linux/drivers/gpu/drm/i915/intel_ringbuffer.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31#include <drm/drmP.h>
  32#include "i915_drv.h"
  33#include <drm/i915_drm.h>
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37/* Rough estimate of the typical request size, performing a flush,
  38 * set-context and then emitting the batch.
  39 */
  40#define LEGACY_REQUEST_SIZE 200
  41
  42static unsigned int __intel_ring_space(unsigned int head,
  43                                       unsigned int tail,
  44                                       unsigned int size)
  45{
  46        /*
  47         * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
  48         * same cacheline, the Head Pointer must not be greater than the Tail
  49         * Pointer."
  50         */
  51        GEM_BUG_ON(!is_power_of_2(size));
  52        return (head - tail - CACHELINE_BYTES) & (size - 1);
  53}
  54
  55unsigned int intel_ring_update_space(struct intel_ring *ring)
  56{
  57        unsigned int space;
  58
  59        space = __intel_ring_space(ring->head, ring->emit, ring->size);
  60
  61        ring->space = space;
  62        return space;
  63}
  64
  65static int
  66gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  67{
  68        u32 cmd, *cs;
  69
  70        cmd = MI_FLUSH;
  71
  72        if (mode & EMIT_INVALIDATE)
  73                cmd |= MI_READ_FLUSH;
  74
  75        cs = intel_ring_begin(req, 2);
  76        if (IS_ERR(cs))
  77                return PTR_ERR(cs);
  78
  79        *cs++ = cmd;
  80        *cs++ = MI_NOOP;
  81        intel_ring_advance(req, cs);
  82
  83        return 0;
  84}
  85
  86static int
  87gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  88{
  89        u32 cmd, *cs;
  90
  91        /*
  92         * read/write caches:
  93         *
  94         * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  95         * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  96         * also flushed at 2d versus 3d pipeline switches.
  97         *
  98         * read-only caches:
  99         *
 100         * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 101         * MI_READ_FLUSH is set, and is always flushed on 965.
 102         *
 103         * I915_GEM_DOMAIN_COMMAND may not exist?
 104         *
 105         * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 106         * invalidated when MI_EXE_FLUSH is set.
 107         *
 108         * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 109         * invalidated with every MI_FLUSH.
 110         *
 111         * TLBs:
 112         *
 113         * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 114         * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 115         * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 116         * are flushed at any MI_FLUSH.
 117         */
 118
 119        cmd = MI_FLUSH;
 120        if (mode & EMIT_INVALIDATE) {
 121                cmd |= MI_EXE_FLUSH;
 122                if (IS_G4X(req->i915) || IS_GEN5(req->i915))
 123                        cmd |= MI_INVALIDATE_ISP;
 124        }
 125
 126        cs = intel_ring_begin(req, 2);
 127        if (IS_ERR(cs))
 128                return PTR_ERR(cs);
 129
 130        *cs++ = cmd;
 131        *cs++ = MI_NOOP;
 132        intel_ring_advance(req, cs);
 133
 134        return 0;
 135}
 136
 137/**
 138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 139 * implementing two workarounds on gen6.  From section 1.4.7.1
 140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 141 *
 142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 143 * produced by non-pipelined state commands), software needs to first
 144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 145 * 0.
 146 *
 147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 149 *
 150 * And the workaround for these two requires this workaround first:
 151 *
 152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 153 * BEFORE the pipe-control with a post-sync op and no write-cache
 154 * flushes.
 155 *
 156 * And this last workaround is tricky because of the requirements on
 157 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 158 * volume 2 part 1:
 159 *
 160 *     "1 of the following must also be set:
 161 *      - Render Target Cache Flush Enable ([12] of DW1)
 162 *      - Depth Cache Flush Enable ([0] of DW1)
 163 *      - Stall at Pixel Scoreboard ([1] of DW1)
 164 *      - Depth Stall ([13] of DW1)
 165 *      - Post-Sync Operation ([13] of DW1)
 166 *      - Notify Enable ([8] of DW1)"
 167 *
 168 * The cache flushes require the workaround flush that triggered this
 169 * one, so we can't use it.  Depth stall would trigger the same.
 170 * Post-sync nonzero is what triggered this second workaround, so we
 171 * can't use that one either.  Notify enable is IRQs, which aren't
 172 * really our business.  That leaves only stall at scoreboard.
 173 */
 174static int
 175intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
 176{
 177        u32 scratch_addr =
 178                i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 179        u32 *cs;
 180
 181        cs = intel_ring_begin(req, 6);
 182        if (IS_ERR(cs))
 183                return PTR_ERR(cs);
 184
 185        *cs++ = GFX_OP_PIPE_CONTROL(5);
 186        *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 187        *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 188        *cs++ = 0; /* low dword */
 189        *cs++ = 0; /* high dword */
 190        *cs++ = MI_NOOP;
 191        intel_ring_advance(req, cs);
 192
 193        cs = intel_ring_begin(req, 6);
 194        if (IS_ERR(cs))
 195                return PTR_ERR(cs);
 196
 197        *cs++ = GFX_OP_PIPE_CONTROL(5);
 198        *cs++ = PIPE_CONTROL_QW_WRITE;
 199        *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 200        *cs++ = 0;
 201        *cs++ = 0;
 202        *cs++ = MI_NOOP;
 203        intel_ring_advance(req, cs);
 204
 205        return 0;
 206}
 207
 208static int
 209gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 210{
 211        u32 scratch_addr =
 212                i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 213        u32 *cs, flags = 0;
 214        int ret;
 215
 216        /* Force SNB workarounds for PIPE_CONTROL flushes */
 217        ret = intel_emit_post_sync_nonzero_flush(req);
 218        if (ret)
 219                return ret;
 220
 221        /* Just flush everything.  Experiments have shown that reducing the
 222         * number of bits based on the write domains has little performance
 223         * impact.
 224         */
 225        if (mode & EMIT_FLUSH) {
 226                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 227                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 228                /*
 229                 * Ensure that any following seqno writes only happen
 230                 * when the render cache is indeed flushed.
 231                 */
 232                flags |= PIPE_CONTROL_CS_STALL;
 233        }
 234        if (mode & EMIT_INVALIDATE) {
 235                flags |= PIPE_CONTROL_TLB_INVALIDATE;
 236                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 237                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 238                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 239                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 240                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 241                /*
 242                 * TLB invalidate requires a post-sync write.
 243                 */
 244                flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 245        }
 246
 247        cs = intel_ring_begin(req, 4);
 248        if (IS_ERR(cs))
 249                return PTR_ERR(cs);
 250
 251        *cs++ = GFX_OP_PIPE_CONTROL(4);
 252        *cs++ = flags;
 253        *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 254        *cs++ = 0;
 255        intel_ring_advance(req, cs);
 256
 257        return 0;
 258}
 259
 260static int
 261gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
 262{
 263        u32 *cs;
 264
 265        cs = intel_ring_begin(req, 4);
 266        if (IS_ERR(cs))
 267                return PTR_ERR(cs);
 268
 269        *cs++ = GFX_OP_PIPE_CONTROL(4);
 270        *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 271        *cs++ = 0;
 272        *cs++ = 0;
 273        intel_ring_advance(req, cs);
 274
 275        return 0;
 276}
 277
 278static int
 279gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 280{
 281        u32 scratch_addr =
 282                i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 283        u32 *cs, flags = 0;
 284
 285        /*
 286         * Ensure that any following seqno writes only happen when the render
 287         * cache is indeed flushed.
 288         *
 289         * Workaround: 4th PIPE_CONTROL command (except the ones with only
 290         * read-cache invalidate bits set) must have the CS_STALL bit set. We
 291         * don't try to be clever and just set it unconditionally.
 292         */
 293        flags |= PIPE_CONTROL_CS_STALL;
 294
 295        /* Just flush everything.  Experiments have shown that reducing the
 296         * number of bits based on the write domains has little performance
 297         * impact.
 298         */
 299        if (mode & EMIT_FLUSH) {
 300                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 301                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 302                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 303                flags |= PIPE_CONTROL_FLUSH_ENABLE;
 304        }
 305        if (mode & EMIT_INVALIDATE) {
 306                flags |= PIPE_CONTROL_TLB_INVALIDATE;
 307                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 308                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 309                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 310                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 311                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 312                flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 313                /*
 314                 * TLB invalidate requires a post-sync write.
