linux/drivers/misc/sgi-gru/grutables.h
<<
>>
Prefs
   1/*
   2 * SN Platform GRU Driver
   3 *
   4 *            GRU DRIVER TABLES, MACROS, externs, etc
   5 *
   6 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
   7 *
   8 *  This program is free software; you can redistribute it and/or modify
   9 *  it under the terms of the GNU General Public License as published by
  10 *  the Free Software Foundation; either version 2 of the License, or
  11 *  (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  21 */
  22
  23#ifndef __GRUTABLES_H__
  24#define __GRUTABLES_H__
  25
  26/*
  27 * GRU Chiplet:
  28 *   The GRU is a user addressible memory accelerator. It provides
  29 *   several forms of load, store, memset, bcopy instructions. In addition, it
  30 *   contains special instructions for AMOs, sending messages to message
  31 *   queues, etc.
  32 *
  33 *   The GRU is an integral part of the node controller. It connects
  34 *   directly to the cpu socket. In its current implementation, there are 2
  35 *   GRU chiplets in the node controller on each blade (~node).
  36 *
  37 *   The entire GRU memory space is fully coherent and cacheable by the cpus.
  38 *
  39 *   Each GRU chiplet has a physical memory map that looks like the following:
  40 *
  41 *      +-----------------+
  42 *      |/////////////////|
  43 *      |/////////////////|
  44 *      |/////////////////|
  45 *      |/////////////////|
  46 *      |/////////////////|
  47 *      |/////////////////|
  48 *      |/////////////////|
  49 *      |/////////////////|
  50 *      +-----------------+
  51 *      |  system control |
  52 *      +-----------------+        _______ +-------------+
  53 *      |/////////////////|       /        |             |
  54 *      |/////////////////|      /         |             |
  55 *      |/////////////////|     /          | instructions|
  56 *      |/////////////////|    /           |             |
  57 *      |/////////////////|   /            |             |
  58 *      |/////////////////|  /             |-------------|
  59 *      |/////////////////| /              |             |
  60 *      +-----------------+                |             |
  61 *      |   context 15    |                |  data       |
  62 *      +-----------------+                |             |
  63 *      |    ......       | \              |             |
  64 *      +-----------------+  \____________ +-------------+
  65 *      |   context 1     |
  66 *      +-----------------+
  67 *      |   context 0     |
  68 *      +-----------------+
  69 *
  70 *   Each of the "contexts" is a chunk of memory that can be mmaped into user
  71 *   space. The context consists of 2 parts:
  72 *
  73 *      - an instruction space that can be directly accessed by the user
  74 *        to issue GRU instructions and to check instruction status.
  75 *
  76 *      - a data area that acts as normal RAM.
  77 *
  78 *   User instructions contain virtual addresses of data to be accessed by the
  79 *   GRU. The GRU contains a TLB that is used to convert these user virtual
  80 *   addresses to physical addresses.
  81 *
  82 *   The "system control" area of the GRU chiplet is used by the kernel driver
  83 *   to manage user contexts and to perform functions such as TLB dropin and
  84 *   purging.
  85 *
  86 *   One context may be reserved for the kernel and used for cross-partition
  87 *   communication. The GRU will also be used to asynchronously zero out
  88 *   large blocks of memory (not currently implemented).
  89 *
  90 *
  91 * Tables:
  92 *
  93 *      VDATA-VMA Data          - Holds a few parameters. Head of linked list of
  94 *                                GTS tables for threads using the GSEG
  95 *      GTS - Gru Thread State  - contains info for managing a GSEG context. A
  96 *                                GTS is allocated for each thread accessing a
  97 *                                GSEG.
  98 *      GTD - GRU Thread Data   - contains shadow copy of GRU data when GSEG is
  99 *                                not loaded into a GRU
 100 *      GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs
 101 *                                where a GSEG has been loaded. Similar to
 102 *                                an mm_struct but for GRU.
 103 *
 104 *      GS  - GRU State         - Used to manage the state of a GRU chiplet
 105 *      BS  - Blade State       - Used to manage state of all GRU chiplets
 106 *                                on a blade
 107 *
 108 *
 109 *  Normal task tables for task using GRU.
