linux/drivers/edac/edac_mc.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *      http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46static int edac_report = EDAC_REPORTING_ENABLED;
  47
  48/* lock to memory controller's control array */
  49static DEFINE_MUTEX(mem_ctls_mutex);
  50static LIST_HEAD(mc_devices);
  51
  52/*
  53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  54 *      apei/ghes and i7core_edac to be used at the same time.
  55 */
  56static const char *edac_mc_owner;
  57
  58static struct bus_type mc_bus[EDAC_MAX_MCS];
  59
  60int edac_get_report_status(void)
  61{
  62        return edac_report;
  63}
  64EXPORT_SYMBOL_GPL(edac_get_report_status);
  65
  66void edac_set_report_status(int new)
  67{
  68        if (new == EDAC_REPORTING_ENABLED ||
  69            new == EDAC_REPORTING_DISABLED ||
  70            new == EDAC_REPORTING_FORCE)
  71                edac_report = new;
  72}
  73EXPORT_SYMBOL_GPL(edac_set_report_status);
  74
  75static int edac_report_set(const char *str, const struct kernel_param *kp)
  76{
  77        if (!str)
  78                return -EINVAL;
  79
  80        if (!strncmp(str, "on", 2))
  81                edac_report = EDAC_REPORTING_ENABLED;
  82        else if (!strncmp(str, "off", 3))
  83                edac_report = EDAC_REPORTING_DISABLED;
  84        else if (!strncmp(str, "force", 5))
  85                edac_report = EDAC_REPORTING_FORCE;
  86
  87        return 0;
  88}
  89
  90static int edac_report_get(char *buffer, const struct kernel_param *kp)
  91{
  92        int ret = 0;
  93
  94        switch (edac_report) {
  95        case EDAC_REPORTING_ENABLED:
  96                ret = sprintf(buffer, "on");
  97                break;
  98        case EDAC_REPORTING_DISABLED:
  99                ret = sprintf(buffer, "off");
 100                break;
 101        case EDAC_REPORTING_FORCE:
 102                ret = sprintf(buffer, "force");
 103                break;
 104        default:
 105                ret = -EINVAL;
 106                break;
 107        }
 108
 109        return ret;
 110}
 111
 112static const struct kernel_param_ops edac_report_ops = {
 113        .set = edac_report_set,
 114        .get = edac_report_get,
 115};
 116
 117module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
 118
 119unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
 120                                 unsigned len)
 121{
 122        struct mem_ctl_info *mci = dimm->mci;
 123        int i, n, count = 0;
 124        char *p = buf;
 125
 126        for (i = 0; i < mci->n_layers; i++) {
 127                n = snprintf(p, len, "%s %d ",
 128                              edac_layer_name[mci->layers[i].type],
 129                              dimm->location[i]);
 130                p += n;
 131                len -= n;
 132                count += n;
 133                if (!len)
 134                        break;
 135        }
 136
 137        return count;
 138}
 139
 140#ifdef CONFIG_EDAC_DEBUG
 141
 142static void edac_mc_dump_channel(struct rank_info *chan)
 143{
 144        edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
 145        edac_dbg(4, "    channel = %p\n", chan);
 146        edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
 147        edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
 148}
 149
 150static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
 151{
 152        char location[80];
 153
 154        edac_dimm_info_location(dimm, location, sizeof(location));
 155
 156        edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 157                 dimm->mci->csbased ? "rank" : "dimm",
 158                 number, location, dimm->csrow, dimm->cschannel);
 159        edac_dbg(4, "  dimm = %p\n", dimm);
 160        edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 161        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 162        edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 163        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 164}
 165
 166static void edac_mc_dump_csrow(struct csrow_info *csrow)
 167{
 168        edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 169        edac_dbg(4, "  csrow = %p\n", csrow);
 170        edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 171        edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 172        edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 173        edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 174        edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 175        edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 176}
 177
 178static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 179{
 180        edac_dbg(3, "\tmci = %p\n", mci);
 181        edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 182        edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 183        edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 184        edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 185        edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 186                 mci->nr_csrows, mci->csrows);
 187        edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 188                 mci->tot_dimms, mci->dimms);
 189        edac_dbg(3, "\tdev = %p\n", mci->pdev);
 190        edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 191                 mci->mod_name, mci->ctl_name);
 192        edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 193}
 194
 195#endif                          /* CONFIG_EDAC_DEBUG */
 196
 197const char * const edac_mem_types[] = {
 198        [MEM_EMPTY]     = "Empty csrow",
 199        [MEM_RESERVED]  = "Reserved csrow type",
 200        [MEM_UNKNOWN]   = "Unknown csrow type",
 201        [MEM_FPM]       = "Fast page mode RAM",
 202        [MEM_EDO]       = "Extended data out RAM",
 203        [MEM_BEDO]      = "Burst Extended data out RAM",
 204        [MEM_SDR]       = "Single data rate SDRAM",
 205        [MEM_RDR]       = "Registered single data rate SDRAM",
 206        [MEM_DDR]       = "Double data rate SDRAM",
 207        [MEM_RDDR]      = "Registered Double data rate SDRAM",
 208        [MEM_RMBS]      = "Rambus DRAM",
 209        [MEM_DDR2]      = "Unbuffered DDR2 RAM",
 210        [MEM_FB_DDR2]   = "Fully buffered DDR2",
 211        [MEM_RDDR2]     = "Registered DDR2 RAM",
 212        [MEM_XDR]       = "Rambus XDR",
 213        [MEM_DDR3]      = "Unbuffered DDR3 RAM",
 214        [MEM_RDDR3]     = "Registered DDR3 RAM",
 215        [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
 216        [MEM_DDR4]      = "Unbuffered DDR4 RAM",
 217        [MEM_RDDR4]     = "Registered DDR4 RAM",
 218};
 219EXPORT_SYMBOL_GPL(edac_mem_types);
 220
 221/**
 222 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 223 * @p:          pointer to a pointer with the memory offset to be used. At
 224 *              return, this will be incremented to point to the next offset
 225 * @size:       Size of the data structure to be reserved
 226 * @n_elems:    Number of elements that should be reserved
 227 *
 228 * If 'size' is a constant, the compiler will optimize this whole function
 229 * down to either a no-op or the addition of a constant to the value of '*p'.
