linux/drivers/infiniband/hw/hfi1/firmware.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2017 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/firmware.h>
  49#include <linux/mutex.h>
  50#include <linux/module.h>
  51#include <linux/delay.h>
  52#include <linux/crc32.h>
  53
  54#include "hfi.h"
  55#include "trace.h"
  56
  57/*
  58 * Make it easy to toggle firmware file name and if it gets loaded by
  59 * editing the following. This may be something we do while in development
  60 * but not necessarily something a user would ever need to use.
  61 */
  62#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
  63#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
  64#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
  65#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
  66#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
  67#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
  68#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
  69#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
  70#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
  71#define HOST_INTERFACE_VERSION 1
  72
  73MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
  74MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
  75MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
  76MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
  77
  78static uint fw_8051_load = 1;
  79static uint fw_fabric_serdes_load = 1;
  80static uint fw_pcie_serdes_load = 1;
  81static uint fw_sbus_load = 1;
  82
  83/* Firmware file names get set in hfi1_firmware_init() based on the above */
  84static char *fw_8051_name;
  85static char *fw_fabric_serdes_name;
  86static char *fw_sbus_name;
  87static char *fw_pcie_serdes_name;
  88
  89#define SBUS_MAX_POLL_COUNT 100
  90#define SBUS_COUNTER(reg, name) \
  91        (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
  92         ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
  93
  94/*
  95 * Firmware security header.
  96 */
  97struct css_header {
  98        u32 module_type;
  99        u32 header_len;
 100        u32 header_version;
 101        u32 module_id;
 102        u32 module_vendor;
 103        u32 date;               /* BCD yyyymmdd */
 104        u32 size;               /* in DWORDs */
 105        u32 key_size;           /* in DWORDs */
 106        u32 modulus_size;       /* in DWORDs */
 107        u32 exponent_size;      /* in DWORDs */
 108        u32 reserved[22];
 109};
 110
 111/* expected field values */
 112#define CSS_MODULE_TYPE    0x00000006
 113#define CSS_HEADER_LEN     0x000000a1
 114#define CSS_HEADER_VERSION 0x00010000
 115#define CSS_MODULE_VENDOR  0x00008086
 116
 117#define KEY_SIZE      256
 118#define MU_SIZE         8
 119#define EXPONENT_SIZE   4
 120
 121/* size of platform configuration partition */
 122#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
 123
 124/* size of file of plaform configuration encoded in format version 4 */
 125#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
 126
 127/* the file itself */
 128struct firmware_file {
 129        struct css_header css_header;
 130        u8 modulus[KEY_SIZE];
 131        u8 exponent[EXPONENT_SIZE];
 132        u8 signature[KEY_SIZE];
 133        u8 firmware[];
 134};
 135
 136struct augmented_firmware_file {
 137        struct css_header css_header;
 138        u8 modulus[KEY_SIZE];
 139        u8 exponent[EXPONENT_SIZE];
 140        u8 signature[KEY_SIZE];
 141        u8 r2[KEY_SIZE];
 142        u8 mu[MU_SIZE];
 143        u8 firmware[];
 144};
 145
 146/* augmented file size difference */
 147#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
 148                                                sizeof(struct firmware_file))
 149
 150struct firmware_details {
 151        /* Linux core piece */
 152        const struct firmware *fw;
 153
 154        struct css_header *css_header;
 155        u8 *firmware_ptr;               /* pointer to binary data */
 156        u32 firmware_len;               /* length in bytes */
 157        u8 *modulus;                    /* pointer to the modulus */
 158        u8 *exponent;                   /* pointer to the exponent */
 159        u8 *signature;                  /* pointer to the signature */
 160        u8 *r2;                         /* pointer to r2 */
 161        u8 *mu;                         /* pointer to mu */
 162        struct augmented_firmware_file dummy_header;
 163};
 164
 165/*
 166 * The mutex protects fw_state, fw_err, and all of the firmware_details
 167 * variables.
 168 */
 169static DEFINE_MUTEX(fw_mutex);
 170enum fw_state {
 171        FW_EMPTY,
 172        FW_TRY,
 173        FW_FINAL,
 174        FW_ERR
 175};
 176
 177static enum fw_state fw_state = FW_EMPTY;
 178static int fw_err;
 179static struct firmware_details fw_8051;
 180static struct firmware_details fw_fabric;
 181static struct firmware_details fw_pcie;
 182static struct firmware_details fw_sbus;
 183
 184/* flags for turn_off_spicos() */
 185#define SPICO_SBUS   0x1
 186#define SPICO_FABRIC 0x2
 187#define ENABLE_SPICO_SMASK 0x1
 188
 189/* security block commands */
 190#define RSA_CMD_INIT  0x1
 191#define RSA_CMD_START 0x2
 192
 193/* security block status */
 194#define RSA_STATUS_IDLE   0x0
 195#define RSA_STATUS_ACTIVE 0x1
 196#define RSA_STATUS_DONE   0x2
 197#define RSA_STATUS_FAILED 0x3
 198
 199/* RSA engine timeout, in ms */
 200#define RSA_ENGINE_TIMEOUT 100 /* ms */
 201
 202/* hardware mutex timeout, in ms */
 203#define HM_TIMEOUT 10 /* ms */
 204
 205/* 8051 memory access timeout, in us */
 206#define DC8051_ACCESS_TIMEOUT 100 /* us */
 207
 208/* the number of fabric SerDes on the SBus */
 209#define NUM_FABRIC_SERDES 4
 210
 211/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
 212#define SBUS_READ_COMPLETE 0x4
 213
 214/* SBus fabric SerDes addresses, one set per HFI */
 215static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
 216        { 0x01, 0x02, 0x03, 0x04 },
 217        { 0x28, 0x29, 0x2a, 0x2b }
 218};
 219
 220/* SBus PCIe SerDes addresses, one set per HFI */
 221static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
 222        { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
 223          0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
 224        { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
 225          0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
 226};
 227
 228/* SBus PCIe PCS addresses, one set per HFI */
 229const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
 230        { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
 231          0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
 232        { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 233          0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
 234};
 235
 236/* SBus fabric SerDes broadcast addresses, one per HFI */
 237static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
 238static const u8 all_fabric_serdes_broadcast = 0xe1;
 239
 240/* SBus PCIe SerDes broadcast addresses, one per HFI */
 241const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
 242static const u8 all_pcie_serdes_broadcast = 0xe0;
 243
 244static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
 245        0,
 246        SYSTEM_TABLE_MAX,
 247        PORT_TABLE_MAX,
 248        RX_PRESET_TABLE_MAX,
 249        TX_PRESET_TABLE_MAX,
 250        QSFP_ATTEN_TABLE_MAX,
 251        VARIABLE_SETTINGS_TABLE_MAX
 252};
 253
 254/* forwards */
 255static void dispose_one_firmware(struct firmware_details *fdet);
 256static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
 257                                       struct firmware_details *fdet);
 258static void dump_fw_version(struct hfi1_devdata *dd);
 259
 260/*
 261 * Read a single 64-bit value from 8051 data memory.
 262 *
 263 * Expects:
 264 * o caller to have already set up data read, no auto increment
 265 * o caller to turn off read enable when finished
 266 *
 267 * The address argument is a byte offset.  Bits 0:2 in the address are
 268 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
 269 * the lower bits are zero.
 270 *
 271 * Return 0 on success, -ENXIO on a read error (timeout).
 272 */
 273static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
 274{
 275        u64 reg;
 276        int count;
 277
 278        /* step 1: set the address, clear enable */
 279        reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 280                        << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
 281        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 282        /* step 2: enable */
 283        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
 284                  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
 285
 286        /* wait until ACCESS_COMPLETED is set */
 287        count = 0;
 288        while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 289                    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 290                    == 0) {
 291                count++;
 292                if (count > DC8051_ACCESS_TIMEOUT) {
 293                        dd_dev_err(dd, "timeout reading 8051 data\n");
 294                        return -ENXIO;
 295                }
 296                ndelay(10);
 297        }
 298
 299        /* gather the data */
 300        *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
 301
 302        return 0;
 303}
 304
 305/*
 306 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
 307 * Return 0 on success, -errno on error.
 308 */
 309int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
 310{
 311        unsigned long flags;
 312        u32 done;
 313        int ret = 0;
 314
 315        spin_lock_irqsave(&dd->dc8051_memlock, flags);
 316
 317        /* data read set-up, no auto-increment */
 318        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 319
 320        for (done = 0; done < len; addr += 8, done += 8, result++) {
 321                ret = __read_8051_data(dd, addr, result);
 322                if (ret)
 323                        break;
 324        }
 325
 326        /* turn off read enable */
 327        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 328
 329        spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
 330
 331        return ret;
 332}
 333
 334/*
 335 * Write data or code to the 8051 code or data RAM.