 110 *              - 2 threads in process
 111 *              - 2 GSEGs open in process
 112 *              - GSEG1 is being used by both threads
 113 *              - GSEG2 is used only by thread 2
 114 *
 115 *       task -->|
 116 *       task ---+---> mm ->------ (notifier) -------+-> gms
 117 *                     |                             |
 118 *                     |--> vma -> vdata ---> gts--->|          GSEG1 (thread1)
 119 *                     |                  |          |
 120 *                     |                  +-> gts--->|          GSEG1 (thread2)
 121 *                     |                             |
 122 *                     |--> vma -> vdata ---> gts--->|          GSEG2 (thread2)
 123 *                     .
 124 *                     .
 125 *
 126 *  GSEGs are marked DONTCOPY on fork
 127 *
 128 * At open
 129 *      file.private_data -> NULL
 130 *
 131 * At mmap,
 132 *      vma -> vdata
 133 *
 134 * After gseg reference
 135 *      vma -> vdata ->gts
 136 *
 137 * After fork
 138 *   parent
 139 *      vma -> vdata -> gts
 140 *   child
 141 *      (vma is not copied)
 142 *
 143 */
 144
 145#include <linux/rmap.h>
 146#include <linux/interrupt.h>
 147#include <linux/mutex.h>
 148#include <linux/wait.h>
 149#include <linux/mmu_notifier.h>
 150#include "gru.h"
 151#include "grulib.h"
 152#include "gruhandles.h"
 153
 154extern struct gru_stats_s gru_stats;
 155extern struct gru_blade_state *gru_base[];
 156extern unsigned long gru_start_paddr, gru_end_paddr;
 157extern void *gru_start_vaddr;
 158extern unsigned int gru_max_gids;
 159
 160#define GRU_MAX_BLADES          MAX_NUMNODES
 161#define GRU_MAX_GRUS            (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE)
 162
 163#define GRU_DRIVER_ID_STR       "SGI GRU Device Driver"
 164#define GRU_DRIVER_VERSION_STR  "0.85"
 165
 166/*
 167 * GRU statistics.
 168 */
 169struct gru_stats_s {
 170        atomic_long_t vdata_alloc;
 171        atomic_long_t vdata_free;
 172        atomic_long_t gts_alloc;
 173        atomic_long_t gts_free;
 174        atomic_long_t gms_alloc;
 175        atomic_long_t gms_free;
 176        atomic_long_t gts_double_allocate;
 177        atomic_long_t assign_context;
 178        atomic_long_t assign_context_failed;
 179        atomic_long_t free_context;
 180        atomic_long_t load_user_context;
 181        atomic_long_t load_kernel_context;
 182        atomic_long_t lock_kernel_context;
 183        atomic_long_t unlock_kernel_context;
 184        atomic_long_t steal_user_context;
 185        atomic_long_t steal_kernel_context;
 186        atomic_long_t steal_context_failed;
 187        atomic_long_t nopfn;
 188        atomic_long_t asid_new;
 189        atomic_long_t asid_next;
 190        atomic_long_t asid_wrap;
 191        atomic_long_t asid_reuse;
 192        atomic_long_t intr;
 193        atomic_long_t intr_cbr;
 194        atomic_long_t intr_tfh;
 195        atomic_long_t intr_spurious;
 196        atomic_long_t intr_mm_lock_failed;
 197        atomic_long_t call_os;
 198        atomic_long_t call_os_wait_queue;
 199        atomic_long_t user_flush_tlb;
 200        atomic_long_t user_unload_context;
 201        atomic_long_t user_exception;
 202        atomic_long_t set_context_option;
 203        atomic_long_t check_context_retarget_intr;
 204        atomic_long_t check_context_unload;
 205        atomic_long_t tlb_dropin;
 206        atomic_long_t tlb_preload_page;
 207        atomic_long_t tlb_dropin_fail_no_asid;
 208        atomic_long_t tlb_dropin_fail_upm;
 209        atomic_long_t tlb_dropin_fail_invalid;
 210        atomic_long_t tlb_dropin_fail_range_active;
 211        atomic_long_t tlb_dropin_fail_idle;
 212        atomic_long_t tlb_dropin_fail_fmm;
 213        atomic_long_t tlb_dropin_fail_no_exception;
