linux/drivers/infiniband/hw/hfi1/sdma.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/spinlock.h>
  49#include <linux/seqlock.h>
  50#include <linux/netdevice.h>
  51#include <linux/moduleparam.h>
  52#include <linux/bitops.h>
  53#include <linux/timer.h>
  54#include <linux/vmalloc.h>
  55#include <linux/highmem.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "qp.h"
  60#include "sdma.h"
  61#include "iowait.h"
  62#include "trace.h"
  63
  64/* must be a power of 2 >= 64 <= 32768 */
  65#define SDMA_DESCQ_CNT 2048
  66#define SDMA_DESC_INTR 64
  67#define INVALID_TAIL 0xffff
  68
  69static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  70module_param(sdma_descq_cnt, uint, S_IRUGO);
  71MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  72
  73static uint sdma_idle_cnt = 250;
  74module_param(sdma_idle_cnt, uint, S_IRUGO);
  75MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  76
  77uint mod_num_sdma;
  78module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  79MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  80
  81static uint sdma_desct_intr = SDMA_DESC_INTR;
  82module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  83MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  84
  85#define SDMA_WAIT_BATCH_SIZE 20
  86/* max wait time for a SDMA engine to indicate it has halted */
  87#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  88/* all SDMA engine errors that cause a halt */
  89
  90#define SD(name) SEND_DMA_##name
  91#define ALL_SDMA_ENG_HALT_ERRS \
  92        (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  93        | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  94        | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  95        | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  96        | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  97        | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  98        | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  99        | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 100        | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 101        | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 102        | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 103        | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 104        | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 105        | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 106        | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 107        | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 108        | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 109        | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 110
 111/* sdma_sendctrl operations */
 112#define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 113#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 114#define SDMA_SENDCTRL_OP_HALT      BIT(2)
 115#define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 116
 117/* handle long defines */
 118#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 119SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 120#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 121SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 122
 123static const char * const sdma_state_names[] = {
 124        [sdma_state_s00_hw_down]                = "s00_HwDown",
 125        [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 126        [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 127        [sdma_state_s20_idle]                   = "s20_Idle",
 128        [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 129        [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 130        [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 131        [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 132        [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
 133        [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
 134        [sdma_state_s99_running]                = "s99_Running",
 135};
 136
 137#ifdef CONFIG_SDMA_VERBOSITY
 138static const char * const sdma_event_names[] = {
 139        [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 140        [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 141        [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 142        [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 143        [sdma_event_e30_go_running]   = "e30_GoRunning",
 144        [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 145        [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 146        [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 147        [sdma_event_e70_go_idle]      = "e70_GoIdle",
 148        [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 149        [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 150        [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 151        [sdma_event_e85_link_down]    = "e85_LinkDown",
 152        [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 153};
 154#endif
 155
 156static const struct sdma_set_state_action sdma_action_table[] = {
 157        [sdma_state_s00_hw_down] = {
 158                .go_s99_running_tofalse = 1,
 159                .op_enable = 0,
 160                .op_intenable = 0,
 161                .op_halt = 0,
 162                .op_cleanup = 0,
 163        },
 164        [sdma_state_s10_hw_start_up_halt_wait] = {
 165                .op_enable = 0,
 166                .op_intenable = 0,
 167                .op_halt = 1,
 168                .op_cleanup = 0,
 169        },
 170        [sdma_state_s15_hw_start_up_clean_wait] = {
 171                .op_enable = 0,
 172                .op_intenable = 1,
 173                .op_halt = 0,
 174                .op_cleanup = 1,
 175        },
 176        [sdma_state_s20_idle] = {
 177                .op_enable = 0,
 178                .op_intenable = 1,
 179                .op_halt = 0,
 180                .op_cleanup = 0,
 181        },
 182        [sdma_state_s30_sw_clean_up_wait] = {
 183                .op_enable = 0,
 184                .op_intenable = 0,
 185                .op_halt = 0,
 186                .op_cleanup = 0,
 187        },
 188        [sdma_state_s40_hw_clean_up_wait] = {
 189                .op_enable = 0,
 190                .op_intenable = 0,
 191                .op_halt = 0,
 192                .op_cleanup = 1,
 193        },
 194        [sdma_state_s50_hw_halt_wait] = {
 195                .op_enable = 0,
 196                .op_intenable = 0,
 197                .op_halt = 0,
 198                .op_cleanup = 0,
 199        },
 200        [sdma_state_s60_idle_halt_wait] = {
 201                .go_s99_running_tofalse = 1,
 202                .op_enable = 0,
 203                .op_intenable = 0,
 204                .op_halt = 1,
 205                .op_cleanup = 0,
 206        },
 207        [sdma_state_s80_hw_freeze] = {
 208                .op_enable = 0,
 209                .op_intenable = 0,
 210                .op_halt = 0,
 211                .op_cleanup = 0,
 212        },
 213        [sdma_state_s82_freeze_sw_clean] = {
 214                .op_enable = 0,
 215                .op_intenable = 0,
 216                .op_halt = 0,
 217                .op_cleanup = 0,
 218        },
 219        [sdma_state_s99_running] = {
 220                .op_enable = 1,
 221                .op_intenable = 1,
 222                .op_halt = 0,
 223                .op_cleanup = 0,
 224                .go_s99_running_totrue = 1,
 225        },
 226};
 227
 228#define SDMA_TAIL_UPDATE_THRESH 0x1F
 229
 230/* declare all statics here rather than keep sorting */
 231static void sdma_complete(struct kref *);
 232static void sdma_finalput(struct sdma_state *);
 233static void sdma_get(struct sdma_state *);
 234static void sdma_hw_clean_up_task(unsigned long);
 235static void sdma_put(struct sdma_state *);
 236static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 237static void sdma_start_hw_clean_up(struct sdma_engine *);
 238static void sdma_sw_clean_up_task(unsigned long);
 239static void sdma_sendctrl(struct sdma_engine *, unsigned);
 240static void init_sdma_regs(struct sdma_engine *, u32, uint);
 241static void sdma_process_event(
 242        struct sdma_engine *sde,
 243        enum sdma_events event);
 244static void __sdma_process_event(
 245        struct sdma_engine *sde,
 246        enum sdma_events event);
 247static void dump_sdma_state(struct sdma_engine *sde);
 248static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 249static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 250static void sdma_flush_descq(struct sdma_engine *sde);
 251
 252/**
 253 * sdma_state_name() - return state string from enum
 254 * @state: state
 255 */
 256static const char *sdma_state_name(enum sdma_states state)
 257{
 258        return sdma_state_names[state];
 259}
 260
 261static void sdma_get(struct sdma_state *ss)
 262{
 263        kref_get(&ss->kref);
 264}
 265
 266static void sdma_complete(struct kref *kref)
 267{
 268        struct sdma_state *ss =
 269                container_of(kref, struct sdma_state, kref);
 270
 271        complete(&ss->comp);
 272}
 273
 274static void sdma_put(struct sdma_state *ss)
 275{
 276        kref_put(&ss->kref, sdma_complete);
 277}
 278
 279static void sdma_finalput(struct sdma_state *ss)
 280{
 281        sdma_put(ss);
 282        wait_for_completion(&ss->comp);
 283}
 284
 285static inline void write_sde_csr(
 286        struct sdma_engine *sde,
 287        u32 offset0,
 288        u64 value)
 289{
 290        write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 291}
 292
 293static inline u64 read_sde_csr(
 294        struct sdma_engine *sde,
 295        u32 offset0)
 296{
 297        return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 298}
 299
 300/*
 301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 302 * sdma engine 'sde' to drop to 0.
 303 */
 304static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 305                                        int pause)
 306{
 307        u64 off = 8 * sde->this_idx;
 308        struct hfi1_devdata *dd = sde->dd;
 309        int lcnt = 0;
 310        u64 reg_prev;
 311        u64 reg = 0;
 312
 313        while (1) {
 314                reg_prev = reg;
 315                reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 316
 317                reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 318                reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 319                if (reg == 0)
 320                        break;
 321                /* counter is reest if accupancy count changes */
 322                if (reg != reg_prev)
 323                        lcnt = 0;
 324                if (lcnt++ > 500) {
 325                        /* timed out - bounce the link */
 326                        dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 327                                   __func__, sde->this_idx, (u32)reg);
 328                        queue_work(dd->pport->link_wq,
 329                                   &dd->pport->link_bounce_work);
 330                        break;
 331                }
 332                udelay(1);
 333        }
 334}
 335
 336/*
 337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 338 * and pause for credit return.
 339 */
 340void sdma_wait(struct hfi1_devdata *dd)
 341{
 342        int i;
 343
 344        for (i = 0; i < dd->num_sdma; i++) {
 345                struct sdma_engine *sde = &dd->per_sdma[i];
 346
 347                sdma_wait_for_packet_egress(sde, 0);
 348        }
 349}
 350
 351static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 352{
 353        u64 reg;
 354
 355        if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 356                return;
 357        reg = cnt;
 358        reg &= SD(DESC_CNT_CNT_MASK);
 359        reg <<= SD(DESC_CNT_CNT_SHIFT);
 360        write_sde_csr(sde, SD(DESC_CNT), reg);
 361}
 362
 363static inline void complete_tx(struct sdma_engine *sde,
 364                               struct sdma_txreq *tx,
 365                               int res)
 366{
 367        /* protect against complete modifying */
 368        struct iowait *wait = tx->wait;
 369        callback_t complete = tx->complete;
 370
 371#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 372        trace_hfi1_sdma_out_sn(sde, tx->sn);
 373        if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 374                dd_dev_err(sde->dd, "expected %llu got %llu\n",
 375                           sde->head_sn, tx->sn);
 376        sde->head_sn++;
 377#endif
 378        __sdma_txclean(sde->dd, tx);
 379        if (complete)
 380                (*complete)(tx, res);
 381        if (wait && iowait_sdma_dec(wait))
 382                iowait_drain_wakeup(wait);
 383}
 384
 385/*
 386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 387 *
 388 * Depending on timing there can be txreqs in two places:
 389 * - in the descq ring
 390 * - in the flush list
 391 *
 392 * To avoid ordering issues the descq ring needs to be flushed
 393 * first followed by the flush list.
 394 *
 395 * This routine is called from two places
 396 * - From a work queue item
 397 * - Directly from the state machine just before setting the
 398 *   state to running
 399 *
 400 * Must be called with head_lock held
 401 *
 402 */
 403static void sdma_flush(struct sdma_engine *sde)
 404{
 405        struct sdma_txreq *txp, *txp_next;
 406        LIST_HEAD(flushlist);
 407        unsigned long flags;
 408
 409        /* flush from head to tail */
 410        sdma_flush_descq(sde);
 411        spin_lock_irqsave(&sde->flushlist_lock, flags);
 412        /* copy flush list */
 413        list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
 414                list_del_init(&txp->list);
 415                list_add_tail(&txp->list, &flushlist);
 416        }
 417        spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 418        /* flush from flush list */
 419        list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 420                complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 421}
 422
 423/*
 424 * Fields a work request for flushing the descq ring
 425 * and the flush list
 426 *
 427 * If the engine has been brought to running during
 428 * the scheduling delay, the flush is ignored, assuming
 429 * that the process of bringing the engine to running
 430 * would have done this flush prior to going to running.
 431 *
 432 */
 433static void sdma_field_flush(struct work_struct *work)
 434{
 435        unsigned long flags;
 436        struct sdma_engine *sde =
 437                container_of(work, struct sdma_engine, flush_worker);
 438
 439        write_seqlock_irqsave(&sde->head_lock, flags);
 440        if (!__sdma_running(sde))
 441                sdma_flush(sde);
 442        write_sequnlock_irqrestore(&sde->head_lock, flags);
 443}
 444
 445static void sdma_err_halt_wait(struct work_struct *work)
 446{
 447        struct sdma_engine *sde = container_of(work, struct sdma_engine,
 448                                                err_halt_worker);
 449        u64 statuscsr;
 450        unsigned long timeout;
 451
 452        timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 453        while (1) {
 454                statuscsr = read_sde_csr(sde, SD(STATUS));
 455                statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 456                if (statuscsr)
 457                        break;
 458                if (time_after(jiffies, timeout)) {
 459                        dd_dev_err(sde->dd,
 460                                   "SDMA engine %d - timeout waiting for engine to halt\n",
 461                                   sde->this_idx);
 462                        /*
 463                         * Continue anyway.  This could happen if there was
 464                         * an uncorrectable error in the wrong spot.