 336 */
 337static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
 338                      const u8 *data, u32 len)
 339{
 340        u64 reg;
 341        u32 offset;
 342        int aligned, count;
 343
 344        /* check alignment */
 345        aligned = ((unsigned long)data & 0x7) == 0;
 346
 347        /* write set-up */
 348        reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
 349                | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
 350        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
 351
 352        reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 353                        << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
 354                | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
 355        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 356
 357        /* write */
 358        for (offset = 0; offset < len; offset += 8) {
 359                int bytes = len - offset;
 360
 361                if (bytes < 8) {
 362                        reg = 0;
 363                        memcpy(&reg, &data[offset], bytes);
 364                } else if (aligned) {
 365                        reg = *(u64 *)&data[offset];
 366                } else {
 367                        memcpy(&reg, &data[offset], 8);
 368                }
 369                write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
 370
 371                /* wait until ACCESS_COMPLETED is set */
 372                count = 0;
 373                while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 374                    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 375                    == 0) {
 376                        count++;
 377                        if (count > DC8051_ACCESS_TIMEOUT) {
 378                                dd_dev_err(dd, "timeout writing 8051 data\n");
 379                                return -ENXIO;
 380                        }
 381                        udelay(1);
 382                }
 383        }
 384
 385        /* turn off write access, auto increment (also sets to data access) */
 386        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 387        write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 388
 389        return 0;
 390}
 391
 392/* return 0 if values match, non-zero and complain otherwise */
 393static int invalid_header(struct hfi1_devdata *dd, const char *what,
 394                          u32 actual, u32 expected)
 395{
 396        if (actual == expected)
 397                return 0;
 398
 399        dd_dev_err(dd,
 400                   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
 401                   what, expected, actual);
 402        return 1;
 403}
 404
 405/*
 406 * Verify that the static fields in the CSS header match.
 407 */
 408static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
 409{
 410        /* verify CSS header fields (most sizes are in DW, so add /4) */
 411        if (invalid_header(dd, "module_type", css->module_type,
 412                           CSS_MODULE_TYPE) ||
 413            invalid_header(dd, "header_len", css->header_len,
 414                           (sizeof(struct firmware_file) / 4)) ||
 415            invalid_header(dd, "header_version", css->header_version,
 416                           CSS_HEADER_VERSION) ||
 417            invalid_header(dd, "module_vendor", css->module_vendor,
 418                           CSS_MODULE_VENDOR) ||
 419            invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
 420            invalid_header(dd, "modulus_size", css->modulus_size,
 421                           KEY_SIZE / 4) ||
 422            invalid_header(dd, "exponent_size", css->exponent_size,
 423                           EXPONENT_SIZE / 4)) {
 424                return -EINVAL;
 425        }
 426        return 0;
 427}
 428
 429/*
 430 * Make sure there are at least some bytes after the prefix.
 431 */
 432static int payload_check(struct hfi1_devdata *dd, const char *name,
 433                         long file_size, long prefix_size)
 434{
 435        /* make sure we have some payload */
 436        if (prefix_size >= file_size) {
 437                dd_dev_err(dd,
 438                           "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
 439                           name, file_size, prefix_size);
 440                return -EINVAL;
 441        }
 442
 443        return 0;
 444}
 445
 446/*
 447 * Request the firmware from the system.  Extract the pieces and fill in
 448 * fdet.  If successful, the caller will need to call dispose_one_firmware().
 449 * Returns 0 on success, -ERRNO on error.
 450 */
 451static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
 452                               struct firmware_details *fdet)
 453{
 454        struct css_header *css;
 455        int ret;
 456
 457        memset(fdet, 0, sizeof(*fdet));
 458
 459        ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
 460        if (ret) {
 461                dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
 462                            name, ret);
 463                return ret;
 464        }
 465
 466        /* verify the firmware */
 467        if (fdet->fw->size < sizeof(struct css_header)) {
 468                dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
 469                ret = -EINVAL;
 470                goto done;
 471        }
 472        css = (struct css_header *)fdet->fw->data;
 473
 474        hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
 475        hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
 476        hfi1_cdbg(FIRMWARE, "CSS structure:");
 477        hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
 478        hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
 479                  css->header_len, 4 * css->header_len);
 480        hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
 481        hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
 482        hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
 483        hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
 484        hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
 485                  css->size, 4 * css->size);
 486        hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
 487                  css->key_size, 4 * css->key_size);
 488        hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
 489                  css->modulus_size, 4 * css->modulus_size);
 490        hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
 491                  css->exponent_size, 4 * css->exponent_size);
 492        hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
 493                  fdet->fw->size - sizeof(struct firmware_file));
 494
 495        /*
 496         * If the file does not have a valid CSS header, fail.
 497         * Otherwise, check the CSS size field for an expected size.
 498         * The augmented file has r2 and mu inserted after the header
 499         * was generated, so there will be a known difference between
 500         * the CSS header size and the actual file size.  Use this
 501         * difference to identify an augmented file.
 502         *
 503         * Note: css->size is in DWORDs, multiply by 4 to get bytes.
 504         */
 505        ret = verify_css_header(dd, css);
 506        if (ret) {
 507                dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
 508        } else if ((css->size * 4) == fdet->fw->size) {
 509                /* non-augmented firmware file */
 510                struct firmware_file *ff = (struct firmware_file *)
 511                                                        fdet->fw->data;
 512
 513                /* make sure there are bytes in the payload */
 514                ret = payload_check(dd, name, fdet->fw->size,
 515                                    sizeof(struct firmware_file));
 516                if (ret == 0) {
 517                        fdet->css_header = css;
 518                        fdet->modulus = ff->modulus;
 519                        fdet->exponent = ff->exponent;
 520                        fdet->signature = ff->signature;
 521                        fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
 522                        fdet->mu = fdet->dummy_header.mu; /* use dummy space */
 523                        fdet->firmware_ptr = ff->firmware;
 524                        fdet->firmware_len = fdet->fw->size -
 525                                                sizeof(struct firmware_file);
 526                        /*
 527                         * Header does not include r2 and mu - generate here.
 528                         * For now, fail.
 529                         */
 530                        dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
 531                        ret = -EINVAL;
 532                }
 533        } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
 534                /* augmented firmware file */
 535                struct augmented_firmware_file *aff =
 536                        (struct augmented_firmware_file *)fdet->fw->data;
 537
 538                /* make sure there are bytes in the payload */
 539                ret = payload_check(dd, name, fdet->fw->size,
 540                                    sizeof(struct augmented_firmware_file));
 541                if (ret == 0) {
 542                        fdet->css_header = css;
 543                        fdet->modulus = aff->modulus;
 544                        fdet->exponent = aff->exponent;
 545                        fdet->signature = aff->signature;
 546                        fdet->r2 = aff->r2;
 547                        fdet->mu = aff->mu;
 548                        fdet->firmware_ptr = aff->firmware;
 549                        fdet->firmware_len = fdet->fw->size -
 550                                        sizeof(struct augmented_firmware_file);
 551                }
 552        } else {
 553                /* css->size check failed */
 554                dd_dev_err(dd,
 555                           "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
 556                           fdet->fw->size / 4,
 557                           (fdet->fw->size - AUGMENT_SIZE) / 4,
 558                           css->size);
 559
 560                ret = -EINVAL;
 561        }
 562
 563done:
 564        /* if returning an error, clean up after ourselves */
 565        if (ret)
 566                dispose_one_firmware(fdet);
 567        return ret;
 568}
 569
 570static void dispose_one_firmware(struct firmware_details *fdet)
 571{
 572        release_firmware(fdet->fw);
 573        /* erase all previous information */
 574        memset(fdet, 0, sizeof(*fdet));
 575}
 576
 577/*
 578 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
 579 * at all.  If called with the firmware state in FW_TRY, use alternate names.
 580 * On exit, this routine will have set the firmware state to one of FW_TRY,
 581 * FW_FINAL, or FW_ERR.
 582 *
 583 * Must be holding fw_mutex.
 584 */
 585static void __obtain_firmware(struct hfi1_devdata *dd)
 586{
 587        int err = 0;
 588
 589        if (fw_state == FW_FINAL)       /* nothing more to obtain */
 590                return;
 591        if (fw_state == FW_ERR)         /* already in error */
 592                return;
 593
 594        /* fw_state is FW_EMPTY or FW_TRY */
 595retry:
 596        if (fw_state == FW_TRY) {
 597                /*
 598                 * We tried the original and it failed.  Move to the
 599                 * alternate.
 600                 */
 601                dd_dev_warn(dd, "using alternate firmware names\n");
 602                /*
 603                 * Let others run.  Some systems, when missing firmware, does
 604                 * something that holds for 30 seconds.  If we do that twice
 605                 * in a row it triggers task blocked warning.