 214        atomic_long_t tfh_stale_on_fault;
 215        atomic_long_t mmu_invalidate_range;
 216        atomic_long_t mmu_invalidate_page;
 217        atomic_long_t flush_tlb;
 218        atomic_long_t flush_tlb_gru;
 219        atomic_long_t flush_tlb_gru_tgh;
 220        atomic_long_t flush_tlb_gru_zero_asid;
 221
 222        atomic_long_t copy_gpa;
 223        atomic_long_t read_gpa;
 224
 225        atomic_long_t mesq_receive;
 226        atomic_long_t mesq_receive_none;
 227        atomic_long_t mesq_send;
 228        atomic_long_t mesq_send_failed;
 229        atomic_long_t mesq_noop;
 230        atomic_long_t mesq_send_unexpected_error;
 231        atomic_long_t mesq_send_lb_overflow;
 232        atomic_long_t mesq_send_qlimit_reached;
 233        atomic_long_t mesq_send_amo_nacked;
 234        atomic_long_t mesq_send_put_nacked;
 235        atomic_long_t mesq_page_overflow;
 236        atomic_long_t mesq_qf_locked;
 237        atomic_long_t mesq_qf_noop_not_full;
 238        atomic_long_t mesq_qf_switch_head_failed;
 239        atomic_long_t mesq_qf_unexpected_error;
 240        atomic_long_t mesq_noop_unexpected_error;
 241        atomic_long_t mesq_noop_lb_overflow;
 242        atomic_long_t mesq_noop_qlimit_reached;
 243        atomic_long_t mesq_noop_amo_nacked;
 244        atomic_long_t mesq_noop_put_nacked;
 245        atomic_long_t mesq_noop_page_overflow;
 246
 247};
 248
 249enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync,
 250        cchop_deallocate, tfhop_write_only, tfhop_write_restart,
 251        tghop_invalidate, mcsop_last};
 252
 253struct mcs_op_statistic {
 254        atomic_long_t   count;
 255        atomic_long_t   total;
 256        unsigned long   max;
 257};
 258
 259extern struct mcs_op_statistic mcs_op_statistics[mcsop_last];
 260
 261#define OPT_DPRINT              1
 262#define OPT_STATS               2
 263
 264
 265#define IRQ_GRU                 110     /* Starting IRQ number for interrupts */
 266
 267/* Delay in jiffies between attempts to assign a GRU context */
 268#define GRU_ASSIGN_DELAY        ((HZ * 20) / 1000)
 269
 270/*
 271 * If a process has it's context stolen, min delay in jiffies before trying to
 272 * steal a context from another process.
 273 */
 274#define GRU_STEAL_DELAY         ((HZ * 200) / 1000)
 275
 276#define STAT(id)        do {                                            \
 277                                if (gru_options & OPT_STATS)            \
 278                                        atomic_long_inc(&gru_stats.id); \
 279                        } while (0)
 280
 281#ifdef CONFIG_SGI_GRU_DEBUG
 282#define gru_dbg(dev, fmt, x...)                                         \
 283        do {                                                            \
 284                if (gru_options & OPT_DPRINT)                           \
 285                        printk(KERN_DEBUG "GRU:%d %s: " fmt, smp_processor_id(), __func__, x);\
 286        } while (0)
 287#else
 288#define gru_dbg(x...)
 289#endif
 290
 291/*-----------------------------------------------------------------------------
 292 * ASID management
 293 */
 294#define MAX_ASID        0xfffff0
 295#define MIN_ASID        8
 296#define ASID_INC        8       /* number of regions */
 297
 298/* Generate a GRU asid value from a GRU base asid & a virtual address. */
 299#define VADDR_HI_BIT            64
 300#define GRUREGION(addr)         ((addr) >> (VADDR_HI_BIT - 3) & 3)
 301#define GRUASID(asid, addr)     ((asid) + GRUREGION(addr))
 302
 303/*------------------------------------------------------------------------------
 304 *  File & VMS Tables
 305 */
 306
 307struct gru_state;
 308
 309/*
 310 * This structure is pointed to from the mmstruct via the notifier pointer.