 315                 */
 316                flags |= PIPE_CONTROL_QW_WRITE;
 317                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 318
 319                flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 320
 321                /* Workaround: we must issue a pipe_control with CS-stall bit
 322                 * set before a pipe_control command that has the state cache
 323                 * invalidate bit set. */
 324                gen7_render_ring_cs_stall_wa(req);
 325        }
 326
 327        cs = intel_ring_begin(req, 4);
 328        if (IS_ERR(cs))
 329                return PTR_ERR(cs);
 330
 331        *cs++ = GFX_OP_PIPE_CONTROL(4);
 332        *cs++ = flags;
 333        *cs++ = scratch_addr;
 334        *cs++ = 0;
 335        intel_ring_advance(req, cs);
 336
 337        return 0;
 338}
 339
 340static int
 341gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 342{
 343        u32 flags;
 344        u32 *cs;
 345
 346        cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
 347        if (IS_ERR(cs))
 348                return PTR_ERR(cs);
 349
 350        flags = PIPE_CONTROL_CS_STALL;
 351
 352        if (mode & EMIT_FLUSH) {
 353                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 354                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 355                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 356                flags |= PIPE_CONTROL_FLUSH_ENABLE;
 357        }
 358        if (mode & EMIT_INVALIDATE) {
 359                flags |= PIPE_CONTROL_TLB_INVALIDATE;
 360                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 361                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 362                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 363                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 364                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 365                flags |= PIPE_CONTROL_QW_WRITE;
 366                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 367
 368                /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
 369                cs = gen8_emit_pipe_control(cs,
 370                                            PIPE_CONTROL_CS_STALL |
 371                                            PIPE_CONTROL_STALL_AT_SCOREBOARD,
 372                                            0);
 373        }
 374
 375        cs = gen8_emit_pipe_control(cs, flags,
 376                                    i915_ggtt_offset(req->engine->scratch) +
 377                                    2 * CACHELINE_BYTES);
 378
 379        intel_ring_advance(req, cs);
 380
 381        return 0;
 382}
 383
 384static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
 385{
 386        struct drm_i915_private *dev_priv = engine->i915;
 387        u32 addr;
 388
 389        addr = dev_priv->status_page_dmah->busaddr;
 390        if (INTEL_GEN(dev_priv) >= 4)
 391                addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 392        I915_WRITE(HWS_PGA, addr);
 393}
 394
 395static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
 396{
 397        struct drm_i915_private *dev_priv = engine->i915;
 398        i915_reg_t mmio;
 399
 400        /* The ring status page addresses are no longer next to the rest of
 401         * the ring registers as of gen7.
 402         */
 403        if (IS_GEN7(dev_priv)) {
 404                switch (engine->id) {
 405                /*
 406                 * No more rings exist on Gen7. Default case is only to shut up
 407                 * gcc switch check warning.
 408                 */
 409                default:
 410                        GEM_BUG_ON(engine->id);
 411                case RCS:
 412                        mmio = RENDER_HWS_PGA_GEN7;
 413                        break;
 414                case BCS:
 415                        mmio = BLT_HWS_PGA_GEN7;
 416                        break;
 417                case VCS:
 418                        mmio = BSD_HWS_PGA_GEN7;
 419                        break;
 420                case VECS:
 421                        mmio = VEBOX_HWS_PGA_GEN7;
 422                        break;
 423                }
 424        } else if (IS_GEN6(dev_priv)) {
 425                mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
 426        } else {
 427                /* XXX: gen8 returns to sanity */
 428                mmio = RING_HWS_PGA(engine->mmio_base);
 429        }
 430
 431        if (INTEL_GEN(dev_priv) >= 6)
 432                I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
 433
 434        I915_WRITE(mmio, engine->status_page.ggtt_offset);
 435        POSTING_READ(mmio);
 436
 437        /*
 438         * Flush the TLB for this page
 439         *
 440         * FIXME: These two bits have disappeared on gen8, so a question
 441         * arises: do we still need this and if so how should we go about
 442         * invalidating the TLB?
 443         */
 444        if (IS_GEN(dev_priv, 6, 7)) {
 445                i915_reg_t reg = RING_INSTPM(engine->mmio_base);
 446
 447                /* ring should be idle before issuing a sync flush*/
 448                WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
 449
 450                I915_WRITE(reg,
 451                           _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 452                                              INSTPM_SYNC_FLUSH));
 453                if (intel_wait_for_register(dev_priv,
 454                                            reg, INSTPM_SYNC_FLUSH, 0,
 455                                            1000))
 456                        DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 457                                  engine->name);
 458        }
 459}
 460
 461static bool stop_ring(struct intel_engine_cs *engine)
 462{
 463        struct drm_i915_private *dev_priv = engine->i915;
 464
 465        if (INTEL_GEN(dev_priv) > 2) {
 466                I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
 467                if (intel_wait_for_register(dev_priv,
 468                                            RING_MI_MODE(engine->mmio_base),
 469                                            MODE_IDLE,
 470                                            MODE_IDLE,
 471                                            1000)) {
 472                        DRM_ERROR("%s : timed out trying to stop ring\n",
 473                                  engine->name);
 474                        /* Sometimes we observe that the idle flag is not
 475                         * set even though the ring is empty. So double
 476                         * check before giving up.
 477                         */
 478                        if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
 479                                return false;
 480                }
 481        }
 482
 483        I915_WRITE_CTL(engine, 0);
 484        I915_WRITE_HEAD(engine, 0);
 485        I915_WRITE_TAIL(engine, 0);
 486
 487        return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
 488}
 489
 490static int init_ring_common(struct intel_engine_cs *engine)
 491{
 492        struct drm_i915_private *dev_priv = engine->i915;
 493        struct intel_ring *ring = engine->buffer;
 494        int ret = 0;
 495
 496        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 497
 498        if (!stop_ring(engine)) {
 499                /* G45 ring initialization often fails to reset head to zero */
 500                DRM_DEBUG_KMS("%s head not reset to zero "
 501                              "ctl %08x head %08x tail %08x start %08x\n",
 502                              engine->name,
 503                              I915_READ_CTL(engine),
 504                              I915_READ_HEAD(engine),
 505                              I915_READ_TAIL(engine),
 506                              I915_READ_START(engine));
 507
 508                if (!stop_ring(engine)) {
 509                        DRM_ERROR("failed to set %s head to zero "
 510                                  "ctl %08x head %08x tail %08x start %08x\n",
 511                                  engine->name,
 512                                  I915_READ_CTL(engine),
 513                                  I915_READ_HEAD(engine),
 514                                  I915_READ_TAIL(engine),
 515                                  I915_READ_START(engine));
 516                        ret = -EIO;
 517                        goto out;
 518                }
 519        }
 520
 521        if (HWS_NEEDS_PHYSICAL(dev_priv))
 522                ring_setup_phys_status_page(engine);
 523        else
 524                intel_ring_setup_status_page(engine);
 525
 526        intel_engine_reset_breadcrumbs(engine);
 527
 528        /* Enforce ordering by reading HEAD register back */
 529        I915_READ_HEAD(engine);
 530
 531        /* Initialize the ring. This must happen _after_ we've cleared the ring
 532         * registers with the above sequence (the readback of the HEAD registers
 533         * also enforces ordering), otherwise the hw might lose the new ring
 534         * register values. */
 535        I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
 536
 537        /* WaClearRingBufHeadRegAtInit:ctg,elk */
 538        if (I915_READ_HEAD(engine))
 539                DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
 540                          engine->name, I915_READ_HEAD(engine));
 541
 542        intel_ring_update_space(ring);
 543        I915_WRITE_HEAD(engine, ring->head);
 544        I915_WRITE_TAIL(engine, ring->tail);
 545        (void)I915_READ_TAIL(engine);
 546
 547        I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
 548
 549        /* If the head is still not zero, the ring is dead */
 550        if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
 551                                    RING_VALID, RING_VALID,
 552                                    50)) {
 553                DRM_ERROR("%s initialization failed "
 554                          "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
 555                          engine->name,
 556                          I915_READ_CTL(engine),
 557                          I915_READ_CTL(engine) & RING_VALID,
 558                          I915_READ_HEAD(engine), ring->head,
 559                          I915_READ_TAIL(engine), ring->tail,
 560                          I915_READ_START(engine),
 561                          i915_ggtt_offset(ring->vma));
 562                ret = -EIO;
 563                goto out;
 564        }
 565
 566        intel_engine_init_hangcheck(engine);
 567
 568        if (INTEL_GEN(dev_priv) > 2)
 569                I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
 570
 571out:
 572        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 573
 574        return ret;
 575}
 576
 577static void reset_ring_common(struct intel_engine_cs *engine,
 578                              struct drm_i915_gem_request *request)
 579{
 580        /*
 581         * RC6 must be prevented until the reset is complete and the engine
 582         * reinitialised. If it occurs in the middle of this sequence, the
 583         * state written to/loaded from the power context is ill-defined (e.g.