 606                 */
 607                cond_resched();
 608                if (fw_8051_load)
 609                        dispose_one_firmware(&fw_8051);
 610                if (fw_fabric_serdes_load)
 611                        dispose_one_firmware(&fw_fabric);
 612                if (fw_sbus_load)
 613                        dispose_one_firmware(&fw_sbus);
 614                if (fw_pcie_serdes_load)
 615                        dispose_one_firmware(&fw_pcie);
 616                fw_8051_name = ALT_FW_8051_NAME_ASIC;
 617                fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
 618                fw_sbus_name = ALT_FW_SBUS_NAME;
 619                fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
 620
 621                /*
 622                 * Add a delay before obtaining and loading debug firmware.
 623                 * Authorization will fail if the delay between firmware
 624                 * authorization events is shorter than 50us. Add 100us to
 625                 * make a delay time safe.
 626                 */
 627                usleep_range(100, 120);
 628        }
 629
 630        if (fw_sbus_load) {
 631                err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
 632                if (err)
 633                        goto done;
 634        }
 635
 636        if (fw_pcie_serdes_load) {
 637                err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
 638                if (err)
 639                        goto done;
 640        }
 641
 642        if (fw_fabric_serdes_load) {
 643                err = obtain_one_firmware(dd, fw_fabric_serdes_name,
 644                                          &fw_fabric);
 645                if (err)
 646                        goto done;
 647        }
 648
 649        if (fw_8051_load) {
 650                err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
 651                if (err)
 652                        goto done;
 653        }
 654
 655done:
 656        if (err) {
 657                /* oops, had problems obtaining a firmware */
 658                if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
 659                        /* retry with alternate (RTL only) */
 660                        fw_state = FW_TRY;
 661                        goto retry;
 662                }
 663                dd_dev_err(dd, "unable to obtain working firmware\n");
 664                fw_state = FW_ERR;
 665                fw_err = -ENOENT;
 666        } else {
 667                /* success */
 668                if (fw_state == FW_EMPTY &&
 669                    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
 670                        fw_state = FW_TRY;      /* may retry later */
 671                else
 672                        fw_state = FW_FINAL;    /* cannot try again */
 673        }
 674}
 675
 676/*
 677 * Called by all HFIs when loading their firmware - i.e. device probe time.
 678 * The first one will do the actual firmware load.  Use a mutex to resolve
 679 * any possible race condition.
 680 *
 681 * The call to this routine cannot be moved to driver load because the kernel
 682 * call request_firmware() requires a device which is only available after
 683 * the first device probe.
 684 */
 685static int obtain_firmware(struct hfi1_devdata *dd)
 686{
 687        unsigned long timeout;
 688
 689        mutex_lock(&fw_mutex);
 690
 691        /* 40s delay due to long delay on missing firmware on some systems */
 692        timeout = jiffies + msecs_to_jiffies(40000);
 693        while (fw_state == FW_TRY) {
 694                /*
 695                 * Another device is trying the firmware.  Wait until it
 696                 * decides what works (or not).
 697                 */
 698                if (time_after(jiffies, timeout)) {
 699                        /* waited too long */
 700                        dd_dev_err(dd, "Timeout waiting for firmware try");
 701                        fw_state = FW_ERR;
 702                        fw_err = -ETIMEDOUT;
 703                        break;
 704                }
 705                mutex_unlock(&fw_mutex);
 706                msleep(20);     /* arbitrary delay */
 707                mutex_lock(&fw_mutex);
 708        }
 709        /* not in FW_TRY state */
 710
 711        /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
 712        if (fw_state == FW_EMPTY)
 713                __obtain_firmware(dd);
 714
 715        mutex_unlock(&fw_mutex);
 716        return fw_err;
 717}
 718
 719/*
 720 * Called when the driver unloads.  The timing is asymmetric with its
 721 * counterpart, obtain_firmware().  If called at device remove time,
 722 * then it is conceivable that another device could probe while the
 723 * firmware is being disposed.  The mutexes can be moved to do that
 724 * safely, but then the firmware would be requested from the OS multiple
 725 * times.
 726 *
 727 * No mutex is needed as the driver is unloading and there cannot be any
 728 * other callers.
 729 */
 730void dispose_firmware(void)
 731{
 732        dispose_one_firmware(&fw_8051);
 733        dispose_one_firmware(&fw_fabric);
 734        dispose_one_firmware(&fw_pcie);
 735        dispose_one_firmware(&fw_sbus);
 736
 737        /* retain the error state, otherwise revert to empty */
 738        if (fw_state != FW_ERR)
 739                fw_state = FW_EMPTY;
 740}
 741
 742/*
 743 * Called with the result of a firmware download.
 744 *
 745 * Return 1 to retry loading the firmware, 0 to stop.
 746 */
 747static int retry_firmware(struct hfi1_devdata *dd, int load_result)
 748{
 749        int retry;
 750
 751        mutex_lock(&fw_mutex);
 752
 753        if (load_result == 0) {
 754                /*
 755                 * The load succeeded, so expect all others to do the same.
 756                 * Do not retry again.
 757                 */
 758                if (fw_state == FW_TRY)
 759                        fw_state = FW_FINAL;
 760                retry = 0;      /* do NOT retry */
 761        } else if (fw_state == FW_TRY) {
 762                /* load failed, obtain alternate firmware */
 763                __obtain_firmware(dd);
 764                retry = (fw_state == FW_FINAL);
 765        } else {
 766                /* else in FW_FINAL or FW_ERR, no retry in either case */
 767                retry = 0;
 768        }
 769
 770        mutex_unlock(&fw_mutex);
 771        return retry;
 772}
 773
 774/*
 775 * Write a block of data to a given array CSR.  All calls will be in
 776 * multiples of 8 bytes.
 777 */
 778static void write_rsa_data(struct hfi1_devdata *dd, int what,
 779                           const u8 *data, int nbytes)
 780{
 781        int qw_size = nbytes / 8;
 782        int i;
 783
 784        if (((unsigned long)data & 0x7) == 0) {
 785                /* aligned */
 786                u64 *ptr = (u64 *)data;
 787
 788                for (i = 0; i < qw_size; i++, ptr++)
 789                        write_csr(dd, what + (8 * i), *ptr);
 790        } else {
 791                /* not aligned */
 792                for (i = 0; i < qw_size; i++, data += 8) {
 793                        u64 value;
 794
 795                        memcpy(&value, data, 8);
 796                        write_csr(dd, what + (8 * i), value);
 797                }
 798        }
 799}
 800
 801/*
 802 * Write a block of data to a given CSR as a stream of writes.  All calls will
 803 * be in multiples of 8 bytes.
 804 */
 805static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
 806                                    const u8 *data, int nbytes)
 807{
 808        u64 *ptr = (u64 *)data;
 809        int qw_size = nbytes / 8;
 810
 811        for (; qw_size > 0; qw_size--, ptr++)
 812                write_csr(dd, what, *ptr);
 813}
 814
 815/*
 816 * Download the signature and start the RSA mechanism.  Wait for
 817 * RSA_ENGINE_TIMEOUT before giving up.
 818 */
 819static int run_rsa(struct hfi1_devdata *dd, const char *who,
 820                   const u8 *signature)
 821{
 822        unsigned long timeout;
 823        u64 reg;
 824        u32 status;
 825        int ret = 0;
 826
 827        /* write the signature */
 828        write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
 829
 830        /* initialize RSA */
 831        write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
 832
 833        /*
 834         * Make sure the engine is idle and insert a delay between the two
 835         * writes to MISC_CFG_RSA_CMD.
 836         */
 837        status = (read_csr(dd, MISC_CFG_FW_CTRL)
 838                           & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 839                             >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 840        if (status != RSA_STATUS_IDLE) {
 841                dd_dev_err(dd, "%s security engine not idle - giving up\n",
 842                           who);
 843                return -EBUSY;
 844        }
 845
 846        /* start RSA */
 847        write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
 848
 849        /*
 850         * Look for the result.
 851         *
 852         * The RSA engine is hooked up to two MISC errors.  The driver
 853         * masks these errors as they do not respond to the standard
 854         * error "clear down" mechanism.  Look for these errors here and
 855         * clear them when possible.  This routine will exit with the
 856         * errors of the current run still set.
 857         *
 858         * MISC_FW_AUTH_FAILED_ERR
 859         *      Firmware authorization failed.  This can be cleared by
 860         *      re-initializing the RSA engine, then clearing the status bit.
 861         *      Do not re-init the RSA angine immediately after a successful
 862         *      run - this will reset the current authorization.
 863         *
 864         * MISC_KEY_MISMATCH_ERR
 865         *      Key does not match.  The only way to clear this is to load
 866         *      a matching key then clear the status bit.  If this error
 867         *      is raised, it will persist outside of this routine until a
 868         *      matching key is loaded.
