mask_len;
 509
 510                edx.split.num_counters_fixed = cap.num_counters_fixed;
 511                edx.split.bit_width_fixed = cap.bit_width_fixed;
 512                edx.split.reserved = 0;
 513
 514                entry->eax = eax.full;
 515                entry->ebx = cap.events_mask;
 516                entry->ecx = 0;
 517                entry->edx = edx.full;
 518                break;
 519        }
 520        /* function 0xb has additional index. */
 521        case 0xb: {
 522                int i, level_type;
 523
 524                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 525                /* read more entries until level_type is zero */
 526                for (i = 1; ; ++i) {
 527                        if (*nent >= maxnent)
 528                                goto out;
 529
 530                        level_type = entry[i - 1].ecx & 0xff00;
 531                        if (!level_type)
 532                                break;
 533                        do_cpuid_1_ent(&entry[i], function, i);
 534                        entry[i].flags |=
 535                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 536                        ++*nent;
 537                }
 538                break;
 539        }
 540        case 0xd: {
 541                int idx, i;
 542                u64 supported = kvm_supported_xcr0();
 543
 544                entry->eax &= supported;
 545                entry->ebx = xstate_required_size(supported, false);
 546                entry->ecx = entry->ebx;
 547                entry->edx &= supported >> 32;
 548                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 549                if (!supported)
 550                        break;
 551
 552                for (idx = 1, i = 1; idx < 64; ++idx) {
 553                        u64 mask = ((u64)1 << idx);
 554                        if (*nent >= maxnent)
 555                                goto out;
 556
 557                        do_cpuid_1_ent(&entry[i], function, idx);
 558                        if (idx == 1) {
 559                                entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
 560                                cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
 561                                entry[i].ebx = 0;
 562                                if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
 563                                        entry[i].ebx =
 564                                                xstate_required_size(supported,
 565                                                                     true);
 566                        } else {
 567                                if (entry[i].eax == 0 || !(supported & mask))
 568                                        continue;
 569                                if (WARN_ON_ONCE(entry[i].ecx & 1))
 570                                        continue;
 571                        }
 572                        entry[i].ecx = 0;
 573                        entry[i].edx = 0;
 574                        entry[i].flags |=
 575                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 576                        ++*nent;
 577                        ++i;
 578                }
 579                break;
 580        }
 581        case KVM_CPUID_SIGNATURE: {
 582                static const char signature[12] = "KVMKVMKVM\0\0";
 583                const u32 *sigptr = (const u32 *)signature;
 584                entry->eax = KVM_CPUID_FEATURES;
 585                entry->ebx = sigptr[0];
 586                entry->ecx = sigptr[1];
 587                entry->edx = sigptr[2];
 588                break;
 589        }
 590        case KVM_CPUID_FEATURES:
 591                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 592                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 593                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 594                             (1 << KVM_FEATURE_ASYNC_PF) |
 595                             (1 << KVM_FEATURE_PV_EOI) |
 596                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 597                             (1 << KVM_FEATURE_PV_UNHALT);
 598
 599                if (sched_info_on())
 600                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 601
 602                entry->ebx = 0;
 603                entry->ecx = 0;
 604                entry->edx = 0;
 605                break;
 606        case 0x80000000:
 607                entry->eax = min(entry->eax, 0x8000001a);
 608                break;
 609        case 0x80000001:
 610                entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
 611                cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
 612                entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
 613                cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 614                break;
 615        case 0x80000007: /* Advanced power management */
 616                /* invariant TSC is CPUID.80000007H:EDX[8] */
 617                entry->edx &= (1 << 8);
 618                /* mask against host */
 619                entry->edx &= boot_cpu_data.x86_power;
 620                entry->eax = entry->ebx = entry->ecx = 0;
 621                break;
 622        case 0x80000008: {
 623                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 624                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 625                unsigned phys_as = entry->eax & 0xff;
 626
 627                if (!g_phys_as)
 628                        g_phys_as = phys_as;
 629                entry->eax = g_phys_as | (virt_as << 8);
 630                entry->ebx = entry->edx = 0;
 631                break;
 632        }
 633        case 0x80000019:
 634                entry->ecx = entry->edx = 0;
 635                break;
 636        case 0x8000001a:
 637                break;
 638        case 0x8000001d:
 639                break;
 640        /*Add support for Centaur's CPUID instruction*/
 641        case 0xC0000000:
 642                /*Just support up to 0xC0000004 now*/
 643                entry->eax = min(entry->eax, 0xC0000004);
 644                break;
 645        case 0xC0000001:
 646                entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
 647                cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
 648                break;
 649        case 3: /* Processor serial number */
 650        case 5: /* MONITOR/MWAIT */
 651        case 0xC0000002:
 652        case 0xC0000003:
 653        case 0xC0000004:
 654        default:
 655                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 656                break;
 657        }
 658
 659        kvm_x86_ops->set_supported_cpuid(function, entry);
 660
 661        r = 0;
 662
 663out:
 664        put_cpu();
 665
 666        return r;
 667}
 668
 669static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
 670                        u32 idx, int *nent, int maxnent, unsigned int type)
 671{
 672        if (type == KVM_GET_EMULATED_CPUID)
 673                return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
 674
 675        return __do_cpuid_ent(entry, func, idx, nent, maxnent);
 676}
 677
 678#undef F
 679
 680struct kvm_cpuid_param {
 681        u32 func;
 682        u32 idx;
 683        bool has_leaf_count;
 684        bool (*qualifier)(const struct kvm_cpuid_param *param);
 685};
 686
 687static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
 688{
 689        return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
 690}
 691
 692static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 693                                 __u32 num_entries, unsigned int ioctl_type)
 694{
 695        int i;
 696        __u32 pad[3];
 697
 698        if (ioctl_type != KVM_GET_EMULATED_CPUID)
 699                return false;
 700
 701        /*
 702         * We want to make sure that ->padding is being passed clean from
 703         * userspace in case we want to use it for something in the future.