 230 *
 231 * The 'p' pointer is absolutely needed to keep the proper advancing
 232 * further in memory to the proper offsets when allocating the struct along
 233 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 234 * above, for example.
 235 *
 236 * At return, the pointer 'p' will be incremented to be used on a next call
 237 * to this function.
 238 */
 239void *edac_align_ptr(void **p, unsigned size, int n_elems)
 240{
 241        unsigned align, r;
 242        void *ptr = *p;
 243
 244        *p += size * n_elems;
 245
 246        /*
 247         * 'p' can possibly be an unaligned item X such that sizeof(X) is
 248         * 'size'.  Adjust 'p' so that its alignment is at least as
 249         * stringent as what the compiler would provide for X and return
 250         * the aligned result.
 251         * Here we assume that the alignment of a "long long" is the most
 252         * stringent alignment that the compiler will ever provide by default.
 253         * As far as I know, this is a reasonable assumption.
 254         */
 255        if (size > sizeof(long))
 256                align = sizeof(long long);
 257        else if (size > sizeof(int))
 258                align = sizeof(long);
 259        else if (size > sizeof(short))
 260                align = sizeof(int);
 261        else if (size > sizeof(char))
 262                align = sizeof(short);
 263        else
 264                return (char *)ptr;
 265
 266        r = (unsigned long)p % align;
 267
 268        if (r == 0)
 269                return (char *)ptr;
 270
 271        *p += align - r;
 272
 273        return (void *)(((unsigned long)ptr) + align - r);
 274}
 275
 276static void _edac_mc_free(struct mem_ctl_info *mci)
 277{
 278        int i, chn, row;
 279        struct csrow_info *csr;
 280        const unsigned int tot_dimms = mci->tot_dimms;
 281        const unsigned int tot_channels = mci->num_cschannel;
 282        const unsigned int tot_csrows = mci->nr_csrows;
 283
 284        if (mci->dimms) {
 285                for (i = 0; i < tot_dimms; i++)
 286                        kfree(mci->dimms[i]);
 287                kfree(mci->dimms);
 288        }
 289        if (mci->csrows) {
 290                for (row = 0; row < tot_csrows; row++) {
 291                        csr = mci->csrows[row];
 292                        if (csr) {
 293                                if (csr->channels) {
 294                                        for (chn = 0; chn < tot_channels; chn++)
 295                                                kfree(csr->channels[chn]);
 296                                        kfree(csr->channels);
 297                                }
 298                                kfree(csr);
 299                        }
 300                }
 301                kfree(mci->csrows);
 302        }
 303        kfree(mci);
 304}
 305
 306struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 307                                   unsigned n_layers,
 308                                   struct edac_mc_layer *layers,
 309                                   unsigned sz_pvt)
 310{
 311        struct mem_ctl_info *mci;
 312        struct edac_mc_layer *layer;
 313        struct csrow_info *csr;
 314        struct rank_info *chan;
 315        struct dimm_info *dimm;
 316        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 317        unsigned pos[EDAC_MAX_LAYERS];
 318        unsigned size, tot_dimms = 1, count = 1;
 319        unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 320        void *pvt, *p, *ptr = NULL;
 321        int i, j, row, chn, n, len, off;
 322        bool per_rank = false;
 323
 324        BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 325        /*
 326         * Calculate the total amount of dimms and csrows/cschannels while
 327         * in the old API emulation mode
 328         */
 329        for (i = 0; i < n_layers; i++) {
 330                tot_dimms *= layers[i].size;
 331                if (layers[i].is_virt_csrow)
 332                        tot_csrows *= layers[i].size;
 333                else
 334                        tot_channels *= layers[i].size;
 335
 336                if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 337                        per_rank = true;
 338        }
 339
 340        /* Figure out the offsets of the various items from the start of an mc
 341         * structure.  We want the alignment of each item to be at least as
 342         * stringent as what the compiler would provide if we could simply
 343         * hardcode everything into a single struct.