 869         */
 870        timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
 871        while (1) {
 872                status = (read_csr(dd, MISC_CFG_FW_CTRL)
 873                           & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 874                             >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 875
 876                if (status == RSA_STATUS_IDLE) {
 877                        /* should not happen */
 878                        dd_dev_err(dd, "%s firmware security bad idle state\n",
 879                                   who);
 880                        ret = -EINVAL;
 881                        break;
 882                } else if (status == RSA_STATUS_DONE) {
 883                        /* finished successfully */
 884                        break;
 885                } else if (status == RSA_STATUS_FAILED) {
 886                        /* finished unsuccessfully */
 887                        ret = -EINVAL;
 888                        break;
 889                }
 890                /* else still active */
 891
 892                if (time_after(jiffies, timeout)) {
 893                        /*
 894                         * Timed out while active.  We can't reset the engine
 895                         * if it is stuck active, but run through the
 896                         * error code to see what error bits are set.
 897                         */
 898                        dd_dev_err(dd, "%s firmware security time out\n", who);
 899                        ret = -ETIMEDOUT;
 900                        break;
 901                }
 902
 903                msleep(20);
 904        }
 905
 906        /*
 907         * Arrive here on success or failure.  Clear all RSA engine
 908         * errors.  All current errors will stick - the RSA logic is keeping
 909         * error high.  All previous errors will clear - the RSA logic
 910         * is not keeping the error high.
 911         */
 912        write_csr(dd, MISC_ERR_CLEAR,
 913                  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
 914                  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
 915        /*
 916         * All that is left are the current errors.  Print warnings on
 917         * authorization failure details, if any.  Firmware authorization
 918         * can be retried, so these are only warnings.
 919         */
 920        reg = read_csr(dd, MISC_ERR_STATUS);
 921        if (ret) {
 922                if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
 923                        dd_dev_warn(dd, "%s firmware authorization failed\n",
 924                                    who);
 925                if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
 926                        dd_dev_warn(dd, "%s firmware key mismatch\n", who);
 927        }
 928
 929        return ret;
 930}
 931
 932static void load_security_variables(struct hfi1_devdata *dd,
 933                                    struct firmware_details *fdet)
 934{
 935        /* Security variables a.  Write the modulus */
 936        write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
 937        /* Security variables b.  Write the r2 */
 938        write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
 939        /* Security variables c.  Write the mu */
 940        write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
 941        /* Security variables d.  Write the header */
 942        write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
 943                                (u8 *)fdet->css_header,
 944                                sizeof(struct css_header));
 945}
 946
 947/* return the 8051 firmware state */
 948static inline u32 get_firmware_state(struct hfi1_devdata *dd)
 949{
 950        u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
 951
 952        return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
 953                                & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
 954}
 955
 956/*
 957 * Wait until the firmware is up and ready to take host requests.
 958 * Return 0 on success, -ETIMEDOUT on timeout.
 959 */
 960int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
 961{
 962        unsigned long timeout;
 963
 964        /* in the simulator, the fake 8051 is always ready */
 965        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
 966                return 0;
 967
 968        timeout = msecs_to_jiffies(mstimeout) + jiffies;
 969        while (1) {
 970                if (get_firmware_state(dd) == 0xa0)     /* ready */
 971                        return 0;
 972                if (time_after(jiffies, timeout))       /* timed out */
 973                        return -ETIMEDOUT;
 974                usleep_range(1950, 2050); /* sleep 2ms-ish */
 975        }
 976}
 977
 978/*
 979 * Clear all reset bits, releasing the 8051.
 980 * Wait for firmware to be ready to accept host requests.
 981 * Then, set host version bit.
 982 *
 983 * This function executes even if the 8051 is in reset mode when
 984 * dd->dc_shutdown == 1.
 985 *
 986 * Expects dd->dc8051_lock to be held.
 987 */
 988int release_and_wait_ready_8051_firmware(struct hfi1_devdata *dd)
 989{
 990        int ret;
 991
 992        lockdep_assert_held(&dd->dc8051_lock);
 993        /* clear all reset bits, releasing the 8051 */
 994        write_csr(dd, DC_DC8051_CFG_RST, 0ull);
 995
 996        /*
 997         * Wait for firmware to be ready to accept host
 998         * requests.
 999         */
1000        ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1001        if (ret) {
1002                dd_dev_err(dd, "8051 start timeout, current FW state 0x%x\n",
1003                           get_firmware_state(dd));
1004                return ret;
1005        }
1006
1007        ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1008        if (ret != HCMD_SUCCESS) {
1009                dd_dev_err(dd,
1010                           "Failed to set host interface version, return 0x%x\n",
1011                           ret);
1012                return -EIO;
1013        }
1014
1015        return 0;
1016}
1017
1018/*
1019 * Load the 8051 firmware.
1020 */
1021static int load_8051_firmware(struct hfi1_devdata *dd,
1022                              struct firmware_details *fdet)
1023{
1024        u64 reg;
1025        int ret;
1026        u8 ver_major;
1027        u8 ver_minor;
1028        u8 ver_patch;
1029
1030        /*
1031         * DC Reset sequence
1032         * Load DC 8051 firmware
1033         */
1034        /*
1035         * DC reset step 1: Reset DC8051
1036         */
1037        reg = DC_DC8051_CFG_RST_M8051W_SMASK
1038                | DC_DC8051_CFG_RST_CRAM_SMASK
1039                | DC_DC8051_CFG_RST_DRAM_SMASK
1040                | DC_DC8051_CFG_RST_IRAM_SMASK
1041                | DC_DC8051_CFG_RST_SFR_SMASK;
1042        write_csr(dd, DC_DC8051_CFG_RST, reg);
1043
1044        /*
1045         * DC reset step 2 (optional): Load 8051 data memory with link
1046         * configuration
1047         */
1048
1049        /*
1050         * DC reset step 3: Load DC8051 firmware
1051         */
1052        /* release all but the core reset */
1053        reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1054        write_csr(dd, DC_DC8051_CFG_RST, reg);
1055
1056        /* Firmware load step 1 */
1057        load_security_variables(dd, fdet);
1058
1059        /*
1060         * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1061         */
1062        write_csr(dd, MISC_CFG_FW_CTRL, 0);
1063
1064        /* Firmware load steps 3-5 */
1065        ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1066                         fdet->firmware_len);
1067        if (ret)
1068                return ret;
1069
1070        /*
1071         * DC reset step 4. Host starts the DC8051 firmware
1072         */
1073        /*
1074         * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1075         */
1076        write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1077
1078        /* Firmware load steps 7-10 */
1079        ret = run_rsa(dd, "8051", fdet->signature);
1080        if (ret)
1081                return ret;
1082
1083        /*
1084         * Clear all reset bits, releasing the 8051.
1085         * DC reset step 5. Wait for firmware to be ready to accept host
1086         * requests.
1087         * Then, set host version bit.
1088         */
1089        mutex_lock(&dd->dc8051_lock);
1090        ret = release_and_wait_ready_8051_firmware(dd);
1091        mutex_unlock(&dd->dc8051_lock);
1092        if (ret)
1093                return ret;
1094
1095        read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1096        dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1097                    (int)ver_major, (int)ver_minor, (int)ver_patch);
1098        dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1099
1100        return 0;
1101}
1102
1103/*
1104 * Write the SBus request register
1105 *
1106 * No need for masking - the arguments are sized exactly.
1107 */
1108void sbus_request(struct hfi1_devdata *dd,
1109                  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1110{
1111        write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1112                  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1113                  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1114                  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1115                  ((u64)receiver_addr <<
1116                   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1117}
1118
1119/*
1120 * Read a value from the SBus.
1121 *
1122 * Requires the caller to be in fast mode
1123 */
1124static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1125                     u32 data_in)
1126{
1127        u64 reg;
1128        int retries;
1129        int success = 0;
1130        u32 result = 0;
1131        u32 result_code = 0;
1132
1133        sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1134
1135        for (retries = 0; retries < 100; retries++) {
1136                usleep_range(1000, 1200); /* arbitrary */
1137                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1138                result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1139                                & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1140                if (result_code != SBUS_READ_COMPLETE)
1141                        continue;
1142
1143                success = 1;
1144                result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1145                           & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1146                break;
1147        }
1148
1149        if (!success) {
1150                dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1151                           result_code);
1152        }
1153
1154        return result;
1155}
1156
1157/*
1158 * Turn off the SBus and fabric serdes spicos.
1159 *
1160 * + Must be called with Sbus fast mode turned on.
1161 * + Must be called after fabric serdes broadcast is set up.
1162 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1163 *   when using MISC_CFG_FW_CTRL.