 311 * There is one of these per address space.
 312 */
 313struct gru_mm_tracker {                         /* pack to reduce size */
 314        unsigned int            mt_asid_gen:24; /* ASID wrap count */
 315        unsigned int            mt_asid:24;     /* current base ASID for gru */
 316        unsigned short          mt_ctxbitmap:16;/* bitmap of contexts using
 317                                                   asid */
 318} __attribute__ ((packed));
 319
 320struct gru_mm_struct {
 321        struct mmu_notifier     ms_notifier;
 322        atomic_t                ms_refcnt;
 323        spinlock_t              ms_asid_lock;   /* protects ASID assignment */
 324        atomic_t                ms_range_active;/* num range_invals active */
 325        char                    ms_released;
 326        wait_queue_head_t       ms_wait_queue;
 327        DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS);
 328        struct gru_mm_tracker   ms_asids[GRU_MAX_GRUS];
 329};
 330
 331/*
 332 * One of these structures is allocated when a GSEG is mmaped. The
 333 * structure is pointed to by the vma->vm_private_data field in the vma struct.
 334 */
 335struct gru_vma_data {
 336        spinlock_t              vd_lock;        /* Serialize access to vma */
 337        struct list_head        vd_head;        /* head of linked list of gts */
 338        long                    vd_user_options;/* misc user option flags */
 339        int                     vd_cbr_au_count;
 340        int                     vd_dsr_au_count;
 341        unsigned char           vd_tlb_preload_count;
 342};
 343
 344/*
 345 * One of these is allocated for each thread accessing a mmaped GRU. A linked
 346 * list of these structure is hung off the struct gru_vma_data in the mm_struct.
 347 */
 348struct gru_thread_state {
 349        struct list_head        ts_next;        /* list - head at vma-private */
 350        struct mutex            ts_ctxlock;     /* load/unload CTX lock */
 351        struct mm_struct        *ts_mm;         /* mm currently mapped to
 352                                                   context */
 353        struct vm_area_struct   *ts_vma;        /* vma of GRU context */
 354        struct gru_state        *ts_gru;        /* GRU where the context is
 355                                                   loaded */
 356        struct gru_mm_struct    *ts_gms;        /* asid & ioproc struct */
 357        unsigned char           ts_tlb_preload_count; /* TLB preload pages */
 358        unsigned long           ts_cbr_map;     /* map of allocated CBRs */
 359        unsigned long           ts_dsr_map;     /* map of allocated DATA
 360                                                   resources */
 361        unsigned long           ts_steal_jiffies;/* jiffies when context last
 362                                                    stolen */
 363        long                    ts_user_options;/* misc user option flags */
 364        pid_t                   ts_tgid_owner;  /* task that is using the
 365                                                   context - for migration */
 366        short                   ts_user_blade_id;/* user selected blade */
 367        char                    ts_user_chiplet_id;/* user selected chiplet */
 368        unsigned short          ts_sizeavail;   /* Pagesizes in use */
 369        int                     ts_tsid;        /* thread that owns the
 370                                                   structure */
 371        int                     ts_tlb_int_select;/* target cpu if interrupts
 372                                                     enabled */
 373        int                     ts_ctxnum;      /* context number where the
 374                                                   context is loaded */
 375        atomic_t                ts_refcnt;      /* reference count GTS */
 376        unsigned char           ts_dsr_au_count;/* Number of DSR resources
 377                                                   required for contest */
 378        unsigned char           ts_cbr_au_count;/* Number of CBR resources
 379                                                   required for contest */
 380        char                    ts_cch_req_slice;/* CCH packet slice */
 381        char                    ts_blade;       /* If >= 0, migrate context if
 382                                                   ref from different blade */
 383        char                    ts_force_cch_reload;
 384        char                    ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each
 385                                                          allocated CB */
 386        int                     ts_data_valid;  /* Indicates if ts_gdata has
 387                                                   valid data */
 388        struct gru_gseg_statistics ustats;      /* User statistics */
 389        unsigned long           ts_gdata[0];    /* save area for GRU data (CB,
 390                                                   DS, CBE) */
 391};
 392
 393/*
 394 * Threaded programs actually allocate an array of GSEGs when a context is
 395 * created. Each thread uses a separate GSEG. TSID is the index into the GSEG
 396 * array.