 344         */
 345        mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 346        layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 347        for (i = 0; i < n_layers; i++) {
 348                count *= layers[i].size;
 349                edac_dbg(4, "errcount layer %d size %d\n", i, count);
 350                ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 351                ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 352                tot_errcount += 2 * count;
 353        }
 354
 355        edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 356        pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 357        size = ((unsigned long)pvt) + sz_pvt;
 358
 359        edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 360                 size,
 361                 tot_dimms,
 362                 per_rank ? "ranks" : "dimms",
 363                 tot_csrows * tot_channels);
 364
 365        mci = kzalloc(size, GFP_KERNEL);
 366        if (mci == NULL)
 367                return NULL;
 368
 369        /* Adjust pointers so they point within the memory we just allocated
 370         * rather than an imaginary chunk of memory located at address 0.
 371         */
 372        layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 373        for (i = 0; i < n_layers; i++) {
 374                mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 375                mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 376        }
 377        pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 378
 379        /* setup index and various internal pointers */
 380        mci->mc_idx = mc_num;
 381        mci->tot_dimms = tot_dimms;
 382        mci->pvt_info = pvt;
 383        mci->n_layers = n_layers;
 384        mci->layers = layer;
 385        memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 386        mci->nr_csrows = tot_csrows;
 387        mci->num_cschannel = tot_channels;
 388        mci->csbased = per_rank;
 389
 390        /*
 391         * Alocate and fill the csrow/channels structs
 392         */
 393        mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 394        if (!mci->csrows)
 395                goto error;
 396        for (row = 0; row < tot_csrows; row++) {
 397                csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 398                if (!csr)
 399                        goto error;
 400                mci->csrows[row] = csr;
 401                csr->csrow_idx = row;
 402                csr->mci = mci;
 403                csr->nr_channels = tot_channels;
 404                csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 405                                        GFP_KERNEL);
 406                if (!csr->channels)
 407                        goto error;
 408
 409                for (chn = 0; chn < tot_channels; chn++) {
 410                        chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 411                        if (!chan)
 412                                goto error;
 413                        csr->channels[chn] = chan;
 414                        chan->chan_idx = chn;
 415                        chan->csrow = csr;
 416                }
 417        }
 418
 419        /*
 420         * Allocate and fill the dimm structs
 421         */
 422        mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 423        if (!mci->dimms)
 424                goto error;
 425
 426        memset(&pos, 0, sizeof(pos));
 427        row = 0;
 428        chn = 0;
 429        for (i = 0; i < tot_dimms; i++) {
 430                chan = mci->csrows[row]->channels[chn];
 431                off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 432                if (off < 0 || off >= tot_dimms) {
 433                        edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 434                        goto error;
 435                }
 436
 437                dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 438                if (!dimm)
 439                        goto error;
 440                mci->dimms[off] = dimm;
 441                dimm->mci = mci;
 442
 443                /*
 444                 * Copy DIMM location and initialize it.
 445                 */
 446                len = sizeof(dimm->label);
 447                p = dimm->label;
 448                n = snprintf(p, len, "mc#%u", mc_num);
 449                p += n;
 450                len -= n;
 451                for (j = 0; j < n_layers; j++) {
 452                        n = snprintf(p, len, "%s#%u",
 453                                     edac_layer_name[layers[j].type],
 454                                     pos[j]);
 455                        p += n;
 456                        len -= n;
 457                        dimm->location[j] = pos[j];
 458
 459                        if (len <= 0)
 460                                break;
 461                }
 462
 463                /* Link it to the csrows old API data */
 464                chan->dimm = dimm;
 465                dimm->csrow = row;
 466                dimm->cschannel = chn;
 467
 468                /* Increment csrow location */
 469                if (layers[0].is_virt_csrow) {
 470                        chn++;
 471                        if (chn == tot_channels) {
 472                                chn = 0;
 473                                row++;
 474                        }
 475                } else {
 476                        row++;
 477                        if (row == tot_csrows) {
 478                                row = 0;
 479                                chn++;
 480                        }
 481                }
 482
 483                /* Increment dimm location */
 484                for (j = n_layers - 1; j >= 0; j--) {
 485                        pos[j]++;
 486                        if (pos[j] < layers[j].size)
 487                                break;
 488                        pos[j] = 0;
 489                }
 490        }
 491
 492        mci->op_state = OP_ALLOC;
 493
 494        return mci;
 495
 496error:
 497        _edac_mc_free(mci);
 498
 499        return NULL;
 500}
 501EXPORT_SYMBOL_GPL(edac_mc_alloc);
 502
 503void edac_mc_free(struct mem_ctl_info *mci)
 504{
 505        edac_dbg(1, "\n");
 506
 507        /* If we're not yet registered with sysfs free only what was allocated
 508         * in edac_mc_alloc().