1164 */
1165static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1166{
1167        /* only needed on A0 */
1168        if (!is_ax(dd))
1169                return;
1170
1171        dd_dev_info(dd, "Turning off spicos:%s%s\n",
1172                    flags & SPICO_SBUS ? " SBus" : "",
1173                    flags & SPICO_FABRIC ? " fabric" : "");
1174
1175        write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1176        /* disable SBus spico */
1177        if (flags & SPICO_SBUS)
1178                sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1179                             WRITE_SBUS_RECEIVER, 0x00000040);
1180
1181        /* disable the fabric serdes spicos */
1182        if (flags & SPICO_FABRIC)
1183                sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1184                             0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1185        write_csr(dd, MISC_CFG_FW_CTRL, 0);
1186}
1187
1188/*
1189 * Reset all of the fabric serdes for this HFI in preparation to take the
1190 * link to Polling.
1191 *
1192 * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1193 * the fabric serdes download to the other HFI on the ASIC will have turned
1194 * off the firmware validation on this HFI.  This means we can't write to the
1195 * registers to reset the serdes.  Work around this by performing a complete
1196 * re-download and validation of the fabric serdes firmware.  This, as a
1197 * by-product, will reset the serdes.  NOTE: the re-download requires that
1198 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1199 * serdes.  This routine is called at the point where the link is Offline and
1200 * is getting ready to go to Polling.
1201 */
1202void fabric_serdes_reset(struct hfi1_devdata *dd)
1203{
1204        int ret;
1205
1206        if (!fw_fabric_serdes_load)
1207                return;
1208
1209        ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1210        if (ret) {
1211                dd_dev_err(dd,
1212                           "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1213                return;
1214        }
1215        set_sbus_fast_mode(dd);
1216
1217        if (is_ax(dd)) {
1218                /* A0 serdes do not work with a re-download */
1219                u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1220
1221                /* place SerDes in reset and disable SPICO */
1222                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1223                /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1224                udelay(1);
1225                /* remove SerDes reset */
1226                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1227                /* turn SPICO enable on */
1228                sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1229        } else {
1230                turn_off_spicos(dd, SPICO_FABRIC);
1231                /*
1232                 * No need for firmware retry - what to download has already
1233                 * been decided.
1234                 * No need to pay attention to the load return - the only
1235                 * failure is a validation failure, which has already been
1236                 * checked by the initial download.
1237                 */
1238                (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1239        }
1240
1241        clear_sbus_fast_mode(dd);
1242        release_chip_resource(dd, CR_SBUS);
1243}
1244
1245/* Access to the SBus in this routine should probably be serialized */
1246int sbus_request_slow(struct hfi1_devdata *dd,
1247                      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1248{
1249        u64 reg, count = 0;
1250
1251        /* make sure fast mode is clear */
1252        clear_sbus_fast_mode(dd);
1253
1254        sbus_request(dd, receiver_addr, data_addr, command, data_in);
1255        write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1256                  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1257        /* Wait for both DONE and RCV_DATA_VALID to go high */
1258        reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1259        while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1260                 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1261                if (count++ >= SBUS_MAX_POLL_COUNT) {
1262                        u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1263                        /*
1264                         * If the loop has timed out, we are OK if DONE bit
1265                         * is set and RCV_DATA_VALID and EXECUTE counters
1266                         * are the same. If not, we cannot proceed.
1267                         */
1268                        if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1269                            (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1270                             SBUS_COUNTER(counts, EXECUTE)))
1271                                break;
1272                        return -ETIMEDOUT;
1273                }
1274                udelay(1);
1275                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1276        }
1277        count = 0;
1278        write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1279        /* Wait for DONE to clear after EXECUTE is cleared */
1280        reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1281        while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1282                if (count++ >= SBUS_MAX_POLL_COUNT)
1283                        return -ETIME;
1284                udelay(1);
1285                reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1286        }
1287        return 0;
1288}
1289
1290static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1291                                       struct firmware_details *fdet)
1292{
1293        int i, err;
1294        const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1295
1296        dd_dev_info(dd, "Downloading fabric firmware\n");
1297
1298        /* step 1: load security variables */
1299        load_security_variables(dd, fdet);
1300        /* step 2: place SerDes in reset and disable SPICO */
1301        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1302        /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1303        udelay(1);
1304        /* step 3:  remove SerDes reset */
1305        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1306        /* step 4: assert IMEM override */
1307        sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1308        /* step 5: download SerDes machine code */
1309        for (i = 0; i < fdet->firmware_len; i += 4) {
1310                sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1311                             *(u32 *)&fdet->firmware_ptr[i]);
1312        }
1313        /* step 6: IMEM override off */
1314        sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1315        /* step 7: turn ECC on */
1316        sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1317
1318        /* steps 8-11: run the RSA engine */
1319        err = run_rsa(dd, "fabric serdes", fdet->signature);
1320        if (err)
1321                return err;
1322
1323        /* step 12: turn SPICO enable on */
1324        sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1325        /* step 13: enable core hardware interrupts */
1326        sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1327
1328        return 0;
1329}
1330
1331static int load_sbus_firmware(struct hfi1_devdata *dd,
1332                              struct firmware_details *fdet)
1333{
1334        int i, err;
1335        const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1336
1337        dd_dev_info(dd, "Downloading SBus firmware\n");
1338
1339        /* step 1: load security variables */
1340        load_security_variables(dd, fdet);
1341        /* step 2: place SPICO into reset and enable off */
1342        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1343        /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1344        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1345        /* step 4: set starting IMEM address for burst download */
1346        sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1347        /* step 5: download the SBus Master machine code */
1348        for (i = 0; i < fdet->firmware_len; i += 4) {
1349                sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1350                             *(u32 *)&fdet->firmware_ptr[i]);
1351        }
1352        /* step 6: set IMEM_CNTL_EN off */
1353        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1354        /* step 7: turn ECC on */
1355        sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1356
1357        /* steps 8-11: run the RSA engine */
1358        err = run_rsa(dd, "SBus", fdet->signature);
1359        if (err)
1360                return err;
1361
1362        /* step 12: set SPICO_ENABLE on */
1363        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1364
1365        return 0;
1366}
1367
1368static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1369                                     struct firmware_details *fdet)
1370{
1371        int i;
1372        const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1373
1374        dd_dev_info(dd, "Downloading PCIe firmware\n");
1375
1376        /* step 1: load security variables */
1377        load_security_variables(dd, fdet);
1378        /* step 2: assert single step (halts the SBus Master spico) */
1379        sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1380        /* step 3: enable XDMEM access */
1381        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1382        /* step 4: load firmware into SBus Master XDMEM */
1383        /*
1384         * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1385         * we only need to pick up the bytes and write them
1386         */
1387        for (i = 0; i < fdet->firmware_len; i += 4) {
1388                sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1389                             *(u32 *)&fdet->firmware_ptr[i]);
1390        }
1391        /* step 5: disable XDMEM access */
1392        sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1393        /* step 6: allow SBus Spico to run */
1394        sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1395
1396        /*
1397         * steps 7-11: run RSA, if it succeeds, firmware is available to
1398         * be swapped
1399         */
1400        return run_rsa(dd, "PCIe serdes", fdet->signature);
1401}
1402
1403/*
1404 * Set the given broadcast values on the given list of devices.
1405 */
1406static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1407                                 const u8 *addrs, int count)
1408{
1409        while (--count >= 0) {
1410                /*
1411                 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1412                 * defaults for everything else.  Do not read-modify-write,
1413                 * per instruction from the manufacturer.
1414                 *
1415                 * Register 0xfd:
1416                 *      bits    what
1417                 *      -----   ---------------------------------
1418                 *        0     IGNORE_BROADCAST  (default 0)
1419                 *      11:4    BROADCAST_GROUP_1 (default 0xff)
1420                 *      23:16   BROADCAST_GROUP_2 (default 0xff)
1421                 */
1422                sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1423                             (u32)bg1 << 4 | (u32)bg2 << 16);
1424        }
1425}
1426
1427int acquire_hw_mutex(struct hfi1_devdata *dd)
1428{
1429        unsigned long timeout;
1430        int try = 0;
1431        u8 mask = 1 << dd->hfi1_id;
1432        u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1433
1434        if (user == mask) {
1435                dd_dev_info(dd,
1436                            "Hardware mutex already acquired, mutex mask %u\n",
1437                            (u32)mask);
1438                return 0;
1439        }
1440
1441retry:
1442        timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1443        while (1) {
1444                write_csr(dd, ASIC_CFG_MUTEX, mask);
1445                user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1446                if (user == mask)
1447                        return 0; /* success */
1448                if (time_after(jiffies, timeout))
1449                        break; /* timed out */
1450                msleep(20);
1451        }
1452
1453        /* timed out */
1454        dd_dev_err(dd,
1455                   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1456                   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1457
1458        if (try == 0) {
1459                /* break mutex and retry */
1460                write_csr(dd, ASIC_CFG_MUTEX, 0);
1461                try++;
1462                goto retry;
1463        }
1464
1465        return -EBUSY;
1466}
1467
1468void release_hw_mutex(struct hfi1_devdata *dd)
1469{
1470        u8 mask = 1 << dd->hfi1_id;
1471        u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1472
1473        if (user != mask)
1474                dd_dev_warn(dd,
1475                            "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1476                            (u32)user, (u32)mask);
1477        else
1478                write_csr(dd, ASIC_CFG_MUTEX, 0);
1479}
1480
1481/* return the given resource bit(s) as a mask for the given HFI */
1482static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1483{
1484        return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1485}
1486
1487static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1488                                       const char *func)
1489{
1490        dd_dev_err(dd,
1491                   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1492                   func);
1493}
1494
1495/*
1496 * Acquire access to a chip resource.