 397 */
 398#define TSID(a, v)              (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE)
 399#define UGRUADDR(gts)           ((gts)->ts_vma->vm_start +              \
 400                                        (gts)->ts_tsid * GRU_GSEG_PAGESIZE)
 401
 402#define NULLCTX                 (-1)    /* if context not loaded into GRU */
 403
 404/*-----------------------------------------------------------------------------
 405 *  GRU State Tables
 406 */
 407
 408/*
 409 * One of these exists for each GRU chiplet.
 410 */
 411struct gru_state {
 412        struct gru_blade_state  *gs_blade;              /* GRU state for entire
 413                                                           blade */
 414        unsigned long           gs_gru_base_paddr;      /* Physical address of
 415                                                           gru segments (64) */
 416        void                    *gs_gru_base_vaddr;     /* Virtual address of
 417                                                           gru segments (64) */
 418        unsigned short          gs_gid;                 /* unique GRU number */
 419        unsigned short          gs_blade_id;            /* blade of GRU */
 420        unsigned char           gs_chiplet_id;          /* blade chiplet of GRU */
 421        unsigned char           gs_tgh_local_shift;     /* used to pick TGH for
 422                                                           local flush */
 423        unsigned char           gs_tgh_first_remote;    /* starting TGH# for
 424                                                           remote flush */
 425        spinlock_t              gs_asid_lock;           /* lock used for
 426                                                           assigning asids */
 427        spinlock_t              gs_lock;                /* lock used for
 428                                                           assigning contexts */
 429
 430        /* -- the following are protected by the gs_asid_lock spinlock ---- */
 431        unsigned int            gs_asid;                /* Next availe ASID */
 432        unsigned int            gs_asid_limit;          /* Limit of available
 433                                                           ASIDs */
 434        unsigned int            gs_asid_gen;            /* asid generation.
 435                                                           Inc on wrap */
 436
 437        /* --- the following fields are protected by the gs_lock spinlock --- */
 438        unsigned long           gs_context_map;         /* bitmap to manage
 439                                                           contexts in use */
 440        unsigned long           gs_cbr_map;             /* bitmap to manage CB
 441                                                           resources */
 442        unsigned long           gs_dsr_map;             /* bitmap used to manage
 443                                                           DATA resources */
 444        unsigned int            gs_reserved_cbrs;       /* Number of kernel-
 445                                                           reserved cbrs */
 446        unsigned int            gs_reserved_dsr_bytes;  /* Bytes of kernel-
 447                                                           reserved dsrs */
 448        unsigned short          gs_active_contexts;     /* number of contexts
 449                                                           in use */
 450        struct gru_thread_state *gs_gts[GRU_NUM_CCH];   /* GTS currently using
 451                                                           the context */
 452        int                     gs_irq[GRU_NUM_TFM];    /* Interrupt irqs */
 453};
 454
 455/*
 456 * This structure contains the GRU state for all the GRUs on a blade.