 584         * the PP_BASE_DIR may be lost).
 585         */
 586        assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
 587
 588        /*
 589         * Try to restore the logical GPU state to match the continuation
 590         * of the request queue. If we skip the context/PD restore, then
 591         * the next request may try to execute assuming that its context
 592         * is valid and loaded on the GPU and so may try to access invalid
 593         * memory, prompting repeated GPU hangs.
 594         *
 595         * If the request was guilty, we still restore the logical state
 596         * in case the next request requires it (e.g. the aliasing ppgtt),
 597         * but skip over the hung batch.
 598         *
 599         * If the request was innocent, we try to replay the request with
 600         * the restored context.
 601         */
 602        if (request) {
 603                struct drm_i915_private *dev_priv = request->i915;
 604                struct intel_context *ce = &request->ctx->engine[engine->id];
 605                struct i915_hw_ppgtt *ppgtt;
 606
 607                /* FIXME consider gen8 reset */
 608
 609                if (ce->state) {
 610                        I915_WRITE(CCID,
 611                                   i915_ggtt_offset(ce->state) |
 612                                   BIT(8) /* must be set! */ |
 613                                   CCID_EXTENDED_STATE_SAVE |
 614                                   CCID_EXTENDED_STATE_RESTORE |
 615                                   CCID_EN);
 616                }
 617
 618                ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
 619                if (ppgtt) {
 620                        u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
 621
 622                        I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
 623                        I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
 624
 625                        /* Wait for the PD reload to complete */
 626                        if (intel_wait_for_register(dev_priv,
 627                                                    RING_PP_DIR_BASE(engine),
 628                                                    BIT(0), 0,
 629                                                    10))
 630                                DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
 631
 632                        ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
 633                }
 634
 635                /* If the rq hung, jump to its breadcrumb and skip the batch */
 636                if (request->fence.error == -EIO)
 637                        request->ring->head = request->postfix;
 638        } else {
 639                engine->legacy_active_context = NULL;
 640        }
 641}
 642
 643static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
 644{
 645        int ret;
 646
 647        ret = intel_ring_workarounds_emit(req);
 648        if (ret != 0)
 649                return ret;
 650
 651        ret = i915_gem_render_state_emit(req);
 652        if (ret)
 653                return ret;
 654
 655        return 0;
 656}
 657
 658static int init_render_ring(struct intel_engine_cs *engine)
 659{
 660        struct drm_i915_private *dev_priv = engine->i915;
 661        int ret = init_ring_common(engine);
 662        if (ret)
 663                return ret;
 664
 665        /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
 666        if (IS_GEN(dev_priv, 4, 6))
 667                I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
 668
 669        /* We need to disable the AsyncFlip performance optimisations in order
 670         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
 671         * programmed to '1' on all products.
 672         *
 673         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
 674         */
 675        if (IS_GEN(dev_priv, 6, 7))
 676                I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
 677
 678        /* Required for the hardware to program scanline values for waiting */
 679        /* WaEnableFlushTlbInvalidationMode:snb */
 680        if (IS_GEN6(dev_priv))
 681                I915_WRITE(GFX_MODE,
 682                           _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
 683
 684        /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
 685        if (IS_GEN7(dev_priv))
 686                I915_WRITE(GFX_MODE_GEN7,
 687                           _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
 688                           _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
 689
 690        if (IS_GEN6(dev_priv)) {
 691                /* From the Sandybridge PRM, volume 1 part 3, page 24:
 692                 * "If this bit is set, STCunit will have LRA as replacement
 693                 *  policy. [...] This bit must be reset.  LRA replacement
 694                 *  policy is not supported."
 695                 */
 696                I915_WRITE(CACHE_MODE_0,
 697                           _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 698        }
 699
 700        if (IS_GEN(dev_priv, 6, 7))
 701                I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
 702
 703        if (INTEL_INFO(dev_priv)->gen >= 6)
 704                I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
 705
 706        return init_workarounds_ring(engine);
 707}
 708
 709static void render_ring_cleanup(struct intel_engine_cs *engine)
 710{
 711        struct drm_i915_private *dev_priv = engine->i915;
 712
 713        i915_vma_unpin_and_release(&dev_priv->semaphore);
 714}
 715
 716static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
 717{
 718        struct drm_i915_private *dev_priv = req->i915;
 719        struct intel_engine_cs *waiter;
 720        enum intel_engine_id id;
 721
 722        for_each_engine(waiter, dev_priv, id) {
 723                u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
 724                if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
 725                        continue;
 726
 727                *cs++ = GFX_OP_PIPE_CONTROL(6);
 728                *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
 729                        PIPE_CONTROL_CS_STALL;
 730                *cs++ = lower_32_bits(gtt_offset);
 731                *cs++ = upper_32_bits(gtt_offset);
 732                *cs++ = req->global_seqno;
 733                *cs++ = 0;
 734                *cs++ = MI_SEMAPHORE_SIGNAL |
 735                        MI_SEMAPHORE_TARGET(waiter->hw_id);
 736                *cs++ = 0;
 737        }
 738
 739        return cs;
 740}
 741
 742static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
 743{
 744        struct drm_i915_private *dev_priv = req->i915;
 745        struct intel_engine_cs *waiter;
 746        enum intel_engine_id id;
 747
 748        for_each_engine(waiter, dev_priv, id) {
 749                u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
 750                if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
 751                        continue;
 752
 753                *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
 754                *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
 755                *cs++ = upper_32_bits(gtt_offset);
 756                *cs++ = req->global_seqno;
 757                *cs++ = MI_SEMAPHORE_SIGNAL |
 758                        MI_SEMAPHORE_TARGET(waiter->hw_id);
 759                *cs++ = 0;
 760        }
 761
 762        return cs;
 763}
 764
 765static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
 766{
 767        struct drm_i915_private *dev_priv = req->i915;
 768        struct intel_engine_cs *engine;
 769        enum intel_engine_id id;
 770        int num_rings = 0;
 771
 772        for_each_engine(engine, dev_priv, id) {
 773                i915_reg_t mbox_reg;
 774
 775                if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
 776                        continue;
 777
 778                mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
 779                if (i915_mmio_reg_valid(mbox_reg)) {
 780                        *cs++ = MI_LOAD_REGISTER_IMM(1);
 781                        *cs++ = i915_mmio_reg_offset(mbox_reg);
 782                        *cs++ = req->global_seqno;
 783                        num_rings++;
 784                }
 785        }
 786        if (num_rings & 1)
 787                *cs++ = MI_NOOP;
 788
 789        return cs;
 790}
 791
 792static void cancel_requests(struct intel_engine_cs *engine)
 793{
 794        struct drm_i915_gem_request *request;
 795        unsigned long flags;
 796
 797        spin_lock_irqsave(&engine->timeline->lock, flags);
 798
 799        /* Mark all submitted requests as skipped. */
 800        list_for_each_entry(request, &engine->timeline->requests, link) {
 801                GEM_BUG_ON(!request->global_seqno);
 802                if (!i915_gem_request_completed(request))
 803                        dma_fence_set_error(&request->fence, -EIO);
 804        }
 805        /* Remaining _unready_ requests will be nop'ed when submitted */
 806
 807        spin_unlock_irqrestore(&engine->timeline->lock, flags);
 808}
 809
 810static void i9xx_submit_request(struct drm_i915_gem_request *request)
 811{
 812        struct drm_i915_private *dev_priv = request->i915;
 813
 814        i915_gem_request_submit(request);
 815
 816        I915_WRITE_TAIL(request->engine,
 817                        intel_ring_set_tail(request->ring, request->tail));
 818}
 819
 820static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
 821{
 822        *cs++ = MI_STORE_DWORD_INDEX;
 823        *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
 824        *cs++ = req->global_seqno;
 825        *cs++ = MI_USER_INTERRUPT;
 826
 827        req->tail = intel_ring_offset(req, cs);
 828        assert_ring_tail_valid(req->ring, req->tail);
 829}
 830
 831static const int i9xx_emit_breadcrumb_sz = 4;
 832
 833/**
 834 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
 835 *
 836 * @request - request to write to the ring
 837 *
 838 * Update the mailbox registers in the *other* rings with the current seqno.
 839 * This acts like a signal in the canonical semaphore.