1497 *
1498 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1499 */
1500static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1501{
1502        u64 scratch0, all_bits, my_bit;
1503        int ret;
1504
1505        if (resource & CR_DYN_MASK) {
1506                /* a dynamic resource is in use if either HFI has set the bit */
1507                if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1508                    (resource & (CR_I2C1 | CR_I2C2))) {
1509                        /* discrete devices must serialize across both chains */
1510                        all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1511                                        resource_mask(1, CR_I2C1 | CR_I2C2);
1512                } else {
1513                        all_bits = resource_mask(0, resource) |
1514                                                resource_mask(1, resource);
1515                }
1516                my_bit = resource_mask(dd->hfi1_id, resource);
1517        } else {
1518                /* non-dynamic resources are not split between HFIs */
1519                all_bits = resource;
1520                my_bit = resource;
1521        }
1522
1523        /* lock against other callers within the driver wanting a resource */
1524        mutex_lock(&dd->asic_data->asic_resource_mutex);
1525
1526        ret = acquire_hw_mutex(dd);
1527        if (ret) {
1528                fail_mutex_acquire_message(dd, __func__);
1529                ret = -EIO;
1530                goto done;
1531        }
1532
1533        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1534        if (scratch0 & all_bits) {
1535                ret = -EBUSY;
1536        } else {
1537                write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1538                /* force write to be visible to other HFI on another OS */
1539                (void)read_csr(dd, ASIC_CFG_SCRATCH);
1540        }
1541
1542        release_hw_mutex(dd);
1543
1544done:
1545        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1546        return ret;
1547}
1548
1549/*
1550 * Acquire access to a chip resource, wait up to mswait milliseconds for
1551 * the resource to become available.
1552 *
1553 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1554 * acquire failed.
1555 */
1556int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1557{
1558        unsigned long timeout;
1559        int ret;
1560
1561        timeout = jiffies + msecs_to_jiffies(mswait);
1562        while (1) {
1563                ret = __acquire_chip_resource(dd, resource);
1564                if (ret != -EBUSY)
1565                        return ret;
1566                /* resource is busy, check our timeout */
1567                if (time_after_eq(jiffies, timeout))
1568                        return -EBUSY;
1569                usleep_range(80, 120);  /* arbitrary delay */
1570        }
1571}
1572
1573/*
1574 * Release access to a chip resource
1575 */
1576void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1577{
1578        u64 scratch0, bit;
1579
1580        /* only dynamic resources should ever be cleared */
1581        if (!(resource & CR_DYN_MASK)) {
1582                dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1583                           resource);
1584                return;
1585        }
1586        bit = resource_mask(dd->hfi1_id, resource);
1587
1588        /* lock against other callers within the driver wanting a resource */
1589        mutex_lock(&dd->asic_data->asic_resource_mutex);
1590
1591        if (acquire_hw_mutex(dd)) {
1592                fail_mutex_acquire_message(dd, __func__);
1593                goto done;
1594        }
1595
1596        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1597        if ((scratch0 & bit) != 0) {
1598                scratch0 &= ~bit;
1599                write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1600                /* force write to be visible to other HFI on another OS */
1601                (void)read_csr(dd, ASIC_CFG_SCRATCH);
1602        } else {
1603                dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1604                            __func__, dd->hfi1_id, resource);
1605        }
1606
1607        release_hw_mutex(dd);
1608
1609done:
1610        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1611}
1612
1613/*
1614 * Return true if resource is set, false otherwise.  Print a warning
1615 * if not set and a function is supplied.
1616 */
1617bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1618                         const char *func)
1619{
1620        u64 scratch0, bit;
1621
1622        if (resource & CR_DYN_MASK)
1623                bit = resource_mask(dd->hfi1_id, resource);
1624        else
1625                bit = resource;
1626
1627        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1628        if ((scratch0 & bit) == 0) {
1629                if (func)
1630                        dd_dev_warn(dd,
1631                                    "%s: id %d, resource 0x%x, not acquired!\n",
1632                                    func, dd->hfi1_id, resource);
1633                return false;
1634        }
1635        return true;
1636}
1637
1638static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1639{
1640        u64 scratch0;
1641
1642        /* lock against other callers within the driver wanting a resource */
1643        mutex_lock(&dd->asic_data->asic_resource_mutex);
1644
1645        if (acquire_hw_mutex(dd)) {
1646                fail_mutex_acquire_message(dd, func);
1647                goto done;
1648        }
1649
1650        /* clear all dynamic access bits for this HFI */
1651        scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1652        scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1653        write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1654        /* force write to be visible to other HFI on another OS */
1655        (void)read_csr(dd, ASIC_CFG_SCRATCH);
1656
1657        release_hw_mutex(dd);
1658
1659done:
1660        mutex_unlock(&dd->asic_data->asic_resource_mutex);
1661}
1662
1663void init_chip_resources(struct hfi1_devdata *dd)
1664{
1665        /* clear any holds left by us */
1666        clear_chip_resources(dd, __func__);
1667}
1668
1669void finish_chip_resources(struct hfi1_devdata *dd)
1670{
1671        /* clear any holds left by us */
1672        clear_chip_resources(dd, __func__);
1673}
1674
1675void set_sbus_fast_mode(struct hfi1_devdata *dd)
1676{
1677        write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1678                  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1679}
1680
1681void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1682{
1683        u64 reg, count = 0;
1684
1685        reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1686        while (SBUS_COUNTER(reg, EXECUTE) !=
1687               SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1688                if (count++ >= SBUS_MAX_POLL_COUNT)
1689                        break;
1690                udelay(1);
1691                reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1692        }
1693        write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1694}
1695
1696int load_firmware(struct hfi1_devdata *dd)
1697{
1698        int ret;
1699
1700        if (fw_fabric_serdes_load) {
1701                ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1702                if (ret)
1703                        return ret;
1704
1705                set_sbus_fast_mode(dd);
1706
1707                set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1708                                     fabric_serdes_broadcast[dd->hfi1_id],
1709                                     fabric_serdes_addrs[dd->hfi1_id],
1710                                     NUM_FABRIC_SERDES);
1711                turn_off_spicos(dd, SPICO_FABRIC);
1712                do {
1713                        ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1714                } while (retry_firmware(dd, ret));
1715
1716                clear_sbus_fast_mode(dd);
1717                release_chip_resource(dd, CR_SBUS);
1718                if (ret)
1719                        return ret;
1720        }
1721
1722        if (fw_8051_load) {
1723                do {
1724                        ret = load_8051_firmware(dd, &fw_8051);
1725                } while (retry_firmware(dd, ret));
1726                if (ret)
1727                        return ret;
1728        }
1729
1730        dump_fw_version(dd);
1731        return 0;
1732}
1733
1734int hfi1_firmware_init(struct hfi1_devdata *dd)
1735{
1736        /* only RTL can use these */
1737        if (dd->icode != ICODE_RTL_SILICON) {
1738                fw_fabric_serdes_load = 0;
1739                fw_pcie_serdes_load = 0;
1740                fw_sbus_load = 0;
1741        }
1742
1743        /* no 8051 or QSFP on simulator */
1744        if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1745                fw_8051_load = 0;
1746
1747        if (!fw_8051_name) {
1748                if (dd->icode == ICODE_RTL_SILICON)
1749                        fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1750                else
1751                        fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1752        }
1753        if (!fw_fabric_serdes_name)
1754                fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1755        if (!fw_sbus_name)
1756                fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1757        if (!fw_pcie_serdes_name)
1758                fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1759
1760        return obtain_firmware(dd);
1761}
1762
1763/*
1764 * This function is a helper function for parse_platform_config(...) and
1765 * does not check for validity of the platform configuration cache
1766 * (because we know it is invalid as we are building up the cache).