 509         */
 510        if (!device_is_registered(&mci->dev)) {
 511                _edac_mc_free(mci);
 512                return;
 513        }
 514
 515        /* the mci instance is freed here, when the sysfs object is dropped */
 516        edac_unregister_sysfs(mci);
 517}
 518EXPORT_SYMBOL_GPL(edac_mc_free);
 519
 520bool edac_has_mcs(void)
 521{
 522        bool ret;
 523
 524        mutex_lock(&mem_ctls_mutex);
 525
 526        ret = list_empty(&mc_devices);
 527
 528        mutex_unlock(&mem_ctls_mutex);
 529
 530        return !ret;
 531}
 532EXPORT_SYMBOL_GPL(edac_has_mcs);
 533
 534/* Caller must hold mem_ctls_mutex */
 535static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 536{
 537        struct mem_ctl_info *mci;
 538        struct list_head *item;
 539
 540        edac_dbg(3, "\n");
 541
 542        list_for_each(item, &mc_devices) {
 543                mci = list_entry(item, struct mem_ctl_info, link);
 544
 545                if (mci->pdev == dev)
 546                        return mci;
 547        }
 548
 549        return NULL;
 550}
 551
 552/**
 553 * find_mci_by_dev
 554 *
 555 *      scan list of controllers looking for the one that manages
 556 *      the 'dev' device
 557 * @dev: pointer to a struct device related with the MCI
 558 */
 559struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 560{
 561        struct mem_ctl_info *ret;
 562
 563        mutex_lock(&mem_ctls_mutex);
 564        ret = __find_mci_by_dev(dev);
 565        mutex_unlock(&mem_ctls_mutex);
 566
 567        return ret;
 568}
 569EXPORT_SYMBOL_GPL(find_mci_by_dev);
 570
 571/*
 572 * edac_mc_workq_function
 573 *      performs the operation scheduled by a workq request
 574 */
 575static void edac_mc_workq_function(struct work_struct *work_req)
 576{
 577        struct delayed_work *d_work = to_delayed_work(work_req);
 578        struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 579
 580        mutex_lock(&mem_ctls_mutex);
 581
 582        if (mci->op_state != OP_RUNNING_POLL) {
 583                mutex_unlock(&mem_ctls_mutex);
 584                return;
 585        }
 586
 587        if (edac_op_state == EDAC_OPSTATE_POLL)
 588                mci->edac_check(mci);
 589
 590        mutex_unlock(&mem_ctls_mutex);
 591
 592        /* Queue ourselves again. */
 593        edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 594}
 595
 596/*
 597 * edac_mc_reset_delay_period(unsigned long value)
 598 *
 599 *      user space has updated our poll period value, need to
 600 *      reset our workq delays
 601 */
 602void edac_mc_reset_delay_period(unsigned long value)
 603{
 604        struct mem_ctl_info *mci;
 605        struct list_head *item;
 606
 607        mutex_lock(&mem_ctls_mutex);
 608
 609        list_for_each(item, &mc_devices) {
 610                mci = list_entry(item, struct mem_ctl_info, link);
 611
 612                if (mci->op_state == OP_RUNNING_POLL)
 613                        edac_mod_work(&mci->work, value);
 614        }
 615        mutex_unlock(&mem_ctls_mutex);
 616}
 617
 618
 619
 620/* Return 0 on success, 1 on failure.
 621 * Before calling this function, caller must
 622 * assign a unique value to mci->mc_idx.