 840 */
 841static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
 842{
 843        return i9xx_emit_breadcrumb(req,
 844                                    req->engine->semaphore.signal(req, cs));
 845}
 846
 847static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
 848                                        u32 *cs)
 849{
 850        struct intel_engine_cs *engine = req->engine;
 851
 852        if (engine->semaphore.signal)
 853                cs = engine->semaphore.signal(req, cs);
 854
 855        *cs++ = GFX_OP_PIPE_CONTROL(6);
 856        *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
 857                PIPE_CONTROL_QW_WRITE;
 858        *cs++ = intel_hws_seqno_address(engine);
 859        *cs++ = 0;
 860        *cs++ = req->global_seqno;
 861        /* We're thrashing one dword of HWS. */
 862        *cs++ = 0;
 863        *cs++ = MI_USER_INTERRUPT;
 864        *cs++ = MI_NOOP;
 865
 866        req->tail = intel_ring_offset(req, cs);
 867        assert_ring_tail_valid(req->ring, req->tail);
 868}
 869
 870static const int gen8_render_emit_breadcrumb_sz = 8;
 871
 872/**
 873 * intel_ring_sync - sync the waiter to the signaller on seqno
 874 *
 875 * @waiter - ring that is waiting
 876 * @signaller - ring which has, or will signal
 877 * @seqno - seqno which the waiter will block on
 878 */
 879
 880static int
 881gen8_ring_sync_to(struct drm_i915_gem_request *req,
 882                  struct drm_i915_gem_request *signal)
 883{
 884        struct drm_i915_private *dev_priv = req->i915;
 885        u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
 886        struct i915_hw_ppgtt *ppgtt;
 887        u32 *cs;
 888
 889        cs = intel_ring_begin(req, 4);
 890        if (IS_ERR(cs))
 891                return PTR_ERR(cs);
 892
 893        *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
 894                MI_SEMAPHORE_SAD_GTE_SDD;
 895        *cs++ = signal->global_seqno;
 896        *cs++ = lower_32_bits(offset);
 897        *cs++ = upper_32_bits(offset);
 898        intel_ring_advance(req, cs);
 899
 900        /* When the !RCS engines idle waiting upon a semaphore, they lose their
 901         * pagetables and we must reload them before executing the batch.
 902         * We do this on the i915_switch_context() following the wait and
 903         * before the dispatch.
 904         */
 905        ppgtt = req->ctx->ppgtt;
 906        if (ppgtt && req->engine->id != RCS)
 907                ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
 908        return 0;
 909}
 910
 911static int
 912gen6_ring_sync_to(struct drm_i915_gem_request *req,
 913                  struct drm_i915_gem_request *signal)
 914{
 915        u32 dw1 = MI_SEMAPHORE_MBOX |
 916                  MI_SEMAPHORE_COMPARE |
 917                  MI_SEMAPHORE_REGISTER;
 918        u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
 919        u32 *cs;
 920
 921        WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
 922
 923        cs = intel_ring_begin(req, 4);
 924        if (IS_ERR(cs))
 925                return PTR_ERR(cs);
 926
 927        *cs++ = dw1 | wait_mbox;
 928        /* Throughout all of the GEM code, seqno passed implies our current
 929         * seqno is >= the last seqno executed. However for hardware the
 930         * comparison is strictly greater than.
 931         */
 932        *cs++ = signal->global_seqno - 1;
 933        *cs++ = 0;
 934        *cs++ = MI_NOOP;
 935        intel_ring_advance(req, cs);
 936
 937        return 0;
 938}
 939
 940static void
 941gen5_seqno_barrier(struct intel_engine_cs *engine)
 942{
 943        /* MI_STORE are internally buffered by the GPU and not flushed
 944         * either by MI_FLUSH or SyncFlush or any other combination of
 945         * MI commands.
 946         *
 947         * "Only the submission of the store operation is guaranteed.
 948         * The write result will be complete (coherent) some time later
 949         * (this is practically a finite period but there is no guaranteed
 950         * latency)."
 951         *
 952         * Empirically, we observe that we need a delay of at least 75us to
 953         * be sure that the seqno write is visible by the CPU.
 954         */
 955        usleep_range(125, 250);
 956}
 957
 958static void
 959gen6_seqno_barrier(struct intel_engine_cs *engine)
 960{
 961        struct drm_i915_private *dev_priv = engine->i915;
 962
 963        /* Workaround to force correct ordering between irq and seqno writes on
 964         * ivb (and maybe also on snb) by reading from a CS register (like
 965         * ACTHD) before reading the status page.
 966         *
 967         * Note that this effectively stalls the read by the time it takes to
 968         * do a memory transaction, which more or less ensures that the write
 969         * from the GPU has sufficient time to invalidate the CPU cacheline.
 970         * Alternatively we could delay the interrupt from the CS ring to give
 971         * the write time to land, but that would incur a delay after every
 972         * batch i.e. much more frequent than a delay when waiting for the
 973         * interrupt (with the same net latency).
 974         *
 975         * Also note that to prevent whole machine hangs on gen7, we have to
 976         * take the spinlock to guard against concurrent cacheline access.
 977         */
 978        spin_lock_irq(&dev_priv->uncore.lock);
 979        POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
 980        spin_unlock_irq(&dev_priv->uncore.lock);
 981}
 982
 983static void
 984gen5_irq_enable(struct intel_engine_cs *engine)
 985{
 986        gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
 987}
 988
 989static void
 990gen5_irq_disable(struct intel_engine_cs *engine)
 991{
 992        gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
 993}
 994
 995static void
 996i9xx_irq_enable(struct intel_engine_cs *engine)
 997{
 998        struct drm_i915_private *dev_priv = engine->i915;
 999
1000        dev_priv->irq_mask &= ~engine->irq_enable_mask;
1001        I915_WRITE(IMR, dev_priv->irq_mask);
1002        POSTING_READ_FW(RING_IMR(engine->mmio_base));
1003}
1004
1005static void
1006i9xx_irq_disable(struct intel_engine_cs *engine)
1007{
1008        struct drm_i915_private *dev_priv = engine->i915;
1009
1010        dev_priv->irq_mask |= engine->irq_enable_mask;
1011        I915_WRITE(IMR, dev_priv->irq_mask);
1012}
1013
1014static void
1015i8xx_irq_enable(struct intel_engine_cs *engine)
1016{
1017        struct drm_i915_private *dev_priv = engine->i915;
1018
1019        dev_priv->irq_mask &= ~engine->irq_enable_mask;
1020        I915_WRITE16(IMR, dev_priv->irq_mask);
1021        POSTING_READ16(RING_IMR(engine->mmio_base));
1022}
1023
1024static void
1025i8xx_irq_disable(struct intel_engine_cs *engine)
1026{
1027        struct drm_i915_private *dev_priv = engine->i915;
1028
1029        dev_priv->irq_mask |= engine->irq_enable_mask;
1030        I915_WRITE16(IMR, dev_priv->irq_mask);
1031}
1032
1033static int
1034bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1035{
1036        u32 *cs;
1037
1038        cs = intel_ring_begin(req, 2);
1039        if (IS_ERR(cs))
1040                return PTR_ERR(cs);
1041
1042        *cs++ = MI_FLUSH;
1043        *cs++ = MI_NOOP;
1044        intel_ring_advance(req, cs);
1045        return 0;
1046}
1047
1048static void
1049gen6_irq_enable(struct intel_engine_cs *engine)
1050{
1051        struct drm_i915_private *dev_priv = engine->i915;
1052
1053        I915_WRITE_IMR(engine,
1054                       ~(engine->irq_enable_mask |
1055                         engine->irq_keep_mask));
1056        gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1057}
1058
1059static void
1060gen6_irq_disable(struct intel_engine_cs *engine)
1061{
1062        struct drm_i915_private *dev_priv = engine->i915;
1063
1064        I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1065        gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1066}
1067
1068static void
1069hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1070{
1071        struct drm_i915_private *dev_priv = engine->i915;
1072
1073        I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1074        gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1075}
1076
1077static void
1078hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1079{
1080        struct drm_i915_private *dev_priv = engine->i915;
1081
1082        I915_WRITE_IMR(engine, ~0);
1083        gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1084}
1085
1086static void
1087gen8_irq_enable(struct intel_engine_cs *engine)
1088{
1089        struct drm_i915_private *dev_priv = engine->i915;
1090
1091        I915_WRITE_IMR(engine,
1092                       ~(engine->irq_enable_mask |
1093                         engine->irq_keep_mask));
1094        POSTING_READ_FW(RING_IMR(engine->mmio_base));
1095}
1096
1097static void
1098gen8_irq_disable(struct intel_engine_cs *engine)
1099{
1100        struct drm_i915_private *dev_priv = engine->i915;
1101
1102        I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1103}
1104
1105static int
1106i965_emit_bb_start(struct drm_i915_gem_request *req,
1107                   u64 offset, u32 length,
1108                   unsigned int dispatch_flags)
1109{
1110        u32 *cs;
1111
1112        cs = intel_ring_begin(req, 2);
1113        if (IS_ERR(cs))
1114                return PTR_ERR(cs);
1115
1116        *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1117                I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1118        *cs++ = offset;
1119        intel_ring_advance(req, cs);
1120
1121        return 0;
1122}
1123
1124/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1125#define I830_BATCH_LIMIT (256*1024)
1126#define I830_TLB_ENTRIES (2)
1127#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1128static int
1129i830_emit_bb_start(struct drm_i915_gem_request *req,
1130                   u64 offset, u32 len,
1131                   unsigned int dispatch_flags)
1132{
1133        u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1134
1135        cs = intel_ring_begin(req, 6);
1136        if (IS_ERR(cs))
1137                return PTR_ERR(cs);
1138
1139        /* Evict the invalid PTE TLBs */
1140        *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1141        *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1142        *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1143        *cs++ = cs_offset;
1144        *cs++ = 0xdeadbeef;
1145        *cs++ = MI_NOOP;
1146        intel_ring_advance(req, cs);
1147
1148        if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1149                if (len > I830_BATCH_LIMIT)
1150                        return -ENOSPC;
1151
1152                cs = intel_ring_begin(req, 6 + 2);
1153                if (IS_ERR(cs))
1154                        return PTR_ERR(cs);
1155
1156                /* Blit the batch (which has now all relocs applied) to the
1157                 * stable batch scratch bo area (so that the CS never
1158                 * stumbles over its tlb invalidation bug) ...