 465                         */
 466                        break;
 467                }
 468                usleep_range(80, 120);
 469        }
 470
 471        sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 472}
 473
 474static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 475{
 476        if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 477                unsigned index;
 478                struct hfi1_devdata *dd = sde->dd;
 479
 480                for (index = 0; index < dd->num_sdma; index++) {
 481                        struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 482
 483                        if (curr_sdma != sde)
 484                                curr_sdma->progress_check_head =
 485                                                        curr_sdma->descq_head;
 486                }
 487                dd_dev_err(sde->dd,
 488                           "SDMA engine %d - check scheduled\n",
 489                                sde->this_idx);
 490                mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 491        }
 492}
 493
 494static void sdma_err_progress_check(struct timer_list *t)
 495{
 496        unsigned index;
 497        struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 498
 499        dd_dev_err(sde->dd, "SDE progress check event\n");
 500        for (index = 0; index < sde->dd->num_sdma; index++) {
 501                struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 502                unsigned long flags;
 503
 504                /* check progress on each engine except the current one */
 505                if (curr_sde == sde)
 506                        continue;
 507                /*
 508                 * We must lock interrupts when acquiring sde->lock,
 509                 * to avoid a deadlock if interrupt triggers and spins on
 510                 * the same lock on same CPU
 511                 */
 512                spin_lock_irqsave(&curr_sde->tail_lock, flags);
 513                write_seqlock(&curr_sde->head_lock);
 514
 515                /* skip non-running queues */
 516                if (curr_sde->state.current_state != sdma_state_s99_running) {
 517                        write_sequnlock(&curr_sde->head_lock);
 518                        spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 519                        continue;
 520                }
 521
 522                if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 523                    (curr_sde->descq_head ==
 524                                curr_sde->progress_check_head))
 525                        __sdma_process_event(curr_sde,
 526                                             sdma_event_e90_sw_halted);
 527                write_sequnlock(&curr_sde->head_lock);
 528                spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 529        }
 530        schedule_work(&sde->err_halt_worker);
 531}
 532
 533static void sdma_hw_clean_up_task(unsigned long opaque)
 534{
 535        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 536        u64 statuscsr;
 537
 538        while (1) {
 539#ifdef CONFIG_SDMA_VERBOSITY
 540                dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 541                           sde->this_idx, slashstrip(__FILE__), __LINE__,
 542                        __func__);
 543#endif
 544                statuscsr = read_sde_csr(sde, SD(STATUS));
 545                statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 546                if (statuscsr)
 547                        break;
 548                udelay(10);
 549        }
 550
 551        sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 552}
 553
 554static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 555{
 556        smp_read_barrier_depends(); /* see sdma_update_tail() */
 557        return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 558}
 559
 560/*
 561 * flush ring for recovery
 562 */
 563static void sdma_flush_descq(struct sdma_engine *sde)
 564{
 565        u16 head, tail;
 566        int progress = 0;
 567        struct sdma_txreq *txp = get_txhead(sde);
 568
 569        /* The reason for some of the complexity of this code is that
 570         * not all descriptors have corresponding txps.  So, we have to
 571         * be able to skip over descs until we wander into the range of
 572         * the next txp on the list.
 573         */
 574        head = sde->descq_head & sde->sdma_mask;
 575        tail = sde->descq_tail & sde->sdma_mask;
 576        while (head != tail) {
 577                /* advance head, wrap if needed */
 578                head = ++sde->descq_head & sde->sdma_mask;
 579                /* if now past this txp's descs, do the callback */
 580                if (txp && txp->next_descq_idx == head) {
 581                        /* remove from list */
 582                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 583                        complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 584                        trace_hfi1_sdma_progress(sde, head, tail, txp);
 585                        txp = get_txhead(sde);
 586                }
 587                progress++;
 588        }
 589        if (progress)
 590                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 591}
 592
 593static void sdma_sw_clean_up_task(unsigned long opaque)
 594{
 595        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 596        unsigned long flags;
 597
 598        spin_lock_irqsave(&sde->tail_lock, flags);
 599        write_seqlock(&sde->head_lock);
 600
 601        /*
 602         * At this point, the following should always be true:
 603         * - We are halted, so no more descriptors are getting retired.
 604         * - We are not running, so no one is submitting new work.
 605         * - Only we can send the e40_sw_cleaned, so we can't start
 606         *   running again until we say so.  So, the active list and
 607         *   descq are ours to play with.
 608         */
 609
 610        /*
 611         * In the error clean up sequence, software clean must be called
 612         * before the hardware clean so we can use the hardware head in
 613         * the progress routine.  A hardware clean or SPC unfreeze will
 614         * reset the hardware head.
 615         *
 616         * Process all retired requests. The progress routine will use the
 617         * latest physical hardware head - we are not running so speed does
 618         * not matter.
 619         */
 620        sdma_make_progress(sde, 0);
 621
 622        sdma_flush(sde);
 623
 624        /*
 625         * Reset our notion of head and tail.
 626         * Note that the HW registers have been reset via an earlier
 627         * clean up.
 628         */
 629        sde->descq_tail = 0;
 630        sde->descq_head = 0;
 631        sde->desc_avail = sdma_descq_freecnt(sde);
 632        *sde->head_dma = 0;
 633
 634        __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 635
 636        write_sequnlock(&sde->head_lock);
 637        spin_unlock_irqrestore(&sde->tail_lock, flags);
 638}
 639
 640static void sdma_sw_tear_down(struct sdma_engine *sde)
 641{
 642        struct sdma_state *ss = &sde->state;
 643
 644        /* Releasing this reference means the state machine has stopped. */
 645        sdma_put(ss);
 646
 647        /* stop waiting for all unfreeze events to complete */
 648        atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 649        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 650}
 651
 652static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 653{
 654        tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 655}
 656
 657static void sdma_set_state(struct sdma_engine *sde,
 658                           enum sdma_states next_state)
 659{
 660        struct sdma_state *ss = &sde->state;
 661        const struct sdma_set_state_action *action = sdma_action_table;
 662        unsigned op = 0;
 663
 664        trace_hfi1_sdma_state(
 665                sde,
 666                sdma_state_names[ss->current_state],
 667                sdma_state_names[next_state]);
 668
 669        /* debugging bookkeeping */
 670        ss->previous_state = ss->current_state;
 671        ss->previous_op = ss->current_op;
 672        ss->current_state = next_state;
 673
 674        if (ss->previous_state != sdma_state_s99_running &&
 675            next_state == sdma_state_s99_running)
 676                sdma_flush(sde);
 677
 678        if (action[next_state].op_enable)
 679                op |= SDMA_SENDCTRL_OP_ENABLE;
 680
 681        if (action[next_state].op_intenable)
 682                op |= SDMA_SENDCTRL_OP_INTENABLE;
 683
 684        if (action[next_state].op_halt)
 685                op |= SDMA_SENDCTRL_OP_HALT;
 686
 687        if (action[next_state].op_cleanup)
 688                op |= SDMA_SENDCTRL_OP_CLEANUP;
 689
 690        if (action[next_state].go_s99_running_tofalse)
 691                ss->go_s99_running = 0;
 692
 693        if (action[next_state].go_s99_running_totrue)
 694                ss->go_s99_running = 1;
 695
 696        ss->current_op = op;
 697        sdma_sendctrl(sde, ss->current_op);
 698}
 699
 700/**
 701 * sdma_get_descq_cnt() - called when device probed
 702 *
 703 * Return a validated descq count.
 704 *
 705 * This is currently only used in the verbs initialization to build the tx
 706 * list.
 707 *
 708 * This will probably be deleted in favor of a more scalable approach to
 709 * alloc tx's.
 710 *
 711 */
 712u16 sdma_get_descq_cnt(void)
 713{
 714        u16 count = sdma_descq_cnt;
 715
 716        if (!count)
 717                return SDMA_DESCQ_CNT;
 718        /* count must be a power of 2 greater than 64 and less than
 719         * 32768.   Otherwise return default.
 720         */
 721        if (!is_power_of_2(count))
 722                return SDMA_DESCQ_CNT;
 723        if (count < 64 || count > 32768)
 724                return SDMA_DESCQ_CNT;
 725        return count;
 726}
 727
 728/**
 729 * sdma_engine_get_vl() - return vl for a given sdma engine
 730 * @sde: sdma engine
 731 *
 732 * This function returns the vl mapped to a given engine, or an error if
 733 * the mapping can't be found. The mapping fields are protected by RCU.
 734 */
 735int sdma_engine_get_vl(struct sdma_engine *sde)
 736{
 737        struct hfi1_devdata *dd = sde->dd;
 738        struct sdma_vl_map *m;
 739        u8 vl;
 740
 741        if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 742                return -EINVAL;
 743
 744        rcu_read_lock();
 745        m = rcu_dereference(dd->sdma_map);
 746        if (unlikely(!m)) {
 747                rcu_read_unlock();
 748                return -EINVAL;
 749        }
 750        vl = m->engine_to_vl[sde->this_idx];
 751        rcu_read_unlock();
 752
 753        return vl;
 754}
 755
 756/**
 757 * sdma_select_engine_vl() - select sdma engine
 758 * @dd: devdata
 759 * @selector: a spreading factor
 760 * @vl: this vl
 761 *
 762 *
 763 * This function returns an engine based on the selector and a vl.  The
 764 * mapping fields are protected by RCU.
 765 */
 766struct sdma_engine *sdma_select_engine_vl(
 767        struct hfi1_devdata *dd,
 768        u32 selector,
 769        u8 vl)
 770{
 771        struct sdma_vl_map *m;
 772        struct sdma_map_elem *e;
 773        struct sdma_engine *rval;
 774
 775        /* NOTE This should only happen if SC->VL changed after the initial
 776         *      checks on the QP/AH
 777         *      Default will return engine 0 below
 778         */
 779        if (vl >= num_vls) {
 780                rval = NULL;
 781                goto done;
 782        }
 783
 784        rcu_read_lock();
 785        m = rcu_dereference(dd->sdma_map);
 786        if (unlikely(!m)) {
 787                rcu_read_unlock();
 788                return &dd->per_sdma[0];
 789        }
 790        e = m->map[vl & m->mask];
 791        rval = e->sde[selector & e->mask];
 792        rcu_read_unlock();
 793
 794done:
 795        rval =  !rval ? &dd->per_sdma[0] : rval;
 796        trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 797        return rval;
 798}
 799
 800/**
 801 * sdma_select_engine_sc() - select sdma engine
 802 * @dd: devdata
 803 * @selector: a spreading factor
 804 * @sc5: the 5 bit sc
 805 *
 806 *
 807 * This function returns an engine based on the selector and an sc.
 808 */
 809struct sdma_engine *sdma_select_engine_sc(
 810        struct hfi1_devdata *dd,
 811        u32 selector,
 812        u8 sc5)
 813{
 814        u8 vl = sc_to_vlt(dd, sc5);
 815
 816        return sdma_select_engine_vl(dd, selector, vl);
 817}
 818
 819struct sdma_rht_map_elem {
 820        u32 mask;
 821        u8 ctr;
 822        struct sdma_engine *sde[0];
 823};
 824
 825struct sdma_rht_node {
 826        unsigned long cpu_id;
 827        struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 828        struct rhash_head node;
 829};
 830
 831#define NR_CPUS_HINT 192
 832
 833static const struct rhashtable_params sdma_rht_params = {
 834        .nelem_hint = NR_CPUS_HINT,
 835        .head_offset = offsetof(struct sdma_rht_node, node),
 836        .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 837        .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
 838        .max_size = NR_CPUS,
 839        .min_size = 8,
 840        .automatic_shrinking = true,
 841};
 842
 843/*
 844 * sdma_select_user_engine() - select sdma engine based on user setup
 845 * @dd: devdata
 846 * @selector: a spreading factor
 847 * @vl: this vl
 848 *
 849 * This function returns an sdma engine for a user sdma request.
 850 * User defined sdma engine affinity setting is honored when applicable,
 851 * otherwise system default sdma engine mapping is used. To ensure correct
 852 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 853 */
 854struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 855                                            u32 selector, u8 vl)
 856{
 857        struct sdma_rht_node *rht_node;
 858        struct sdma_engine *sde = NULL;
 859        const struct cpumask *current_mask = &current->cpus_allowed;
 860        unsigned long cpu_id;
 861
 862        /*
 863         * To ensure that always the same sdma engine(s) will be
 864         * selected make sure the process is pinned to this CPU only.