 623 *
 624 *      locking model:
 625 *
 626 *              called with the mem_ctls_mutex lock held
 627 */
 628static int add_mc_to_global_list(struct mem_ctl_info *mci)
 629{
 630        struct list_head *item, *insert_before;
 631        struct mem_ctl_info *p;
 632
 633        insert_before = &mc_devices;
 634
 635        p = __find_mci_by_dev(mci->pdev);
 636        if (unlikely(p != NULL))
 637                goto fail0;
 638
 639        list_for_each(item, &mc_devices) {
 640                p = list_entry(item, struct mem_ctl_info, link);
 641
 642                if (p->mc_idx >= mci->mc_idx) {
 643                        if (unlikely(p->mc_idx == mci->mc_idx))
 644                                goto fail1;
 645
 646                        insert_before = item;
 647                        break;
 648                }
 649        }
 650
 651        list_add_tail_rcu(&mci->link, insert_before);
 652        return 0;
 653
 654fail0:
 655        edac_printk(KERN_WARNING, EDAC_MC,
 656                "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 657                edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 658        return 1;
 659
 660fail1:
 661        edac_printk(KERN_WARNING, EDAC_MC,
 662                "bug in low-level driver: attempt to assign\n"
 663                "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 664        return 1;
 665}
 666
 667static int del_mc_from_global_list(struct mem_ctl_info *mci)
 668{
 669        list_del_rcu(&mci->link);
 670
 671        /* these are for safe removal of devices from global list while
 672         * NMI handlers may be traversing list
 673         */
 674        synchronize_rcu();
 675        INIT_LIST_HEAD(&mci->link);
 676
 677        return list_empty(&mc_devices);
 678}
 679
 680struct mem_ctl_info *edac_mc_find(int idx)
 681{
 682        struct mem_ctl_info *mci = NULL;
 683        struct list_head *item;
 684
 685        mutex_lock(&mem_ctls_mutex);
 686
 687        list_for_each(item, &mc_devices) {
 688                mci = list_entry(item, struct mem_ctl_info, link);
 689
 690                if (mci->mc_idx >= idx) {
 691                        if (mci->mc_idx == idx) {
 692                                goto unlock;
 693                        }
 694                        break;
 695                }
 696        }
 697
 698unlock:
 699        mutex_unlock(&mem_ctls_mutex);
 700        return mci;
 701}
 702EXPORT_SYMBOL(edac_mc_find);
 703
 704const char *edac_get_owner(void)
 705{
 706        return edac_mc_owner;
 707}
 708EXPORT_SYMBOL_GPL(edac_get_owner);
 709
 710/* FIXME - should a warning be printed if no error detection? correction? */
 711int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 712                               const struct attribute_group **groups)
 713{
 714        int ret = -EINVAL;
 715        edac_dbg(0, "\n");
 716
 717        if (mci->mc_idx >= EDAC_MAX_MCS) {
 718                pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
 719                return -ENODEV;
 720        }
 721
 722#ifdef CONFIG_EDAC_DEBUG
 723        if (edac_debug_level >= 3)
 724                edac_mc_dump_mci(mci);
 725
 726        if (edac_debug_level >= 4) {
 727                int i;
 728
 729                for (i = 0; i < mci->nr_csrows; i++) {
 730                        struct csrow_info *csrow = mci->csrows[i];
 731                        u32 nr_pages = 0;
 732                        int j;
 733
 734                        for (j = 0; j < csrow->nr_channels; j++)
 735                                nr_pages += csrow->channels[j]->dimm->nr_pages;
 736                        if (!nr_pages)
 737                                continue;
 738                        edac_mc_dump_csrow(csrow);
 739                        for (j = 0; j < csrow->nr_channels; j++)
 740                                if (csrow->channels[j]->dimm->nr_pages)
 741                                        edac_mc_dump_channel(csrow->channels[j]);
 742                }
 743                for (i = 0; i < mci->tot_dimms; i++)
 744                        if (mci->dimms[i]->nr_pages)
 745                                edac_mc_dump_dimm(mci->dimms[i], i);
 746        }
 747#endif
 748        mutex_lock(&mem_ctls_mutex);
 749
 750        if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 751                ret = -EPERM;
 752                goto fail0;
 753        }
 754
 755        if (add_mc_to_global_list(mci))
 756                goto fail0;
 757
 758        /* set load time so that error rate can be tracked */
 759        mci->start_time = jiffies;
 760
 761        mci->bus = &mc_bus[mci->mc_idx];
 762
 763        if (edac_create_sysfs_mci_device(mci, groups)) {
 764                edac_mc_printk(mci, KERN_WARNING,
 765                        "failed to create sysfs device\n");
 766                goto fail1;
 767        }
 768
 769        if (mci->edac_check) {
 770                mci->op_state = OP_RUNNING_POLL;
 771
 772                INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 773                edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 774
 775        } else {
 776                mci->op_state = OP_RUNNING_INTERRUPT;
 777        }
 778
 779        /* Report action taken */
 780        edac_mc_printk(mci, KERN_INFO,
 781                "Giving out device to module %s controller %s: DEV %s (%s)\n",
 782                mci->mod_name, mci->ctl_name, mci->dev_name,
 783                edac_op_state_to_string(mci->op_state));
 784
 785        edac_mc_owner = mci->mod_name;
 786
 787        mutex_unlock(&mem_ctls_mutex);
 788        return 0;
 789
 790fail1:
 791        del_mc_from_global_list(mci);
 792
 793fail0:
 794        mutex_unlock(&mem_ctls_mutex);
 795        return ret;
 796}
 797EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 798
 799struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 800{
 801        struct mem_ctl_info *mci;
 802
 803        edac_dbg(0, "\n");
 804
 805        mutex_lock(&mem_ctls_mutex);
 806
 807        /* find the requested mci struct in the global list */
 808        mci = __find_mci_by_dev(dev);
 809        if (mci == NULL) {
 810                mutex_unlock(&mem_ctls_mutex);
 811                return NULL;
 812        }
 813
 814        /* mark MCI offline: */
 815        mci->op_state = OP_OFFLINE;
 816
 817        if (del_mc_from_global_list(mci))
 818                edac_mc_owner = NULL;
 819
 820        mutex_unlock(&mem_ctls_mutex);
 821
 822        if (mci->edac_check)
 823                edac_stop_work(&mci->work);
 824
 825        /* remove from sysfs */
 826        edac_remove_sysfs_mci_device(mci);