1159                 */
1160                *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1161                *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1162                *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1163                *cs++ = cs_offset;
1164                *cs++ = 4096;
1165                *cs++ = offset;
1166
1167                *cs++ = MI_FLUSH;
1168                *cs++ = MI_NOOP;
1169                intel_ring_advance(req, cs);
1170
1171                /* ... and execute it. */
1172                offset = cs_offset;
1173        }
1174
1175        cs = intel_ring_begin(req, 2);
1176        if (IS_ERR(cs))
1177                return PTR_ERR(cs);
1178
1179        *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180        *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181                MI_BATCH_NON_SECURE);
1182        intel_ring_advance(req, cs);
1183
1184        return 0;
1185}
1186
1187static int
1188i915_emit_bb_start(struct drm_i915_gem_request *req,
1189                   u64 offset, u32 len,
1190                   unsigned int dispatch_flags)
1191{
1192        u32 *cs;
1193
1194        cs = intel_ring_begin(req, 2);
1195        if (IS_ERR(cs))
1196                return PTR_ERR(cs);
1197
1198        *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1199        *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1200                MI_BATCH_NON_SECURE);
1201        intel_ring_advance(req, cs);
1202
1203        return 0;
1204}
1205
1206
1207
1208int intel_ring_pin(struct intel_ring *ring,
1209                   struct drm_i915_private *i915,
1210                   unsigned int offset_bias)
1211{
1212        enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1213        struct i915_vma *vma = ring->vma;
1214        unsigned int flags;
1215        void *addr;
1216        int ret;
1217
1218        GEM_BUG_ON(ring->vaddr);
1219
1220
1221        flags = PIN_GLOBAL;
1222        if (offset_bias)
1223                flags |= PIN_OFFSET_BIAS | offset_bias;
1224        if (vma->obj->stolen)
1225                flags |= PIN_MAPPABLE;
1226
1227        if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1228                if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1229                        ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1230                else
1231                        ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1232                if (unlikely(ret))
1233                        return ret;
1234        }
1235
1236        ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1237        if (unlikely(ret))
1238                return ret;
1239
1240        if (i915_vma_is_map_and_fenceable(vma))
1241                addr = (void __force *)i915_vma_pin_iomap(vma);
1242        else
1243                addr = i915_gem_object_pin_map(vma->obj, map);
1244        if (IS_ERR(addr))
1245                goto err;
1246
1247        vma->obj->pin_global++;
1248
1249        ring->vaddr = addr;
1250        return 0;
1251
1252err:
1253        i915_vma_unpin(vma);
1254        return PTR_ERR(addr);
1255}
1256
1257void intel_ring_reset(struct intel_ring *ring, u32 tail)
1258{
1259        GEM_BUG_ON(!list_empty(&ring->request_list));
1260        ring->tail = tail;
1261        ring->head = tail;
1262        ring->emit = tail;
1263        intel_ring_update_space(ring);
1264}
1265
1266void intel_ring_unpin(struct intel_ring *ring)
1267{
1268        GEM_BUG_ON(!ring->vma);
1269        GEM_BUG_ON(!ring->vaddr);
1270
1271        /* Discard any unused bytes beyond that submitted to hw. */
1272        intel_ring_reset(ring, ring->tail);
1273
1274        if (i915_vma_is_map_and_fenceable(ring->vma))
1275                i915_vma_unpin_iomap(ring->vma);
1276        else
1277                i915_gem_object_unpin_map(ring->vma->obj);
1278        ring->vaddr = NULL;
1279
1280        ring->vma->obj->pin_global--;
1281        i915_vma_unpin(ring->vma);
1282}
1283
1284static struct i915_vma *
1285intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1286{
1287        struct drm_i915_gem_object *obj;
1288        struct i915_vma *vma;
1289
1290        obj = i915_gem_object_create_stolen(dev_priv, size);
1291        if (!obj)
1292                obj = i915_gem_object_create_internal(dev_priv, size);
1293        if (IS_ERR(obj))
1294                return ERR_CAST(obj);
1295
1296        /* mark ring buffers as read-only from GPU side by default */
1297        obj->gt_ro = 1;
1298
1299        vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1300        if (IS_ERR(vma))
1301                goto err;
1302
1303        return vma;
1304
1305err:
1306        i915_gem_object_put(obj);
1307        return vma;
1308}
1309
1310struct intel_ring *
1311intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1312{
1313        struct intel_ring *ring;
1314        struct i915_vma *vma;
1315
1316        GEM_BUG_ON(!is_power_of_2(size));
1317        GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1318
1319        ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1320        if (!ring)
1321                return ERR_PTR(-ENOMEM);
1322
1323        INIT_LIST_HEAD(&ring->request_list);
1324
1325        ring->size = size;
1326        /* Workaround an erratum on the i830 which causes a hang if
1327         * the TAIL pointer points to within the last 2 cachelines
1328         * of the buffer.
1329         */
1330        ring->effective_size = size;
1331        if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1332                ring->effective_size -= 2 * CACHELINE_BYTES;
1333
1334        intel_ring_update_space(ring);
1335
1336        vma = intel_ring_create_vma(engine->i915, size);
1337        if (IS_ERR(vma)) {
1338                kfree(ring);
1339                return ERR_CAST(vma);
1340        }
1341        ring->vma = vma;
1342
1343        return ring;
1344}
1345
1346void
1347intel_ring_free(struct intel_ring *ring)
1348{
1349        struct drm_i915_gem_object *obj = ring->vma->obj;
1350
1351        i915_vma_close(ring->vma);
1352        __i915_gem_object_release_unless_active(obj);
1353
1354        kfree(ring);
1355}
1356
1357static int context_pin(struct i915_gem_context *ctx)
1358{
1359        struct i915_vma *vma = ctx->engine[RCS].state;
1360        int ret;
1361
1362        /* Clear this page out of any CPU caches for coherent swap-in/out.
1363         * We only want to do this on the first bind so that we do not stall
1364         * on an active context (which by nature is already on the GPU).
1365         */
1366        if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1367                ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1368                if (ret)
1369                        return ret;
1370        }
1371
1372        return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1373                            PIN_GLOBAL | PIN_HIGH);
1374}
1375
1376static struct i915_vma *
1377alloc_context_vma(struct intel_engine_cs *engine)
1378{
1379        struct drm_i915_private *i915 = engine->i915;
1380        struct drm_i915_gem_object *obj;
1381        struct i915_vma *vma;
1382
1383        obj = i915_gem_object_create(i915, engine->context_size);
1384        if (IS_ERR(obj))
1385                return ERR_CAST(obj);
1386
1387        /*
1388         * Try to make the context utilize L3 as well as LLC.