 865         */
 866        if (cpumask_weight(current_mask) != 1)
 867                goto out;
 868
 869        cpu_id = smp_processor_id();
 870        rcu_read_lock();
 871        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
 872                                          sdma_rht_params);
 873
 874        if (rht_node && rht_node->map[vl]) {
 875                struct sdma_rht_map_elem *map = rht_node->map[vl];
 876
 877                sde = map->sde[selector & map->mask];
 878        }
 879        rcu_read_unlock();
 880
 881        if (sde)
 882                return sde;
 883
 884out:
 885        return sdma_select_engine_vl(dd, selector, vl);
 886}
 887
 888static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 889{
 890        int i;
 891
 892        for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 893                map->sde[map->ctr + i] = map->sde[i];
 894}
 895
 896static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 897                                 struct sdma_engine *sde)
 898{
 899        unsigned int i, pow;
 900
 901        /* only need to check the first ctr entries for a match */
 902        for (i = 0; i < map->ctr; i++) {
 903                if (map->sde[i] == sde) {
 904                        memmove(&map->sde[i], &map->sde[i + 1],
 905                                (map->ctr - i - 1) * sizeof(map->sde[0]));
 906                        map->ctr--;
 907                        pow = roundup_pow_of_two(map->ctr ? : 1);
 908                        map->mask = pow - 1;
 909                        sdma_populate_sde_map(map);
 910                        break;
 911                }
 912        }
 913}
 914
 915/*
 916 * Prevents concurrent reads and writes of the sdma engine cpu_mask
 917 */
 918static DEFINE_MUTEX(process_to_sde_mutex);
 919
 920ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 921                                size_t count)
 922{
 923        struct hfi1_devdata *dd = sde->dd;
 924        cpumask_var_t mask, new_mask;
 925        unsigned long cpu;
 926        int ret, vl, sz;
 927
 928        vl = sdma_engine_get_vl(sde);
 929        if (unlikely(vl < 0))
 930                return -EINVAL;
 931
 932        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 933        if (!ret)
 934                return -ENOMEM;
 935
 936        ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 937        if (!ret) {
 938                free_cpumask_var(mask);
 939                return -ENOMEM;
 940        }
 941        ret = cpulist_parse(buf, mask);
 942        if (ret)
 943                goto out_free;
 944
 945        if (!cpumask_subset(mask, cpu_online_mask)) {
 946                dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 947                ret = -EINVAL;
 948                goto out_free;
 949        }
 950
 951        sz = sizeof(struct sdma_rht_map_elem) +
 952                        (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 953
 954        mutex_lock(&process_to_sde_mutex);
 955
 956        for_each_cpu(cpu, mask) {
 957                struct sdma_rht_node *rht_node;
 958
 959                /* Check if we have this already mapped */
 960                if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 961                        cpumask_set_cpu(cpu, new_mask);
 962                        continue;
 963                }
 964
 965                if (vl >= ARRAY_SIZE(rht_node->map)) {
 966                        ret = -EINVAL;
 967                        goto out;
 968                }
 969
 970                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 971                                                  sdma_rht_params);
 972                if (!rht_node) {
 973                        rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 974                        if (!rht_node) {
 975                                ret = -ENOMEM;
 976                                goto out;
 977                        }
 978
 979                        rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 980                        if (!rht_node->map[vl]) {
 981                                kfree(rht_node);
 982                                ret = -ENOMEM;
 983                                goto out;
 984                        }
 985                        rht_node->cpu_id = cpu;
 986                        rht_node->map[vl]->mask = 0;
 987                        rht_node->map[vl]->ctr = 1;
 988                        rht_node->map[vl]->sde[0] = sde;
 989
 990                        ret = rhashtable_insert_fast(dd->sdma_rht,
 991                                                     &rht_node->node,
 992                                                     sdma_rht_params);
 993                        if (ret) {
 994                                kfree(rht_node->map[vl]);
 995                                kfree(rht_node);
 996                                dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
 997                                           cpu);
 998                                goto out;
 999                        }
1000
1001                } else {
1002                        int ctr, pow;
1003
1004                        /* Add new user mappings */
1005                        if (!rht_node->map[vl])
1006                                rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1007
1008                        if (!rht_node->map[vl]) {
1009                                ret = -ENOMEM;
1010                                goto out;
1011                        }
1012
1013                        rht_node->map[vl]->ctr++;
1014                        ctr = rht_node->map[vl]->ctr;
1015                        rht_node->map[vl]->sde[ctr - 1] = sde;
1016                        pow = roundup_pow_of_two(ctr);
1017                        rht_node->map[vl]->mask = pow - 1;
1018
1019                        /* Populate the sde map table */
1020                        sdma_populate_sde_map(rht_node->map[vl]);
1021                }
1022                cpumask_set_cpu(cpu, new_mask);
1023        }
1024
1025        /* Clean up old mappings */
1026        for_each_cpu(cpu, cpu_online_mask) {
1027                struct sdma_rht_node *rht_node;
1028
1029                /* Don't cleanup sdes that are set in the new mask */
1030                if (cpumask_test_cpu(cpu, mask))
1031                        continue;
1032
1033                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1034                                                  sdma_rht_params);
1035                if (rht_node) {
1036                        bool empty = true;
1037                        int i;
1038
1039                        /* Remove mappings for old sde */
1040                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1041                                if (rht_node->map[i])
1042                                        sdma_cleanup_sde_map(rht_node->map[i],
1043                                                             sde);
1044
1045                        /* Free empty hash table entries */
1046                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1047                                if (!rht_node->map[i])
1048                                        continue;
1049
1050                                if (rht_node->map[i]->ctr) {
1051                                        empty = false;
1052                                        break;
1053                                }
1054                        }
1055
1056                        if (empty) {
1057                                ret = rhashtable_remove_fast(dd->sdma_rht,
1058                                                             &rht_node->node,
1059                                                             sdma_rht_params);
1060                                WARN_ON(ret);
1061
1062                                for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1063                                        kfree(rht_node->map[i]);
1064
1065                                kfree(rht_node);
1066                        }
1067                }
1068        }
1069
1070        cpumask_copy(&sde->cpu_mask, new_mask);
1071out:
1072        mutex_unlock(&process_to_sde_mutex);
1073out_free:
1074        free_cpumask_var(mask);
1075        free_cpumask_var(new_mask);
1076        return ret ? : strnlen(buf, PAGE_SIZE);
1077}
1078
1079ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1080{
1081        mutex_lock(&process_to_sde_mutex);
1082        if (cpumask_empty(&sde->cpu_mask))
1083                snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1084        else
1085                cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1086        mutex_unlock(&process_to_sde_mutex);
1087        return strnlen(buf, PAGE_SIZE);
1088}
1089
1090static void sdma_rht_free(void *ptr, void *arg)
1091{
1092        struct sdma_rht_node *rht_node = ptr;
1093        int i;
1094
1095        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1096                kfree(rht_node->map[i]);
1097
1098        kfree(rht_node);
1099}
1100
1101/**
1102 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1103 * @s: seq file
1104 * @dd: hfi1_devdata
1105 * @cpuid: cpu id
1106 *
1107 * This routine dumps the process to sde mappings per cpu
1108 */
1109void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1110                                struct hfi1_devdata *dd,
1111                                unsigned long cpuid)
1112{
1113        struct sdma_rht_node *rht_node;
1114        int i, j;
1115
1116        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1117                                          sdma_rht_params);
1118        if (!rht_node)
1119                return;
1120
1121        seq_printf(s, "cpu%3lu: ", cpuid);
1122        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1123                if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1124                        continue;
1125
1126                seq_printf(s, " vl%d: [", i);
1127
1128                for (j = 0; j < rht_node->map[i]->ctr; j++) {
1129                        if (!rht_node->map[i]->sde[j])
1130                                continue;
1131
1132                        if (j > 0)
1133                                seq_puts(s, ",");
1134
1135                        seq_printf(s, " sdma%2d",
1136                                   rht_node->map[i]->sde[j]->this_idx);
1137                }
1138                seq_puts(s, " ]");
1139        }
1140
1141        seq_puts(s, "\n");
1142}
1143
1144/*
1145 * Free the indicated map struct
1146 */
1147static void sdma_map_free(struct sdma_vl_map *m)
1148{
1149        int i;
1150
1151        for (i = 0; m && i < m->actual_vls; i++)
1152                kfree(m->map[i]);
1153        kfree(m);
1154}
1155
1156/*
1157 * Handle RCU callback
1158 */
1159static void sdma_map_rcu_callback(struct rcu_head *list)
1160{
1161        struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1162
1163        sdma_map_free(m);
1164}
1165
1166/**
1167 * sdma_map_init - called when # vls change
1168 * @dd: hfi1_devdata
1169 * @port: port number
1170 * @num_vls: number of vls
1171 * @vl_engines: per vl engine mapping (optional)
1172 *
1173 * This routine changes the mapping based on the number of vls.
1174 *
1175 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1176 * implies auto computing the loading and giving each VLs a uniform
1177 * distribution of engines per VL.
1178 *
1179 * The auto algorithm computes the sde_per_vl and the number of extra
1180 * engines.  Any extra engines are added from the last VL on down.
1181 *
1182 * rcu locking is used here to control access to the mapping fields.
1183 *
1184 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1185 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1186 * up to the next highest power of 2 and the first entry is reused
1187 * in a round robin fashion.
1188 *
1189 * If an error occurs the map change is not done and the mapping is
1190 * not changed.
1191 *
1192 */
1193int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1194{
1195        int i, j;
1196        int extra, sde_per_vl;
1197        int engine = 0;
1198        u8 lvl_engines[OPA_MAX_VLS];
1199        struct sdma_vl_map *oldmap, *newmap;
1200
1201        if (!(dd->flags & HFI1_HAS_SEND_DMA))
1202                return 0;
1203
1204        if (!vl_engines) {
1205                /* truncate divide */
1206                sde_per_vl = dd->num_sdma / num_vls;
1207                /* extras */
1208                extra = dd->num_sdma % num_vls;
1209                vl_engines = lvl_engines;
1210                /* add extras from last vl down */
1211                for (i = num_vls - 1; i >= 0; i--, extra--)
1212                        vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1213        }
1214        /* build new map */
1215        newmap = kzalloc(
1216                sizeof(struct sdma_vl_map) +
1217                        roundup_pow_of_two(num_vls) *
1218                        sizeof(struct sdma_map_elem *),
1219                GFP_KERNEL);
1220        if (!newmap)
1221                goto bail;
1222        newmap->actual_vls = num_vls;
1223        newmap->vls = roundup_pow_of_two(num_vls);
1224        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1225        /* initialize back-map */
1226        for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1227                newmap->engine_to_vl[i] = -1;
1228        for (i = 0; i < newmap->vls; i++) {
1229                /* save for wrap around */
1230                int first_engine = engine;
1231
1232                if (i < newmap->actual_vls) {
1233                        int sz = roundup_pow_of_two(vl_engines[i]);
1234
1235                        /* only allocate once */
1236                        newmap->map[i] = kzalloc(
1237                                sizeof(struct sdma_map_elem) +
1238                                        sz * sizeof(struct sdma_engine *),
1239                                GFP_KERNEL);
1240                        if (!newmap->map[i])
1241                                goto bail;
1242                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1243                        /* assign engines */
1244                        for (j = 0; j < sz; j++) {
1245                                newmap->map[i]->sde[j] =
1246                                        &dd->per_sdma[engine];
1247                                if (++engine >= first_engine + vl_engines[i])
1248                                        /* wrap back to first engine */
1249                                        engine = first_engine;
1250                        }
1251                        /* assign back-map */
1252                        for (j = 0; j < vl_engines[i]; j++)
1253                                newmap->engine_to_vl[first_engine + j] = i;
1254                } else {
1255                        /* just re-use entry without allocating */
1256                        newmap->map[i] = newmap->map[i % num_vls];
1257                }
1258                engine = first_engine + vl_engines[i];
1259        }
1260        /* newmap in hand, save old map */
1261        spin_lock_irq(&dd->sde_map_lock);
1262        oldmap = rcu_dereference_protected(dd->sdma_map,
1263                                           lockdep_is_held(&dd->sde_map_lock));
1264
1265        /* publish newmap */
1266        rcu_assign_pointer(dd->sdma_map, newmap);
1267
1268        spin_unlock_irq(&dd->sde_map_lock);
1269        /* success, free any old map after grace period */
1270        if (oldmap)
1271                call_rcu(&oldmap->list, sdma_map_rcu_callback);
1272        return 0;
1273bail:
1274        /* free any partial allocation */
1275        sdma_map_free(newmap);
1276        return -ENOMEM;
1277}
1278
1279/*
1280 * Clean up allocated memory.
1281 *
1282 * This routine is can be called regardless of the success of sdma_init()
1283 *
1284 */
1285static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1286{
1287        size_t i;
1288        struct sdma_engine *sde;
1289
1290        if (dd->sdma_pad_dma) {
1291                dma_free_coherent(&dd->pcidev->dev, 4,
1292                                  (void *)dd->sdma_pad_dma,
1293                                  dd->sdma_pad_phys);
1294                dd->sdma_pad_dma = NULL;
1295                dd->sdma_pad_phys = 0;
1296        }
1297        if (dd->sdma_heads_dma) {
1298                dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1299                                  (void *)dd->sdma_heads_dma,
1300                                  dd->sdma_heads_phys);
1301                dd->sdma_heads_dma = NULL;
1302                dd->sdma_heads_phys = 0;
1303        }
1304        for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1305                sde = &dd->per_sdma[i];
1306
1307                sde->head_dma = NULL;
1308                sde->head_phys = 0;
1309
1310                if (sde->descq) {
1311                        dma_free_coherent(
1312                                &dd->pcidev->dev,
1313                                sde->descq_cnt * sizeof(u64[2]),
1314                                sde->descq,
1315                                sde->descq_phys
1316                        );
1317                        sde->descq = NULL;
1318                        sde->descq_phys = 0;
1319                }
1320                kvfree(sde->tx_ring);
1321                sde->tx_ring = NULL;
1322        }
1323        spin_lock_irq(&dd->sde_map_lock);
1324        sdma_map_free(rcu_access_pointer(dd->sdma_map));
1325        RCU_INIT_POINTER(dd->sdma_map, NULL);
1326        spin_unlock_irq(&dd->sde_map_lock);
1327        synchronize_rcu();
1328        kfree(dd->per_sdma);
1329        dd->per_sdma = NULL;
1330
1331        if (dd->sdma_rht) {
1332                rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1333                kfree(dd->sdma_rht);
1334                dd->sdma_rht = NULL;
1335        }
1336}
1337
1338/**
1339 * sdma_init() - called when device probed
1340 * @dd: hfi1_devdata
1341 * @port: port number (currently only zero)
1342 *
1343 * Initializes each sde and its csrs.
1344 * Interrupts are not required to be enabled.