1767 * As such, this should not be called from anywhere other than
1768 * parse_platform_config
1769 */
1770static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1771{
1772        u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1773        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1774
1775        if (!system_table)
1776                return -EINVAL;
1777
1778        meta_ver_meta =
1779        *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1780        + SYSTEM_TABLE_META_VERSION);
1781
1782        mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1783        ver_start = meta_ver_meta & mask;
1784
1785        meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1786
1787        mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1788        ver_len = meta_ver_meta & mask;
1789
1790        ver_start /= 8;
1791        meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1792
1793        if (meta_ver < 4) {
1794                dd_dev_info(
1795                        dd, "%s:Please update platform config\n", __func__);
1796                return -EINVAL;
1797        }
1798        return 0;
1799}
1800
1801int parse_platform_config(struct hfi1_devdata *dd)
1802{
1803        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1804        struct hfi1_pportdata *ppd = dd->pport;
1805        u32 *ptr = NULL;
1806        u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1807        u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1808        int ret = -EINVAL; /* assume failure */
1809
1810        /*
1811         * For integrated devices that did not fall back to the default file,
1812         * the SI tuning information for active channels is acquired from the
1813         * scratch register bitmap, thus there is no platform config to parse.
1814         * Skip parsing in these situations.
1815         */
1816        if (ppd->config_from_scratch)
1817                return 0;
1818
1819        if (!dd->platform_config.data) {
1820                dd_dev_err(dd, "%s: Missing config file\n", __func__);
1821                goto bail;
1822        }
1823        ptr = (u32 *)dd->platform_config.data;
1824
1825        magic_num = *ptr;
1826        ptr++;
1827        if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1828                dd_dev_err(dd, "%s: Bad config file\n", __func__);
1829                goto bail;
1830        }
1831
1832        /* Field is file size in DWORDs */
1833        file_length = (*ptr) * 4;
1834
1835        /*
1836         * Length can't be larger than partition size. Assume platform
1837         * config format version 4 is being used. Interpret the file size
1838         * field as header instead by not moving the pointer.
1839         */
1840        if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1841                dd_dev_info(dd,
1842                            "%s:File length out of bounds, using alternative format\n",
1843                            __func__);
1844                file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1845        } else {
1846                ptr++;
1847        }
1848
1849        if (file_length > dd->platform_config.size) {
1850                dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1851                            __func__);
1852                goto bail;
1853        } else if (file_length < dd->platform_config.size) {
1854                dd_dev_info(dd,
1855                            "%s:File claims to be smaller than read size, continuing\n",
1856                            __func__);
1857        }
1858        /* exactly equal, perfection */
1859
1860        /*
1861         * In both cases where we proceed, using the self-reported file length
1862         * is the safer option. In case of old format a predefined value is
1863         * being used.
1864         */
1865        while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1866                header1 = *ptr;
1867                header2 = *(ptr + 1);
1868                if (header1 != ~header2) {
1869                        dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1870                                   __func__, (ptr - (u32 *)
1871                                              dd->platform_config.data));
1872                        goto bail;
1873                }
1874
1875                record_idx = *ptr &
1876                        ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1877
1878                table_length_dwords = (*ptr >>
1879                                PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1880                      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1881
1882                table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1883                        ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1884
1885                /* Done with this set of headers */
1886                ptr += 2;
1887
1888                if (record_idx) {
1889                        /* data table */
1890                        switch (table_type) {
1891                        case PLATFORM_CONFIG_SYSTEM_TABLE:
1892                                pcfgcache->config_tables[table_type].num_table =
1893                                                                        1;
1894                                ret = check_meta_version(dd, ptr);
1895                                if (ret)
1896                                        goto bail;
1897                                break;
1898                        case PLATFORM_CONFIG_PORT_TABLE:
1899                                pcfgcache->config_tables[table_type].num_table =
1900                                                                        2;
1901                                break;
1902                        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1903                                /* fall through */
1904                        case PLATFORM_CONFIG_TX_PRESET_TABLE:
1905                                /* fall through */
1906                        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1907                                /* fall through */
1908                        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1909                                pcfgcache->config_tables[table_type].num_table =
1910                                                        table_length_dwords;
1911                                break;
1912                        default:
1913                                dd_dev_err(dd,
1914                                           "%s: Unknown data table %d, offset %ld\n",
1915                                           __func__, table_type,
1916                                           (ptr - (u32 *)
1917                                            dd->platform_config.data));
1918                                goto bail; /* We don't trust this file now */
1919                        }
1920                        pcfgcache->config_tables[table_type].table = ptr;
1921                } else {
1922                        /* metadata table */
1923                        switch (table_type) {
1924                        case PLATFORM_CONFIG_SYSTEM_TABLE:
1925                                /* fall through */
1926                        case PLATFORM_CONFIG_PORT_TABLE:
1927                                /* fall through */
1928                        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1929                                /* fall through */
1930                        case PLATFORM_CONFIG_TX_PRESET_TABLE:
1931                                /* fall through */
1932                        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1933                                /* fall through */
1934                        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1935                                break;
1936                        default:
1937                                dd_dev_err(dd,
1938                                           "%s: Unknown meta table %d, offset %ld\n",
1939                                           __func__, table_type,
1940                                           (ptr -
1941                                            (u32 *)dd->platform_config.data));
1942                                goto bail; /* We don't trust this file now */
1943                        }
1944                        pcfgcache->config_tables[table_type].table_metadata =
1945                                                                        ptr;
1946                }
1947
1948                /* Calculate and check table crc */
1949                crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1950                               (table_length_dwords * 4));
1951                crc ^= ~(u32)0;
1952
1953                /* Jump the table */
1954                ptr += table_length_dwords;
1955                if (crc != *ptr) {
1956                        dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1957                                   __func__, (ptr -
1958                                   (u32 *)dd->platform_config.data));
1959                        goto bail;
1960                }
1961                /* Jump the CRC DWORD */
1962                ptr++;
1963        }
1964
1965        pcfgcache->cache_valid = 1;
1966        return 0;
1967bail:
1968        memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1969        return ret;
1970}
1971
1972static void get_integrated_platform_config_field(
1973                struct hfi1_devdata *dd,
1974                enum platform_config_table_type_encoding table_type,
1975                int field_index, u32 *data)
1976{
1977        struct hfi1_pportdata *ppd = dd->pport;
1978        u8 *cache = ppd->qsfp_info.cache;
1979        u32 tx_preset = 0;
1980
1981        switch (table_type) {
1982        case PLATFORM_CONFIG_SYSTEM_TABLE:
1983                if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1984                        *data = ppd->max_power_class;
1985                else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1986                        *data = ppd->default_atten;
1987                break;
1988        case PLATFORM_CONFIG_PORT_TABLE:
1989                if (field_index == PORT_TABLE_PORT_TYPE)
1990                        *data = ppd->port_type;
1991                else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1992                        *data = ppd->local_atten;
1993                else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1994                        *data = ppd->remote_atten;
1995                break;
1996        case PLATFORM_CONFIG_RX_PRESET_TABLE:
1997                if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1998                        *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1999                                QSFP_RX_CDR_APPLY_SHIFT;
2000                else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
2001                        *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
2002                                QSFP_RX_EMP_APPLY_SHIFT;
2003                else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
2004                        *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
2005                                QSFP_RX_AMP_APPLY_SHIFT;
2006                else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
2007                        *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
2008                                QSFP_RX_CDR_SHIFT;
2009                else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
2010                        *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
2011                                QSFP_RX_EMP_SHIFT;
2012                else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
2013                        *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
2014                                QSFP_RX_AMP_SHIFT;
2015                break;
2016        case PLATFORM_CONFIG_TX_PRESET_TABLE:
2017                if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
2018                        tx_preset = ppd->tx_preset_eq;
2019                else
2020                        tx_preset = ppd->tx_preset_noeq;
2021                if (field_index == TX_PRESET_TABLE_PRECUR)
2022                        *data = (tx_preset & TX_PRECUR_SMASK) >>
2023                                TX_PRECUR_SHIFT;
2024                else if (field_index == TX_PRESET_TABLE_ATTN)
2025                        *data = (tx_preset & TX_ATTN_SMASK) >>
2026                                TX_ATTN_SHIFT;
2027                else if (field_index == TX_PRESET_TABLE_POSTCUR)
2028                        *data = (tx_preset & TX_POSTCUR_SMASK) >>
2029                                TX_POSTCUR_SHIFT;
2030                else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
2031                        *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
2032                                QSFP_TX_CDR_APPLY_SHIFT;
2033                else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2034                        *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2035                                QSFP_TX_EQ_APPLY_SHIFT;
2036                else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2037                        *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2038                                QSFP_TX_CDR_SHIFT;
2039                else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2040                        *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2041                                QSFP_TX_EQ_SHIFT;
2042                break;
2043        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2044        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2045        default:
2046                break;
2047        }
2048}
2049
2050static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2051                                          int field, u32 *field_len_bits,
2052                                          u32 *field_start_bits)
2053{
2054        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2055        u32 *src_ptr = NULL;
2056
2057        if (!pcfgcache->cache_valid)
2058                return -EINVAL;
2059
2060        switch (table) {
2061        case PLATFORM_CONFIG_SYSTEM_TABLE:
2062                /* fall through */
2063        case PLATFORM_CONFIG_PORT_TABLE:
2064                /* fall through */
2065        case PLATFORM_CONFIG_RX_PRESET_TABLE:
2066                /* fall through */
2067        case PLATFORM_CONFIG_TX_PRESET_TABLE:
2068                /* fall through */
2069        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2070                /* fall through */
2071        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2072                if (field && field < platform_config_table_limits[table])
2073                        src_ptr =
2074                        pcfgcache->config_tables[table].table_metadata + field;
2075                break;
2076        default:
2077                dd_dev_info(dd, "%s: Unknown table\n", __func__);
2078                break;
2079        }
2080
2081        if (!src_ptr)
2082                return -EINVAL;
2083
2084        if (field_start_bits)
2085                *field_start_bits = *src_ptr &
2086                      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2087
2088        if (field_len_bits)
2089                *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2090                       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2091
2092        return 0;
2093}
2094
2095/* This is the central interface to getting data out of the platform config
2096 * file. It depends on parse_platform_config() having populated the
2097 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2098 * validate the sanity of the cache.