 827
 828        edac_printk(KERN_INFO, EDAC_MC,
 829                "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 830                mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 831
 832        return mci;
 833}
 834EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 835
 836static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 837                                u32 size)
 838{
 839        struct page *pg;
 840        void *virt_addr;
 841        unsigned long flags = 0;
 842
 843        edac_dbg(3, "\n");
 844
 845        /* ECC error page was not in our memory. Ignore it. */
 846        if (!pfn_valid(page))
 847                return;
 848
 849        /* Find the actual page structure then map it and fix */
 850        pg = pfn_to_page(page);
 851
 852        if (PageHighMem(pg))
 853                local_irq_save(flags);
 854
 855        virt_addr = kmap_atomic(pg);
 856
 857        /* Perform architecture specific atomic scrub operation */
 858        edac_atomic_scrub(virt_addr + offset, size);
 859
 860        /* Unmap and complete */
 861        kunmap_atomic(virt_addr);
 862
 863        if (PageHighMem(pg))
 864                local_irq_restore(flags);
 865}
 866
 867/* FIXME - should return -1 */
 868int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 869{
 870        struct csrow_info **csrows = mci->csrows;
 871        int row, i, j, n;
 872
 873        edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 874        row = -1;
 875
 876        for (i = 0; i < mci->nr_csrows; i++) {
 877                struct csrow_info *csrow = csrows[i];
 878                n = 0;
 879                for (j = 0; j < csrow->nr_channels; j++) {
 880                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 881                        n += dimm->nr_pages;
 882                }
 883                if (n == 0)
 884                        continue;
 885
 886                edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 887                         mci->mc_idx,
 888                         csrow->first_page, page, csrow->last_page,
 889                         csrow->page_mask);
 890
 891                if ((page >= csrow->first_page) &&
 892                    (page <= csrow->last_page) &&
 893                    ((page & csrow->page_mask) ==
 894                     (csrow->first_page & csrow->page_mask))) {
 895                        row = i;
 896                        break;
 897                }
 898        }
 899
 900        if (row == -1)
 901                edac_mc_printk(mci, KERN_ERR,
 902                        "could not look up page error address %lx\n",
 903                        (unsigned long)page);
 904
 905        return row;
 906}
 907EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 908
 909const char *edac_layer_name[] = {
 910        [EDAC_MC_LAYER_BRANCH] = "branch",
 911        [EDAC_MC_LAYER_CHANNEL] = "channel",
 912        [EDAC_MC_LAYER_SLOT] = "slot",
 913        [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 914        [EDAC_MC_LAYER_ALL_MEM] = "memory",
 915};
 916EXPORT_SYMBOL_GPL(edac_layer_name);
 917
 918static void edac_inc_ce_error(struct mem_ctl_info *mci,
 919                              bool enable_per_layer_report,
 920                              const int pos[EDAC_MAX_LAYERS],
 921                              const u16 count)
 922{
 923        int i, index = 0;
 924
 925        mci->ce_mc += count;
 926
 927        if (!enable_per_layer_report) {
 928                mci->ce_noinfo_count += count;
 929                return;
 930        }
 931
 932        for (i = 0; i < mci->n_layers; i++) {
 933                if (pos[i] < 0)
 934                        break;
 935                index += pos[i];
 936                mci->ce_per_layer[i][index] += count;
 937
 938                if (i < mci->n_layers - 1)
 939                        index *= mci->layers[i + 1].size;
 940        }
 941}
 942
 943static void edac_inc_ue_error(struct mem_ctl_info *mci,
 944                                    bool enable_per_layer_report,
 945                                    const int pos[EDAC_MAX_LAYERS],
 946                                    const u16 count)
 947{
 948        int i, index = 0;
 949
 950        mci->ue_mc += count;
 951
 952        if (!enable_per_layer_report) {
 953                mci->ue_noinfo_count += count;
 954                return;
 955        }
 956
 957        for (i = 0; i < mci->n_layers; i++) {
 958                if (pos[i] < 0)
 959                        break;
 960                index += pos[i];
 961                mci->ue_per_layer[i][index] += count;
 962
 963                if (i < mci->n_layers - 1)
 964                        index *= mci->layers[i + 1].size;
 965        }
 966}
 967
 968static void edac_ce_error(struct mem_ctl_info *mci,
 969                          const u16 error_count,
 970                          const int pos[EDAC_MAX_LAYERS],
 971                          const char *msg,
 972                          const char *location,
 973                          const char *label,
 974                          const char *detail,
 975                          const char *other_detail,
 976                          const bool enable_per_layer_report,
 977                          const unsigned long page_frame_number,
 978                          const unsigned long offset_in_page,
 979                          long grain)
 980{
 981        unsigned long remapped_page;
 982        char *msg_aux = "";
 983
 984        if (*msg)
 985                msg_aux = " ";
 986
 987        if (edac_mc_get_log_ce()) {
 988                if (other_detail && *other_detail)
 989                        edac_mc_printk(mci, KERN_WARNING,
 990                                       "%d CE %s%son %s (%s %s - %s)\n",
 991                                       error_count, msg, msg_aux, label,
 992                                       location, detail, other_detail);
 993                else
 994                        edac_mc_printk(mci, KERN_WARNING,
 995                                       "%d CE %s%son %s (%s %s)\n",
 996                                       error_count, msg, msg_aux, label,
 997                                       location, detail);
 998        }
 999        edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1000
1001        if (mci->scrub_mode == SCRUB_SW_SRC) {
1002                /*
1003                        * Some memory controllers (called MCs below) can remap
1004                        * memory so that it is still available at a different
1005                        * address when PCI devices map into memory.