1345 *
1346 * Returns:
1347 * 0 - success, -errno on failure
1348 */
1349int sdma_init(struct hfi1_devdata *dd, u8 port)
1350{
1351        unsigned this_idx;
1352        struct sdma_engine *sde;
1353        struct rhashtable *tmp_sdma_rht;
1354        u16 descq_cnt;
1355        void *curr_head;
1356        struct hfi1_pportdata *ppd = dd->pport + port;
1357        u32 per_sdma_credits;
1358        uint idle_cnt = sdma_idle_cnt;
1359        size_t num_engines = dd->chip_sdma_engines;
1360        int ret = -ENOMEM;
1361
1362        if (!HFI1_CAP_IS_KSET(SDMA)) {
1363                HFI1_CAP_CLEAR(SDMA_AHG);
1364                return 0;
1365        }
1366        if (mod_num_sdma &&
1367            /* can't exceed chip support */
1368            mod_num_sdma <= dd->chip_sdma_engines &&
1369            /* count must be >= vls */
1370            mod_num_sdma >= num_vls)
1371                num_engines = mod_num_sdma;
1372
1373        dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1374        dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1375        dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1376                    dd->chip_sdma_mem_size);
1377
1378        per_sdma_credits =
1379                dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1380
1381        /* set up freeze waitqueue */
1382        init_waitqueue_head(&dd->sdma_unfreeze_wq);
1383        atomic_set(&dd->sdma_unfreeze_count, 0);
1384
1385        descq_cnt = sdma_get_descq_cnt();
1386        dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1387                    num_engines, descq_cnt);
1388
1389        /* alloc memory for array of send engines */
1390        dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1391        if (!dd->per_sdma)
1392                return ret;
1393
1394        idle_cnt = ns_to_cclock(dd, idle_cnt);
1395        if (idle_cnt)
1396                dd->default_desc1 =
1397                        SDMA_DESC1_HEAD_TO_HOST_FLAG;
1398        else
1399                dd->default_desc1 =
1400                        SDMA_DESC1_INT_REQ_FLAG;
1401
1402        if (!sdma_desct_intr)
1403                sdma_desct_intr = SDMA_DESC_INTR;
1404
1405        /* Allocate memory for SendDMA descriptor FIFOs */
1406        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1407                sde = &dd->per_sdma[this_idx];
1408                sde->dd = dd;
1409                sde->ppd = ppd;
1410                sde->this_idx = this_idx;
1411                sde->descq_cnt = descq_cnt;
1412                sde->desc_avail = sdma_descq_freecnt(sde);
1413                sde->sdma_shift = ilog2(descq_cnt);
1414                sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1415
1416                /* Create a mask specifically for each interrupt source */
1417                sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1418                                           this_idx);
1419                sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1420                                                this_idx);
1421                sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1422                                            this_idx);
1423                /* Create a combined mask to cover all 3 interrupt sources */
1424                sde->imask = sde->int_mask | sde->progress_mask |
1425                             sde->idle_mask;
1426
1427                spin_lock_init(&sde->tail_lock);
1428                seqlock_init(&sde->head_lock);
1429                spin_lock_init(&sde->senddmactrl_lock);
1430                spin_lock_init(&sde->flushlist_lock);
1431                /* insure there is always a zero bit */
1432                sde->ahg_bits = 0xfffffffe00000000ULL;
1433
1434                sdma_set_state(sde, sdma_state_s00_hw_down);
1435
1436                /* set up reference counting */
1437                kref_init(&sde->state.kref);
1438                init_completion(&sde->state.comp);
1439
1440                INIT_LIST_HEAD(&sde->flushlist);
1441                INIT_LIST_HEAD(&sde->dmawait);
1442
1443                sde->tail_csr =
1444                        get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1445
1446                tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1447                             (unsigned long)sde);
1448
1449                tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1450                             (unsigned long)sde);
1451                INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1452                INIT_WORK(&sde->flush_worker, sdma_field_flush);
1453
1454                sde->progress_check_head = 0;
1455
1456                timer_setup(&sde->err_progress_check_timer,
1457                            sdma_err_progress_check, 0);
1458
1459                sde->descq = dma_zalloc_coherent(
1460                        &dd->pcidev->dev,
1461                        descq_cnt * sizeof(u64[2]),
1462                        &sde->descq_phys,
1463                        GFP_KERNEL
1464                );
1465                if (!sde->descq)
1466                        goto bail;
1467                sde->tx_ring =
1468                        kvzalloc_node(sizeof(struct sdma_txreq *) * descq_cnt,
1469                                      GFP_KERNEL, dd->node);
1470                if (!sde->tx_ring)
1471                        goto bail;
1472        }
1473
1474        dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1475        /* Allocate memory for DMA of head registers to memory */
1476        dd->sdma_heads_dma = dma_zalloc_coherent(
1477                &dd->pcidev->dev,
1478                dd->sdma_heads_size,
1479                &dd->sdma_heads_phys,
1480                GFP_KERNEL
1481        );
1482        if (!dd->sdma_heads_dma) {
1483                dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1484                goto bail;
1485        }
1486
1487        /* Allocate memory for pad */
1488        dd->sdma_pad_dma = dma_zalloc_coherent(
1489                &dd->pcidev->dev,
1490                sizeof(u32),
1491                &dd->sdma_pad_phys,
1492                GFP_KERNEL
1493        );
1494        if (!dd->sdma_pad_dma) {
1495                dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1496                goto bail;
1497        }
1498
1499        /* assign each engine to different cacheline and init registers */
1500        curr_head = (void *)dd->sdma_heads_dma;
1501        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1502                unsigned long phys_offset;
1503
1504                sde = &dd->per_sdma[this_idx];
1505
1506                sde->head_dma = curr_head;
1507                curr_head += L1_CACHE_BYTES;
1508                phys_offset = (unsigned long)sde->head_dma -
1509                              (unsigned long)dd->sdma_heads_dma;
1510                sde->head_phys = dd->sdma_heads_phys + phys_offset;
1511                init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1512        }
1513        dd->flags |= HFI1_HAS_SEND_DMA;
1514        dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1515        dd->num_sdma = num_engines;
1516        ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1517        if (ret < 0)
1518                goto bail;
1519
1520        tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1521        if (!tmp_sdma_rht) {
1522                ret = -ENOMEM;
1523                goto bail;
1524        }
1525
1526        ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1527        if (ret < 0)
1528                goto bail;
1529        dd->sdma_rht = tmp_sdma_rht;
1530
1531        dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1532        return 0;
1533
1534bail:
1535        sdma_clean(dd, num_engines);
1536        return ret;
1537}
1538
1539/**
1540 * sdma_all_running() - called when the link goes up
1541 * @dd: hfi1_devdata
1542 *
1543 * This routine moves all engines to the running state.
1544 */
1545void sdma_all_running(struct hfi1_devdata *dd)
1546{
1547        struct sdma_engine *sde;
1548        unsigned int i;
1549
1550        /* move all engines to running */
1551        for (i = 0; i < dd->num_sdma; ++i) {
1552                sde = &dd->per_sdma[i];
1553                sdma_process_event(sde, sdma_event_e30_go_running);
1554        }
1555}
1556
1557/**
1558 * sdma_all_idle() - called when the link goes down
1559 * @dd: hfi1_devdata
1560 *
1561 * This routine moves all engines to the idle state.
1562 */
1563void sdma_all_idle(struct hfi1_devdata *dd)
1564{
1565        struct sdma_engine *sde;
1566        unsigned int i;
1567
1568        /* idle all engines */
1569        for (i = 0; i < dd->num_sdma; ++i) {
1570                sde = &dd->per_sdma[i];
1571                sdma_process_event(sde, sdma_event_e70_go_idle);
1572        }
1573}
1574
1575/**
1576 * sdma_start() - called to kick off state processing for all engines
1577 * @dd: hfi1_devdata
1578 *
1579 * This routine is for kicking off the state processing for all required
1580 * sdma engines.  Interrupts need to be working at this point.
1581 *
1582 */
1583void sdma_start(struct hfi1_devdata *dd)
1584{
1585        unsigned i;
1586        struct sdma_engine *sde;
1587
1588        /* kick off the engines state processing */
1589        for (i = 0; i < dd->num_sdma; ++i) {
1590                sde = &dd->per_sdma[i];
1591                sdma_process_event(sde, sdma_event_e10_go_hw_start);
1592        }
1593}
1594
1595/**
1596 * sdma_exit() - used when module is removed
1597 * @dd: hfi1_devdata
1598 */
1599void sdma_exit(struct hfi1_devdata *dd)
1600{
1601        unsigned this_idx;
1602        struct sdma_engine *sde;
1603
1604        for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1605                        ++this_idx) {
1606                sde = &dd->per_sdma[this_idx];
1607                if (!list_empty(&sde->dmawait))
1608                        dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1609                                   sde->this_idx);
1610                sdma_process_event(sde, sdma_event_e00_go_hw_down);
1611
1612                del_timer_sync(&sde->err_progress_check_timer);
1613
1614                /*
1615                 * This waits for the state machine to exit so it is not
1616                 * necessary to kill the sdma_sw_clean_up_task to make sure
1617                 * it is not running.
1618                 */
1619                sdma_finalput(&sde->state);
1620        }
1621        sdma_clean(dd, dd->num_sdma);
1622}
1623
1624/*
1625 * unmap the indicated descriptor
1626 */
1627static inline void sdma_unmap_desc(
1628        struct hfi1_devdata *dd,
1629        struct sdma_desc *descp)
1630{
1631        switch (sdma_mapping_type(descp)) {
1632        case SDMA_MAP_SINGLE:
1633                dma_unmap_single(
1634                        &dd->pcidev->dev,
1635                        sdma_mapping_addr(descp),
1636                        sdma_mapping_len(descp),
1637                        DMA_TO_DEVICE);
1638                break;
1639        case SDMA_MAP_PAGE:
1640                dma_unmap_page(
1641                        &dd->pcidev->dev,
1642                        sdma_mapping_addr(descp),
1643                        sdma_mapping_len(descp),
1644                        DMA_TO_DEVICE);
1645                break;
1646        }
1647}
1648
1649/*
1650 * return the mode as indicated by the first
1651 * descriptor in the tx.
1652 */
1653static inline u8 ahg_mode(struct sdma_txreq *tx)
1654{
1655        return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1656                >> SDMA_DESC1_HEADER_MODE_SHIFT;
1657}
1658
1659/**
1660 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1661 * @dd: hfi1_devdata for unmapping
1662 * @tx: tx request to clean
1663 *
1664 * This is used in the progress routine to clean the tx or
1665 * by the ULP to toss an in-process tx build.
1666 *
1667 * The code can be called multiple times without issue.
1668 *
1669 */
1670void __sdma_txclean(
1671        struct hfi1_devdata *dd,
1672        struct sdma_txreq *tx)
1673{
1674        u16 i;
1675
1676        if (tx->num_desc) {
1677                u8 skip = 0, mode = ahg_mode(tx);
1678
1679                /* unmap first */
1680                sdma_unmap_desc(dd, &tx->descp[0]);
1681                /* determine number of AHG descriptors to skip */
1682                if (mode > SDMA_AHG_APPLY_UPDATE1)
1683                        skip = mode >> 1;
1684                for (i = 1 + skip; i < tx->num_desc; i++)
1685                        sdma_unmap_desc(dd, &tx->descp[i]);
1686                tx->num_desc = 0;
1687        }
1688        kfree(tx->coalesce_buf);
1689        tx->coalesce_buf = NULL;
1690        /* kmalloc'ed descp */
1691        if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1692                tx->desc_limit = ARRAY_SIZE(tx->descs);
1693                kfree(tx->descp);
1694        }
1695}
1696
1697static inline u16 sdma_gethead(struct sdma_engine *sde)
1698{
1699        struct hfi1_devdata *dd = sde->dd;
1700        int use_dmahead;
1701        u16 hwhead;
1702
1703#ifdef CONFIG_SDMA_VERBOSITY
1704        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1705                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1706#endif
1707
1708retry:
1709        use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1710                                        (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1711        hwhead = use_dmahead ?
1712                (u16)le64_to_cpu(*sde->head_dma) :
1713                (u16)read_sde_csr(sde, SD(HEAD));
1714
1715        if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1716                u16 cnt;
1717                u16 swtail;
1718                u16 swhead;
1719                int sane;
1720
1721                swhead = sde->descq_head & sde->sdma_mask;
1722                /* this code is really bad for cache line trading */
1723                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1724                cnt = sde->descq_cnt;
1725
1726                if (swhead < swtail)
1727                        /* not wrapped */
1728                        sane = (hwhead >= swhead) & (hwhead <= swtail);
1729                else if (swhead > swtail)
1730                        /* wrapped around */
1731                        sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1732                                (hwhead <= swtail);
1733                else
1734                        /* empty */
1735                        sane = (hwhead == swhead);
1736
1737                if (unlikely(!sane)) {
1738                        dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1739                                   sde->this_idx,
1740                                   use_dmahead ? "dma" : "kreg",
1741                                   hwhead, swhead, swtail, cnt);
1742                        if (use_dmahead) {
1743                                /* try one more time, using csr */
1744                                use_dmahead = 0;
1745                                goto retry;
1746                        }
1747                        /* proceed as if no progress */
1748                        hwhead = swhead;
1749                }
1750        }
1751        return hwhead;
1752}
1753
1754/*
1755 * This is called when there are send DMA descriptors that might be
1756 * available.
1757 *
1758 * This is called with head_lock held.