1389         *
1390         * On VLV we don't have L3 controls in the PTEs so we
1391         * shouldn't touch the cache level, especially as that
1392         * would make the object snooped which might have a
1393         * negative performance impact.
1394         *
1395         * Snooping is required on non-llc platforms in execlist
1396         * mode, but since all GGTT accesses use PAT entry 0 we
1397         * get snooping anyway regardless of cache_level.
1398         *
1399         * This is only applicable for Ivy Bridge devices since
1400         * later platforms don't have L3 control bits in the PTE.
1401         */
1402        if (IS_IVYBRIDGE(i915)) {
1403                /* Ignore any error, regard it as a simple optimisation */
1404                i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1405        }
1406
1407        vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1408        if (IS_ERR(vma))
1409                i915_gem_object_put(obj);
1410
1411        return vma;
1412}
1413
1414static struct intel_ring *
1415intel_ring_context_pin(struct intel_engine_cs *engine,
1416                       struct i915_gem_context *ctx)
1417{
1418        struct intel_context *ce = &ctx->engine[engine->id];
1419        int ret;
1420
1421        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1422
1423        if (likely(ce->pin_count++))
1424                goto out;
1425        GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1426
1427        if (!ce->state && engine->context_size) {
1428                struct i915_vma *vma;
1429
1430                vma = alloc_context_vma(engine);
1431                if (IS_ERR(vma)) {
1432                        ret = PTR_ERR(vma);
1433                        goto err;
1434                }
1435
1436                ce->state = vma;
1437        }
1438
1439        if (ce->state) {
1440                ret = context_pin(ctx);
1441                if (ret)
1442                        goto err;
1443
1444                ce->state->obj->mm.dirty = true;
1445                ce->state->obj->pin_global++;
1446        }
1447
1448        /* The kernel context is only used as a placeholder for flushing the
1449         * active context. It is never used for submitting user rendering and
1450         * as such never requires the golden render context, and so we can skip
1451         * emitting it when we switch to the kernel context. This is required
1452         * as during eviction we cannot allocate and pin the renderstate in
1453         * order to initialise the context.
1454         */
1455        if (i915_gem_context_is_kernel(ctx))
1456                ce->initialised = true;
1457
1458        i915_gem_context_get(ctx);
1459
1460out:
1461        /* One ringbuffer to rule them all */
1462        return engine->buffer;
1463
1464err:
1465        ce->pin_count = 0;
1466        return ERR_PTR(ret);
1467}
1468
1469static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1470                                     struct i915_gem_context *ctx)
1471{
1472        struct intel_context *ce = &ctx->engine[engine->id];
1473
1474        lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1475        GEM_BUG_ON(ce->pin_count == 0);
1476
1477        if (--ce->pin_count)
1478                return;
1479
1480        if (ce->state) {
1481                ce->state->obj->pin_global--;
1482                i915_vma_unpin(ce->state);
1483        }
1484
1485        i915_gem_context_put(ctx);
1486}
1487
1488static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1489{
1490        struct intel_ring *ring;
1491        int err;
1492
1493        intel_engine_setup_common(engine);
1494
1495        err = intel_engine_init_common(engine);
1496        if (err)
1497                goto err;
1498
1499        ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1500        if (IS_ERR(ring)) {
1501                err = PTR_ERR(ring);
1502                goto err;
1503        }
1504
1505        /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1506        err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1507        if (err)
1508                goto err_ring;
1509
1510        GEM_BUG_ON(engine->buffer);
1511        engine->buffer = ring;
1512
1513        return 0;
1514
1515err_ring:
1516        intel_ring_free(ring);
1517err:
1518        intel_engine_cleanup_common(engine);
1519        return err;
1520}
1521
1522void intel_engine_cleanup(struct intel_engine_cs *engine)
1523{
1524        struct drm_i915_private *dev_priv = engine->i915;
1525
1526        WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1527                (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1528
1529        intel_ring_unpin(engine->buffer);
1530        intel_ring_free(engine->buffer);
1531
1532        if (engine->cleanup)
1533                engine->cleanup(engine);
1534
1535        intel_engine_cleanup_common(engine);
1536
1537        dev_priv->engine[engine->id] = NULL;
1538        kfree(engine);
1539}
1540
1541void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1542{
1543        struct intel_engine_cs *engine;
1544        enum intel_engine_id id;
1545
1546        /* Restart from the beginning of the rings for convenience */
1547        for_each_engine(engine, dev_priv, id)
1548                intel_ring_reset(engine->buffer, 0);
1549}
1550
1551static int ring_request_alloc(struct drm_i915_gem_request *request)
1552{
1553        u32 *cs;
1554
1555        GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1556
1557        /* Flush enough space to reduce the likelihood of waiting after
1558         * we start building the request - in which case we will just
1559         * have to repeat work.
1560         */
1561        request->reserved_space += LEGACY_REQUEST_SIZE;
1562
1563        cs = intel_ring_begin(request, 0);
1564        if (IS_ERR(cs))
1565                return PTR_ERR(cs);
1566
1567        request->reserved_space -= LEGACY_REQUEST_SIZE;
1568        return 0;
1569}
1570
1571static noinline int wait_for_space(struct drm_i915_gem_request *req,
1572                                   unsigned int bytes)
1573{
1574        struct intel_ring *ring = req->ring;
1575        struct drm_i915_gem_request *target;
1576        long timeout;
1577
1578        lockdep_assert_held(&req->i915->drm.struct_mutex);
1579
1580        if (intel_ring_update_space(ring) >= bytes)
1581                return 0;
1582
1583        /*
1584         * Space is reserved in the ringbuffer for finalising the request,
1585         * as that cannot be allowed to fail. During request finalisation,
1586         * reserved_space is set to 0 to stop the overallocation and the
1587         * assumption is that then we never need to wait (which has the
1588         * risk of failing with EINTR).
1589         *
1590         * See also i915_gem_request_alloc() and i915_add_request().
1591         */
1592        GEM_BUG_ON(!req->reserved_space);
1593
1594        list_for_each_entry(target, &ring->request_list, ring_link) {
1595                /* Would completion of this request free enough space? */
1596                if (bytes <= __intel_ring_space(target->postfix,
1597                                                ring->emit, ring->size))
1598                        break;
1599        }
1600
1601        if (WARN_ON(&target->ring_link == &ring->request_list))
1602                return -ENOSPC;
1603
1604        timeout = i915_wait_request(target,
1605                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1606                                    MAX_SCHEDULE_TIMEOUT);
1607        if (timeout < 0)
1608                return timeout;
1609
1610        i915_gem_request_retire_upto(target);
1611
1612        intel_ring_update_space(ring);
1613        GEM_BUG_ON(ring->space < bytes);
1614        return 0;
1615}
1616
1617u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1618                      unsigned int num_dwords)
1619{
1620        struct intel_ring *ring = req->ring;
1621        const unsigned int remain_usable = ring->effective_size - ring->emit;
1622        const unsigned int bytes = num_dwords * sizeof(u32);
1623        unsigned int need_wrap = 0;
1624        unsigned int total_bytes;
1625        u32 *cs;
1626
1627        /* Packets must be qword aligned. */
1628        GEM_BUG_ON(num_dwords & 1);
1629
1630        total_bytes = bytes + req->reserved_space;
1631        GEM_BUG_ON(total_bytes > ring->effective_size);
1632
1633        if (unlikely(total_bytes > remain_usable)) {
1634                const int remain_actual = ring->size - ring->emit;
1635
1636                if (bytes > remain_usable) {
1637                        /*
1638                         * Not enough space for the basic request. So need to
1639                         * flush out the remainder and then wait for
1640                         * base + reserved.
1641                         */
1642                        total_bytes += remain_actual;
1643                        need_wrap = remain_actual | 1;
1644                } else  {
1645                        /*
1646                         * The base request will fit but the reserved space
1647                         * falls off the end. So we don't need an immediate
1648                         * wrap and only need to effectively wait for the
1649                         * reserved size from the start of ringbuffer.