1006                        * MC's that can't do this, lose the memory where PCI
1007                        * devices are mapped. This mapping is MC-dependent
1008                        * and so we call back into the MC driver for it to
1009                        * map the MC page to a physical (CPU) page which can
1010                        * then be mapped to a virtual page - which can then
1011                        * be scrubbed.
1012                        */
1013                remapped_page = mci->ctl_page_to_phys ?
1014                        mci->ctl_page_to_phys(mci, page_frame_number) :
1015                        page_frame_number;
1016
1017                edac_mc_scrub_block(remapped_page,
1018                                        offset_in_page, grain);
1019        }
1020}
1021
1022static void edac_ue_error(struct mem_ctl_info *mci,
1023                          const u16 error_count,
1024                          const int pos[EDAC_MAX_LAYERS],
1025                          const char *msg,
1026                          const char *location,
1027                          const char *label,
1028                          const char *detail,
1029                          const char *other_detail,
1030                          const bool enable_per_layer_report)
1031{
1032        char *msg_aux = "";
1033
1034        if (*msg)
1035                msg_aux = " ";
1036
1037        if (edac_mc_get_log_ue()) {
1038                if (other_detail && *other_detail)
1039                        edac_mc_printk(mci, KERN_WARNING,
1040                                       "%d UE %s%son %s (%s %s - %s)\n",
1041                                       error_count, msg, msg_aux, label,
1042                                       location, detail, other_detail);
1043                else
1044                        edac_mc_printk(mci, KERN_WARNING,
1045                                       "%d UE %s%son %s (%s %s)\n",
1046                                       error_count, msg, msg_aux, label,
1047                                       location, detail);
1048        }
1049
1050        if (edac_mc_get_panic_on_ue()) {
1051                if (other_detail && *other_detail)
1052                        panic("UE %s%son %s (%s%s - %s)\n",
1053                              msg, msg_aux, label, location, detail, other_detail);
1054                else
1055                        panic("UE %s%son %s (%s%s)\n",
1056                              msg, msg_aux, label, location, detail);
1057        }
1058
1059        edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1060}
1061
1062void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1063                              struct mem_ctl_info *mci,
1064                              struct edac_raw_error_desc *e)
1065{
1066        char detail[80];
1067        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1068
1069        /* Memory type dependent details about the error */
1070        if (type == HW_EVENT_ERR_CORRECTED) {
1071                snprintf(detail, sizeof(detail),
1072                        "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1073                        e->page_frame_number, e->offset_in_page,
1074                        e->grain, e->syndrome);
1075                edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1076                              detail, e->other_detail, e->enable_per_layer_report,
1077                              e->page_frame_number, e->offset_in_page, e->grain);
1078        } else {
1079                snprintf(detail, sizeof(detail),
1080                        "page:0x%lx offset:0x%lx grain:%ld",
1081                        e->page_frame_number, e->offset_in_page, e->grain);
1082
1083                edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1084                              detail, e->other_detail, e->enable_per_layer_report);
1085        }
1086
1087
1088}
1089EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1090
1091void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1092                          struct mem_ctl_info *mci,
1093                          const u16 error_count,
1094                          const unsigned long page_frame_number,
1095                          const unsigned long offset_in_page,
1096                          const unsigned long syndrome,
1097                          const int top_layer,
1098                          const int mid_layer,
1099                          const int low_layer,
1100                          const char *msg,
1101                          const char *other_detail)
1102{
1103        char *p;
1104        int row = -1, chan = -1;
1105        int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1106        int i, n_labels = 0;
1107        u8 grain_bits;
1108        struct edac_raw_error_desc *e = &mci->error_desc;
1109
1110        edac_dbg(3, "MC%d\n", mci->mc_idx);
1111
1112        /* Fills the error report buffer */
1113        memset(e, 0, sizeof (*e));
1114        e->error_count = error_count;
1115        e->top_layer = top_layer;
1116        e->mid_layer = mid_layer;
1117        e->low_layer = low_layer;
1118        e->page_frame_number = page_frame_number;
1119        e->offset_in_page = offset_in_page;
1120        e->syndrome = syndrome;
1121        e->msg = msg;
1122        e->other_detail = other_detail;
1123
1124        /*
1125         * Check if the event report is consistent and if the memory
1126         * location is known. If it is known, enable_per_layer_report will be
1127         * true, the DIMM(s) label info will be filled and the per-layer
1128         * error counters will be incremented.