1759 */
1760static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1761{
1762        struct iowait *wait, *nw;
1763        struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1764        uint i, n = 0, seq, max_idx = 0;
1765        struct sdma_txreq *stx;
1766        struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1767        u8 max_starved_cnt = 0;
1768
1769#ifdef CONFIG_SDMA_VERBOSITY
1770        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1771                   slashstrip(__FILE__), __LINE__, __func__);
1772        dd_dev_err(sde->dd, "avail: %u\n", avail);
1773#endif
1774
1775        do {
1776                seq = read_seqbegin(&dev->iowait_lock);
1777                if (!list_empty(&sde->dmawait)) {
1778                        /* at least one item */
1779                        write_seqlock(&dev->iowait_lock);
1780                        /* Harvest waiters wanting DMA descriptors */
1781                        list_for_each_entry_safe(
1782                                        wait,
1783                                        nw,
1784                                        &sde->dmawait,
1785                                        list) {
1786                                u16 num_desc = 0;
1787
1788                                if (!wait->wakeup)
1789                                        continue;
1790                                if (n == ARRAY_SIZE(waits))
1791                                        break;
1792                                if (!list_empty(&wait->tx_head)) {
1793                                        stx = list_first_entry(
1794                                                &wait->tx_head,
1795                                                struct sdma_txreq,
1796                                                list);
1797                                        num_desc = stx->num_desc;
1798                                }
1799                                if (num_desc > avail)
1800                                        break;
1801                                avail -= num_desc;
1802                                /* Find the most starved wait memeber */
1803                                iowait_starve_find_max(wait, &max_starved_cnt,
1804                                                       n, &max_idx);
1805                                list_del_init(&wait->list);
1806                                waits[n++] = wait;
1807                        }
1808                        write_sequnlock(&dev->iowait_lock);
1809                        break;
1810                }
1811        } while (read_seqretry(&dev->iowait_lock, seq));
1812
1813        /* Schedule the most starved one first */
1814        if (n)
1815                waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1816
1817        for (i = 0; i < n; i++)
1818                if (i != max_idx)
1819                        waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1820}
1821
1822/* head_lock must be held */
1823static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1824{
1825        struct sdma_txreq *txp = NULL;
1826        int progress = 0;
1827        u16 hwhead, swhead;
1828        int idle_check_done = 0;
1829
1830        hwhead = sdma_gethead(sde);
1831
1832        /* The reason for some of the complexity of this code is that
1833         * not all descriptors have corresponding txps.  So, we have to
1834         * be able to skip over descs until we wander into the range of
1835         * the next txp on the list.
1836         */
1837
1838retry:
1839        txp = get_txhead(sde);
1840        swhead = sde->descq_head & sde->sdma_mask;
1841        trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1842        while (swhead != hwhead) {
1843                /* advance head, wrap if needed */
1844                swhead = ++sde->descq_head & sde->sdma_mask;
1845
1846                /* if now past this txp's descs, do the callback */
1847                if (txp && txp->next_descq_idx == swhead) {
1848                        /* remove from list */
1849                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1850                        complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1851                        /* see if there is another txp */
1852                        txp = get_txhead(sde);
1853                }
1854                trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1855                progress++;
1856        }
1857
1858        /*
1859         * The SDMA idle interrupt is not guaranteed to be ordered with respect
1860         * to updates to the the dma_head location in host memory. The head
1861         * value read might not be fully up to date. If there are pending
1862         * descriptors and the SDMA idle interrupt fired then read from the
1863         * CSR SDMA head instead to get the latest value from the hardware.
1864         * The hardware SDMA head should be read at most once in this invocation
1865         * of sdma_make_progress(..) which is ensured by idle_check_done flag
1866         */
1867        if ((status & sde->idle_mask) && !idle_check_done) {
1868                u16 swtail;
1869
1870                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1871                if (swtail != hwhead) {
1872                        hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1873                        idle_check_done = 1;
1874                        goto retry;
1875                }
1876        }
1877
1878        sde->last_status = status;
1879        if (progress)
1880                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1881}
1882
1883/*
1884 * sdma_engine_interrupt() - interrupt handler for engine
1885 * @sde: sdma engine
1886 * @status: sdma interrupt reason
1887 *
1888 * Status is a mask of the 3 possible interrupts for this engine.  It will
1889 * contain bits _only_ for this SDMA engine.  It will contain at least one
1890 * bit, it may contain more.
1891 */
1892void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1893{
1894        trace_hfi1_sdma_engine_interrupt(sde, status);
1895        write_seqlock(&sde->head_lock);
1896        sdma_set_desc_cnt(sde, sdma_desct_intr);
1897        if (status & sde->idle_mask)
1898                sde->idle_int_cnt++;
1899        else if (status & sde->progress_mask)
1900                sde->progress_int_cnt++;
1901        else if (status & sde->int_mask)
1902                sde->sdma_int_cnt++;
1903        sdma_make_progress(sde, status);
1904        write_sequnlock(&sde->head_lock);
1905}
1906
1907/**
1908 * sdma_engine_error() - error handler for engine
1909 * @sde: sdma engine
1910 * @status: sdma interrupt reason
1911 */
1912void sdma_engine_error(struct sdma_engine *sde, u64 status)
1913{
1914        unsigned long flags;
1915
1916#ifdef CONFIG_SDMA_VERBOSITY
1917        dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1918                   sde->this_idx,
1919                   (unsigned long long)status,
1920                   sdma_state_names[sde->state.current_state]);
1921#endif
1922        spin_lock_irqsave(&sde->tail_lock, flags);
1923        write_seqlock(&sde->head_lock);
1924        if (status & ALL_SDMA_ENG_HALT_ERRS)
1925                __sdma_process_event(sde, sdma_event_e60_hw_halted);
1926        if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1927                dd_dev_err(sde->dd,
1928                           "SDMA (%u) engine error: 0x%llx state %s\n",
1929                           sde->this_idx,
1930                           (unsigned long long)status,
1931                           sdma_state_names[sde->state.current_state]);
1932                dump_sdma_state(sde);
1933        }
1934        write_sequnlock(&sde->head_lock);
1935        spin_unlock_irqrestore(&sde->tail_lock, flags);
1936}
1937
1938static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1939{
1940        u64 set_senddmactrl = 0;
1941        u64 clr_senddmactrl = 0;
1942        unsigned long flags;
1943
1944#ifdef CONFIG_SDMA_VERBOSITY
1945        dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1946                   sde->this_idx,
1947                   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1948                   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1949                   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1950                   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1951#endif
1952
1953        if (op & SDMA_SENDCTRL_OP_ENABLE)
1954                set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1955        else
1956                clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1957
1958        if (op & SDMA_SENDCTRL_OP_INTENABLE)
1959                set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1960        else
1961                clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1962
1963        if (op & SDMA_SENDCTRL_OP_HALT)
1964                set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1965        else
1966                clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1967
1968        spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1969
1970        sde->p_senddmactrl |= set_senddmactrl;
1971        sde->p_senddmactrl &= ~clr_senddmactrl;
1972
1973        if (op & SDMA_SENDCTRL_OP_CLEANUP)
1974                write_sde_csr(sde, SD(CTRL),
1975                              sde->p_senddmactrl |
1976                              SD(CTRL_SDMA_CLEANUP_SMASK));
1977        else
1978                write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1979
1980        spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1981
1982#ifdef CONFIG_SDMA_VERBOSITY
1983        sdma_dumpstate(sde);
1984#endif
1985}
1986
1987static void sdma_setlengen(struct sdma_engine *sde)
1988{
1989#ifdef CONFIG_SDMA_VERBOSITY
1990        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1991                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1992#endif
1993
1994        /*
1995         * Set SendDmaLenGen and clear-then-set the MSB of the generation
1996         * count to enable generation checking and load the internal
1997         * generation counter.
1998         */
1999        write_sde_csr(sde, SD(LEN_GEN),
2000                      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2001        write_sde_csr(sde, SD(LEN_GEN),
2002                      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2003                      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2004}
2005
2006static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2007{
2008        /* Commit writes to memory and advance the tail on the chip */
2009        smp_wmb(); /* see get_txhead() */
2010        writeq(tail, sde->tail_csr);
2011}
2012
2013/*
2014 * This is called when changing to state s10_hw_start_up_halt_wait as
2015 * a result of send buffer errors or send DMA descriptor errors.
2016 */
2017static void sdma_hw_start_up(struct sdma_engine *sde)
2018{
2019        u64 reg;
2020
2021#ifdef CONFIG_SDMA_VERBOSITY
2022        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2023                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2024#endif
2025
2026        sdma_setlengen(sde);
2027        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2028        *sde->head_dma = 0;
2029
2030        reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2031              SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2032        write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2033}
2034
2035/*
2036 * set_sdma_integrity
2037 *
2038 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2039 */
2040static void set_sdma_integrity(struct sdma_engine *sde)
2041{
2042        struct hfi1_devdata *dd = sde->dd;
2043
2044        write_sde_csr(sde, SD(CHECK_ENABLE),
2045                      hfi1_pkt_base_sdma_integrity(dd));
2046}
2047
2048static void init_sdma_regs(
2049        struct sdma_engine *sde,
2050        u32 credits,
2051        uint idle_cnt)
2052{
2053        u8 opval, opmask;
2054#ifdef CONFIG_SDMA_VERBOSITY
2055        struct hfi1_devdata *dd = sde->dd;
2056
2057        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2058                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2059#endif
2060
2061        write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2062        sdma_setlengen(sde);
2063        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2064        write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2065        write_sde_csr(sde, SD(DESC_CNT), 0);
2066        write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2067        write_sde_csr(sde, SD(MEMORY),
2068                      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2069                      ((u64)(credits * sde->this_idx) <<
2070                       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2071        write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2072        set_sdma_integrity(sde);
2073        opmask = OPCODE_CHECK_MASK_DISABLED;
2074        opval = OPCODE_CHECK_VAL_DISABLED;
2075        write_sde_csr(sde, SD(CHECK_OPCODE),
2076                      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2077                      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2078}
2079
2080#ifdef CONFIG_SDMA_VERBOSITY
2081
2082#define sdma_dumpstate_helper0(reg) do { \
2083                csr = read_csr(sde->dd, reg); \
2084                dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2085        } while (0)
2086
2087#define sdma_dumpstate_helper(reg) do { \
2088                csr = read_sde_csr(sde, reg); \
2089                dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2090                        #reg, sde->this_idx, csr); \
2091        } while (0)
2092
2093#define sdma_dumpstate_helper2(reg) do { \
2094                csr = read_csr(sde->dd, reg + (8 * i)); \
2095                dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2096                                #reg, i, csr); \
2097        } while (0)
2098
2099void sdma_dumpstate(struct sdma_engine *sde)
2100{
2101        u64 csr;
2102        unsigned i;
2103
2104        sdma_dumpstate_helper(SD(CTRL));
2105        sdma_dumpstate_helper(SD(STATUS));
2106        sdma_dumpstate_helper0(SD(ERR_STATUS));
2107        sdma_dumpstate_helper0(SD(ERR_MASK));
2108        sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2109        sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2110
2111        for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2112                sdma_dumpstate_helper2(CCE_INT_STATUS);
2113                sdma_dumpstate_helper2(CCE_INT_MASK);
2114                sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2115        }
2116
2117        sdma_dumpstate_helper(SD(TAIL));
2118        sdma_dumpstate_helper(SD(HEAD));
2119        sdma_dumpstate_helper(SD(PRIORITY_THLD));
2120        sdma_dumpstate_helper(SD(IDLE_CNT));
2121        sdma_dumpstate_helper(SD(RELOAD_CNT));
2122        sdma_dumpstate_helper(SD(DESC_CNT));
2123        sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2124        sdma_dumpstate_helper(SD(MEMORY));
2125        sdma_dumpstate_helper0(SD(ENGINES));
2126        sdma_dumpstate_helper0(SD(MEM_SIZE));
2127        /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2128        sdma_dumpstate_helper(SD(BASE_ADDR));
2129        sdma_dumpstate_helper(SD(LEN_GEN));
2130        sdma_dumpstate_helper(SD(HEAD_ADDR));
2131        sdma_dumpstate_helper(SD(CHECK_ENABLE));
2132        sdma_dumpstate_helper(SD(CHECK_VL));
2133        sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2134        sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2135        sdma_dumpstate_helper(SD(CHECK_SLID));
2136        sdma_dumpstate_helper(SD(CHECK_OPCODE));
2137}
2138#endif
2139
2140static void dump_sdma_state(struct sdma_engine *sde)
2141{
2142        struct hw_sdma_desc *descqp;
2143        u64 desc[2];
2144        u64 addr;
2145        u8 gen;
2146        u16 len;
2147        u16 head, tail, cnt;
2148
2149        head = sde->descq_head & sde->sdma_mask;
2150        tail = sde->descq_tail & sde->sdma_mask;
2151        cnt = sdma_descq_freecnt(sde);
2152
2153        dd_dev_err(sde->dd,
2154                   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2155                   sde->this_idx, head, tail, cnt,
2156                   !list_empty(&sde->flushlist));
2157
2158        /* print info for each entry in the descriptor queue */
2159        while (head != tail) {
2160                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2161
2162                descqp = &sde->descq[head];
2163                desc[0] = le64_to_cpu(descqp->qw[0]);
2164                desc[1] = le64_to_cpu(descqp->qw[1]);
2165                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2166                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2167                                'H' : '-';
2168                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2169                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2170                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2171                        & SDMA_DESC0_PHY_ADDR_MASK;
2172                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2173                        & SDMA_DESC1_GENERATION_MASK;
2174                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2175                        & SDMA_DESC0_BYTE_COUNT_MASK;
2176                dd_dev_err(sde->dd,
2177                           "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2178                           head, flags, addr, gen, len);
2179                dd_dev_err(sde->dd,
2180                           "\tdesc0:0x%016llx desc1 0x%016llx\n",
2181                           desc[0], desc[1]);
2182                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2183                        dd_dev_err(sde->dd,
2184                                   "\taidx: %u amode: %u alen: %u\n",
2185                                   (u8)((desc[1] &
2186                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2187                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2188                                   (u8)((desc[1] &
2189                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2190                                        SDMA_DESC1_HEADER_MODE_SHIFT),
2191                                   (u8)((desc[1] &
2192                                         SDMA_DESC1_HEADER_DWS_SMASK) >>
2193                                        SDMA_DESC1_HEADER_DWS_SHIFT));
2194                head++;
2195                head &= sde->sdma_mask;
2196        }
2197}
2198
2199#define SDE_FMT \
2200        "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2201/**
2202 * sdma_seqfile_dump_sde() - debugfs dump of sde
2203 * @s: seq file
2204 * @sde: send dma engine to dump
2205 *
2206 * This routine dumps the sde to the indicated seq file.