 457 */
 458struct gru_blade_state {
 459        void                    *kernel_cb;             /* First kernel
 460                                                           reserved cb */
 461        void                    *kernel_dsr;            /* First kernel
 462                                                           reserved DSR */
 463        struct rw_semaphore     bs_kgts_sema;           /* lock for kgts */
 464        struct gru_thread_state *bs_kgts;               /* GTS for kernel use */
 465
 466        /* ---- the following are used for managing kernel async GRU CBRs --- */
 467        int                     bs_async_dsr_bytes;     /* DSRs for async */
 468        int                     bs_async_cbrs;          /* CBRs AU for async */
 469        struct completion       *bs_async_wq;
 470
 471        /* ---- the following are protected by the bs_lock spinlock ---- */
 472        spinlock_t              bs_lock;                /* lock used for
 473                                                           stealing contexts */
 474        int                     bs_lru_ctxnum;          /* STEAL - last context
 475                                                           stolen */
 476        struct gru_state        *bs_lru_gru;            /* STEAL - last gru
 477                                                           stolen */
 478
 479        struct gru_state        bs_grus[GRU_CHIPLETS_PER_BLADE];
 480};
 481
 482/*-----------------------------------------------------------------------------
 483 * Address Primitives
 484 */
 485#define get_tfm_for_cpu(g, c)                                           \
 486        ((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c)))
 487#define get_tfh_by_index(g, i)                                          \
 488        ((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i)))
 489#define get_tgh_by_index(g, i)                                          \
 490        ((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i)))
 491#define get_cbe_by_index(g, i)                                          \
 492        ((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\
 493                        (i)))
 494
 495/*-----------------------------------------------------------------------------
 496 * Useful Macros
 497 */
 498
 499/* Given a blade# & chiplet#, get a pointer to the GRU */
 500#define get_gru(b, c)           (&gru_base[b]->bs_grus[c])
 501
 502/* Number of bytes to save/restore when unloading/loading GRU contexts */
 503#define DSR_BYTES(dsr)          ((dsr) * GRU_DSR_AU_BYTES)
 504#define CBR_BYTES(cbr)          ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2)
 505
 506/* Convert a user CB number to the actual CBRNUM */
 507#define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \
 508                                  * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE)
 509
 510/* Convert a gid to a pointer to the GRU */
 511#define GID_TO_GRU(gid)                                                 \
 512        (gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ?                     \
 513                (&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]->            \
 514                        bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) :      \
 515         NULL)
 516
 517/* Scan all active GRUs in a GRU bitmap */
 518#define for_each_gru_in_bitmap(gid, map)                                \
 519        for_each_set_bit((gid), (map), GRU_MAX_GRUS)
 520
 521/* Scan all active GRUs on a specific blade */
 522#define for_each_gru_on_blade(gru, nid, i)                              \
 523        for ((gru) = gru_base[nid]->bs_grus, (i) = 0;                   \
 524                        (i) < GRU_CHIPLETS_PER_BLADE;                   \
 525                        (i)++, (gru)++)
 526
 527/* Scan all GRUs */
 528#define foreach_gid(gid)                                                \
 529        for ((gid) = 0; (gid) < gru_max_gids; (gid)++)
 530
 531/* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */
 532#define for_each_gts_on_gru(gts, gru, ctxnum)                           \
 533        for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++)          \
 534                if (((gts) = (gru)->gs_gts[ctxnum]))
 535
 536/* Scan each CBR whose bit is set in a TFM (or copy of) */
 537#define for_each_cbr_in_tfm(i, map)                                     \
 538        for_each_set_bit((i), (map), GRU_NUM_CBE)
 539
 540/* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */
 541#define for_each_cbr_in_allocation_map(i, map, k)                       \
 542        for_each_set_bit((k), (map), GRU_CBR_AU)                        \
 543                for ((i) = (k)*GRU_CBR_AU_SIZE;                         \
 544                                (i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++)
 545
 546/* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */
 547#define for_each_dsr_in_allocation_map(i, map, k)                       \
 548        for_each_set_bit((k), (const unsigned long *)(map), GRU_DSR_AU) \
 549                for ((i) = (k) * GRU_DSR_AU_CL;                         \
 550                                (i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++)
 551
 552#define gseg_physical_address(gru, ctxnum)                              \
 553                ((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE)
 554#define gseg_virtual_address(gru, ctxnum)                               \
 555                ((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE)
 556
 557/*-----------------------------------------------------------------------------
 558 * Lock / Unlock GRU handles
 559 *      Use the "delresp" bit in the handle as a "lock" bit.