1129         */
1130        for (i = 0; i < mci->n_layers; i++) {
1131                if (pos[i] >= (int)mci->layers[i].size) {
1132
1133                        edac_mc_printk(mci, KERN_ERR,
1134                                       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1135                                       edac_layer_name[mci->layers[i].type],
1136                                       pos[i], mci->layers[i].size);
1137                        /*
1138                         * Instead of just returning it, let's use what's
1139                         * known about the error. The increment routines and
1140                         * the DIMM filter logic will do the right thing by
1141                         * pointing the likely damaged DIMMs.
1142                         */
1143                        pos[i] = -1;
1144                }
1145                if (pos[i] >= 0)
1146                        e->enable_per_layer_report = true;
1147        }
1148
1149        /*
1150         * Get the dimm label/grain that applies to the match criteria.
1151         * As the error algorithm may not be able to point to just one memory
1152         * stick, the logic here will get all possible labels that could
1153         * pottentially be affected by the error.
1154         * On FB-DIMM memory controllers, for uncorrected errors, it is common
1155         * to have only the MC channel and the MC dimm (also called "branch")
1156         * but the channel is not known, as the memory is arranged in pairs,
1157         * where each memory belongs to a separate channel within the same
1158         * branch.
1159         */
1160        p = e->label;
1161        *p = '\0';
1162
1163        for (i = 0; i < mci->tot_dimms; i++) {
1164                struct dimm_info *dimm = mci->dimms[i];
1165
1166                if (top_layer >= 0 && top_layer != dimm->location[0])
1167                        continue;
1168                if (mid_layer >= 0 && mid_layer != dimm->location[1])
1169                        continue;
1170                if (low_layer >= 0 && low_layer != dimm->location[2])
1171                        continue;
1172
1173                /* get the max grain, over the error match range */
1174                if (dimm->grain > e->grain)
1175                        e->grain = dimm->grain;
1176
1177                /*
1178                 * If the error is memory-controller wide, there's no need to
1179                 * seek for the affected DIMMs because the whole
1180                 * channel/memory controller/...  may be affected.
1181                 * Also, don't show errors for empty DIMM slots.
1182                 */
1183                if (e->enable_per_layer_report && dimm->nr_pages) {
1184                        if (n_labels >= EDAC_MAX_LABELS) {
1185                                e->enable_per_layer_report = false;
1186                                break;
1187                        }
1188                        n_labels++;
1189                        if (p != e->label) {
1190                                strcpy(p, OTHER_LABEL);
1191                                p += strlen(OTHER_LABEL);
1192                        }
1193                        strcpy(p, dimm->label);
1194                        p += strlen(p);
1195                        *p = '\0';
1196
1197                        /*
1198                         * get csrow/channel of the DIMM, in order to allow
1199                         * incrementing the compat API counters
1200                         */
1201                        edac_dbg(4, "%s csrows map: (%d,%d)\n",
1202                                 mci->csbased ? "rank" : "dimm",
1203                                 dimm->csrow, dimm->cschannel);
1204                        if (row == -1)
1205                                row = dimm->csrow;
1206                        else if (row >= 0 && row != dimm->csrow)
1207                                row = -2;
1208
1209                        if (chan == -1)
1210                                chan = dimm->cschannel;
1211                        else if (chan >= 0 && chan != dimm->cschannel)
1212                                chan = -2;
1213                }
1214        }
1215
1216        if (!e->enable_per_layer_report) {
1217                strcpy(e->label, "any memory");
1218        } else {
1219                edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1220                if (p == e->label)
1221                        strcpy(e->label, "unknown memory");
1222                if (type == HW_EVENT_ERR_CORRECTED) {
1223                        if (row >= 0) {
1224                                mci->csrows[row]->ce_count += error_count;
1225                                if (chan >= 0)
1226                                        mci->csrows[row]->channels[chan]->ce_count += error_count;
1227                        }
1228                } else
1229                        if (row >= 0)
1230                                mci->csrows[row]->ue_count += error_count;
1231        }
1232
1233        /* Fill the RAM location data */
1234        p = e->location;
1235
1236        for (i = 0; i < mci->n_layers; i++) {
1237                if (pos[i] < 0)
1238                        continue;
1239
1240                p += sprintf(p, "%s:%d ",
1241                             edac_layer_name[mci->layers[i].type],
1242                             pos[i]);
1243        }
1244        if (p > e->location)
1245                *(p - 1) = '\0';
1246
1247        /* Report the error via the trace interface */
1248        grain_bits = fls_long(e->grain) + 1;
1249
1250        if (IS_ENABLED(CONFIG_RAS))
1251                trace_mc_event(type, e->msg, e->label, e->error_count,
1252                               mci->mc_idx, e->top_layer, e->mid_layer,
1253                               e->low_layer,
1254                               (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1255                               grain_bits, e->syndrome, e->other_detail);
1256
1257        edac_raw_mc_handle_error(type, mci, e);
1258}
1259EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1260