1650                         */
1651                        total_bytes = req->reserved_space + remain_actual;
1652                }
1653        }
1654
1655        if (unlikely(total_bytes > ring->space)) {
1656                int ret = wait_for_space(req, total_bytes);
1657                if (unlikely(ret))
1658                        return ERR_PTR(ret);
1659        }
1660
1661        if (unlikely(need_wrap)) {
1662                need_wrap &= ~1;
1663                GEM_BUG_ON(need_wrap > ring->space);
1664                GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1665
1666                /* Fill the tail with MI_NOOP */
1667                memset(ring->vaddr + ring->emit, 0, need_wrap);
1668                ring->emit = 0;
1669                ring->space -= need_wrap;
1670        }
1671
1672        GEM_BUG_ON(ring->emit > ring->size - bytes);
1673        GEM_BUG_ON(ring->space < bytes);
1674        cs = ring->vaddr + ring->emit;
1675        GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1676        ring->emit += bytes;
1677        ring->space -= bytes;
1678
1679        return cs;
1680}
1681
1682/* Align the ring tail to a cacheline boundary */
1683int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1684{
1685        int num_dwords =
1686                (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1687        u32 *cs;
1688
1689        if (num_dwords == 0)
1690                return 0;
1691
1692        num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1693        cs = intel_ring_begin(req, num_dwords);
1694        if (IS_ERR(cs))
1695                return PTR_ERR(cs);
1696
1697        while (num_dwords--)
1698                *cs++ = MI_NOOP;
1699
1700        intel_ring_advance(req, cs);
1701
1702        return 0;
1703}
1704
1705static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1706{
1707        struct drm_i915_private *dev_priv = request->i915;
1708
1709        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1710
1711       /* Every tail move must follow the sequence below */
1712
1713        /* Disable notification that the ring is IDLE. The GT
1714         * will then assume that it is busy and bring it out of rc6.
1715         */
1716        I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1717                      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1718
1719        /* Clear the context id. Here be magic! */
1720        I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1721
1722        /* Wait for the ring not to be idle, i.e. for it to wake up. */
1723        if (__intel_wait_for_register_fw(dev_priv,
1724                                         GEN6_BSD_SLEEP_PSMI_CONTROL,
1725                                         GEN6_BSD_SLEEP_INDICATOR,
1726                                         0,
1727                                         1000, 0, NULL))
1728                DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1729
1730        /* Now that the ring is fully powered up, update the tail */
1731        i9xx_submit_request(request);
1732
1733        /* Let the ring send IDLE messages to the GT again,
1734         * and so let it sleep to conserve power when idle.
1735         */
1736        I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1737                      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1738
1739        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1740}
1741
1742static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1743{
1744        u32 cmd, *cs;
1745
1746        cs = intel_ring_begin(req, 4);
1747        if (IS_ERR(cs))
1748                return PTR_ERR(cs);
1749
1750        cmd = MI_FLUSH_DW;
1751        if (INTEL_GEN(req->i915) >= 8)
1752                cmd += 1;
1753
1754        /* We always require a command barrier so that subsequent
1755         * commands, such as breadcrumb interrupts, are strictly ordered
1756         * wrt the contents of the write cache being flushed to memory
1757         * (and thus being coherent from the CPU).
1758         */
1759        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1760
1761        /*
1762         * Bspec vol 1c.5 - video engine command streamer:
1763         * "If ENABLED, all TLBs will be invalidated once the flush
1764         * operation is complete. This bit is only valid when the
1765         * Post-Sync Operation field is a value of 1h or 3h."
1766         */
1767        if (mode & EMIT_INVALIDATE)
1768                cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1769
1770        *cs++ = cmd;
1771        *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1772        if (INTEL_GEN(req->i915) >= 8) {
1773                *cs++ = 0; /* upper addr */
1774                *cs++ = 0; /* value */
1775        } else  {
1776                *cs++ = 0;
1777                *cs++ = MI_NOOP;
1778        }
1779        intel_ring_advance(req, cs);
1780        return 0;
1781}
1782
1783static int
1784gen8_emit_bb_start(struct drm_i915_gem_request *req,
1785                   u64 offset, u32 len,
1786                   unsigned int dispatch_flags)
1787{
1788        bool ppgtt = USES_PPGTT(req->i915) &&
1789                        !(dispatch_flags & I915_DISPATCH_SECURE);
1790        u32 *cs;
1791
1792        cs = intel_ring_begin(req, 4);
1793        if (IS_ERR(cs))
1794                return PTR_ERR(cs);
1795
1796        /* FIXME(BDW): Address space and security selectors. */
1797        *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1798                I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1799        *cs++ = lower_32_bits(offset);
1800        *cs++ = upper_32_bits(offset);
1801        *cs++ = MI_NOOP;
1802        intel_ring_advance(req, cs);
1803
1804        return 0;
1805}
1806
1807static int
1808hsw_emit_bb_start(struct drm_i915_gem_request *req,
1809                  u64 offset, u32 len,
1810                  unsigned int dispatch_flags)
1811{
1812        u32 *cs;
1813
1814        cs = intel_ring_begin(req, 2);
1815        if (IS_ERR(cs))
1816                return PTR_ERR(cs);
1817
1818        *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1819                0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1820                (dispatch_flags & I915_DISPATCH_RS ?
1821                MI_BATCH_RESOURCE_STREAMER : 0);
1822        /* bit0-7 is the length on GEN6+ */
1823        *cs++ = offset;
1824        intel_ring_advance(req, cs);
1825
1826        return 0;
1827}
1828
1829static int
1830gen6_emit_bb_start(struct drm_i915_gem_request *req,
1831                   u64 offset, u32 len,
1832                   unsigned int dispatch_flags)
1833{
1834        u32 *cs;
1835
1836        cs = intel_ring_begin(req, 2);
1837        if (IS_ERR(cs))
1838                return PTR_ERR(cs);
1839
1840        *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1841                0 : MI_BATCH_NON_SECURE_I965);
1842        /* bit0-7 is the length on GEN6+ */
1843        *cs++ = offset;
1844        intel_ring_advance(req, cs);
1845
1846        return 0;
1847}
1848
1849/* Blitter support (SandyBridge+) */
1850
1851static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1852{
1853        u32 cmd, *cs;
1854
1855        cs = intel_ring_begin(req, 4);
1856        if (IS_ERR(cs))
1857                return PTR_ERR(cs);
1858
1859        cmd = MI_FLUSH_DW;
1860        if (INTEL_GEN(req->i915) >= 8)
1861                cmd += 1;
1862
1863        /* We always require a command barrier so that subsequent
1864         * commands, such as breadcrumb interrupts, are strictly ordered
1865         * wrt the contents of the write cache being flushed to memory
1866         * (and thus being coherent from the CPU).
1867         */
1868        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1869
1870        /*
1871         * Bspec vol 1c.3 - blitter engine command streamer:
1872         * "If ENABLED, all TLBs will be invalidated once the flush
1873         * operation is complete. This bit is only valid when the
1874         * Post-Sync Operation field is a value of 1h or 3h."
1875         */
1876        if (mode & EMIT_INVALIDATE)
1877                cmd |= MI_INVALIDATE_TLB;
1878        *cs++ = cmd;
1879        *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1880        if (INTEL_GEN(req->i915) >= 8) {
1881                *cs++ = 0; /* upper addr */
1882                *cs++ = 0; /* value */
1883        } else  {
1884                *cs++ = 0;
1885                *cs++ = MI_NOOP;
1886        }
1887        intel_ring_advance(req, cs);
1888
1889        return 0;
1890}
1891
1892static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1893                                       struct intel_engine_cs *engine)
1894{
1895        struct drm_i915_gem_object *obj;
1896        int ret, i;
1897
1898        if (!i915_modparams.semaphores)
1899                return;
1900
1901        if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1902                struct i915_vma *vma;
1903
1904                obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1905                if (IS_ERR(obj))
1906                        goto err;
1907
1908                vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1909                if (IS_ERR(vma))
1910                        goto err_obj;
1911
1912                ret = i915_gem_object_set_to_gtt_domain(obj, false);
1913                if (ret)
1914                        goto err_obj;
1915
1916                ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1917                if (ret)
1918                        goto err_obj;
1919
1920                dev_priv->semaphore = vma;
1921        }
1922
1923        if (INTEL_GEN(dev_priv) >= 8) {
1924                u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1925
1926                engine->semaphore.sync_to = gen8_ring_sync_to;
1927                engine->semaphore.signal = gen8_xcs_signal;
1928
1929                for (i = 0; i < I915_NUM_ENGINES; i++) {
1930                        u32 ring_offset;
1931
1932                        if (i != engine->id)
1933                                ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
1934                        else
1935                                ring_offset = MI_SEMAPHORE_SYNC_INVALID;
1936
1937                        engine->semaphore.signal_ggtt[i] = ring_offset;
1938                }
1939        } else if (INTEL_GEN(dev_priv) >= 6) {
1940                engine->semaphore.sync_to = gen6_ring_sync_to;
1941                engine->semaphore.signal = gen6_signal;
1942
1943                /*
1944                 * The current semaphore is only applied on pre-gen8
1945                 * platform.  And there is no VCS2 ring on the pre-gen8
1946                 * platform. So the semaphore between RCS and VCS2 is
1947                 * initialized as INVALID.  Gen8 will initialize the
1948                 * sema between VCS2 and RCS later.