2207 */
2208void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2209{
2210        u16 head, tail;
2211        struct hw_sdma_desc *descqp;
2212        u64 desc[2];
2213        u64 addr;
2214        u8 gen;
2215        u16 len;
2216
2217        head = sde->descq_head & sde->sdma_mask;
2218        tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2219        seq_printf(s, SDE_FMT, sde->this_idx,
2220                   sde->cpu,
2221                   sdma_state_name(sde->state.current_state),
2222                   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2223                   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2224                   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2225                   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2226                   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2227                   (unsigned long long)le64_to_cpu(*sde->head_dma),
2228                   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2229                   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2230                   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2231                   (unsigned long long)sde->last_status,
2232                   (unsigned long long)sde->ahg_bits,
2233                   sde->tx_tail,
2234                   sde->tx_head,
2235                   sde->descq_tail,
2236                   sde->descq_head,
2237                   !list_empty(&sde->flushlist),
2238                   sde->descq_full_count,
2239                   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2240
2241        /* print info for each entry in the descriptor queue */
2242        while (head != tail) {
2243                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2244
2245                descqp = &sde->descq[head];
2246                desc[0] = le64_to_cpu(descqp->qw[0]);
2247                desc[1] = le64_to_cpu(descqp->qw[1]);
2248                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2249                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2250                                'H' : '-';
2251                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2252                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2253                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2254                        & SDMA_DESC0_PHY_ADDR_MASK;
2255                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2256                        & SDMA_DESC1_GENERATION_MASK;
2257                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2258                        & SDMA_DESC0_BYTE_COUNT_MASK;
2259                seq_printf(s,
2260                           "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2261                           head, flags, addr, gen, len);
2262                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2263                        seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2264                                   (u8)((desc[1] &
2265                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2266                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2267                                   (u8)((desc[1] &
2268                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2269                                        SDMA_DESC1_HEADER_MODE_SHIFT));
2270                head = (head + 1) & sde->sdma_mask;
2271        }
2272}
2273
2274/*
2275 * add the generation number into
2276 * the qw1 and return
2277 */
2278static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2279{
2280        u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2281
2282        qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2283        qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2284                        << SDMA_DESC1_GENERATION_SHIFT;
2285        return qw1;
2286}
2287
2288/*
2289 * This routine submits the indicated tx
2290 *
2291 * Space has already been guaranteed and
2292 * tail side of ring is locked.
2293 *
2294 * The hardware tail update is done
2295 * in the caller and that is facilitated
2296 * by returning the new tail.
2297 *
2298 * There is special case logic for ahg
2299 * to not add the generation number for
2300 * up to 2 descriptors that follow the
2301 * first descriptor.
2302 *
2303 */
2304static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2305{
2306        int i;
2307        u16 tail;
2308        struct sdma_desc *descp = tx->descp;
2309        u8 skip = 0, mode = ahg_mode(tx);
2310
2311        tail = sde->descq_tail & sde->sdma_mask;
2312        sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2313        sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2314        trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2315                                   tail, &sde->descq[tail]);
2316        tail = ++sde->descq_tail & sde->sdma_mask;
2317        descp++;
2318        if (mode > SDMA_AHG_APPLY_UPDATE1)
2319                skip = mode >> 1;
2320        for (i = 1; i < tx->num_desc; i++, descp++) {
2321                u64 qw1;
2322
2323                sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2324                if (skip) {
2325                        /* edits don't have generation */
2326                        qw1 = descp->qw[1];
2327                        skip--;
2328                } else {
2329                        /* replace generation with real one for non-edits */
2330                        qw1 = add_gen(sde, descp->qw[1]);
2331                }
2332                sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2333                trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2334                                           tail, &sde->descq[tail]);
2335                tail = ++sde->descq_tail & sde->sdma_mask;
2336        }
2337        tx->next_descq_idx = tail;
2338#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2339        tx->sn = sde->tail_sn++;
2340        trace_hfi1_sdma_in_sn(sde, tx->sn);
2341        WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2342#endif
2343        sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2344        sde->desc_avail -= tx->num_desc;
2345        return tail;
2346}
2347
2348/*
2349 * Check for progress
2350 */
2351static int sdma_check_progress(
2352        struct sdma_engine *sde,
2353        struct iowait *wait,
2354        struct sdma_txreq *tx,
2355        bool pkts_sent)
2356{
2357        int ret;
2358
2359        sde->desc_avail = sdma_descq_freecnt(sde);
2360        if (tx->num_desc <= sde->desc_avail)
2361                return -EAGAIN;
2362        /* pulse the head_lock */
2363        if (wait && wait->sleep) {
2364                unsigned seq;
2365
2366                seq = raw_seqcount_begin(
2367                        (const seqcount_t *)&sde->head_lock.seqcount);
2368                ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2369                if (ret == -EAGAIN)
2370                        sde->desc_avail = sdma_descq_freecnt(sde);
2371        } else {
2372                ret = -EBUSY;
2373        }
2374        return ret;
2375}
2376
2377/**
2378 * sdma_send_txreq() - submit a tx req to ring
2379 * @sde: sdma engine to use
2380 * @wait: wait structure to use when full (may be NULL)
2381 * @tx: sdma_txreq to submit
2382 * @pkts_sent: has any packet been sent yet?
2383 *
2384 * The call submits the tx into the ring.  If a iowait structure is non-NULL
2385 * the packet will be queued to the list in wait.
2386 *
2387 * Return:
2388 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2389 * ring (wait == NULL)
2390 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2391 */
2392int sdma_send_txreq(struct sdma_engine *sde,
2393                    struct iowait *wait,
2394                    struct sdma_txreq *tx,
2395                    bool pkts_sent)
2396{
2397        int ret = 0;
2398        u16 tail;
2399        unsigned long flags;
2400
2401        /* user should have supplied entire packet */
2402        if (unlikely(tx->tlen))
2403                return -EINVAL;
2404        tx->wait = wait;
2405        spin_lock_irqsave(&sde->tail_lock, flags);
2406retry:
2407        if (unlikely(!__sdma_running(sde)))
2408                goto unlock_noconn;
2409        if (unlikely(tx->num_desc > sde->desc_avail))
2410                goto nodesc;
2411        tail = submit_tx(sde, tx);
2412        if (wait)
2413                iowait_sdma_inc(wait);
2414        sdma_update_tail(sde, tail);
2415unlock:
2416        spin_unlock_irqrestore(&sde->tail_lock, flags);
2417        return ret;
2418unlock_noconn:
2419        if (wait)
2420                iowait_sdma_inc(wait);
2421        tx->next_descq_idx = 0;
2422#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2423        tx->sn = sde->tail_sn++;
2424        trace_hfi1_sdma_in_sn(sde, tx->sn);
2425#endif
2426        spin_lock(&sde->flushlist_lock);
2427        list_add_tail(&tx->list, &sde->flushlist);
2428        spin_unlock(&sde->flushlist_lock);
2429        if (wait) {
2430                wait->tx_count++;
2431                wait->count += tx->num_desc;
2432        }
2433        schedule_work(&sde->flush_worker);
2434        ret = -ECOMM;
2435        goto unlock;
2436nodesc:
2437        ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2438        if (ret == -EAGAIN) {
2439                ret = 0;
2440                goto retry;
2441        }
2442        sde->descq_full_count++;
2443        goto unlock;
2444}
2445
2446/**
2447 * sdma_send_txlist() - submit a list of tx req to ring
2448 * @sde: sdma engine to use
2449 * @wait: wait structure to use when full (may be NULL)
2450 * @tx_list: list of sdma_txreqs to submit
2451 * @count: pointer to a u32 which, after return will contain the total number of
2452 *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453 *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454 *         which are added to SDMA engine flush list if the SDMA engine state is
2455 *         not running.
2456 *
2457 * The call submits the list into the ring.
2458 *
2459 * If the iowait structure is non-NULL and not equal to the iowait list
2460 * the unprocessed part of the list  will be appended to the list in wait.
2461 *
2462 * In all cases, the tx_list will be updated so the head of the tx_list is
2463 * the list of descriptors that have yet to be transmitted.
2464 *
2465 * The intent of this call is to provide a more efficient
2466 * way of submitting multiple packets to SDMA while holding the tail
2467 * side locking.
2468 *
2469 * Return:
2470 * 0 - Success,
2471 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2473 */
2474int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2475                     struct list_head *tx_list, u32 *count_out)
2476{
2477        struct sdma_txreq *tx, *tx_next;
2478        int ret = 0;
2479        unsigned long flags;
2480        u16 tail = INVALID_TAIL;
2481        u32 submit_count = 0, flush_count = 0, total_count;
2482
2483        spin_lock_irqsave(&sde->tail_lock, flags);
2484retry:
2485        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2486                tx->wait = wait;
2487                if (unlikely(!__sdma_running(sde)))
2488                        goto unlock_noconn;
2489                if (unlikely(tx->num_desc > sde->desc_avail))
2490                        goto nodesc;
2491                if (unlikely(tx->tlen)) {
2492                        ret = -EINVAL;
2493                        goto update_tail;
2494                }
2495                list_del_init(&tx->list);
2496                tail = submit_tx(sde, tx);
2497                submit_count++;
2498                if (tail != INVALID_TAIL &&
2499                    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2500                        sdma_update_tail(sde, tail);
2501                        tail = INVALID_TAIL;
2502                }
2503        }
2504update_tail:
2505        total_count = submit_count + flush_count;
2506        if (wait) {
2507                iowait_sdma_add(wait, total_count);
2508                iowait_starve_clear(submit_count > 0, wait);
2509        }
2510        if (tail != INVALID_TAIL)
2511                sdma_update_tail(sde, tail);
2512        spin_unlock_irqrestore(&sde->tail_lock, flags);
2513        *count_out = total_count;
2514        return ret;
2515unlock_noconn:
2516        spin_lock(&sde->flushlist_lock);
2517        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2518                tx->wait = wait;
2519                list_del_init(&tx->list);
2520                tx->next_descq_idx = 0;
2521#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2522                tx->sn = sde->tail_sn++;
2523                trace_hfi1_sdma_in_sn(sde, tx->sn);
2524#endif
2525                list_add_tail(&tx->list, &sde->flushlist);
2526                flush_count++;
2527                if (wait) {
2528                        wait->tx_count++;
2529                        wait->count += tx->num_desc;
2530                }
2531        }
2532        spin_unlock(&sde->flushlist_lock);
2533        schedule_work(&sde->flush_worker);
2534        ret = -ECOMM;
2535        goto update_tail;
2536nodesc:
2537        ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2538        if (ret == -EAGAIN) {
2539                ret = 0;
2540                goto retry;
2541        }
2542        sde->descq_full_count++;
2543        goto update_tail;
2544}
2545
2546static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2547{
2548        unsigned long flags;
2549
2550        spin_lock_irqsave(&sde->tail_lock, flags);
2551        write_seqlock(&sde->head_lock);
2552
2553        __sdma_process_event(sde, event);
2554
2555        if (sde->state.current_state == sdma_state_s99_running)
2556                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2557
2558        write_sequnlock(&sde->head_lock);
2559        spin_unlock_irqrestore(&sde->tail_lock, flags);
2560}
2561
2562static void __sdma_process_event(struct sdma_engine *sde,
2563                                 enum sdma_events event)
2564{
2565        struct sdma_state *ss = &sde->state;
2566        int need_progress = 0;
2567
2568        /* CONFIG SDMA temporary */
2569#ifdef CONFIG_SDMA_VERBOSITY
2570        dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2571                   sdma_state_names[ss->current_state],
2572                   sdma_event_names[event]);
2573#endif
2574
2575        switch (ss->current_state) {
2576        case sdma_state_s00_hw_down:
2577                switch (event) {
2578                case sdma_event_e00_go_hw_down:
2579                        break;
2580                case sdma_event_e30_go_running:
2581                        /*
2582                         * If down, but running requested (usually result
2583                         * of link up, then we need to start up.
2584                         * This can happen when hw down is requested while
2585                         * bringing the link up with traffic active on
2586                         * 7220, e.g.