 560 */
 561
 562/* Lock hierarchy checking enabled only in emulator */
 563
 564/* 0 = lock failed, 1 = locked */
 565static inline int __trylock_handle(void *h)
 566{
 567        return !test_and_set_bit(1, h);
 568}
 569
 570static inline void __lock_handle(void *h)
 571{
 572        while (test_and_set_bit(1, h))
 573                cpu_relax();
 574}
 575
 576static inline void __unlock_handle(void *h)
 577{
 578        clear_bit(1, h);
 579}
 580
 581static inline int trylock_cch_handle(struct gru_context_configuration_handle *cch)
 582{
 583        return __trylock_handle(cch);
 584}
 585
 586static inline void lock_cch_handle(struct gru_context_configuration_handle *cch)
 587{
 588        __lock_handle(cch);
 589}
 590
 591static inline void unlock_cch_handle(struct gru_context_configuration_handle
 592                                     *cch)
 593{
 594        __unlock_handle(cch);
 595}
 596
 597static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh)
 598{
 599        __lock_handle(tgh);
 600}
 601
 602static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
 603{
 604        __unlock_handle(tgh);
 605}
 606
 607static inline int is_kernel_context(struct gru_thread_state *gts)
 608{
 609        return !gts->ts_mm;
 610}
 611
 612/*
 613 * The following are for Nehelem-EX. A more general scheme is needed for
 614 * future processors.
 615 */
 616#define UV_MAX_INT_CORES                8
 617#define uv_cpu_socket_number(p)         ((cpu_physical_id(p) >> 5) & 1)
 618#define uv_cpu_ht_number(p)             (cpu_physical_id(p) & 1)
 619#define uv_cpu_core_number(p)           (((cpu_physical_id(p) >> 2) & 4) |      \
 620                                        ((cpu_physical_id(p) >> 1) & 3))
 621/*-----------------------------------------------------------------------------
 622 * Function prototypes & externs
 623 */
 624struct gru_unload_context_req;
 625
 626extern const struct vm_operations_struct gru_vm_ops;
 627extern struct device *grudev;
 628
 629extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma,
 630                                int tsid);
 631extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct
 632                                *vma, int tsid);
 633extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct
 634                                *vma, int tsid);
 635extern struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts);
 636extern void gru_load_context(struct gru_thread_state *gts);
 637extern void gru_steal_context(struct gru_thread_state *gts);
 638extern void gru_unload_context(struct gru_thread_state *gts, int savestate);
 639extern int gru_update_cch(struct gru_thread_state *gts);
 640extern void gts_drop(struct gru_thread_state *gts);
 641extern void gru_tgh_flush_init(struct gru_state *gru);
 642extern int gru_kservices_init(void);
 643extern void gru_kservices_exit(void);
 644extern irqreturn_t gru0_intr(int irq, void *dev_id);
 645extern irqreturn_t gru1_intr(int irq, void *dev_id);
 646extern irqreturn_t gru_intr_mblade(int irq, void *dev_id);
 647extern int gru_dump_chiplet_request(unsigned long arg);
 648extern long gru_get_gseg_statistics(unsigned long arg);
 649extern int gru_handle_user_call_os(unsigned long address);
 650extern int gru_user_flush_tlb(unsigned long arg);
 651extern int gru_user_unload_context(unsigned long arg);
 652extern int gru_get_exception_detail(unsigned long arg);
 653extern int gru_set_context_option(unsigned long address);
 654extern void gru_check_context_placement(struct gru_thread_state *gts);
 655extern int gru_cpu_fault_map_id(void);
 656extern struct vm_area_struct *gru_find_vma(unsigned long vaddr);
 657extern void gru_flush_all_tlb(struct gru_state *gru);
 658extern int gru_proc_init(void);
 659extern void gru_proc_exit(void);
 660
 661extern struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
 662                int cbr_au_count, int dsr_au_count,
 663                unsigned char tlb_preload_count, int options, int tsid);
 664extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
 665                int cbr_au_count, char *cbmap);
 666extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
 667                int dsr_au_count, char *dsmap);
 668extern int gru_fault(struct vm_fault *vmf);
 669extern struct gru_mm_struct *gru_register_mmu_notifier(void);
 670extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms);
 671
 672extern int gru_ktest(unsigned long arg);
 673extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
 674                                        unsigned long len);
 675
 676extern unsigned long gru_options;
 677
 678#endif /* __GRUTABLES_H__ */
 679