 704         *
 705         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 706         * have to give ourselves satisfied only with the emulated side. /me
 707         * sheds a tear.
 708         */
 709        for (i = 0; i < num_entries; i++) {
 710                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 711                        return true;
 712
 713                if (pad[0] || pad[1] || pad[2])
 714                        return true;
 715        }
 716        return false;
 717}
 718
 719int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 720                            struct kvm_cpuid_entry2 __user *entries,
 721                            unsigned int type)
 722{
 723        struct kvm_cpuid_entry2 *cpuid_entries;
 724        int limit, nent = 0, r = -E2BIG, i;
 725        u32 func;
 726        static const struct kvm_cpuid_param param[] = {
 727                { .func = 0, .has_leaf_count = true },
 728                { .func = 0x80000000, .has_leaf_count = true },
 729                { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
 730                { .func = KVM_CPUID_SIGNATURE },
 731                { .func = KVM_CPUID_FEATURES },
 732        };
 733
 734        if (cpuid->nent < 1)
 735                goto out;
 736        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 737                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 738
 739        if (sanity_check_entries(entries, cpuid->nent, type))
 740                return -EINVAL;
 741
 742        r = -ENOMEM;
 743        cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
 744        if (!cpuid_entries)
 745                goto out;
 746
 747        r = 0;
 748        for (i = 0; i < ARRAY_SIZE(param); i++) {
 749                const struct kvm_cpuid_param *ent = &param[i];
 750
 751                if (ent->qualifier && !ent->qualifier(ent))
 752                        continue;
 753
 754                r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
 755                                &nent, cpuid->nent, type);
 756
 757                if (r)
 758                        goto out_free;
 759
 760                if (!ent->has_leaf_count)
 761                        continue;
 762
 763                limit = cpuid_entries[nent - 1].eax;
 764                for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
 765                        r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
 766                                     &nent, cpuid->nent, type);
 767
 768                if (r)
 769                        goto out_free;
 770        }
 771
 772        r = -EFAULT;
 773        if (copy_to_user(entries, cpuid_entries,
 774                         nent * sizeof(struct kvm_cpuid_entry2)))
 775                goto out_free;
 776        cpuid->nent = nent;
 777        r = 0;
 778
 779out_free:
 780        vfree(cpuid_entries);
 781out:
 782        return r;
 783}
 784
 785static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 786{
 787        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 788        struct kvm_cpuid_entry2 *ej;
 789        int j = i;
 790        int nent = vcpu->arch.cpuid_nent;
 791
 792        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 793        /* when no next entry is found, the current entry[i] is reselected */
 794        do {
 795                j = (j + 1) % nent;
 796                ej = &vcpu->arch.cpuid_entries[j];
 797        } while (ej->function != e->function);
 798
 799        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 800
 801        return j;
 802}
 803
 804/* find an entry with matching function, matching index (if needed), and that
 805 * should be read next (if it's stateful) */
 806static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 807        u32 function, u32 index)
 808{
 809        if (e->function != function)
 810                return 0;
 811        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 812                return 0;
 813        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 814            !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 815                return 0;
 816        return 1;
 817}
 818
 819struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 820                                              u32 function, u32 index)
 821{
 822        int i;
 823        struct kvm_cpuid_entry2 *best = NULL;
 824
 825        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 826                struct kvm_cpuid_entry2 *e;
 827
 828                e = &vcpu->arch.cpuid_entries[i];
 829                if (is_matching_cpuid_entry(e, function, index)) {
 830                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 831                                move_to_next_stateful_cpuid_entry(vcpu, i);
 832                        best = e;
 833                        break;
 834                }
 835        }
 836        return best;
 837}
 838EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 839
 840/*
 841 * If no match is found, check whether we exceed the vCPU's limit
 842 * and return the content of the highest valid _standard_ leaf instead.
 843 * This is to satisfy the CPUID specification.
 844 */
 845static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
 846                                                  u32 function, u32 index)
 847{
 848        struct kvm_cpuid_entry2 *maxlevel;
 849
 850        maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
 851        if (!maxlevel || maxlevel->eax >= function)
 852                return NULL;
 853        if (function & 0x80000000) {
 854                maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
 855                if (!maxlevel)
 856                        return NULL;
 857        }
 858        return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
 859}
 860
 861bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
 862               u32 *ecx, u32 *edx, bool check_limit)
 863{
 864        u32 function = *eax, index = *ecx;
 865        struct kvm_cpuid_entry2 *best;
 866        bool entry_found = true;
 867
 868        best = kvm_find_cpuid_entry(vcpu, function, index);
 869
 870        if (!best) {
 871                entry_found = false;
 872                if (!check_limit)
 873                        goto out;
 874
 875                best = check_cpuid_limit(vcpu, function, index);
 876        }
 877
 878out:
 879        if (best) {
 880                *eax = best->eax;
 881                *ebx = best->ebx;
 882                *ecx = best->ecx;
 883                *edx = best->edx;
 884        } else
 885                *eax = *ebx = *ecx = *edx = 0;
 886        trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
 887        return entry_found;
 888}
 889EXPORT_SYMBOL_GPL(kvm_cpuid);
 890
 891int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
 892{
 893        u32 eax, ebx, ecx, edx;
 894
 895        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
 896                return 1;
 897
 898        eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 899        ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 900        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
 901        kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
 902        kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
 903        kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
 904        kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
 905        return kvm_skip_emulated_instruction(vcpu);
 906}
 907EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
 908