2587                         */
2588                        ss->go_s99_running = 1;
2589                        /* fall through -- and start dma engine */
2590                case sdma_event_e10_go_hw_start:
2591                        /* This reference means the state machine is started */
2592                        sdma_get(&sde->state);
2593                        sdma_set_state(sde,
2594                                       sdma_state_s10_hw_start_up_halt_wait);
2595                        break;
2596                case sdma_event_e15_hw_halt_done:
2597                        break;
2598                case sdma_event_e25_hw_clean_up_done:
2599                        break;
2600                case sdma_event_e40_sw_cleaned:
2601                        sdma_sw_tear_down(sde);
2602                        break;
2603                case sdma_event_e50_hw_cleaned:
2604                        break;
2605                case sdma_event_e60_hw_halted:
2606                        break;
2607                case sdma_event_e70_go_idle:
2608                        break;
2609                case sdma_event_e80_hw_freeze:
2610                        break;
2611                case sdma_event_e81_hw_frozen:
2612                        break;
2613                case sdma_event_e82_hw_unfreeze:
2614                        break;
2615                case sdma_event_e85_link_down:
2616                        break;
2617                case sdma_event_e90_sw_halted:
2618                        break;
2619                }
2620                break;
2621
2622        case sdma_state_s10_hw_start_up_halt_wait:
2623                switch (event) {
2624                case sdma_event_e00_go_hw_down:
2625                        sdma_set_state(sde, sdma_state_s00_hw_down);
2626                        sdma_sw_tear_down(sde);
2627                        break;
2628                case sdma_event_e10_go_hw_start:
2629                        break;
2630                case sdma_event_e15_hw_halt_done:
2631                        sdma_set_state(sde,
2632                                       sdma_state_s15_hw_start_up_clean_wait);
2633                        sdma_start_hw_clean_up(sde);
2634                        break;
2635                case sdma_event_e25_hw_clean_up_done:
2636                        break;
2637                case sdma_event_e30_go_running:
2638                        ss->go_s99_running = 1;
2639                        break;
2640                case sdma_event_e40_sw_cleaned:
2641                        break;
2642                case sdma_event_e50_hw_cleaned:
2643                        break;
2644                case sdma_event_e60_hw_halted:
2645                        schedule_work(&sde->err_halt_worker);
2646                        break;
2647                case sdma_event_e70_go_idle:
2648                        ss->go_s99_running = 0;
2649                        break;
2650                case sdma_event_e80_hw_freeze:
2651                        break;
2652                case sdma_event_e81_hw_frozen:
2653                        break;
2654                case sdma_event_e82_hw_unfreeze:
2655                        break;
2656                case sdma_event_e85_link_down:
2657                        break;
2658                case sdma_event_e90_sw_halted:
2659                        break;
2660                }
2661                break;
2662
2663        case sdma_state_s15_hw_start_up_clean_wait:
2664                switch (event) {
2665                case sdma_event_e00_go_hw_down:
2666                        sdma_set_state(sde, sdma_state_s00_hw_down);
2667                        sdma_sw_tear_down(sde);
2668                        break;
2669                case sdma_event_e10_go_hw_start:
2670                        break;
2671                case sdma_event_e15_hw_halt_done:
2672                        break;
2673                case sdma_event_e25_hw_clean_up_done:
2674                        sdma_hw_start_up(sde);
2675                        sdma_set_state(sde, ss->go_s99_running ?
2676                                       sdma_state_s99_running :
2677                                       sdma_state_s20_idle);
2678                        break;
2679                case sdma_event_e30_go_running:
2680                        ss->go_s99_running = 1;
2681                        break;
2682                case sdma_event_e40_sw_cleaned:
2683                        break;
2684                case sdma_event_e50_hw_cleaned:
2685                        break;
2686                case sdma_event_e60_hw_halted:
2687                        break;
2688                case sdma_event_e70_go_idle:
2689                        ss->go_s99_running = 0;
2690                        break;
2691                case sdma_event_e80_hw_freeze:
2692                        break;
2693                case sdma_event_e81_hw_frozen:
2694                        break;
2695                case sdma_event_e82_hw_unfreeze:
2696                        break;
2697                case sdma_event_e85_link_down:
2698                        break;
2699                case sdma_event_e90_sw_halted:
2700                        break;
2701                }
2702                break;
2703
2704        case sdma_state_s20_idle:
2705                switch (event) {
2706                case sdma_event_e00_go_hw_down:
2707                        sdma_set_state(sde, sdma_state_s00_hw_down);
2708                        sdma_sw_tear_down(sde);
2709                        break;
2710                case sdma_event_e10_go_hw_start:
2711                        break;
2712                case sdma_event_e15_hw_halt_done:
2713                        break;
2714                case sdma_event_e25_hw_clean_up_done:
2715                        break;
2716                case sdma_event_e30_go_running:
2717                        sdma_set_state(sde, sdma_state_s99_running);
2718                        ss->go_s99_running = 1;
2719                        break;
2720                case sdma_event_e40_sw_cleaned:
2721                        break;
2722                case sdma_event_e50_hw_cleaned:
2723                        break;
2724                case sdma_event_e60_hw_halted:
2725                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2726                        schedule_work(&sde->err_halt_worker);
2727                        break;
2728                case sdma_event_e70_go_idle:
2729                        break;
2730                case sdma_event_e85_link_down:
2731                        /* fall through */
2732                case sdma_event_e80_hw_freeze:
2733                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2734                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2735                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2736                        break;
2737                case sdma_event_e81_hw_frozen:
2738                        break;
2739                case sdma_event_e82_hw_unfreeze:
2740                        break;
2741                case sdma_event_e90_sw_halted:
2742                        break;
2743                }
2744                break;
2745
2746        case sdma_state_s30_sw_clean_up_wait:
2747                switch (event) {
2748                case sdma_event_e00_go_hw_down:
2749                        sdma_set_state(sde, sdma_state_s00_hw_down);
2750                        break;
2751                case sdma_event_e10_go_hw_start:
2752                        break;
2753                case sdma_event_e15_hw_halt_done:
2754                        break;
2755                case sdma_event_e25_hw_clean_up_done:
2756                        break;
2757                case sdma_event_e30_go_running:
2758                        ss->go_s99_running = 1;
2759                        break;
2760                case sdma_event_e40_sw_cleaned:
2761                        sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2762                        sdma_start_hw_clean_up(sde);
2763                        break;
2764                case sdma_event_e50_hw_cleaned:
2765                        break;
2766                case sdma_event_e60_hw_halted:
2767                        break;
2768                case sdma_event_e70_go_idle:
2769                        ss->go_s99_running = 0;
2770                        break;
2771                case sdma_event_e80_hw_freeze:
2772                        break;
2773                case sdma_event_e81_hw_frozen:
2774                        break;
2775                case sdma_event_e82_hw_unfreeze:
2776                        break;
2777                case sdma_event_e85_link_down:
2778                        ss->go_s99_running = 0;
2779                        break;
2780                case sdma_event_e90_sw_halted:
2781                        break;
2782                }
2783                break;
2784
2785        case sdma_state_s40_hw_clean_up_wait:
2786                switch (event) {
2787                case sdma_event_e00_go_hw_down:
2788                        sdma_set_state(sde, sdma_state_s00_hw_down);
2789                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2790                        break;
2791                case sdma_event_e10_go_hw_start:
2792                        break;
2793                case sdma_event_e15_hw_halt_done:
2794                        break;
2795                case sdma_event_e25_hw_clean_up_done:
2796                        sdma_hw_start_up(sde);
2797                        sdma_set_state(sde, ss->go_s99_running ?
2798                                       sdma_state_s99_running :
2799                                       sdma_state_s20_idle);
2800                        break;
2801                case sdma_event_e30_go_running:
2802                        ss->go_s99_running = 1;
2803                        break;
2804                case sdma_event_e40_sw_cleaned:
2805                        break;
2806                case sdma_event_e50_hw_cleaned:
2807                        break;
2808                case sdma_event_e60_hw_halted:
2809                        break;
2810                case sdma_event_e70_go_idle:
2811                        ss->go_s99_running = 0;
2812                        break;
2813                case sdma_event_e80_hw_freeze:
2814                        break;
2815                case sdma_event_e81_hw_frozen:
2816                        break;
2817                case sdma_event_e82_hw_unfreeze:
2818                        break;
2819                case sdma_event_e85_link_down:
2820                        ss->go_s99_running = 0;
2821                        break;
2822                case sdma_event_e90_sw_halted:
2823                        break;
2824                }
2825                break;
2826
2827        case sdma_state_s50_hw_halt_wait:
2828                switch (event) {
2829                case sdma_event_e00_go_hw_down:
2830                        sdma_set_state(sde, sdma_state_s00_hw_down);
2831                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2832                        break;
2833                case sdma_event_e10_go_hw_start:
2834                        break;
2835                case sdma_event_e15_hw_halt_done:
2836                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2837                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2838                        break;
2839                case sdma_event_e25_hw_clean_up_done:
2840                        break;
2841                case sdma_event_e30_go_running:
2842                        ss->go_s99_running = 1;
2843                        break;
2844                case sdma_event_e40_sw_cleaned:
2845                        break;
2846                case sdma_event_e50_hw_cleaned:
2847                        break;
2848                case sdma_event_e60_hw_halted:
2849                        schedule_work(&sde->err_halt_worker);
2850                        break;
2851                case sdma_event_e70_go_idle:
2852                        ss->go_s99_running = 0;
2853                        break;
2854                case sdma_event_e80_hw_freeze:
2855                        break;
2856                case sdma_event_e81_hw_frozen:
2857                        break;
2858                case sdma_event_e82_hw_unfreeze:
2859                        break;
2860                case sdma_event_e85_link_down:
2861                        ss->go_s99_running = 0;
2862                        break;
2863                case sdma_event_e90_sw_halted:
2864                        break;
2865                }
2866                break;
2867
2868        case sdma_state_s60_idle_halt_wait:
2869                switch (event) {
2870                case sdma_event_e00_go_hw_down:
2871                        sdma_set_state(sde, sdma_state_s00_hw_down);
2872                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2873                        break;
2874                case sdma_event_e10_go_hw_start:
2875                        break;
2876                case sdma_event_e15_hw_halt_done:
2877                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2878                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2879                        break;
2880                case sdma_event_e25_hw_clean_up_done:
2881                        break;
2882                case sdma_event_e30_go_running:
2883                        ss->go_s99_running = 1;
2884                        break;
2885                case sdma_event_e40_sw_cleaned:
2886                        break;
2887                case sdma_event_e50_hw_cleaned:
2888                        break;
2889                case sdma_event_e60_hw_halted:
2890                        schedule_work(&sde->err_halt_worker);
2891                        break;
2892                case sdma_event_e70_go_idle:
2893                        ss->go_s99_running = 0;
2894                        break;
2895                case sdma_event_e80_hw_freeze:
2896                        break;
2897                case sdma_event_e81_hw_frozen:
2898                        break;
2899                case sdma_event_e82_hw_unfreeze:
2900                        break;
2901                case sdma_event_e85_link_down:
2902                        break;
2903                case sdma_event_e90_sw_halted:
2904                        break;
2905                }
2906                break;
2907
2908        case sdma_state_s80_hw_freeze:
2909                switch (event) {
2910                case sdma_event_e00_go_hw_down:
2911                        sdma_set_state(sde, sdma_state_s00_hw_down);
2912                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2913                        break;
2914                case sdma_event_e10_go_hw_start:
2915                        break;
2916                case sdma_event_e15_hw_halt_done:
2917                        break;
2918                case sdma_event_e25_hw_clean_up_done:
2919                        break;
2920                case sdma_event_e30_go_running:
2921                        ss->go_s99_running = 1;
2922                        break;
2923                case sdma_event_e40_sw_cleaned:
2924                        break;
2925                case sdma_event_e50_hw_cleaned:
2926                        break;
2927                case sdma_event_e60_hw_halted:
2928                        break;
2929                case sdma_event_e70_go_idle:
2930                        ss->go_s99_running = 0;
2931                        break;
2932                case sdma_event_e80_hw_freeze:
2933                        break;
2934                case sdma_event_e81_hw_frozen:
2935                        sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2936                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2937                        break;
2938                case sdma_event_e82_hw_unfreeze:
2939                        break;
2940                case sdma_event_e85_link_down:
2941                        break;
2942                case sdma_event_e90_sw_halted:
2943                        break;
2944                }
2945                break;
2946
2947        case sdma_state_s82_freeze_sw_clean:
2948                switch (event) {
2949                case sdma_event_e00_go_hw_down:
2950                        sdma_set_state(sde, sdma_state_s00_hw_down);
2951                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2952                        break;
2953                case sdma_event_e10_go_hw_start:
2954                        break;
2955                case sdma_event_e15_hw_halt_done:
2956                        break;
2957                case sdma_event_e25_hw_clean_up_done:
2958                        break;
2959                case sdma_event_e30_go_running:
2960                        ss->go_s99_running = 1;
2961                        break;
2962                case sdma_event_e40_sw_cleaned:
2963                        /* notify caller this engine is done cleaning */
2964                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2965                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2966                        break;
2967                case sdma_event_e50_hw_cleaned:
2968                        break;
2969                case sdma_event_e60_hw_halted:
2970                        break;
2971                case sdma_event_e70_go_idle:
2972                        ss->go_s99_running = 0;
2973                        break;
2974                case sdma_event_e80_hw_freeze:
2975                        break;
2976                case sdma_event_e81_hw_frozen:
2977                        break;
2978                case sdma_event_e82_hw_unfreeze:
2979                        sdma_hw_start_up(sde);
2980                        sdma_set_state(sde, ss->go_s99_running ?