2099 *
2100 * The non-obvious parameters:
2101 * @table_index: Acts as a look up key into which instance of the tables the
2102 * relevant field is fetched from.
2103 *
2104 * This applies to the data tables that have multiple instances. The port table
2105 * is an exception to this rule as each HFI only has one port and thus the
2106 * relevant table can be distinguished by hfi_id.
2107 *
2108 * @data: pointer to memory that will be populated with the field requested.
2109 * @len: length of memory pointed by @data in bytes.
2110 */
2111int get_platform_config_field(struct hfi1_devdata *dd,
2112                              enum platform_config_table_type_encoding
2113                              table_type, int table_index, int field_index,
2114                              u32 *data, u32 len)
2115{
2116        int ret = 0, wlen = 0, seek = 0;
2117        u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2118        struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2119        struct hfi1_pportdata *ppd = dd->pport;
2120
2121        if (data)
2122                memset(data, 0, len);
2123        else
2124                return -EINVAL;
2125
2126        if (ppd->config_from_scratch) {
2127                /*
2128                 * Use saved configuration from ppd for integrated platforms
2129                 */
2130                get_integrated_platform_config_field(dd, table_type,
2131                                                     field_index, data);
2132                return 0;
2133        }
2134
2135        ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2136                                             &field_len_bits,
2137                                             &field_start_bits);
2138        if (ret)
2139                return -EINVAL;
2140
2141        /* Convert length to bits */
2142        len *= 8;
2143
2144        /* Our metadata function checked cache_valid and field_index for us */
2145        switch (table_type) {
2146        case PLATFORM_CONFIG_SYSTEM_TABLE:
2147                src_ptr = pcfgcache->config_tables[table_type].table;
2148
2149                if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2150                        if (len < field_len_bits)
2151                                return -EINVAL;
2152
2153                        seek = field_start_bits / 8;
2154                        wlen = field_len_bits / 8;
2155
2156                        src_ptr = (u32 *)((u8 *)src_ptr + seek);
2157
2158                        /*
2159                         * We expect the field to be byte aligned and whole byte
2160                         * lengths if we are here
2161                         */
2162                        memcpy(data, src_ptr, wlen);
2163                        return 0;
2164                }
2165                break;
2166        case PLATFORM_CONFIG_PORT_TABLE:
2167                /* Port table is 4 DWORDS */
2168                src_ptr = dd->hfi1_id ?
2169                        pcfgcache->config_tables[table_type].table + 4 :
2170                        pcfgcache->config_tables[table_type].table;
2171                break;
2172        case PLATFORM_CONFIG_RX_PRESET_TABLE:
2173                /* fall through */
2174        case PLATFORM_CONFIG_TX_PRESET_TABLE:
2175                /* fall through */
2176        case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2177                /* fall through */
2178        case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2179                src_ptr = pcfgcache->config_tables[table_type].table;
2180
2181                if (table_index <
2182                        pcfgcache->config_tables[table_type].num_table)
2183                        src_ptr += table_index;
2184                else
2185                        src_ptr = NULL;
2186                break;
2187        default:
2188                dd_dev_info(dd, "%s: Unknown table\n", __func__);
2189                break;
2190        }
2191
2192        if (!src_ptr || len < field_len_bits)
2193                return -EINVAL;
2194
2195        src_ptr += (field_start_bits / 32);
2196        *data = (*src_ptr >> (field_start_bits % 32)) &
2197                        ((1 << field_len_bits) - 1);
2198
2199        return 0;
2200}
2201
2202/*
2203 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2204 * to the SBus firmware is needed before updating the PCIe firmware.
2205 *
2206 * Note: caller must be holding the SBus resource.
2207 */
2208int load_pcie_firmware(struct hfi1_devdata *dd)
2209{
2210        int ret = 0;
2211
2212        /* both firmware loads below use the SBus */
2213        set_sbus_fast_mode(dd);
2214
2215        if (fw_sbus_load) {
2216                turn_off_spicos(dd, SPICO_SBUS);
2217                do {
2218                        ret = load_sbus_firmware(dd, &fw_sbus);
2219                } while (retry_firmware(dd, ret));
2220                if (ret)
2221                        goto done;
2222        }
2223
2224        if (fw_pcie_serdes_load) {
2225                dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2226                set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2227                                     pcie_serdes_broadcast[dd->hfi1_id],
2228                                     pcie_serdes_addrs[dd->hfi1_id],
2229                                     NUM_PCIE_SERDES);
2230                do {
2231                        ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2232                } while (retry_firmware(dd, ret));
2233                if (ret)
2234                        goto done;
2235        }
2236
2237done:
2238        clear_sbus_fast_mode(dd);
2239
2240        return ret;
2241}
2242
2243/*
2244 * Read the GUID from the hardware, store it in dd.
2245 */
2246void read_guid(struct hfi1_devdata *dd)
2247{
2248        /* Take the DC out of reset to get a valid GUID value */
2249        write_csr(dd, CCE_DC_CTRL, 0);
2250        (void)read_csr(dd, CCE_DC_CTRL);
2251
2252        dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2253        dd_dev_info(dd, "GUID %llx",
2254                    (unsigned long long)dd->base_guid);
2255}
2256
2257/* read and display firmware version info */
2258static void dump_fw_version(struct hfi1_devdata *dd)
2259{
2260        u32 pcie_vers[NUM_PCIE_SERDES];
2261        u32 fabric_vers[NUM_FABRIC_SERDES];
2262        u32 sbus_vers;
2263        int i;
2264        int all_same;
2265        int ret;
2266        u8 rcv_addr;
2267
2268        ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2269        if (ret) {
2270                dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2271                return;
2272        }
2273
2274        /* set fast mode */
2275        set_sbus_fast_mode(dd);
2276
2277        /* read version for SBus Master */
2278        sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2279        sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2280        /* wait for interrupt to be processed */
2281        usleep_range(10000, 11000);
2282        sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2283        dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2284
2285        /* read version for PCIe SerDes */
2286        all_same = 1;
2287        pcie_vers[0] = 0;
2288        for (i = 0; i < NUM_PCIE_SERDES; i++) {
2289                rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2290                sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2291                /* wait for interrupt to be processed */
2292                usleep_range(10000, 11000);
2293                pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2294                if (i > 0 && pcie_vers[0] != pcie_vers[i])
2295                        all_same = 0;
2296        }
2297
2298        if (all_same) {
2299                dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2300                            pcie_vers[0]);
2301        } else {
2302                dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2303                for (i = 0; i < NUM_PCIE_SERDES; i++) {
2304                        dd_dev_info(dd,
2305                                    "PCIe SerDes lane %d firmware version 0x%x\n",
2306                                    i, pcie_vers[i]);
2307                }
2308        }
2309
2310        /* read version for fabric SerDes */
2311        all_same = 1;
2312        fabric_vers[0] = 0;
2313        for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2314                rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2315                sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2316                /* wait for interrupt to be processed */
2317                usleep_range(10000, 11000);
2318                fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2319                if (i > 0 && fabric_vers[0] != fabric_vers[i])
2320                        all_same = 0;
2321        }
2322
2323        if (all_same) {
2324                dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2325                            fabric_vers[0]);
2326        } else {
2327                dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2328                for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2329                        dd_dev_info(dd,
2330                                    "Fabric SerDes lane %d firmware version 0x%x\n",
2331                                    i, fabric_vers[i]);
2332                }
2333        }
2334
2335        clear_sbus_fast_mode(dd);
2336        release_chip_resource(dd, CR_SBUS);
2337}
2338