1949                 */
1950                for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1951                        static const struct {
1952                                u32 wait_mbox;
1953                                i915_reg_t mbox_reg;
1954                        } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1955                                [RCS_HW] = {
1956                                        [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1957                                        [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1958                                        [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1959                                },
1960                                [VCS_HW] = {
1961                                        [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1962                                        [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1963                                        [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1964                                },
1965                                [BCS_HW] = {
1966                                        [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1967                                        [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1968                                        [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1969                                },
1970                                [VECS_HW] = {
1971                                        [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1972                                        [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1973                                        [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1974                                },
1975                        };
1976                        u32 wait_mbox;
1977                        i915_reg_t mbox_reg;
1978
1979                        if (i == engine->hw_id) {
1980                                wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1981                                mbox_reg = GEN6_NOSYNC;
1982                        } else {
1983                                wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1984                                mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1985                        }
1986
1987                        engine->semaphore.mbox.wait[i] = wait_mbox;
1988                        engine->semaphore.mbox.signal[i] = mbox_reg;
1989                }
1990        }
1991
1992        return;
1993
1994err_obj:
1995        i915_gem_object_put(obj);
1996err:
1997        DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
1998        i915_modparams.semaphores = 0;
1999}
2000
2001static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2002                                struct intel_engine_cs *engine)
2003{
2004        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2005
2006        if (INTEL_GEN(dev_priv) >= 8) {
2007                engine->irq_enable = gen8_irq_enable;
2008                engine->irq_disable = gen8_irq_disable;
2009                engine->irq_seqno_barrier = gen6_seqno_barrier;
2010        } else if (INTEL_GEN(dev_priv) >= 6) {
2011                engine->irq_enable = gen6_irq_enable;
2012                engine->irq_disable = gen6_irq_disable;
2013                engine->irq_seqno_barrier = gen6_seqno_barrier;
2014        } else if (INTEL_GEN(dev_priv) >= 5) {
2015                engine->irq_enable = gen5_irq_enable;
2016                engine->irq_disable = gen5_irq_disable;
2017                engine->irq_seqno_barrier = gen5_seqno_barrier;
2018        } else if (INTEL_GEN(dev_priv) >= 3) {
2019                engine->irq_enable = i9xx_irq_enable;
2020                engine->irq_disable = i9xx_irq_disable;
2021        } else {
2022                engine->irq_enable = i8xx_irq_enable;
2023                engine->irq_disable = i8xx_irq_disable;
2024        }
2025}
2026
2027static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2028{
2029        engine->submit_request = i9xx_submit_request;
2030        engine->cancel_requests = cancel_requests;
2031}
2032
2033static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2034{
2035        engine->submit_request = gen6_bsd_submit_request;
2036        engine->cancel_requests = cancel_requests;
2037}
2038
2039static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2040                                      struct intel_engine_cs *engine)
2041{
2042        intel_ring_init_irq(dev_priv, engine);
2043        intel_ring_init_semaphores(dev_priv, engine);
2044
2045        engine->init_hw = init_ring_common;
2046        engine->reset_hw = reset_ring_common;
2047
2048        engine->context_pin = intel_ring_context_pin;
2049        engine->context_unpin = intel_ring_context_unpin;
2050
2051        engine->request_alloc = ring_request_alloc;
2052
2053        engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2054        engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2055        if (i915_modparams.semaphores) {
2056                int num_rings;
2057
2058                engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2059
2060                num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2061                if (INTEL_GEN(dev_priv) >= 8) {
2062                        engine->emit_breadcrumb_sz += num_rings * 6;
2063                } else {
2064                        engine->emit_breadcrumb_sz += num_rings * 3;
2065                        if (num_rings & 1)
2066                                engine->emit_breadcrumb_sz++;
2067                }
2068        }
2069
2070        engine->set_default_submission = i9xx_set_default_submission;
2071
2072        if (INTEL_GEN(dev_priv) >= 8)
2073                engine->emit_bb_start = gen8_emit_bb_start;
2074        else if (INTEL_GEN(dev_priv) >= 6)
2075                engine->emit_bb_start = gen6_emit_bb_start;
2076        else if (INTEL_GEN(dev_priv) >= 4)
2077                engine->emit_bb_start = i965_emit_bb_start;
2078        else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2079                engine->emit_bb_start = i830_emit_bb_start;
2080        else
2081                engine->emit_bb_start = i915_emit_bb_start;
2082}
2083
2084int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2085{
2086        struct drm_i915_private *dev_priv = engine->i915;
2087        int ret;
2088
2089        intel_ring_default_vfuncs(dev_priv, engine);
2090
2091        if (HAS_L3_DPF(dev_priv))
2092                engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2093
2094        if (INTEL_GEN(dev_priv) >= 8) {
2095                engine->init_context = intel_rcs_ctx_init;
2096                engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2097                engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2098                engine->emit_flush = gen8_render_ring_flush;
2099                if (i915_modparams.semaphores) {
2100                        int num_rings;
2101
2102                        engine->semaphore.signal = gen8_rcs_signal;
2103
2104                        num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2105                        engine->emit_breadcrumb_sz += num_rings * 8;
2106                }
2107        } else if (INTEL_GEN(dev_priv) >= 6) {
2108                engine->init_context = intel_rcs_ctx_init;
2109                engine->emit_flush = gen7_render_ring_flush;
2110                if (IS_GEN6(dev_priv))
2111                        engine->emit_flush = gen6_render_ring_flush;
2112        } else if (IS_GEN5(dev_priv)) {
2113                engine->emit_flush = gen4_render_ring_flush;
2114        } else {
2115                if (INTEL_GEN(dev_priv) < 4)
2116                        engine->emit_flush = gen2_render_ring_flush;
2117                else
2118                        engine->emit_flush = gen4_render_ring_flush;
2119                engine->irq_enable_mask = I915_USER_INTERRUPT;
2120        }
2121
2122        if (IS_HASWELL(dev_priv))
2123                engine->emit_bb_start = hsw_emit_bb_start;
2124
2125        engine->init_hw = init_render_ring;
2126        engine->cleanup = render_ring_cleanup;
2127
2128        ret = intel_init_ring_buffer(engine);
2129        if (ret)
2130                return ret;
2131
2132        if (INTEL_GEN(dev_priv) >= 6) {
2133                ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2134                if (ret)
2135                        return ret;
2136        } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2137                ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2138                if (ret)
2139                        return ret;
2140        }
2141
2142        return 0;
2143}
2144
2145int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2146{
2147        struct drm_i915_private *dev_priv = engine->i915;
2148
2149        intel_ring_default_vfuncs(dev_priv, engine);
2150
2151        if (INTEL_GEN(dev_priv) >= 6) {
2152                /* gen6 bsd needs a special wa for tail updates */
2153                if (IS_GEN6(dev_priv))
2154                        engine->set_default_submission = gen6_bsd_set_default_submission;
2155                engine->emit_flush = gen6_bsd_ring_flush;
2156                if (INTEL_GEN(dev_priv) < 8)
2157                        engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2158        } else {
2159                engine->mmio_base = BSD_RING_BASE;
2160                engine->emit_flush = bsd_ring_flush;
2161                if (IS_GEN5(dev_priv))
2162                        engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2163                else
2164                        engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2165        }
2166
2167        return intel_init_ring_buffer(engine);
2168}
2169
2170int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2171{
2172        struct drm_i915_private *dev_priv = engine->i915;
2173
2174        intel_ring_default_vfuncs(dev_priv, engine);
2175
2176        engine->emit_flush = gen6_ring_flush;
2177        if (INTEL_GEN(dev_priv) < 8)
2178                engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2179
2180        return intel_init_ring_buffer(engine);
2181}
2182
2183int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2184{
2185        struct drm_i915_private *dev_priv = engine->i915;
2186
2187        intel_ring_default_vfuncs(dev_priv, engine);
2188
2189        engine->emit_flush = gen6_ring_flush;
2190
2191        if (INTEL_GEN(dev_priv) < 8) {
2192                engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2193                engine->irq_enable = hsw_vebox_irq_enable;
2194                engine->irq_disable = hsw_vebox_irq_disable;
2195        }
2196
2197        return intel_init_ring_buffer(engine);
2198}
2199