2981                                       sdma_state_s99_running :
2982                                       sdma_state_s20_idle);
2983                        break;
2984                case sdma_event_e85_link_down:
2985                        break;
2986                case sdma_event_e90_sw_halted:
2987                        break;
2988                }
2989                break;
2990
2991        case sdma_state_s99_running:
2992                switch (event) {
2993                case sdma_event_e00_go_hw_down:
2994                        sdma_set_state(sde, sdma_state_s00_hw_down);
2995                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2996                        break;
2997                case sdma_event_e10_go_hw_start:
2998                        break;
2999                case sdma_event_e15_hw_halt_done:
3000                        break;
3001                case sdma_event_e25_hw_clean_up_done:
3002                        break;
3003                case sdma_event_e30_go_running:
3004                        break;
3005                case sdma_event_e40_sw_cleaned:
3006                        break;
3007                case sdma_event_e50_hw_cleaned:
3008                        break;
3009                case sdma_event_e60_hw_halted:
3010                        need_progress = 1;
3011                        sdma_err_progress_check_schedule(sde);
3012                        /* fall through */
3013                case sdma_event_e90_sw_halted:
3014                        /*
3015                        * SW initiated halt does not perform engines
3016                        * progress check
3017                        */
3018                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3019                        schedule_work(&sde->err_halt_worker);
3020                        break;
3021                case sdma_event_e70_go_idle:
3022                        sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3023                        break;
3024                case sdma_event_e85_link_down:
3025                        ss->go_s99_running = 0;
3026                        /* fall through */
3027                case sdma_event_e80_hw_freeze:
3028                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
3029                        atomic_dec(&sde->dd->sdma_unfreeze_count);
3030                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3031                        break;
3032                case sdma_event_e81_hw_frozen:
3033                        break;
3034                case sdma_event_e82_hw_unfreeze:
3035                        break;
3036                }
3037                break;
3038        }
3039
3040        ss->last_event = event;
3041        if (need_progress)
3042                sdma_make_progress(sde, 0);
3043}
3044
3045/*
3046 * _extend_sdma_tx_descs() - helper to extend txreq
3047 *
3048 * This is called once the initial nominal allocation
3049 * of descriptors in the sdma_txreq is exhausted.
3050 *
3051 * The code will bump the allocation up to the max
3052 * of MAX_DESC (64) descriptors. There doesn't seem
3053 * much point in an interim step. The last descriptor
3054 * is reserved for coalesce buffer in order to support
3055 * cases where input packet has >MAX_DESC iovecs.
3056 *
3057 */
3058static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3059{
3060        int i;
3061
3062        /* Handle last descriptor */
3063        if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3064                /* if tlen is 0, it is for padding, release last descriptor */
3065                if (!tx->tlen) {
3066                        tx->desc_limit = MAX_DESC;
3067                } else if (!tx->coalesce_buf) {
3068                        /* allocate coalesce buffer with space for padding */
3069                        tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3070                                                   GFP_ATOMIC);
3071                        if (!tx->coalesce_buf)
3072                                goto enomem;
3073                        tx->coalesce_idx = 0;
3074                }
3075                return 0;
3076        }
3077
3078        if (unlikely(tx->num_desc == MAX_DESC))
3079                goto enomem;
3080
3081        tx->descp = kmalloc_array(
3082                        MAX_DESC,
3083                        sizeof(struct sdma_desc),
3084                        GFP_ATOMIC);
3085        if (!tx->descp)
3086                goto enomem;
3087
3088        /* reserve last descriptor for coalescing */
3089        tx->desc_limit = MAX_DESC - 1;
3090        /* copy ones already built */
3091        for (i = 0; i < tx->num_desc; i++)
3092                tx->descp[i] = tx->descs[i];
3093        return 0;
3094enomem:
3095        __sdma_txclean(dd, tx);
3096        return -ENOMEM;
3097}
3098
3099/*
3100 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3101 *
3102 * This is called once the initial nominal allocation of descriptors
3103 * in the sdma_txreq is exhausted.
3104 *
3105 * This function calls _extend_sdma_tx_descs to extend or allocate
3106 * coalesce buffer. If there is a allocated coalesce buffer, it will
3107 * copy the input packet data into the coalesce buffer. It also adds
3108 * coalesce buffer descriptor once when whole packet is received.
3109 *
3110 * Return:
3111 * <0 - error
3112 * 0 - coalescing, don't populate descriptor
3113 * 1 - continue with populating descriptor
3114 */
3115int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3116                           int type, void *kvaddr, struct page *page,
3117                           unsigned long offset, u16 len)
3118{
3119        int pad_len, rval;
3120        dma_addr_t addr;
3121
3122        rval = _extend_sdma_tx_descs(dd, tx);
3123        if (rval) {
3124                __sdma_txclean(dd, tx);
3125                return rval;
3126        }
3127
3128        /* If coalesce buffer is allocated, copy data into it */
3129        if (tx->coalesce_buf) {
3130                if (type == SDMA_MAP_NONE) {
3131                        __sdma_txclean(dd, tx);
3132                        return -EINVAL;
3133                }
3134
3135                if (type == SDMA_MAP_PAGE) {
3136                        kvaddr = kmap(page);
3137                        kvaddr += offset;
3138                } else if (WARN_ON(!kvaddr)) {
3139                        __sdma_txclean(dd, tx);
3140                        return -EINVAL;
3141                }
3142
3143                memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3144                tx->coalesce_idx += len;
3145                if (type == SDMA_MAP_PAGE)
3146                        kunmap(page);
3147
3148                /* If there is more data, return */
3149                if (tx->tlen - tx->coalesce_idx)
3150                        return 0;
3151
3152                /* Whole packet is received; add any padding */
3153                pad_len = tx->packet_len & (sizeof(u32) - 1);
3154                if (pad_len) {
3155                        pad_len = sizeof(u32) - pad_len;
3156                        memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3157                        /* padding is taken care of for coalescing case */
3158                        tx->packet_len += pad_len;
3159                        tx->tlen += pad_len;
3160                }
3161
3162                /* dma map the coalesce buffer */
3163                addr = dma_map_single(&dd->pcidev->dev,
3164                                      tx->coalesce_buf,
3165                                      tx->tlen,
3166                                      DMA_TO_DEVICE);
3167
3168                if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3169                        __sdma_txclean(dd, tx);
3170                        return -ENOSPC;
3171                }
3172
3173                /* Add descriptor for coalesce buffer */
3174                tx->desc_limit = MAX_DESC;
3175                return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3176                                         addr, tx->tlen);
3177        }
3178
3179        return 1;
3180}
3181
3182/* Update sdes when the lmc changes */
3183void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3184{
3185        struct sdma_engine *sde;
3186        int i;
3187        u64 sreg;
3188
3189        sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3190                SD(CHECK_SLID_MASK_SHIFT)) |
3191                (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3192                SD(CHECK_SLID_VALUE_SHIFT));
3193
3194        for (i = 0; i < dd->num_sdma; i++) {
3195                hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3196                          i, (u32)sreg);
3197                sde = &dd->per_sdma[i];
3198                write_sde_csr(sde, SD(CHECK_SLID), sreg);
3199        }
3200}
3201
3202/* tx not dword sized - pad */
3203int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3204{
3205        int rval = 0;
3206
3207        tx->num_desc++;
3208        if ((unlikely(tx->num_desc == tx->desc_limit))) {
3209                rval = _extend_sdma_tx_descs(dd, tx);
3210                if (rval) {
3211                        __sdma_txclean(dd, tx);
3212                        return rval;
3213                }
3214        }
3215        /* finish the one just added */
3216        make_tx_sdma_desc(
3217                tx,
3218                SDMA_MAP_NONE,
3219                dd->sdma_pad_phys,
3220                sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3221        _sdma_close_tx(dd, tx);
3222        return rval;
3223}
3224
3225/*
3226 * Add ahg to the sdma_txreq
3227 *
3228 * The logic will consume up to 3
3229 * descriptors at the beginning of
3230 * sdma_txreq.
3231 */
3232void _sdma_txreq_ahgadd(
3233        struct sdma_txreq *tx,
3234        u8 num_ahg,
3235        u8 ahg_entry,
3236        u32 *ahg,
3237        u8 ahg_hlen)
3238{
3239        u32 i, shift = 0, desc = 0;
3240        u8 mode;
3241
3242        WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3243        /* compute mode */
3244        if (num_ahg == 1)
3245                mode = SDMA_AHG_APPLY_UPDATE1;
3246        else if (num_ahg <= 5)
3247                mode = SDMA_AHG_APPLY_UPDATE2;
3248        else
3249                mode = SDMA_AHG_APPLY_UPDATE3;
3250        tx->num_desc++;
3251        /* initialize to consumed descriptors to zero */
3252        switch (mode) {
3253        case SDMA_AHG_APPLY_UPDATE3:
3254                tx->num_desc++;
3255                tx->descs[2].qw[0] = 0;
3256                tx->descs[2].qw[1] = 0;
3257                /* FALLTHROUGH */
3258        case SDMA_AHG_APPLY_UPDATE2:
3259                tx->num_desc++;
3260                tx->descs[1].qw[0] = 0;
3261                tx->descs[1].qw[1] = 0;
3262                break;
3263        }
3264        ahg_hlen >>= 2;
3265        tx->descs[0].qw[1] |=
3266                (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3267                        << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3268                (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3269                        << SDMA_DESC1_HEADER_DWS_SHIFT) |
3270                (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3271                        << SDMA_DESC1_HEADER_MODE_SHIFT) |
3272                (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3273                        << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3274        for (i = 0; i < (num_ahg - 1); i++) {
3275                if (!shift && !(i & 2))
3276                        desc++;
3277                tx->descs[desc].qw[!!(i & 2)] |=
3278                        (((u64)ahg[i + 1])
3279                                << shift);
3280                shift = (shift + 32) & 63;
3281        }
3282}
3283
3284/**
3285 * sdma_ahg_alloc - allocate an AHG entry
3286 * @sde: engine to allocate from
3287 *
3288 * Return:
3289 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3290 * -ENOSPC if an entry is not available
3291 */
3292int sdma_ahg_alloc(struct sdma_engine *sde)
3293{
3294        int nr;
3295        int oldbit;
3296
3297        if (!sde) {
3298                trace_hfi1_ahg_allocate(sde, -EINVAL);
3299                return -EINVAL;
3300        }
3301        while (1) {
3302                nr = ffz(READ_ONCE(sde->ahg_bits));
3303                if (nr > 31) {
3304                        trace_hfi1_ahg_allocate(sde, -ENOSPC);
3305                        return -ENOSPC;
3306                }
3307                oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3308                if (!oldbit)
3309                        break;
3310                cpu_relax();
3311        }
3312        trace_hfi1_ahg_allocate(sde, nr);
3313        return nr;
3314}
3315
3316/**
3317 * sdma_ahg_free - free an AHG entry
3318 * @sde: engine to return AHG entry
3319 * @ahg_index: index to free
3320 *
3321 * This routine frees the indicate AHG entry.
3322 */
3323void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3324{
3325        if (!sde)
3326                return;
3327        trace_hfi1_ahg_deallocate(sde, ahg_index);
3328        if (ahg_index < 0 || ahg_index > 31)
3329                return;
3330        clear_bit(ahg_index, &sde->ahg_bits);
3331}
3332
3333/*
3334 * SPC freeze handling for SDMA engines.  Called when the driver knows
3335 * the SPC is going into a freeze but before the freeze is fully
3336 * settled.  Generally an error interrupt.
3337 *
3338 * This event will pull the engine out of running so no more entries can be
3339 * added to the engine's queue.
3340 */
3341void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3342{
3343        int i;
3344        enum sdma_events event = link_down ? sdma_event_e85_link_down :
3345                                             sdma_event_e80_hw_freeze;
3346
3347        /* set up the wait but do not wait here */
3348        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3349
3350        /* tell all engines to stop running and wait */
3351        for (i = 0; i < dd->num_sdma; i++)
3352                sdma_process_event(&dd->per_sdma[i], event);
3353
3354        /* sdma_freeze() will wait for all engines to have stopped */
3355}
3356
3357/*
3358 * SPC freeze handling for SDMA engines.  Called when the driver knows
3359 * the SPC is fully frozen.
3360 */
3361void sdma_freeze(struct hfi1_devdata *dd)
3362{
3363        int i;
3364        int ret;
3365
3366        /*
3367         * Make sure all engines have moved out of the running state before
3368         * continuing.
3369         */
3370        ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3371                                       atomic_read(&dd->sdma_unfreeze_count) <=
3372                                       0);
3373        /* interrupted or count is negative, then unloading - just exit */
3374        if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3375                return;
3376
3377        /* set up the count for the next wait */
3378        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3379
3380        /* tell all engines that the SPC is frozen, they can start cleaning */
3381        for (i = 0; i < dd->num_sdma; i++)
3382                sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3383
3384        /*
3385         * Wait for everyone to finish software clean before exiting.  The
3386         * software clean will read engine CSRs, so must be completed before
3387         * the next step, which will clear the engine CSRs.
3388         */
3389        (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3390                                atomic_read(&dd->sdma_unfreeze_count) <= 0);
3391        /* no need to check results - done no matter what */
3392}
3393
3394/*
3395 * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3396 *
3397 * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3398 * that is left is a software clean.  We could do it after the SPC is fully
3399 * frozen, but then we'd have to add another state to wait for the unfreeze.
3400 * Instead, just defer the software clean until the unfreeze step.
3401 */
3402void sdma_unfreeze(struct hfi1_devdata *dd)
3403{
3404        int i;
3405
3406        /* tell all engines start freeze clean up */
3407        for (i = 0; i < dd->num_sdma; i++)
3408                sdma_process_event(&dd->per_sdma[i],
3409                                   sdma_event_e82_hw_unfreeze);
3410}
3411
3412/**
3413 * _sdma_engine_progress_schedule() - schedule progress on engine
3414 * @sde: sdma_engine to schedule progress
3415 *
3416 */
3417void _sdma_engine_progress_schedule(
3418        struct sdma_engine *sde)
3419{
3420        trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3421        /* assume we have selected a good cpu */
3422        write_csr(sde->dd,
3423                  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3424                  sde->progress_mask);
3425}
3426